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ABSTRACT

We develop an approach to growing deep network architectures over the course of
training, driven by a principled combination of accuracy and sparsity objectives.
Unlike existing pruning or architecture search techniques that operate on full-sized
models or supernet architectures, our method can start from a small, simple seed
architecture and dynamically grow and prune both layers and filters. By combining
a continuous relaxation of discrete network structure optimization with a scheme
for sampling sparse subnetworks, we produce compact, pruned networks, while
also drastically reducing the computational expense of training. For example, we
achieve 49.7% inference FLOPs and 47.4% training FLOPs savings compared to a
baseline ResNet-50 on ImageNet, while maintaining 75.2% top-1 accuracy — all
without any dedicated fine-tuning stage. Experiments across CIFAR, ImageNet,
PASCAL VOC, and Penn Treebank, with convolutional networks for image classi-
fication and semantic segmentation, and recurrent networks for language modeling,
demonstrate that we both train faster and produce more efficient networks than
competing architecture pruning or search methods.

1 INTRODUCTION

Deep neural networks are the dominant approach to a variety of machine learning tasks, including im-
age classification (Krizhevsky et al., 2012; Simonyan & Zisserman, 2015), object detection (Girshick,
2015; Liu et al., 2016), semantic segmentation (Long et al., 2015; Chen et al., 2017) and language
modeling (Zaremba et al., 2014; Vaswani et al., 2017; Devlin et al., 2019). Modern neural networks
are overparameterized and training larger networks usually yields improved generalization accuracy.
Recent work (He et al., 2016; Zagoruyko & Komodakis, 2016; Huang et al., 2017) illustrates this
trend through increasing depth and width of convolutional neural networks (CNNs). Yet, training is
compute-intensive, and real-world deployments are often limited by parameter and compute budgets.

Neural architecture search (NAS) (Zoph & Le, 2017; Liu et al., 2019; Luo et al., 2018; Pham et al.,
2018; Savarese & Maire, 2019) and model pruning (Han et al., 2016; 2015; Guo et al., 2016) methods
aim to reduce these burdens. NAS addresses an issue that further compounds training cost: the
enormous space of possible network architectures. While hand-tuning architectural details, such
as the connection structure of convolutional layers, can improve performance (Iandola et al., 2016;
Sifre & Mallat, 2014; Chollet, 2017; Howard et al., 2017; Zhang et al., 2018; Huang et al., 2018), a
principled way of deriving such designs remains elusive. NAS methods aim to automate exploration
of possible architectures, producing an efficient design for a target task under practical resource
constraints. However, during training, most NAS methods operate on a large supernet architecture,
which encompasses candidate components beyond those that are eventually selected for inclusion
in the resulting network (Zoph & Le, 2017; Liu et al., 2019; Luo et al., 2018; Pham et al., 2018;
Savarese & Maire, 2019). Consequently, NAS-based training may typically be more thorough, but
more computationally expensive, than training a single hand-designed architecture.

Model pruning techniques similarly focus on improving the resource efficiency of neural networks
during inference, at the possible expense of increased training cost. Common strategies aim to
generate a lighter version of a given network architecture by removing individual weights (Han et al.,
2015; 2016; Molchanov et al., 2017) or structured parameter sets (Li et al., 2017; He et al., 2018; Luo
et al., 2017). However, the majority of these methods train a full-sized model prior to pruning and,
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Figure 1: Growing Networks during Training. We define an architecture configuration space and simultane-
ously adapt network structure and weights. (a) Applying our approach to CNNs, we maintain auxiliary variables
that determine how to grow and prune both filters (i.e. channel-wise) and layers, subject to practical resource
constraints. (b) By starting with a small network and growing its size, we utilize fewer resources in early training
epochs, compared to pruning or NAS methods. (c) Consequently, our method significantly reduces the total
computational cost of training, while delivering trained networks of comparable or better size and accuracy.

after pruning, utilize additional fine-tuning phases in order to maintain accuracy. Hubara et al. (2016)
and Rastegari et al. (2016) propose the use of binary weights and activations, allowing inference to
benefit from reduced storage costs and efficient computation through bit-counting operations. Yet,
training still involves tracking high-precision weights alongside lower-precision approximations.

We take a unified view of pruning and architecture search, regarding both as acting on a configuration
space, and propose a method to dynamically grow deep networks by continuously reconfiguring
their architecture during training. Our approach not only produces models with efficient inference
characteristics, but also reduces the computational cost of training; see Figure 1. Rather than starting
with a full-sized network or a supernet, we start from simple seed networks and progressively adjust
(grown and prune) them. Specifically, we parameterize an architectural configuration space with
indicator variables governing addition or removal of structural components. Figure 2(a) shows an
example, in the form of a two-level configuration space for CNN layers and filters. We enable learning
of indicator values (and thereby, architectural structure) via combining a continuous relaxation with
binary sampling, as illustrated in Figure 2(b). A per-component temperature parameter ensures that
long-lived structures are eventually baked into the network’s discrete architectural configuration.

While the recently proposed AutoGrow (Wen et al., 2020) also seeks to grow networks over the
course of training, our technical approach differs substantially and leads to significant practical
advantages. At a technical level, AutoGrow implements an architecture search procedure over a
predefined modular structure, subject to hand-crafted, accuracy-driven growing and stopping policies.
In contrast, we parameterize architectural configurations and utilize stochastic gradient descent to
learn the auxiliary variables that specify structural components, while simultaneously training the
weights within those components. Our unique technical approach yields the following advantages:

• Fast Training by Growing: Training is a unified procedure, from which one can request a
network structure and associated weights at any time. Unlike AutoGrow and the majority of
pruning techniques, fine-tuning to optimize weights in a discovered architecture is optional. We
achieve excellent results even without any fine-tuning stage.

• Principled Approach via Learning by Continuation + Sampling: We formulate our approach
in the spirit of learning by continuation methods, which relax a discrete optimization problem to an
increasingly stiff continuous approximation. Critically, we introduce an additional sampling step
to this strategy. From this combination, we gain the flexibility of exploring a supernet architecture,
but the computational efficiency of only actually training a much smaller active subnetwork.

