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SUMMARY
To understand a visual scene, observers need to both recognize objects and encode relational structure. For
example, a scene comprising three apples requires the observer to encode concepts of ‘‘apple’’ and ‘‘three.’’
In the primate brain, these functions rely on dual (ventral and dorsal) processing streams. Object recognition
in primates has been successfully modeled with deep neural networks, but how scene structure (including
numerosity) is encoded remains poorly understood. Here, we built a deep learning model, based on the
dual-stream architecture of the primate brain, which is able to count items ‘‘zero-shot’’—even if the objects
themselves are unfamiliar. Our dual-stream network forms spatial response fields and lognormal number
codes that resemble those observed in the macaque posterior parietal cortex. The dual-stream network
also makes successful predictions about human counting behavior. Our results provide evidence for an
enactive theory of the role of the posterior parietal cortex in visual scene understanding.
INTRODUCTION

The meaning of a visual scene depends on both its contents and

its structure. The contents of a scene are the objects it contains.

For example, in each panel of Figure 1A, there are two salient

objects: cats and bowls. The structure of a scene defines how

the objects relate to each other. The meaning of each panel in

Figure 1A depends on whether there are more cats than bowls

or vice versa, and whether the arrangement of objects is orderly

or disorderly. The importance of object relations for understand-

ing scene structure has been appreciated for at least a century,

since the first investigations of Gestalt psychology.1

Over recent years, we have learned a great deal about the

computations that underlie the recognition of lone objects pre-

sented briefly at the fovea. Lesion and recording studies imply

that object recognition relies on ventral visual regions of the

primate brain.3,4 The mapping of naturalistic images to semantic

labels can be modeled as a feedforward cascade through suc-

cessive processing layers of a neural network.5–9 Deep convolu-

tional networks trained with gradient descent to label images

develop neural population codes that roughly match those

observed in electrophysiology and neuroimaging studies of the

primate ventral stream.10–13 This success with modeling percep-

tion of scene contents notwithstanding, computational models

of how the relational structure of a scene is processed remain

much less mature.2,14,15

One major challenge is that humans can immediately appre-

hend many relational aspects of a visual scene even if the ob-
Neuron 112, 1–12, Decem
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jects it contains are wholly novel. For example, you may not

recognize the objects in Figure 1B but have no difficulty re-

porting that there are three of them. Here, we call this phe-

nomenon "zero-shot counting." We use "zero-shot counting"

to refer to the ability of an animal or artificial system to count

items in visual arrays whose perceptual features differ signifi-

cantly from those of the scenes on which the agent learned to

count. This is an instance of out-of-distribution (OOD)

generalization.

This ready ability to apprehend structure (object relations)

without being able to recognize contents (object identity) is

puzzling in the context of deep learning models, which often

fail dramatically when probed about structural aspects of a

novel scene. For example, neural networks struggle to identify

whether two previously unseen objects are the same or

different.16 In the case of counting, supervised learning of nu-

merosity is severely disrupted when the objects being

counted lie outside the training distribution.17,18 Even very

large generative models are prone to make structural errors

in scene composition (including numerosity) when mapping

text to images.19,20 This implies that understanding scene

structure relies on computational processes that are not

currently included in the canonical deep learning framework

for modeling object recognition.

In humans, correctly inferring relations among objects in a

scene depends on the integrity of dorsal stream structures,

including the posterior parietal cortex (PPC). For example, pa-

tients with bilateral damage to the PPC often have difficulty
ber 18, 2024 ª 2024 The Author(s). Published by Elsevier Inc. 1
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Figure 1. Cognitive phenomenon of interest

(A) The meaning of a visual scene depends on both

its content and structure. Image by Hannah Shea-

han,2 reprinted with permission.

(B) Humans who master the cardinal principle will

have no difficulty counting completely novel

objects in novel contexts without needing any

additional training examples—they generalize nu-

merosity zero-shot. Image generated with https://

www.img2go.com/.

ll
OPEN ACCESS Article

Please cite this article in press as: Thompson et al., Zero-shot counting with a dual-stream neural network model, Neuron (2024), https://doi.org/
10.1016/j.neuron.2024.10.008
counting, comparing, or localizing objects in a visual array. One

possibility is that biological brains evolved a visual system that

factorizes the processing of scene contents and structure into

respective ventral and dorsal pathways.2 In this theory, the

ventral stream supports object recognition (a representation of

‘‘what’’) and the dorsal stream learns to code explicitly for re-

gions of space (a representation of ‘‘where’’). Explicit, factorized

codes for what and where would allow the brain to make infer-

ences about spatial structure that are not tied to existing object

representations.

In the current work, we describe a neural network model

that implements this idea with a recurrent dual-stream archi-

tecture. The key idea is that a neural network can learn explicit

representations of space—similar to those found in the pri-

mate dorsal stream—by recycling its outputs (here, signals

controlling glimpses or simulated saccadic eye movements)

as inputs for representation learning. This emphasizes that

agents can learn about the structure of space by taking

actions and, in doing so, this allows them to make inferences

about the structure of a scene, even when unfamiliar with

its contents. We show that this network can solve the ‘‘zero-

shot counting’’ problem and that, in doing so, it develops

neural representations that closely resemble those observed

in the PPC of the nonhuman primate. The network also suc-

cessfully predicts new behavioral results observed in human

participants performing an eye-tracking task that involves

counting objects among distracters.

RESULTS

We call the problem we set out to solve zero-shot counting. It is

operationalized as follows. The observer is asked to classify the

number (1–5) of target items in a two-dimensional (2D) grayscale

image (Figure 2A), potentially in the presence of up to two pre-

specified distracter items. Both targets and distracters are al-

phanumeric characters embedded in a pixelated background.

Foreground and background luminance values are sampled

from Gaussian distributions whose means differ by at least

30% (Figure 2A). To ensure that the task cannot be partially

solved by counting the number of unique letters glimpsed, all

target items within the array are the same letter. There is only

one class of distracter (the letter A). During training, we sample

targets from set Ttrain (B,C,D,E). At test, with no further supervi-
2 Neuron 112, 1–12, December 18, 2024
sion signals provided, we evaluate the

network counting performance for targets

sampled from disjoint set Ttest (F,G,H,J).
We also allow the distribution of mean luminance values to

potentially vary between training and test (giving us ltrain and ltest).

Zero-shot counting performance
In Figure 2B we show the performance of a standard convolu-

tional neural network (CNN) on this zero-shot counting task.

We begin with the simplest case in which no distracters are pre-

sent (‘‘simple counting’’). While training on a set of images

defined by {Ttrain, ltrain}, we evaluate on new images drawn from

the same distribution (validation) as well those drawn from a

new distribution of luminance values (OOD luminance), new let-

ters (OOD shape), or both (OOD both). Stimuli parameters for

each dataset are listed in Table 1. The CNN successfully learns

to count the items in the training data and can generalize this

to the validation set (accuracy = 99.9% ± 0.01%, chance =

20%) but not to the OOD conditions Ttest (OOD luminance, accu-

racy = 81.6% ± 17.7%; OOD shape, accuracy = 72.1% ± 6.7%;

OOD both, accuracy = 63.0% ± 13.5%). All mean accuracy and

standard deviation values are calculated over 20 different

random seeds. Accuracy on each OOD test set was less than

that for the validation set (one-sidedWilcoxon signed-rank tests,

all w = 210, p < 0.001; all p values Bonferroni corrected).

In the case where zero, one, or two distracters are present

(‘‘ignore distracters’’), the CNN again performs well on the vali-

dation set (mean accuracy = 99.9% ± 0.01%) but its accuracy

is dramatically reduced by OOD stimuli, especially in the OOD

shape condition (23.5% ± 0.10%) and OOD both condition

(25.5% ± 1.8%; accuracy in OOD luminance condition is

81.7% ± 8.5%). Note that chance is 20% for these tasks. The

CNN thus fails at zero-shot counting both with and without dis-

tracters. The finding that the CNN is perturbed by changes to

irrelevant features of the image, such as luminance, might imply

that CNNs solve the mapping problem by representing textural

features.21,22 However (without further constraints), CNNs do

not naturally individuate objects as humans do when computing

object relations and thus struggle during counting of new

objects.

The architecture of our proposed dual-stream recurrent neural

network (RNN)model (shown in Figure 3B) is inspired by the struc-

ture of the primate visual system, highlighted in Figure 3A. First,

our network samples the image in a quasi-naturalistic way. Unlike

the standard CNN, which receives the whole image at once as

input, our network views each image through a sequence of

https://www.img2go.com/
https://www.img2go.com/


Figure 2. Task and baseline performance

(A) Example images for each task and dataset. For ‘‘simple counting,’’ there are no distracter items (no letters A). The validation set is independently sampled from

the same distribution as the training set. The OOD test sets contain letters and/or mean luminances that were not present in the training set.

(B) Number classification accuracy for a convolutional neural network. Each dot represents one model run with a different random seed. Error bars indicate

bootstrapped 95% confidence intervals. See Table 1 for stimuli parameters and Table S3 for CNN model parameters.
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spatially localized glimpses according to a biologically realistic

gaze policy. It processes each glimpse with higher resolution at

the locus of fixation, mimicking the primate fovea.23,24 In the pri-

mate, glimpse contents are fed forward from the thalamus and

V1 to the ventral stream structures such as the V4 and temporal

cortex areas, including the inferior temporal cortex (IT/TE). Like

others, we model this ventral stream processing with a convolu-

tional architecture (Figure 3B, green box) (in the ‘‘ignore dis-

tracters’’ condition, we pretrain this module to distinguish targets

and distracters). The output of the primate ventral stream flows to

the higher association cortex, such as the PPC, which (along with

prefrontal cortex) is thought to integrate information across a

sequence of glances in visual short-term memory.25 To mimic

this, in our model, outputs from the ‘‘ventral’’ convolutional mod-

ule are fed forward to a recurrent module that we equate with the

PPC. Recurrent computation allows information about number to

be combined across glimpses (Figure 3B, yellow box), and the

proposed connectivity is consistent with known pathways from

the IT to the PPC.26–28

The key feature of our model, however, is that glimpse con-

tents (what) are processed in parallel with glimpse position

(where). We implement this dual-streams principle in the

simplest way possible: on each saccade, we simply pass the

ðx; yÞ location of the glimpse to the recurrent module. The two

input streams are merged in a joint embedding layer, which

then feeds into an RNN submodule. In the primate brain, we

know that the superior colliculus (SC) encodes a topographic
Table 1. Training and test set parameters

Dataset Target shapes Distracter

Training B, C, D, E A

Validation B, C, D, E A

OOD shape F, G, H, J A

OOD luminance B, C, D, E A

OOD both F, G, H, J A

Dataset parameters are the same for both ‘‘simple counting’’ and ‘‘ignore di

images.
map of salient regions of visual space and computes a gaze vec-

tor, which is responsible for driving saccadic eye movements.29

We also know that the SC is reciprocally connected with the PPC

via the pulvinar,30–32 providing a putative pathway for the recur-

rent module to receive information about the current position of

the eyes. Two further layers successively process outputs from

the RNN submodule. The penultimate layer of the network is

trained with an auxiliary loss to produce a spatial map of the

location of target items in the image (we call this the ‘‘map

layer’’). From the map layer, a linear read-out classifies the nu-

merosity in the scene (Figure 3B).

Consistent with a previously described theory,2 we reasoned

that this architecture would be able solve the zero-shot counting

task because during training it would learn representations that

explicitly combine information about visual contents (what;

glimpse pixels from the ventral stream) and structure (where;

glimpse position from the dorsal stream). We predicted that

this would allow the network to generalize across scene struc-

ture (numerosity) even where scene contents (objects) were

entirely novel. We also previously proposed that this architecture

would help explain the coding properties of neurons in the PPC

and closely interconnected regions.2

In Figure 3C, it can be seen that the dual-streamRNN is indeed

able to solve the zero-shot counting problem. On the ‘‘simple

counting’’ validation set, its performance is comparable with

the CNN (99.0% ± 0.1%). However, unlike the CNN, it maintains

this performance across OOD shapes (98.1% ± 0.2%), OOD
shape Mean luminances # Images

0.1, 0.4, 0.7 100,000

0.1, 0.4, 0.7 5,000

0.1, 0.4, 0.7 5,000

0.3, 0.6, 0.9 5,000

0.3, 0.6, 0.9 5,000

stracters’’ except that no distracters are present in the ‘‘simple counting’’

Neuron 112, 1–12, December 18, 2024 3



Figure 3. Dual-stream RNN model

(A) Schematic of the relevant components of the primate visual system. Efferent copies of motor instructions for intended eye movements propagate PPC via the

superior colliculus. PPC integrates glimpse contents from the ventral stream and glimpse positions from superior colliculus.

(B) Dual-streamRNN architecture. A convolutional module receives the foveated glimpse contents and is pretrained to distinguish target and distracter shapes. In

parallel, a recurrent module receives the glimpse positions via a separate input stream. The recurrent module integrates the two streams over successive

glimpses to produce amap of the spatial arrangement of target items in the array fromwhich the number of items is read out. Orange layers indicate where losses

are calculated.