• Budget-Aware Optimization Objectives: The parameters governing our architectural configu-
ration are themselves updated via gradient decent. We have flexibility to formulate a variety of
resource-sensitive losses, such as counting total FLOPs, in terms of these parameters.

• Broad Applicability: Though we use progressive growth of CNNs in width and depth as a
motivating example, our technique applies to virtually any neural architecture. One has flexibility
in how to parameterize the architecture configuration space. We also show results with LSTMs.

We demonstrate these advantages while comparing to recent NAS and pruning methods through
extensive experiments on classification, semantic segmentation, and word-level language modeling.
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Figure 2: Technical Framework. (a) We periodically restructure a CNN by querying binary indicators that
define a two-level configuration space for filters and layers. (b) To make optimization feasible while growing
networks, we derive these binary indicators from trainable continuous mask variables. We employ a structured
extension of continuous sparsification (Savarese et al., 2020), combined with sampling. Binary stochastic
auxiliary variables q, sampled according to σ(βs), generate the discrete components active at a particular time.

2 RELATED WORK

Network Pruning. Pruning methods can be split into two groups: those pruning individual weights
and those pruning structured components. Individual weight-based pruning methods vary on the
removal criteria. For example, Han et al. (2015) propose to prune network weights with small
magnitude, and subsequently quantize those remaining (Han et al., 2016). Louizos et al. (2018) learn
sparse networks by approximating `0-regularization with a stochastic reparameterization. However,
sparse weights alone often only lead to speedups on dedicated hardware with supporting libraries.

In structured methods, pruning is applied at the level of neurons, channels, or even layers. For
example, L1-pruning (Li et al., 2017) removes channels based on the norm of their filters. He et al.
(2018) use group sparsity to smooth the pruning process after training. MorphNet (Gordon et al.,
2018) regularizes weights towards zero until they are small enough such that the corresponding output
channels are marked for removal from the network. Intrinsic Structured Sparsity (ISS) (Wen et al.,
2018) works on LSTMs (Hochreiter & Schmidhuber, 1997) by collectively removing the columns
and rows of the weight matrices via group LASSO. Although structured pruning methods and our
algorithm share the same spirit of generating efficient models, we gain training cost savings by
growing networks from small initial architectures instead of pruning full-sized ones.

Neural Architecture Search. NAS methods have greatly improved the performance achieved by
small network models. Pioneering NAS approaches use reinforcement learning (Zoph et al., 2018;
Zoph & Le, 2017) and genetic algorithms (Real et al., 2019; Xie & Yuille, 2017) to search for
transferable network blocks whose performance surpasses many manually designed ones. However,
such approaches require massive computation during the search — typically thousands of GPU days.
To reduce computational cost, recent efforts utilize more efficient search techniques, such as direct
gradient-based optimization (Liu et al., 2019; Luo et al., 2018; Pham et al., 2018; Tan et al., 2019; Cai
et al., 2019; Wortsman et al., 2019). Nevertheless, most NAS methods perform search in a supernet
space which requires more computation than training typically-sized architectures.

Network Growing. Network Morphism (Wei et al., 2016) searches for efficient deep networks by
extending layers while preserving the parameters. Recently proposed Autogrow (Wen et al., 2020)
takes an AutoML approach to growing layers. These methods either require a specially-crafted policy
to stop growth (e.g., after a fixed number of layers) or rely on evaluating accuracy during training,
incurring significant additional computational cost.

Learning by Continuation. Continuation methods are commonly used to approximate intractable
optimization problems by gradually increasing the difficulty of the underlying objective, for example
by adopting gradual relaxations to binary problems. Wu et al. (2019); Xie et al. (2019b; 2020)
use gumbel-softmax (Jang et al., 2017) to back-propagate errors during architecture search and
spatial feature sparsification. Savarese et al. (2020) propose continuous sparsification to speed up
pruning and ticket search (Frankle & Carbin, 2019). Despite the success of continuation methods in
producing sparse networks upon the completion of training, they do not operate on sparse networks
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during training and instead work with a real-valued relaxation. Postponing actual elimination of near
zeroed-out components prevents naive application of these methods from reducing training costs.

3 METHOD

3.1 ARCHITECTURAL CONFIGURATION SPACE

A network topology can be seen as a directed acyclic graph consisting of an ordered sequence of nodes.
Each node x(i)

in is an input feature and each edge is a computation cell with structured hyperparameters
(e.g., filter and layer numbers in convolutional networks). An architectural configuration space can be
parameterized by associating a mask variable m ∈ {0, 1} with each computation cell (edge), which
enables training-time pruning (m = 1→ 0) and growing (m = 0→ 1) dynamics.

As a running example, we consider a two-level configuration space for CNN architectures, depicted
in Figure 2(a), that enables dynamically growing networks in both width (channel-wise) and depth
(layer-wise). Alternative configuration spaces are possible; we defer to the Appendix details on how
we parameterize the design of LSTM architectures.

CNN Channel Configuration Space: For a convolutional layer with lin input channels, lout output
channels (filters) and k × k sized kernels, the i-th output feature is computed based on the i-th filter,
i.e. for i ∈ {1, . . . , lout}:

x
(i)
out = f(xin,F (i) ·m(i)

c ) , (1)

wherem(i)
c ∈ {0, 1} is a binary parameter that removes the i-th output channel when set to zero and

f denotes the convolutional operation. m(i)
c is shared across a filter and broadcasts to the same shape

as the filter tensor F (i), enabling growing/pruning of the entire filter. As Figure 2(a) (top) shows,
we start from a slim channel configuration. We then query the indicator variables and perform state
transitions: (1) When flipping an indicator variable from 0 to 1 for the first time, we grow a randomly
initialized filter and concatenate it to the network. (2) If an indicator flips from 1 to 0, we temporarily
detach the corresponding filter from the computational graph; it will be grown back to the its original
position if its indicator flips back to 1, or otherwise be permanently pruned at the end of training. (3)
For other cases, the corresponding filters either survive and continue training or remain detached
pending the next query to their indicators. Our method automates architecture evolution, provided we
can train the indicators.

CNN Layer Configuration Space: To grow network depth, we design a layer configuration space
in which an initial shallow network will progressively expand into a deep trained model, as shown in
Figure 2(a) (bottom). Similar to channel configuration space, where filters serve as basic structural
units, we require a unified formulation to support the growing of popular networks with shortcut
connections (e.g., ResNets) and without (e.g., VGG-like plain nets). We first introduce an abstract
layer class flayer as a basic structural unit, which operates on input features xin and generates output
features xout. flayer can be instantiated as convolutional layers for plain nets or residual blocks for
ResNets, respectively. We define the layer configuration space as:

xout = g(xin; flayer ·m(j)
l ) =

{
flayer(xin), if m

(j)
l = 1

xin, if m
(j)
l = 0

, (2)

where m(j)
l ∈ {0, 1} is the binary indicator for j-th layer flayer, with which we perform state

transitions analogous to the channel configuration space. Layer indicators have priority over channel
indicators: if m(j)

l is set as 0, all filters contained in the corresponding layer will be detached,
regardless of the state their indicators. We do not detach layers that perform changes in resolution
(e.g., strided convolution).

3.2 GROWING WITH STRUCTURED CONTINUOUS SPARSIFICATION

We can optimize a trade-off between accuracy and structured sparsity by considering the objective:

min
w,mc,l,flayer

LE(g(f(x;w �mc); flayer ·ml)) + λ1 ‖mc‖0 + λ2 ‖ml‖0 , (3)
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where f is the operation in Eq. (1) or Eq. (9) (in Appendix A.6), while g is defined in Eq. (2). w�mc

and flayer ·ml are general expressions of structured sparsified filters and layers and LE denotes a
loss function (e.g., cross-entropy loss for classification). The `0 terms encourage sparsity, while λ1,2
are trade-off parameters between LE and the `0 penalties.

Algorithm 1 : Optimization
Input: DataX = (xi)

n
i=1, labels Y = (yi)

n
i=1

Output: Grown efficient model G
Initialize: G, w, u, λbase

1 and λbase
2 .

Set ts as all 0 vectors associating σ functions.
for epoch = 1 to T do

Evaluate G’s sparsity uG and calculate
∆u = u− uG

Update λ1 ← λbase
1 ·∆u; λ2 ← λbase

2 ·∆u
in Eq. (6) using Eq. (4)

for r = 1 to R do
Sample mini-batch xi, yi fromX,Y
Train G using Eq. (6) with SGD

end for
Sample indicators qc,l ∼ Bern(σ(βsc,l))
and record the index idx where q value is 1.
Update ts[idx] = ts[idx] + 1
Update β using Eq. (7)

end for
return G

Budget-aware Growing. In practice, utilizing
Eq. (3) might require a grid search on λ1 and λ2
until a network with desired sparsity is produced.
To avoid such a costly procedure, we propose
a budget-aware growing process, guided by a
target budget in terms of model parameters or
FLOPs. Instead of treating λ1 and λ2 as con-
stants, we periodically update them as:

λ1 ← λbase
1 ·∆u, λ2 ← λbase

2 ·∆u , (4)

where ∆u is calculated as the target sparsity u
minus current network sparsity uG, and λbase

1 ,
λbase
2 are initial base constants. In early growing

stages, since the network is too sparse and ∆u is
negative, the optimizer will drive the network to-
wards a state with more capacity (wider/deeper).
The regularization effect gradually weakens as
the network’s sparsity approaches the budget
(and ∆u approaches zero). This allows us to
adaptively grow the network and automatically
adjust its sparsity level while simultaneously
training model weights. Appendix A.1 provides more detailed analysis. Our experiments default to
defining budget by parameter count, but also investigate alternative notions of budget.

Learning by Continuation. Another issue in optimizing Eq. (3) is that ‖mc‖0 and ‖ml‖0 make the
problem computationally intractable due to the combinatorial nature of binary states. To make the
configuration space continuous and the optimization feasible, we borrow the concept of learning
by continuation (Cao et al., 2017; Wu et al., 2019; Savarese et al., 2020; Xie et al., 2020). We
reparameterize m as the binary sign of a continuous variable s: sign(s) is 1 if s > 0 and 0 if s < 0.
We rewrite the objective in Eq. (3) as:

min
w,sc,l 6=0,flayer

LE

(
g
(
f(x;w � sign(sc)); flayer · sign(sl)

))
+ λ1 ‖sign(sc)‖1 + λ2 ‖sign(sl)‖1 . (5)

We attack the hard and discontinuous optimization problem in Eq. (5) by starting with an easier
objective which becomes harder as training proceeds. We use a sequence of functions whose
limit is the sign operation: for any s 6= 0, limβ→∞ σ(βs) = sign(s) if σ is sigmoid function or
limβ→0 σ(βs) = sign(s) if σ is gumbel-softmax exp((−log(s0)+g1(s))/β)∑

j∈{0,1} exp((−log(sj)+gj(s))/β)
(Jang et al., 2017),

where β > 0 is a temperature parameter and g0,1 is gumbel. By periodically changing β, σ(βs)
becomes harder to optimize, while the objectives converges to original discrete one.

Maintaining Any-time Sparsification. Although continuation methods can make the optimization
feasible, they only conduct sparsification via a thresholding criterion in the inference phase. In this
case, the train-time architecture is dense and not appropriate in the context of growing a network. To
effectively reduce computational cost of training, we maintain a sparse architecture by introducing an
0-1 sampled auxiliary variable q based on the probability value σ(βs). Our final objective becomes:

min
w,sc,l 6=0,flayer

LE

(
g
(
f(x;w � σ(βsc)� qc); flayer · σ(βsl) · ql

))
+ λ1 ‖σ(βsc)‖1 + λ2 ‖σ(βsl)‖1 , (6)

where qc and ql are random variables sampled from Bern(σ(βsc)) and Bern(σ(βsl)), which effec-
tively maintains any-time sparsification and avoids sub-optimal thresholding, as shown in Figure 2(b).

Improved Temperature Scheduler. In existing continuation methods, the initial β value is usually
set as β0 = 1 and a scheduler is used at the end of each training epoch to update β in all activation
functions σ, typically following β = β0 · γt, where t is current epoch and γ is a hyperparameter (> 1
when σ is the sigmoid function, < 1 when σ is gumbel softmax). Both γ and t control the speed
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Table 1: Comparison with the channel pruning methods L1-Pruning (Li et al., 2017), SoftNet (He et al., 2018),
ThiNet (Luo et al., 2017), Provable (Liebenwein et al., 2020) and BAR (Lemaire et al., 2019) on CIFAR-10.