(C) Number classification accuracy for a dual-stream RNN. Each dot represents one model run with a different random seed. Error bars indicate bootstrapped

95% confidence intervals. See Table S1 and Table S2 for detailed model parameters. Also see Figure S1 for additional comparisons between the dual-stream

RNN and CNN baseline.
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luminances (98.4%± 0.2%), and OOD both (97.1% ± 0.3%) con-

ditions. It performs comparably in the ‘‘ignore distracters’’ condi-

tion (OOD shape 95.6% ± 0.5%; OOD luminance 96.0% ± 0.6%;

OOD both 95.5% ± 0.6%). For the dual-stream RNN, the mean

difference between validation performance and OOD both per-

formance was less than 1 percentage point (0.8% ± 0.3%) for

‘‘simple counting’’ and similar for ‘‘ignore distracters’’ (1.9% ±

0.3%). By contrast, for the CNN, the mean difference between

validation and OOD both performance was 37% ± 13.2% for

‘‘simple counting’’ and 74.5% ± 1.7% for ‘‘ignore distracters.’’

Thus, the dual-stream RNN is able to solve the zero-shot count-

ing task where the CNN is not. In Figure S1, we show that this

pattern holds even when using larger, more perceptually diverse

images.

Ablations and controls
Next, we conducted control analyses that pinpoint those neural

or computational features of our architecture that are critical for

its success (Figure 4). First, we carried out virtual lesion studies

to examine the causal role of ventral inputs (glimpse contents)

and dorsal inputs (glimpse positions) on network performance.

We performed lesions by removing either glimpse contents or

glimpse position inputs during both training and test. In the

case of ‘‘simple counting,’’ dorsal stream lesions (‘‘ablate posi-

tion’’ in Figure 4) were more detrimental (reducing performance

on OOD both to 48.0% ± 2.5%) than ventral stream lesions

(‘‘ablate contents’’ in Figure 4) (80.4% ± 0.3% on OOD both).
4 Neuron 112, 1–12, December 18, 2024
This is consistent with the finding from neuropsychological

studies that PPC lesions lead to counting deficits, whereas

temporal lobe lesions have a much milder impact.33–35 By

contrast, in the ‘‘ignore distracters’’ task, lesioning either the

dorsal or ventral stream had a dramatic effect on performance.

On the OOD both generalization condition, classification accu-

racy was reduced to 42.1% ± 0.4% by ventral stream lesions

and to 52.7 ± 0.3 by dorsal stream lesions (more than double

the error rate observed in ‘‘simple counting’’). Although we

are not aware of neuropsychological data that directly support

this finding, there is good evidence that ventral stream lesions

impair configural learning when object arrays become more

complex.36,37

Why does counting the number of objects in a scene (that is

apprehended through a series of glimpses) require both

‘‘what’’ and ‘‘where’’ information? Intuitively, glimpse contents

alone are often insufficient, especially when all items in the

array are identical. For example, if the network glimpses three

items in succession, without auxiliary glimpse position inputs,

it is unclear whether it has glimpsed three unique items (i, j, k)

or glimpsed two before returning to the first item (i, j, i). How-

ever, gaze position alone is insufficient for counting because

saccades are not exclusively directed precisely to the center

of a single item but often fall in an intermediate zone between

two or more items, allowing the network to apprehend them in

a single glimpse. Ventral stream lesions are especially detri-

mental in the ‘‘ignore distracters’’ task because glimpse



Figure 4. Ablations and control models

Accuracy on the validation set (left) and OOD both

test set (right) for various control models and

ablations. Each row corresponds to a particular

training recipe or configuration of either the dual-

stream RNN or the CNN baseline. Each dot is one

model run with a different random seed. Error bars

show bootstrapped 95% confidence intervals.

When no error bar is present, the 95% CI is too

small to be visible. Data are shown separately for

the ‘‘simple counting’’ (upper) and ‘‘ignore dis-

tracters’’ (lower) conditions. See Figures S2 and S3

for additional controls.
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contents are needed to signal whether an item is a target or

distracter.

To study exactly how the network needs to combine what

and where information in the task, we built a symbolic counter

model that used a sequence of rules to classify the number of

items given a set of glimpses (positions and contents) in a

simplified version of the task. The counter worked by first at-

tempting to infer the location of items from the glimpse posi-

tions alone and then querying the glimpse contents only to

resolve any remaining ambiguity. Thus, the number of queries

to the glimpse contents provided an ‘‘integration score’’ for

each glimpsed image, indicating the degree to which the two

input streams need to be integrated to solve the task. For

example, if the set of glimpses contained only two unique po-

sitions in opposite corners of the image, it would be relatively

clear from the glimpse positions alone that there are 2 items

in the image. This would receive a low integration score. If,

on the other hand, there are several glimpses clustered in a re-

gion that could reasonably contain 1, 2, or 3 items, the counter

would need to inspect the contents of those glimpses to know

for sure, prompting a higher integration score. This counter al-

lows us to pinpoint the impact of both ventral and dorsal le-

sions on the counting process (Figure S2). When ablating the

glimpse contents input, generalization performance scales

inversely with integration score. The glimpsed images that the

model struggles with in this one-stream setting are exactly

those that the symbolic model identified as requiring an inte-

gration of both streams due to an ambiguity in the glimpse po-

sitions regarding item location.

Next, to evaluate the contribution of the various neuro-inspired

architectural features of the dual-stream RNN, we compared

several control models in which we disrupt some feature of the

dual-stream RNN or add components to the CNN baseline.
N

Our dual-stream RNN differs architectur-

ally from our baseline model (a vanilla

CNN) in that it comes equipped with

recurrent memory. We first confirmed

that recurrence alone was insufficient to

solve the zero-shot counting problem.

To test this, we created a one-stream

version of the dual-stream RNN in which

(like the CNN) the full image was input

on each successive glimpse (‘‘whole im-

age RNN’’ in Figure 4). Like the CNN,
this control network was also significantly impaired on all three

OOD conditions (‘‘simple counting’’: OOD luminance 54.6% ±

4.1%; OOD shape 48.4% ± 1.7%; OOD both 42.9% ± 2.2%).

Omitting the ventral stream objective, instead allowing all

network parameters to be updated end-to-end with respect to

the number and map objectives (‘‘no ventral pretraining’’ in Fig-

ure 4), greatly reduced its generalization performance on the

‘‘ignore distracters’’ task (OOD both 42.9% ± 11.3%). Adding

the auxiliary map objective to the CNN (‘‘CNN +map’’ in Figure 4)

improved its generalization performance during ‘‘simple count-

ing’’ (OOD both 90.7% ± 7.8%) but was of little help in ‘‘ignore

distracters’’ (OOD both 33.6% ± 3.1%). Removing the auxiliary

map loss from the dual-stream RNN (‘‘dual-stream no map’’ in

Figure 4) had a much more modest impact on performance

(OOD both: ‘‘simple counting’’ 85.3% ± 16.0%, ‘‘ignore dis-

tracters’’ 93.9%± 0.2%). See Figure S3 for amore detailed com-

parison of the impact of the auxiliary map loss. Generalization

performance was also negatively impacted by shuffling the order

of the glimpse positions relative to the glimpse contents

(‘‘streams misaligned’’ in Figure 4) (‘‘simple counting’’: OOD

both 79.4% ± 2.9%; ‘‘ignore distracters’’: OOD both 87.6% ±

0.3%). All mean accuracies and standard deviations calculated

over 20 random seeds.