Model Method Val Acc(%) Params(M) FLOPs(%) Train-Cost Savings(×)

Original 92.9 ± 0.16 (-0.0) 14.99 (100%) 100 1.0×
L1-Pruning 91.8 ± 0.12 (-1.1) 2.98 (19.9%) 19.9 2.5×

VGG SoftNet 92.1 ± 0.09 (-0.8) 5.40 (36.0%) 36.1 1.6×
-16 ThiNet 90.8 ± 0.11 (-2.1) 5.40 (36.0%) 36.1 1.6×

Provable 92.4 ± 0.12 (-0.5) 0.85 (5.7%) 15.0 3.5×
Ours 92.50 ± 0.10 (-0.4) 0.754 ± 0.005 (5.0%) 13.55 ± 0.03 4.95 ± 0.17 ×

Original 91.3 ± 0.12 (-0.0) 0.27 (100%) 100 1.0×
L1-Pruning 90.9 ± 0.10 (-0.4) 0.15 (55.6%) 55.4 1.1×

ResNet SoftNet 90.8 ± 0.13 (-0.5) 0.14 (53.6%) 50.6 1.2×
-20 ThiNet 89.2 ± 0.18 (-2.1) 0.18 (67.1%) 67.3 1.1×

Provable 90.8 ± 0.08 (-0.5) 0.10 (37.3%) 54.5 1.7×
Ours 90.91 ± 0.07 (-0.4) 0.096 ± 0.002 (35.8%) 50.20 ± 0.01 2.40 ± 0.09 ×

WRN Original 96.2 ± 0.10 (-0.0) 36.5 (100%) 100 1.0×
-28 L1-Pruning 95.2 ± 0.10 (-1.0) 7.6 (20.8%) 49.5 1.5×

-10 BAR(16x V) 92.0 ± 0.08 (-4.2) 2.3 (6.3%) 1.5 2.6×
Ours 95.32 ± 0.11 (-0.9) 3.443 ± 0.010 (9.3%) 28.25 ± 0.04 3.12 ± 0.11×

at which the temperature increases during training. Continuation methods with global temperature
schedulers have been successfully applied in pruning and NAS. However, in our case, a global
schedule leads to unbalanced dynamics between variables with low and high sampling probabilities:
increasing the temperature of those less sampled at early stages may hinder their training altogether,
as towards the end of training the optimization difficulty is higher. To overcome this issue, we propose
a separate, structure-wise temperature scheduler by making a simple modification: for each mask
variable, instead of using the current epoch number t to compute its temperature, we set a separate
counter ts which is increased only when its associated indicator variable is sampled as 1 in Eq. (6).
We define our structure-wise temperature scheduler as

β = β0 · γts , (7)

where ts are vectors associated with the σ functions. Experiments use this separate scheduler by
default, but also compare the two alternatives. Algorithm 1 summarizes our optimization procedure.

4 EXPERIMENTS

We evaluate our method against existing channel pruning, network growing, and neural architecture
search (NAS) methods on: CIFAR-10 (Krizhevsky et al., 2014) and ImageNet (Deng et al., 2009) for
image classification, PASCAL (Everingham et al., 2015) for semantic segmentation and the Penn
Treebank (PTB) (Marcus et al., 1993) for language modeling. See dataset details in Appendix A.2. In
tables, best results are highlighted in bold and second best are underlined.
4.1 COMPARING WITH CHANNEL PRUNING METHODS

Implementation Details. For fair comparison, we only grow filters while keeping other structured
parameters of the network (number of layers/blocks) the same as unpruned baseline models. Our
method involves two kinds of trainable variables: model weights and mask weights. For model
weights, we adopt the same hyperparameters used to train the corresponding unpruned baseline
models, except for setting the dropout keep probability for language modeling to 0.65. We initialize
mask weights such that a single filter is activated in each layer. We train with SGD, an initial learning
rate of 0.1, weight decay of 10−6 and momentum 0.9. Trade-off parameter λbase

1 is set to 0.5 on all
tasks; λ2 is not used since we do not perform layer growing here. We set σ as the sigmoid function
and γ as 100

1
T where T is the total number of epochs.

VGG-16, ResNet-20, and WideResNet-28-10 on CIFAR-10. Table 1 summarizes the models
produced by our method and competing channel pruning approaches. Note that training cost is
calculated based on overall FLOPs during pruning and growing stages. Our method produces sparser
networks with less accuracy degradation, and, consistently saves more computation during training —
a consequence of growing from a simple network. For a aggressively pruned WideResNet-28-10,
we observe that BAR (Lemaire et al., 2019) might not have enough capacity to achieve negligible
accuracy drop, even with knowledge distillation (Hinton et al., 2015) during training. Note that we
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Table 2: Comparison with channel pruning methods: L1-Pruning (Li et al., 2017), SoftNet (He et al., 2018) and
Provable (Liebenwein et al., 2020) on ImageNet.

Model Method Top-1 Acc(%) Params(M) FLOPs(%) Train-Cost Savings(×)

Original 76.1 (-0.0) 23.0 (100%) 100 1.0(×)

ResNet L1-Pruning 74.7 (-1.4) 19.6 (85.2%) 77.5 1.1(×)

-50 SoftNet 74.6 (-1.5) N/A 58.2 1.2(×)
Provable 75.2 (-0.9) 15.2 (65.9%) 70.0 1.2(×)

Ours 75.2 (-0.9) 14.1 (61.2%) 50.3 1.9(×)

Table 3: Results comparing with AutoGrow (Wen et al., 2020) on CIFAR-10 and ImageNet.

Dataset Methods Variants Found Net Val Acc(%) Depth Sparse Channel

Ours Basic3ResNet 23-29-31 94.50 83 3

CIFAR-10 Plain3Net 11-14-19 90.99 44 3

AutoGrow Basic3ResNet 42-42-42 94.27 126 7
Plain3Net 23-22-22 90.82 67 7

Ours Bottleneck4ResNet 5-6-5-7 77.41 23 3

ImageNet Plain4Net 3-4-4-5 70.79 16 3

AutoGrow Bottleneck4ResNet 6-7-3-9 77.33 25 7
Plain4Net 5-5-5-4 70.54 19 7

report our method’s performance as mean ± standard deviation, computed over 5 runs with different
random seeds. The small observed variance shows that our method performs consistently across runs.
ResNet-50 and MobileNetV1 on ImageNet. To validate effectiveness on large-scale datasets, we
grow, from scratch, filters of the widely used ResNet-50 on ImageNet; we do not fine-tune. Table 2
shows our results best those directly reported in papers of respective competing methods. Our
approach achieves 49.7% inference and 47.4% training cost savings in terms of FLOPs while main-
taining 75.2% top-1 accuracy, without any fine-tuning stage. Appendix A.4 shows our improvements
on the challenging task of growing channels of an already compact MobileNetV1. In addition,
Figure 3 shows the top-1 accuracy/FlOPs trade-offs for MobileNetV1 on ImageNet, demonstrating
that our method dominates competing approaches.
Deeplab-v3-ResNet-101 on PASCAL VOC. Appendix A.5 provides semantic segmentation results.
2-Stacked-LSTMs on PTB: We detail the extensions to recurrent cells and compare our proposed
method with ISS based on vanilla two-layer stacked LSTM in Appendix A.6. As shown in Table 8,
our method finds more compact model structure with lower training cost, while achieving similar
perplexity on both validation and test sets.

4.2 COMPARING WITH AUTOGROW

Implementation Details. We grow both filters and layers. We follow AutoGrow’s settings in
exploring architectural variations that define our initial seed network, layer-wise configuration
space and basic structural units flayer: Basic3ResNet, Bottleneck4ResNet, Plain3Net, Plain4Net.
Different from the initialization of AutoGrow using full-sized filters in each layer, our channel-wise
configuration space starts from single filter and expands simultaneously with layers. Appendix A.7
contains a detailed comparison of seed architectures. For training model weights, we adopt the
hyperparameters of the ResNet or VGG models corresponding to initial seed variants. For layer-wise
and channel-wise mask variables, we initialize the weights such that only a single filter in each layer
and one basic unit in each stage (e.g., BasicBlock in Basic3ResNet) is active. We use SGD training
with initial learning rate of 0.1, weight decay of 10−6 and momentum of 0.9 on all datasets. The
learning rate scheduler is the same as for the corresponding model weights. Trade-off parameters
λbase
1 and λbase

2 are set as 1.0 and 0.1 on all datasets. For fair comparison, we fine-tune our final
models with 40 epochs and 20 epochs on CIFAR-10 and ImageNet, respectively.
Results on CIFAR-10 and ImageNet. Table 3 compares our results to those of AutoGrow. For
all layer-wise growing variants across both datasets, our method consistently yields a better depth
and width configuration than AutoGrow, in terms of accuracy and training/inference costs trade-off.
Regarding the training time of Bottleneck4ResNet on ImageNet, AutoGrow requires 61.6 hours for
the growing phase and 78.6 hours for fine-tuning on 4 TITAN V GPUs, while our method takes 48.2
and 31.3 hours, respectively. Our method offers 43% more train-time savings than AutoGrow. We not
only require fewer training epochs, but also grow from a single filter to a relatively sparse network,
while AutoGrow always keeps full-sized filter sets without any reallocation.

7



Published as a conference paper at ICLR 2021

4.3 COMPARING WITH NAS METHODS

As a fair comparison with NAS methods involving search and re-training phases, we also divide our
method into growing and training phases. Specifically, we grow layers and channels from the Bot-
tleneck4ResNet seed architecture directly on ImageNet by setting λbase1 = 2.0, λbase2 = 0.1 and the
parameter budget under 7M. Then we resume training the grown architecture and compare with exist-
ing NAS methods in terms of parameters, top-1 validation accuracy and V100 GPU hours required by
the search or growing stages, as shown in Table 4. Note that DARTS (Liu et al., 2019) conducts search
on CIFAR-10, then transfers to ImageNet instead of direct search. This is because DARTS operates
on a supernet by including all the candidate paths and suffers from GPU memory explosion. In terms
of epoch-wise FLOPs, results shown in Figure 1(c) are for training an equivalent of ResNet-20 on
CIFAR-10 in comparison with DARTS and Provable channel pruning approach (Liebenwein et al.,
2020). Also note that the EfficientNet-B0 architecture, included in Table 4, is generated by grid
search in the MnasNet search space, thus having the same heavy search cost. To achieve the re-
ported performance, EfficientNet-B0 utilizes additional squeeze-and-excitation (SE) (Hu et al., 2018)
modules, AutoAugment (Cubuk et al., 2019), as well as much longer re-training epochs on ImageNet.

Table 4: Performance comparing with NAS methods AmoebaNet-
A (Real et al., 2019), MnasNet (Tan et al., 2019), EfficientNet-
B0 (Tan & Le, 2019), DARTS (Liu et al., 2019) and Proxyless-
Net (Cai et al., 2019) on ImageNet.

Method Params Top-1 Search/Grow Cost

AmoebaNet-A 5.1M 74.5% 76K GPU hours
MnasNet 4.4M 74.0% 40K GPU hours

EfficientNet-B0 5.3M 77.1% (+SE) 40K GPU hours
DARTS 4.7M 73.1% N/A

ProxylessNet(GPU) 7.1M 75.1% 200 GPU hours
Ours 6.8M 74.3% 80 GPU hours
Ours 6.7M 74.8% 110 GPU hours
Ours 6.9M 75.1% 140 GPU hours

ProxylessNet still starts with an over-
parameterized supernet, but applies
a pruning-like search method by bi-
narizing the architecture parameters
and forcing only one path to be acti-
vated at search-time. This enables di-
rectly searching on ImageNet, achiev-
ing 200× more search cost savings
than MnasNet. Contrasting with
ProxylessNet, our method progres-
sively adds filters and layers to sim-
ple seed architectures while maintain-
ing sparsification, which leads to sav-
ings of not only epoch-wise compu-
tation but also memory consumption,
enabling faster, larger-batch training. As such, we further save 45% of the GPU search hours, while
achieving comparable accuracy-parameter trade-offs.