Together, these analyses show that both the dorsal and the

ventral stream are necessary for solving the zero-shot counting

task. We were unable to identify a trivial computational feature

that can be added to a standard network to account for this

success.

Comparisons with human behavior
Next, we studied the behavior of the dual-streamRNNacross the

trajectory of learning. As children learn to count objects in visual

scenes, they often pass through discrete phases in which they
euron 112, 1–12, December 18, 2024 5



Figure 5. Comparisons with human behavior

(A) Confusion on the validation set (‘‘ignore distracters’’) for the dual-stream RNN at checkpoints throughout learning. Rows specify the actual number of items

and columns specify the predicted number of items, according to the dual-stream RNN. The color indicates the proportion of images of number class y that were

predicted to be of number class x (light = high, dark = low), averaged over 20 repetitions with different random seed. Rows sum to 100%.

(B) Smoothed mini-batch training accuracy per number class (1–5; for ‘‘simple counting’’). This is the accuracy encountered before each weight update, which

permits inspection of the learning curves at a fine temporal resolution. Time courses were smoothed with a rolling average of 25 updates. Error bars indicate

standard deviation over five repetitions with different random seed.

(C) Human performance on the counting tasks. Each dot corresponds to a particular participant’s performance in one of four conditions. Dashed line indicates

chance. Error bars are bootstrapped 95% confidence intervals.

(D and E) Validation accuracy of the dual-stream RNNwith covert attention (D) and without (E). Each dot is onemodel run with a different random seed. Error bars

are bootstrapped 95% confidence intervals.

(F) Validation accuracy of the CNN. Here, there is only one bar per task because there is no way of simulating ‘‘free’’ or ‘‘fixed’’ gaze conditions for the CNN. Each

dot represents one model run from different random seed. See Figure S4 for further comparison with human behavior.
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can enumerate two, three, or four items before grasping the gen-

eral principle of cardinality. These phases are sequenced such

that children are ‘‘two knowers,’’ ‘‘three knowers,’’ and ‘‘four

knowers’’ before graduating to become ‘‘cardinal principle

knowers.’’38 We tested for this pattern in the behavior of the

dual-stream RNN over the course of training. In Figure 5A, we

show matrices that reveal the pattern of confusions (on the vali-

dation set) it makes for items with different numerosities for

checkpoints lying at 25%, 50%, and 75% accuracy and at the

end of the training run. In Figure 5B, we plot training curves for

arrays with a ground truth number of 1–5 items. It can be seen

the dual-stream RNN, but not a CNN, learns to accurately clas-

sify arrays with a smaller number of items first.

When asked to count the number of objects in a visual array,

humans are prone to biases that depend on the regularity,

spacing, and similarity of the items being counted. For example,

humans tend to overestimate the number of items in an array

when they are oriented more similarly to each other than when

they are different.39 We tested whether our dual-stream RNN dis-

played the same bias by training it on a mixture of homogeneous

and heterogeneous arrays and measuring its bias to over- or un-

der-estimate numerosity at test. We found that, like humans, the

model exhibited a bias to overestimate the tally when items were

more homogeneous (fewer unique items) (Figure S4).

Our theory seemingly makes a counter-intuitive prediction:

that humans’ ability to count items in a visual array depends on
6 Neuron 112, 1–12, December 18, 2024
our capacity to move our eyes. We know that eye movements

and visual counting are linked. For example, patients with bilat-

eral damage to the PPC suffer from Balint’s Syndrome, whose

symptoms combine optic ataxia (disrupted saccadic eye move-

ments) with simultanagnosia (an inability to perceive more than

one object at a time).40 Nevertheless, people can perceive small

numerosities in a single glance (such as when you read a number

five off a die), an ability that is known as ‘‘subitizing.’’41 This

seems to present a challenge for our theory. We thus conducted

an eye-tracking experiment involving human participants to ask

whether our network was able to predict patterns of human

counting performance under free and fixed gaze.

We asked human participants (n = 24) to perform a visual

counting task while we tracked their gaze position on the

screen. We crossed task (‘‘simple counting’’ vs. ‘‘ignore dis-

tracters’’) with gaze (free vs. fixed) in a 2 3 2 within-subjects

design. Stimuli contained 3–6 target items and, in the ‘‘ignore

distracters’’ task, 1–3 distracter items. In free gaze blocks, par-

ticipants could move their eyes as they wished, whereas in

fixed gaze blocks, they were obliged to maintain their eyes

within 100 pixels of central fixation during counting or else

the trial was aborted (and repeated at the end of the block).

We found that, in humans, fixing the gaze impaired perfor-

mance to a much greater degree in the ‘‘ignore distracters’’

task than in ‘‘simple counting’’ (Figure 5C). This observation

was qualified by a two-way ANOVA on accuracy, which



Figure 6. Neural coding

The dual-stream RNN (right) mimics canonical signatures in neural population

codes for number recorded in primate PPC (left).

(A) Left: frequency distributions of the preferred numerosities for macaque

PPC from Nieder and Miller,47 reprinted with permission (Copyright [2004]

National Academy of Sciences, USA). Right: frequency distributions of

preferred numerosities among the recurrent units of the dual-stream RNN.

(B) Left: spike density histogram for an IPS neuron from Nieder et al.,45 re-

printed with permission. Right: mean responses to each number class as a

function of glimpse number for a random sample of units in the recurrent layer

of the dual-stream RNN.

(C) Left: Gaussian tuning curves displaying lognormal number coding from

Nieder and Dehaene,42 reprinted with permission. Right: average tuning of

units in the recurrent layer of the dual-stream RNN.

(D) Left: MDS of BOLD (blood-oxygen-level-dependent) activity from human

IPS during dot counting from Karami et al.46 The black circles represent each

stimulus labeled according to their numerosity (6, 10, 17, and 29) and scaled in

size to reflect the total area of the dots. The red circles indicate the average

coordinates of each number (CC-BY 4.0 International license). Right: MDS

applied on the population activity of recurrent units in the dual-stream RNN.

See Figures S5 and S6 for tuning curves and Figure S7 for the dimensionality

analysis.
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revealed a significant interaction between task and gaze

(F(1, 92) = 10.23, p < 0.01); there was a significant reduction

in accuracy from free to fixed conditions on the ‘‘ignore dis-

tracters’’ task (mean diff = 16.6, Tukey’s honestly significant
difference (HSD) adjusted p < 0.001, family-wise error rate

[FWER] = 0.05) but not the ‘‘simple counting’’ task (mean

diff = 3.3, Tukey HSD adjusted p = 0.6904, FWER = 0.05).