4.4 ANALYSIS

Training Cost Savings. Figure 4 illustrates our sparsification dynamics, showing epoch-wise FLOPs
while growing a ResNet-20. Appendix A.8 presents additional visualizations. Even with fully parallel
GPU hardware, starting with few filters and layers in the network will ultimately save wall-clock
time, as larger batch training (Goyal et al., 2017) can always be employed to fill the hardware.

Figure 5 shows validation accuracy, model complexity, and layer count while growing Basic3ResNet.
Complexity is measured as the model parameters ratio of AutoGrow’s target model. At the end of 160
epochs, our method’s validation accuracy is 92.36% , which is higher than AutoGrow’s 84.65% at
360 epochs. We thus require fewer fine-tuning epochs to achieve a final 94.50% accuracy on CIFAR.

Table 5: Comparison with random pruning baseline on CIFAR-10.

Model Method Val Acc(%) Params(M)

VGG-16 Random 90.01 ± 0.69 0.770 ± 0.050
Ours 92.50 ± 0.10 0.754 ± 0.005

ResNet-20 Random 89.18 ± 0.55 0.100 ± 0.010
Ours 90.91 ± 0.07 0.096 ± 0.002

WRN-28-10 Random 92.26 ± 0.87 3.440 ± 0.110
Ours 95.32 ± 0.11 3.443 ± 0.010

Budget-Aware Growing. In Fig-
ure 6, for ResNet-20 on CIFAR-10,
we compare architectures obtained
by (1) uniform pruning: a naive pre-
defined pruning method that prunes
the same percentage of channels in
each layer, (2) ours: variants of our
method by setting different model pa-
rameter sparsities as target budgets
during growing, and (3) direct design:
our grown architectures re-initialized
with random weights and re-trained.
In most budget settings, our growing method outperforms direct design and uniform pruning, demon-
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strating higher parameter efficiency. Our method also appears to have positive effect in terms of
regularization or optimization dynamics, which are lost if one attempts to directly train the final
compact structure. Appendix A.9 investigates FLOPs-based budget targets.

Comparing with Random Baseline. In addition to the uniform pruning baseline in Figure 6, we also
compare with a random sampling baseline to further separate the contribution of our configuration
space and growing method, following the criterion in (Xie et al., 2019a; Li & Talwalkar, 2019; Yu
et al., 2020; Radosavovic et al., 2019). Specifically, this random baseline replaces the procedure
for sampling entries of q in Eq. 6. Instead of using sampling probabilities derived from the learned
mask parameters s, it samples with fixed probability. As shown in Table 5, our method consistently
performs much better than this random baseline. These results, as well as the more sophisticated
baselines in Figure 6, demonstrate the effectiveness of our growing and pruning approach.

Temperature Scheduler. We compare our structure-wise temperature control to a global one in
channel growing experiments on CIFAR-10 using VGG-16, ResNet-20, and WideResNet-28-10.
Table 1 results use our structure-wise scheduler. To achieve similar sparsity with the global scheduler,
the corresponding models suffer accuracy drops of 1.4%, 0.6%, and 2.5%. With the global scheduler,
optimization of mask variables stops early in training and the following epochs are equivalent to
directly training a fixed compact network. This may force the network to be stuck with a suboptimal
architecture. Appendix A.10 investigates learning rate and temperature schedule interactions.

5 CONCLUSION

We propose a simple yet effective method to grow efficient deep networks via structured continuous
sparsification, which decreases the computational cost not only of inference but also of training. The
method is simple to implement and quick to execute; it automates the network structure reallocation
process under practical resource budgets. Application to widely used deep networks on a variety of
tasks shows that our method consistently generates models with better accuracy-efficiency trade-offs
than competing methods, while achieving considerable training cost savings.

Acknowledgments. This work was supported by the University of Chicago CERES Center
for Unstoppable Computing and the National Science Foundation under grant CNS-1956180.
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A APPENDIX

A.1 MORE DETAILED ANALYSIS FOR BUDGET-AWARE GROWING

Conducting grid search on trade-off parameters λ1 and λ2 is prohibitively laborious and time-
consuming. For example, to grow an efficient network on CIFAR-10, one needs to repeat many times
a run of 160-epochs training, and then pick the best model from all grown candidates. To avoid this
tedious iterative process, instead of using constants λ1 and λ2, we dynamically update λ1 and λ2 in
our one-shot budget-aware growing optimization.

Here we discuss about how budget-aware dynamic growing works in our method. Without loss of
generality, we derive the mc’s SGD update rule for the `0 regularization term in Eq. 3 as:

mc ← mc − ηλbase1 ∆u
δ`

δmc
− ηµλbase1 ∆umc (8)

where η is the learning rate and µ is the weight decay factor. At the beginning of growing epochs,
when the architecture is very over-sparsified, ∆u and λbase1 ∆u are negative values. Then mc’s
update is along the opposite direction of the `0 regularization term’s gradients, encouraging mc’s
sparsification. As a result, some zero-valuedmc will be activated and the model complexity is strongly
increased to acquire enough capacity for successful training. Then, growing becomes gradually
weaker as the network’s sparsity approaches the budget (∆u to zero). Note that if the architecture
is over-parameterized, ∆u and λbase1 ∆u become positive and SGD’s update rule is the same as that
of `0 regularization. As such, our budget-aware growing can automatically and dynamically adapt
the architecture complexity not only based on the task loss LE but also on the practical budget
requirements in the one-shot training process.

We also note that NAS methods usually use the validation accuracy as a target during their architecture
optimization phase, which may require some prior knowledge of validation accuracy on a given
dataset. Our growing procedure chooses sparsity budget instead of accuracy as target because: (1)
During growing, validation accuracy is influenced not only by architectures but also model weights.
Directly using ∆acc may lead to sub-optimal architecture optimization. (2) A sparsity budget target
is more practical and easier to set according to target devices for deployment.