We simulated these data using our dual-stream RNN. On fixed

trials, the network repeatedly glimpsed the center of the screen,

whereas free trials unfolded exactly as described above (for this

simulation, we trained the network on an equal mixture of free-

and fixed-viewing trials so that neither gaze condition was

out of distribution during test). We considered two settings: a

‘‘covert attention’’ setting where the network continues to

receive putative gaze location information, even when it is forced

to fixate centrally, and a ‘‘no covert attention’’ setting, where no

gaze location information is offered on fixed trials. With covert

attention, the network recreated the exact performance pattern

observed in the human data—that performance on ‘‘ignore dis-

tracters’’ was affected by enforcing central fixation to a much

greater degree than on ‘‘simple counting’’ (Mann-Whitney U =

120, p < 0.001; Figure 5D). This was not the case if covert atten-

tion was removed (Mann-Whitney U = 0, p = 0.99). In this case,

enforcing fixation affected both tasks almost equally (Figure 5E).

By contrast, the baseline CNN, which has no fovea, achieves

100% accuracy on the in-distribution validation set for

both tasks and, as such, is unable to account for the pattern of

errors that humans make in these conditions (Figure 5F).

Comparisons with neural codes for number
A natural next question is whether principles of neural coding in

our network match those observed in the primate brain. We

focused on responses in the recurrent layer, which we equate

with the primate PPC. There are at least four canonical signa-

tures for numerosity that are detectable in neural population co-

des recorded in the macaque and human PPC (many of which

are replicated in prefrontal regions)42,43 (Figure 6, left). First, neu-

rons are tuned to number, and more neurons prefer the smallest

and largest numbers in a discrimination set compared with those

in between44 (Figure 6A). Second, when making numerosity

judgments, some number-selective units in the intraparietal sul-

cus (IPS) display firing rates that ramp up over time, often with

the steepest slopes for the largest numbers45 (Figure 6B). Third,

neurons tend to code for number with approximately bell-

shaped (Gaussian) tuning curves, and tuning width grows with

number42 (log-normal number coding; Figure 6C). Finally, at

the population level, neural codes are low dimensional, tracing

out a neural ‘‘number line’’ that becomes visible when each num-

ber is expressed as a point in a space with just a few axes,

derived with dimensionality reduction techniques46 (Figure 6D).

We found that even without any hyperparameter tuning, the

dual-streamRNNnaturally recreates each of these neural coding

motifs (Figure 6, right). We show example tuning curves for

numbers (1–5) in Figure S5.When we plot the frequency distribu-

tion of preferred selectivity, we can see that more cells prefer the

extremes of the tested number range, a phenomenon that is also

observed in the PPC47 (Figure 6A). Individual units develop pref-

erences for different numbers, which tend to ramp up or down

over successive saccades (Figure 6B). This is similar to the

pattern observed in the macaque PPC when monkeys make nu-

merosity judgments about arrays of dots.42,44,48 A salient feature

of number coding in the PPC is that when the tuning curves of
Neuron 112, 1–12, December 18, 2024 7



Figure 7. Spatial response fields

(A) Example spatial response fields (RFs) of units

in the recurrent layer of the dual-stream RNN.

Warmer colors signal higher mean activation.

(B) 2D histogram of the width (as fraction of image

width) and eccentricity (as Euclidean distance from

the image center [0.5, 0.5]) of the mean of isotropic

Gaussian of best fit for each unit’s RF. Color in-

dicates the number of units. Red line shows line of

best fit (r = 0.23, p < 0.001). RF width and number of

units are presented on a log scale.
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cells are sorted and averaged, the coding is more precise for

lower numbers, resulting in a characteristic ‘‘log-normal’’

code.42 When we perform the same analysis, we see an identical

phenomenon (Figure 6C). Indeed, our average tuning curves

were better fit by a model in which tuning curves were Gaussian

in the space of logðnÞ rather than n itself (F-ratio test, F(15, 15) =

3.16, p < 0.05) (Figure S6). Moreover, it is well known from

macroscopic recordings that the neural similarity of the popula-

tion response to number is well described by a single dimension,

known as the number line.46,49 We show the multidimensional

scaling (MDS) projection of the population activity in 2D in Fig-

ure 6D, which reveals a curved number line. To test the dimen-

sionality of the population data, we split trials into two halves

and attempted to systematically reconstruct one half from

dimensionality-reduced versions of the other. Figure S7 shows

the mean variance explained on the held-out half, as a function

of the dimensionality of the half used for training. The best recon-

struction was obtained when just three dimensions remained.

Therefore, we infer from the MDS projection and the dimension-

ality analysis that the dual-streamRNNhas learned a low-dimen-

sional representation with a mental number line in the first

dimension.

Next, we examined the spatial representations that formed in

the network. Cells in the PPC exhibit spatial response fields (RFs)

in which firing rates are elevated in a temporal window surround-

ing a saccade made to a particular location.50,51 In Figure 7A, we

show example spatial RFs for neurons in the recurrent layer of

the dual-stream RNN, many of which display the kind of spatial

selectivity observed in PPC RFs. The model RFs exhibit a well-

known property of PPC RFs—neurons tuned to more eccentric

locations have broader fields.52 When we fit isotropic Gaussians

to each observed spatial RF, we observed a positive correlation

between the eccentricity of the best-fitting mean (Euclidean dis-

tance to image center) and the best-fitting standard deviation (or

RF width) (r = 0.23, p < 0.001) (Figure 7B). This correlation re-

mains positive and significant when we exclude the units with

RF eccentricity greater than 0.6 (r = 0.10, p < 0.01).

DISCUSSION

The findings described here support an ‘‘enactive’’ view of

cognition in which motor signals (here, eye movements) are in-

puts to, aswell as outputs from, the computations that determine
8 Neuron 112, 1–12, December 18, 2024
howwe think, learn, and act. In ourmodel, efferent copy is routed

back as an input to the deep network, allowing it to learn repre-

sentations that multiplex the structure and contents of a visual

scene. Our work thus draws upon a long tradition from psychol-

ogy and neurobiology, which argues that the neural signals

responsible for controlling movement play a key role in cogni-

tion.53 Here, we focus on representation learning, describing a

model that is rooted in the proposed functional architecture

and connectivity of the primate dorsal and ventral stream and

that is capable of learning about the structure of visual scenes

even when the objects they contain are novel, just like primates

can. The theory that motivates this work has already been

described in Summerfield et al.2

This idea has some resemblance to that proposed by

emerging theories of learning in the hippocampal-entorhinal sys-

tem, where the structure state spaces may be learned by taking

actions and observing state transitions in an allocentric frame of

reference.54 Our model also helps to unpack the puzzling rela-

tionship between space, number, and attention in the dorsal

stream structures such as the PPC. We propose that neural sys-

tems learn to allocate objects to spatial locations in a visual

scene by using attention to orient across a scene in structured

ways, which allows agents to multiplex information about what

and where, when learning new representations. By orienting

attention, we can learn explicit representations of space that

are not tied to a fixed set of familiar objects and that are typically

found in the PPC. Although our theory emphasizes overt atten-

tion (saccades), covert attention (in which an internal spatial

focus of processing is systematically oriented without a gaze

movement) is likely to play a significant role in this process.

Indeed, the assumption that the PPC receives information about

the covertly attended location was necessary to account for the

data from our eye-tracking experiment.

We studied a very limited aspect of numerical cognition, which

is the ability to enumerate a small number of novel items in a vi-

sual scene. Our findings bear only tangentially on the other ways

that numbers may be used, such as, for example, in mathemat-

ical calculations involving symbolic digits. Although there is evi-

dence for parietal involvement in arithmetic, our model does not

attempt to capture this ability, which (unlike visual enumeration)

is unique to humans and involves additional learning about the

meaning of numerical symbols.55 Nor is our model optimized

to capture judgements about approximate number that can
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be made when an array contains tens or even hundreds of

items.56,57 As a serial model, our work does not explain the con-

stant reaction times for very small numbers (1–3 items) in the

absence of distracters, which may be better captured by pattern

matching mechanisms in the ventral stream.58 We note, howev-

er, that, consistent with our model, reaction times and number of

saccades have been shown to increase with number of items for

the range tested in our human experiment (3–6 items),41 and a

recent systematic review and meta-analysis has established

that visual attention is integral in subitizing.59

Many previous investigations of visual numerosity in deep

neural networks have primarily been concerned with an innate

or intuitive sense of visual number, which allows many animals

and human infants to discriminate sets with different numerosity,

even without explicit training. In neural networks, this ‘‘number

sense’’ has been identified with the presence of ‘‘number-detec-

tor’’ units that respond to number while being relatively insensi-

tive to other features, like the shape, size, and spacing of the

items. Such number detectors have been found in networks

trained on visual object recognition,60,61 unsupervised objec-

tives,62,63 action prediction,64 or networks that are not trained

at all (randomly initialized networks).65,66 This body of work has

primarily been concerned with innate neural circuitry that is hy-

pothesized to serve approximate numerical comparisons up to

20 or 30 items. In our work, on the other hand, we explicitly train

our networks to perform exact enumeration of small numbers

and we are primarily interested in the human ability to generalize

systematically after learning to count—recognizing learned rela-

tions (numerosity) in novel scenes. Innate number detectors are

insufficient to explain this ‘‘structure learning,’’ which requires

experience in humans and is not displayed by standard deep

networks trained to classify exact numerosity.17,18,67,68 More-

over, recent work has shown that number-detector units present

before training were not critical to the formation of the number

representations observed post training.69 However, aspects of

our model find support in recent related works that emphasize

the role of recurrent computation in the PPC and object recogni-

tion pretraining in the emergence of numerical representations

and behavior.69,70

The experiments and stimuli described here are deliberately

made simple. Our goal is not to solve large-scale engineering

challenges in computer vision but to use deep networks as a

vehicle for implementing a principle from neuroscience and

show how it can explain neural and behavioral phenomena

observed in biological systems. Nevertheless, we believe that

the principles described here could be scaled and may be useful

for AI research. Indeed, glimpsing neural networks have previ-

ously been applied to tasks like visual object recognition.23,24,71

One key outstanding question, which we leave for future work,

is whether the approach described here could be used to help

counting in naturalistic images (e.g., three-dimensional [3D]

tabletop scenes72). It would also be very interesting to study

zero-shot estimation of continuous quantity, such as the relative

height or volume of novel shapes in a scene, and whether the

model produces well-known biases, such as scalar variability

(Weber-like compression). Another question is whether our

approach extends to otherGestalt principles and canbedeployed

to explain the human ability to judge relations of proximity, similar-
ity, enclosure, symmetry, and continuity withwholly novel objects.

Finally, we focus on eye movements, but the principle described

here is more general and could, in theory, extend to reaching

movements, which no doubt help teach children about the struc-

ture of peri-personal space. Indeed, manual pointing in children

seems to play an important role in learning73,74 and has previously

been employed in an RNN model of counting.75

Finally, we caveat our work with the recognition that our model

does not aspire to offer a complete description of how biological

agents solve the problem of visual counting. The model itself is a

simplification of the mechanisms that are most likely occurring in

the brain and is unable to capture them exactly. As is typically the

case in a computational modeling study, there may be other

modeling choices, not explored here, which offer a comparable

or better account of relevant observations. However, our model

is able to capture a wide range of different empirical phenomena

(relating to both behavior and brain activity) observed during vi-

sual counting and describes a candidate mechanism that is

inspired by an understanding of the functional neurophysiology

and connectivity in the primate brain.
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Pytorch 1.12.1 Meta https://pytorch.org/; RRID: SCR_018536
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human participants
Twenty-six participants (age 24.96 ± 2.69; 42% female, 58% male) with normal or corrected to normal vision took part. All of them

were students or researchers at the University of Oxford. They received £15 as compensation for their time (60–90 minutes). Two

participants were excluded from the subsequent analyses due to data corruption. This study received ethical approval from the Cen-

tral University Research Ethics Committee of the University of Oxford. All participants provided informed written consent.

METHOD DETAILS

Neural network simulations
Stimuli and task sets

We synthesised grayscale images (42 x 48 pixels) containing 1–5 target items (alphanumeric characters). For the ‘‘ignore distracters’’

task, an additional 0–2 distracter items were included. The primary objective was simply to report the number of target items in the

image, either with (‘‘ignore distracters’’) or without (‘‘simple counting’’) potential distracter items. Characters lay on an invisible 6 x 6

grid, were of constant size (5 pixels tall, 4 pixels wide), and were never overlapping. N items were assigned to spatial locations in the

image by randomly choosing N of the 36 possible grid locations. All target items within one image were the same character and had

the same mean luminance value. Gaussian noise with standard deviation of 0.05 was added to both the background and foreground

pixels.

For each task, we generated five datasets—one for training and four for testing. These datasets are summarized in Table 1. The five

number classes were evenly represented in each dataset (and perfectly crossed with number of distracters in ‘‘ignore distracters’’).

The target shape, mean background luminance, and mean foreground luminance were sampled randomly from the set of target

characters and set of mean luminances for that dataset. In the training set, target shapes were sampled from {B, C, D, E} and

mean luminances from {0.1, 0.4, 0.7}. In any test set, these stimulus parameters were either the same as in the training or sampled

from non-overlapping sets {F, G, H, J} and {0.3, 0.6, 0.9}. The distracter shape was always the character ’A’.