A.2 DETAILS OF EVALUATION DATASETS

Evaluation is conducted on various tasks to demonstrate the effectiveness of our proposed method.
For image classification, we use CIFAR-10 (Krizhevsky et al., 2014) and ImageNet (Deng et al.,
2009): CIFAR-10 consists of 60,000 images of 10 classes, with 6,000 images per class. The train
and test sets contain 50,000 and 10,000 images respectively. ImageNet is a large dataset for visual
recognition which contains over 1.2M images in the training set and 50K images in the validation set
covering 1,000 categories. For semantic segmentation, we use the PASCAL VOC 2012 (Everingham
et al., 2015) benchmark which contains 20 foreground object classes and one background class. The
original dataset contains 1,464 (train), 1,449 (val), and 1,456 (test) pixel-level labeled images for
training, validation, and testing, respectively. The dataset is augmented by the extra annotations
provided by (Hariharan et al., 2011), resulting in 10,582 training images. For language modeling, we
use the word level Penn Treebank (PTB) dataset (Marcus et al., 1993) which consists of 929k training
words, 73k validation words, and 82k test words, with 10,000 unique words in its vocabulary.

A.3 UNPRUNED BASELINE MODELS

For CIFAR-10, we use VGG-16 (Simonyan & Zisserman, 2015) with BatchNorm (Ioffe & Szegedy,
2015), ResNet-20 (He et al., 2016) and WideResNet-28-10 (Zagoruyko & Komodakis, 2016) as
baselines. We adopt a standard data augmentation scheme (shifting/mirroring) following (Lin et al.,
2013; Huang et al., 2016), and normalize the input data with channel means and standard deviations.
Note that we use the CIFAR version of ResNet-201, VGG-162, and WideResNet-28-103. VGG-16,
ResNet-20, and WideResNet-28-10 are trained for 160, 160, and 200 epochs, respectively, with a

1https://github.com/akamaster/pytorch resnet cifar10/blob/master/resnet.py
2https://github.com/kuangliu/pytorch-cifar/blob/master/models/vgg.py
3https://github.com/meliketoy/wide-resnet.pytorch/blob/master/networks/wide resnet.py
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batch size of 128 and initial learning rate of 0.1. For VGG-16 and ResNet-20, we divide learning
rate by 10 at epochs 80 and 120, and set the weight decay and momentum as 10−4 and 0.9. For
WideResNet-28-10, the learning rate is divided by 5 at epochs 60, 120, and 160; the weight decay
and momentum are set to 5 × 10−4 and 0.9. For ImageNet, we train the baseline ResNet-50 and
MobileNetV1 models following the respective papers. We adopt the same data augmentation scheme
as in (Gross & Wilber, 2016) and report top-1 validation accuracy. For semantic segmentation, the
performance is measured in terms of pixel intersection-over-union (IOU) averaged across the 21
classes (mIOU). We use Deeplab-v3-ResNet-1014 (Chen et al., 2017) as the baseline model following
the training details in (Chen et al., 2017). For language modeling, we use vanilla two-layer stacked
LSTM (Zaremba et al., 2014) as a baseline. The dropout keep ratio is 0.35 for the baseline model.
The vocabulary size, embedding size, and hidden size of the stacked LSTMs are set as 10,000, 1,500,
and 1,500, respectively, which is consistent with the settings in (Zaremba et al., 2014).

A.4 MOBILENETV1 CHANNEL GROWING ON IMAGENET

To further validate the effectiveness of the proposed method on compact networks, we grow the filters
of MobileNetV1 on ImageNet and compare the performance of our method to the results reported
directly in the respective papers, as shown in Table 6. In MobileNetV1 experiments, following
the same setting with Netadapt (Yang et al., 2018), we apply our method on both (1) small setting:
growing MobileNetV1(128) with 0.5 multiplier while setting the original model’s multiplier as 0.25
for comparison and (2) large setting: growing standard MobileNetV1(224) while setting the original
model’s multiplier as 0.75 for comparison. Note that MobileNetV1 is one of the most compact
networks, and thus is more challenging to simplify than other larger networks. Our lower-cost
growing method can still generate a sparser MobileNetV1 model compared with competing methods.

Table 6: Overview of the pruning performance of each algorithm on MobileNetV1 ImageNet.
Model Method Top-1 Val Acc(%) FLOPs(%) Train-Cost Savings(×)

Original(25%) 45.1 (+0.0) 100 1.0(×)
MobileNet MorphNet 46.0 (+0.9) 110 0.9(×)
V1(128) Netadapt 46.3 (+1.2) 81 1.1(×)

Ours 46.0 (+0.9) 73 1.7(×)

MobileNet Original(75%) 68.8 (+0.0) 100 1.0(×)

V1(224) Netadapt 69.1 (+0.3) 87 1.2(×)
Ours 69.3 (+0.5) 83 1.5(×)

A.5 DEEPLAB-V3-RESNET-101 ON PASCAL VOC 2012

We also test the effectiveness of our proposed method on a semantic segmentation task by growing a
Deeplab-v3-ResNet-101 model’s filter numbers from scratch directly on the PASCAL VOC 2012
dataset. We apply our method to both the ResNet-101 backbone and ASPP module. Compared to
the baseline, the final generated network reduces the FLOPs by 58.5% and the parameter count by
49.8%, while approximately maintaining mIoU (76.5% to 76.4%). See Table 7.

Table 7: Results on the PASCAL VOC dataset.
Model Method mIOU Params(M) FLOPs(%) Train-Cost Savings(×)

Deeplab Original 76.5 (-0.0) 58.0 (100%) 100 1.0(×)
-v3- L1-Pruning 75.1 (-1.4) 45.7 (78.8%) 62.5 1.3(×)

ResNet101 Ours 76.4 (-0.1) 29.1 (50.2%) 41.5 2.3(×)

4https://github.com/chenxi116/DeepLabv3.pytorch

15



Published as a conference paper at ICLR 2021

A.6 EXTENSION TO RECURRENT CELLS ON PTB DATASET

We focus on LSTMs (Hochreiter & Schmidhuber, 1997) with lh hidden neurons, a common variant5
of RNNs that learns long-term dependencies:

ft = σg((Wf � (emT
c ))xt + (Uf � (mcm

T
c ))ht−1 + bf )

it = σg((Wi � (emT
c ))xt + (Ui � (mcm

T
c ))ht−1 + bi)

ot = σg((Wo � (emT
c ))xt + (Uo � (mcm

T
c ))ht−1 + bo)

c̃t = σh((Wc � (emT
c ))xt + (Uc � (mcm

T
c ))ht−1 + bc)

ct = ft � ct−1 + it � c̃t, ht = ot � σh(ct) s.t. mc ∈ {0, 1}lh , e = 1lh , (9)

where σg is the sigmoid function, � denotes element-wise multiplication and σh is the hyperbolic
tangent function. xt denotes the input vector at the time-step t, ht denotes the current hidden state,
and ct denotes the long-term memory cell state. Wf ,Wi,Wo,Wc denote the input-to-hidden weight
matrices and Uf , Ui, Uo, Uc denote the hidden-to-hidden weight matrices. mc is binary indicator and
shared across all the gates to control the sparsity of hidden neurons.