Glimpsing

Like the primate visual system, our dual-stream RNN apprehends an image via a sequence of foveated glimpses. A sequence of

fixation points is generated according to a fixed, saliency-based saccadic policy. The saliency map is composed from a mixture

of Gaussians with one Gaussian centred on each item. Our saccadic policy samples fixation points from the saliency map, subject

to the constraint that each Gaussian is sampled at least once (i.e., each item is glimpsed at least once). To tune our saccadic policy,

we used human eye tracking data from an independent study which presented similar images containing alphanumeric characters.

First, we set our number of fixations to 12 based on the observation that, during a 3 second viewing period, human participants made

12 saccades on average. Second, we matched the standard deviation (in both x and y directions) of the fixation coordinates in the
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reference frame of the nearest item. In the human data, this standard deviation was 5% of the total image width/height. We adjusted

the dispersion of the Gaussians in the saliency map to replicate this property in the simulated fixations (Figure S8).

The mapping from the retina to the cortex in humans is well described as a log-polar transformation in which the horizontal and

vertical axes in the retina are transformed into polar axes in the cortex: angle and eccentricity (distance from fovea—log scaled).76

To prepare our glimpse contents, we simulated the retinal-to-cortical transformation as a log-polar transform centred on the fixation

coordinate using the warp_polar function from the Scikit-Image python package (version 0.19.2). The radius of the circle that

bounded the transformed area was r =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
width2+height2

p
such that the entire image would be included in a glimpse directed at

the centre of the image. Points outside the boundaries of the image were filled according to the ’edge’ interpolation mode which

pads missing values with neighbouring values in the image. The output shape of the log-polar transform was set to be the same

size as the original image. The log scaling of the eccentricity coordinates results in foveated glimpse contents in which the foveal

region is magnified relative to the periphery.

Model architecture

Our dual-streamRNN, inspired by the parallel pathways of the primate visual system, receives both the glimpse positions (the fixation

coordinates) and the glimpse contents (the log-polar transformed image) as separate inputs streams. Separate feed-forward layers

produce equal-sized embeddings (512 units) of both glimpse positions and contents. These two embeddings are concatenated

before being passed through another layer to produce a joint embedding (1024 units). For the ‘‘ignore distracters’’ task, the contents

embedding layer is preceded by a convolutional module consisting of three convolutional layers and two feedforward layers. The

activations of the penultimate ventral layer are passed on to the contents embedding layer. The joint embedding layer is followed

by a recurrent submodule. The recurrent submodule consists of three transformations (input to hidden, hidden to hidden, and hidden

to out) which preserve the size of the representation (1024). The output of the recurrent submodule is passed to a feed forward layer

with 36 units.We call this layer the ’map layer’ becausewe train it to reflect the spatial arrangement of target items in the image. A final

linear readout layer (5 units) predicts the number of target items in the image. For the ‘‘simple counting’’ task, this results in 5,268,696

total trainable parameters. All activations functions are leaky rectified linear (slope=0.1) except for on the map layer where a sigmoid

activation is used to get values between 0 and 1. The model architecture is depicted in Figure 3B, and detailed model parameters are

listed in Tables S1 and S2. This design embodies the hypothesis that efferent copies of signals pertaining to a viewer’s orientation to a

scene, e.g., eye movements, rather than merely outputs of a visual system are also inputs, that in turn support learning useful rep-

resentations of space and number.

Our convolutional neural network baseline model consists of three convolutional layers and two fully connected layers before the

number readout. All convolutional layers consist of 56 feature maps, use a stride of 1, and use no padding. The first convolutional

layer uses a 3x3 kernel and subsequent convolutional layers use a 2x2 kernel. The first fully connected layer has 256 units, and

the last layers have 36 and 5 units respectively. This results in 5,454,461 total trainable parameters. Detailed network parameters

are listed in Table S3.

Model training

All networks were built and trained using the PyTorch python library version 1.12.177 on a single NVIDIA Titan X Pascal GPU. Addi-

tional python packages NumPy 1.23.4, Matplotlib 3.5.3, Pandas 1.5.3, Seaborn 0.13.2, and SciPy 1.10.1 were used for data analysis

and visualisation.

For the ‘‘ignore distracters’’ task, the total set of trainable model parameters of the dual-stream RNN q can be divided into those

that make up the convolutional (or ventral) module VðcgÞ where cg are the glimpse contents of a particular glimpse g and those that

make up the recurrent (or parietal) module PðV� 1ðcÞ;p Þ , where V� 1 indicates the output of the penultimate layer of the convolutional

module and c and p are the sequence of 12 glimpse contents and positions respectively.

q =
�
qventral; qparietal

�

These parameters are optimised with respect to three different objective functions: a shape recognition loss LshapeðqventralÞ, a
spatial map lossLmapðqparietalÞ, and a number classification lossLnumberðqparietalÞ. During a pretraining phase, the convolutional module

is trained to predict the proximity of a glimpse to any nearby target or distracter items.

LshapeðqventralÞ = MSE
�
sg;V

�
cg

��

The target vector sg for this shape recognition task is constructed as follows. For a particular glimpse g, we calculate

the Euclidean distances di from the fixation point to every item i in the image within 3s of the fixation point (where the dispersion

of the isotropic Gaussians that make up the saliency map is s2Þ. For each item within range, we calculate the proximity as 1 � di=

3s. The final target vector s consists of two values which correspond to the sum of the proximities for distracters and targets

respectively. For example, a glimpse directed exactly at the centre of a target itemwith no other items in the vicinity would produce

a proximity vector sg of [0, 1] indicating that this is a very ’targety’ glimpse. A similar vector would also obtain for a glimpse directed

in between two neighbouring target items with no other items in the vicinity. If instead the glimpse was directed between a target

and a distracter item, the proximity vector would be approximately [0.5, 0.5]. The convolutional module is pretrained on an inde-

pendent dataset containing all letters and all luminances. The parameters of the convolutional module are held fixed during sub-

sequent training of the recurrent module.
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Recall that the penultimate layer of the dual-stream RNN has 36 units corresponding to the 36 image ‘‘slots’’—the spatial locations

spanned by the 6x6 grid where items may appear in the image. This map layer is supervised with a binary cross entropy loss to pro-

duce a binary map of where the target items appear in the image:

LmapðqparietalÞ = BCEðm;P� 1ðV� 1ðcÞ;pÞÞ
where the map target vectorm contains a 1 for every slot that contains a target item and a 0 otherwise and P� 1ðV� 1ðcÞ;pÞ indicates
the output of the penultimate layer of the recurrent module (the map layer).