We compare our proposed method with ISS based on vanilla two-layer stacked LSTM. As shown
in Table 8, our method finds more compact model structure at lower training cost, while achieving
similar perplexity on both validation and test sets. These improvements may be due to the fact that
our method dynamically grows and prunes the hidden neurons from very simple status towards a
better trade-off between model complexity and performance than that of ISS, which simply uses the
group lasso to penalize the norms of all groups collectively for compactness.

Table 8: Results on the PTB dataset.
Method Perplexity (val,test) Final Structure Weight(M) FLOPs(%) Train-Cost Savings(×)

Original (82.57, 78.57) (1500, 1500) 66.0M (100%) 100 1.0(×)
ISS (82.59, 78.65) (373, 315) 21.8M (33.1%) 13.4 3.8(×)
Ours (82.46, 78.68) (310, 275) 20.6M (31.2%) 11.9 5.1(×)

A.7 VARIANTS OF INITIAL SEED ARCHITECTURE

In Table 9, we make a detailed comparison among initial seed architecture variants of ours and
AutoGrow (Wen et al., 2020). For both ours and AutoGrow, “Basic” and “Bottleneck” refer to
ResNets with standard basic and bottleneck residual blocks, while “PlainLayers” refers to stacked
convolutional, batch normalization, and ReLU layer combinations. Similar with standard ResNets, for
variants of the seed architecture, we adopt three stages for CIFAR-10 and four stages for ImageNet.
PlainNets can be obtained by simply removing shortcuts from these ResNet seed variants with equal
stage numbers. For each stage, we start from only one growing unit, within which initial filter
numbers are also initialized at one for channel growing.

A.8 TRACK OF ANY-TIME SPARSIFICATION DURING CHANNEL GROWING

Figure 7 and Figure 8 show the dynamics of train-time growing channel ratios of ResNet-20 and
VGG-16 on CIFAR-10, respectively. To better analyze the growing patterns, we visualize the channel
dynamics grouped by stages in Figure 9 for ResNet-20 and Figure 10 for VGG-16, respectively.
Note that, for VGG-16, we divide it into 5 stages based on the pooling layer positions and normalize
channel ratios by 0.5 for better visualization. We see that our method grows more channels of earlier
layers within each stage of ResNet-20. Also, the final channel sparsity of ResNet-20 is more uniform
due to the residual connections.
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Table 9: A detailed comparison among seed architecture variants of our method and AutoGrow (Wen
et al., 2020). In growing units term, “Basic” and “Bottleneck” refer to ResNets with standard basic
and bottleneck residual blocks while “PlainLayers” refers to standard convolutional layer, BN, and
ReLu layer combinations in VGG-like networks without shortcuts.

Families Variants Methods Channel Growing Growing Units Stages Shortcuts

Basic3ResNet Ours 3 Basic 3 3

ResNet AutoGrow 7 3

Bottleneck4ResNet Ours 3 Bottleneck 4 3
AutoGrow 7 3

Plain3Net Ours 3 PlainLayers 3 7

VGG-like AutoGrow 7 7

Plain4Net Ours 3 PlainLayers 4 7
AutoGrow 7 7
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Figure 7: Epoch-wise retained channel ratio dy-
namics for each layer in ResNet-20.
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Figure 8: Epoch-wise retained channel ratio dy-
namics for each layer in VGG-16.

A.9 FLOPS-BASED BUDGET-AWARE GROWING

We also investigate the effectiveness of setting a FLOPs target for budget-aware growing in Figure 11.
We observe similar trends among uniform pruning, ours growing, and ours direct design: in most
FLOPs budget settings, our growing method outperforms direct design and uniform pruning. We
also observe that when setting extreme sparse FLOPs target (e.g., 85%), our method achieves lower
accuracy than the other two variants. The reason is that our channel growing is forced to only grow
architectures from ∼ 99% sparsity up to ∼ 85% FLOPs and ∼ 90% parameters sparsity, during
which models cannot acquire enough capacity to be well trained.

A.10 INTERACTIONS BETWEEN LEARNING RATE AND TEMPERATURE SCHEDULERS

Two factors influence the growing optimization speed in our method: temperature and learning
rate, which are hyperparameters controlled by their respective schedulers. We first visualize the
structure-wise separate temperature dynamics in Figure 12 by averaging temperatures per layer during
ResNet-20 channel growing on CIFAR-10. We see that temperatures are growing with different
rates for channels. Usually, low learning rate and high temperature in late training epochs make
the network growing optimization become very stable. In Figure 13, we deliberately decay γ in the
temperature scheduler, mirroring the learning rate decay schedule, in order to force growing until
the end. As shown in Figure 14, our method is still adapting some layers even at the last epoch. We
find that such instability degrades performance, since some newly grown filters may not have enough
time to become well trained.

5The proposed configuration space can be readily applied to the compression of GRUs (Cho et al., 2014) and
vanilla RNNs.
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Figure 9: Visualization of retained channel ratio dynamics for each stage in ResNet-20.

Figure 10: Visualization of retained channel ratio dynamics for each stage in VGG-16.
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Figure 12: Structure-wise separate temperature dynamics
in channel growing.
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Figure 13: Structure-wise separate decayed tem-
perature dynamics in channel growing.
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Figure 14: Track of epoch-wise train-time FLOPs
for channel growing in ResNet-20.
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