From this map representation, a final readout layer produces the numerosity prediction, on which a standard cross entropy clas-

sification loss is computed:

LnumberðqparietalÞ = CEðn;PðV� 1ðcÞ;pÞÞ
where n is the number of target items in the image. The optimised objective function is simply the sum of the number loss and the

auxiliary map loss.

LðqparietalÞ = LnumberðqparietalÞ+LmapðqparietalÞ
All models were optimised with the AdamW optimiser (Adaptive Moment Estimation with Decoupled Weight Decay Regulariza-

tion)78 with weight decay of 1e-5. For glimpsing models, the order of glimpses was randomised anew at the beginning of each epoch

to effectively augment the dataset. For recurrent models, we clipped the gradient norm at 2 to stabilise learning. All models were

trained with a batch size of 512 for 300 epochs with a starting learning rate of 0.001 and a scheduler that decayed the learning

rate by a factor of 0.7 every 15 epochs. All models were trained 20 times from different random initializations. Reported results

are averaged over these repetitions.

Control models and ablations

Ablate contents/position. When ablating one input stream or the other, the input is simply omitted both at training and test time. In this

setting, what is labelled the "joint embedding" in Figure 3B is a function of either the glimpse contents or the glimpse positions, not

both. These are thus one-stream models.

Dual-stream no map. To interrogate the role of the spatial map representation in the penultimate layer of the dual-stream RNN, in

this condition, we omit the map term LmapðqparietalÞ, updating the weights only with respect to the number objective LnumberðqparietalÞ.
Whenever the map loss is not optimised, the sigmoid nonlinearity at the map layer is replaced with a leaky rectified linear (slope=0.1)

to avoid vanishing gradients.

CNN+map. In this version of the CNN baseline, we add the map loss term to the training objective. As in the dual-stream RNN, we

calculate the map loss on the penultimate layer of the CNN (the second fully connected layer).

Whole image RNN. This is a one-stream, non-glimpsing control model whose architecture is identical to the Ablate position model.

Instead of receiving a sequence of foveated glimpse contents, it receives the whole image repeatedly. This tests the role of recur-

rence alone.

No ventral pretraining. Normally the parameters of the convolutional module are pretrained on the shape recognition objective

Lshape and then held fixed during the training of the parietal parameters with respect to the number of map objectives. In this control

model, we do not pretrain the convolutional module and we do not update with respect to the shape objective at all. Instead, all pa-

rameters q are updated with respect to the number and map objectives during the main training phase.

LðqÞ = LnumberðqÞ+LmapðqÞ
Streamsmisaligned. Here we shuffle the sequence order of the glimpse positions such that they are temporally misaligned with the

glimpse contents. The positions are shuffled anew on each image so that the correspondence between particular glimpse positions

and contents cannot be easily inferred. By disrupting the temporal coincidence of the two input streams, we test how much of the

performance of the dual-stream RNN can be explained by merely the sum of the task-relevant information in the two streams over all

glimpses rather than on the integration of each glimpse pair.

Symbolic counter

The architecture of the dual stream RNN is inspired by the premise that numerosity judgements require the integration of ‘‘what’’ and

‘‘where’’. Our theory predicts that this will be more likely to be the case for some glimpsed images than others and will depend on the

precise configuration of items and sampled gaze locations. For some images, the gaze location stream alone could be sufficient to

determine the numerosity. We therefore wanted to assess how performance depends on the need for integration. To this end, we

developed a manual algorithm that uses a series of rules to derive numerosity from a symbolic representation of the glimpses in a

simplified version of the simple counting task.

This symbolic counter is equipped with knowledge about the data generating process—it knows that glimpses are generated by

items in the array (in this case, according to a truncated isotropic Gaussian), it knows items lie on a grid, and it knows the range of

possible numerosities. The counter determines the numerosity by counting how many of the candidate item locations (slots) contain

items. It first tries to infer this from the gaze locations alone. For each glimpse, it will enumerate the candidate slots that could have

reasonably generated the glimpse. If there is only one candidate slot, this is an unambiguous glimpse. After going through all glimp-

ses, each slot in the image will be assessed to either not contain an item, contain an item, or maybe contain an item. If at this stage, if
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all glimpses have been unambiguously assigned to the item slots that generated them, then the counter stops here, and the glimpsed

imagewould receive an integration score of 1. Otherwise, the counter picks an ambiguous glimpse and inspects the glimpse contents

to disambiguate. The integration score reflects howmany ambiguous glimpses had to be disambiguated via the glimpse contents to

infer which slots were filled. Note that the number of glimpses is constant in these simulations. The symbolic counter successfully

determines the numerosity of 97.24%of the test images. The remaining 2.76% correspond to a small number of edge cases the sym-

bolic counter cannot handle and are omitted from the presented analysis. See Thompson et al.79 for more description.

Human experiment
Eye tracking environment and setup

Each participant completed the study in one session that lasted between one and one-and-a-half hours. The experimenter remained

in the room and recalibrated the system once after the practice trials, and then again after every other block of trials, with recalibra-

tions taking place approximately every 10 minutes. Participants were seated in a dark room approximately 60cm away from a com-

puter monitor (60 Hz refresh rate, 1280*1024 resolution, 170 LCD). Participants rested their head on an adjustable chin and head rest.

Their eye gaze position was monitored using SR Research EyeLink 1000 and recorded at 1000 Hz. Fixation events were detected

automatically by the SR Research Software.

Stimuli

Stimuli were synthetic grey-scale images containing between three and six targets (either the characters C, E, F, J, K, S, U, or Z), and –

in ‘‘ignore distracters’’ trials – between one and three distracters (A’s). Background and foreground (letter) luminances were always

0.3, 0.6, or 0.9, chosen randomly apart from the constraint that the difference in luminance was fixed at 0.3. Otherwise, image

generation parameters were the same as for the neural network simulations as described above under Stimuli and task sets. We

generated independent stimuli sets for each participant and each condition. These stimuli sets consisted of 72 images in which

all numerosities were represented equally (and crossed with number of distracters, where applicable). We also generated separate

stimuli sets for the training blocks – one per condition per participant.

Task procedure

Visual stimuli were presented with Psychtoolbox-380 for MATLAB. Each stimuli set was split over two experimental blocks of 36 trials.

Each experimental session consisted of four training blocks of eight trials, followed by eight experimental blocks of 36 trials for a total

of 288 experimental trials per participant. The core task for each trial was to count either all letters (‘‘simple counting’’) or all letters but

A’s (‘‘ignore distracters’’) present in an image. Each trial was subject to one of two viewing conditions. Participants were either al-

lowed to move their eyes freely (free gaze), or they were asked to fixate on a red cross in the middle of the screen (fixed gaze). Fixed

gaze trials were only accepted if the participant maintained central fixation (within a radius of 100 pixels of the centre of the screen) for

the whole duration of the stimulus presentation. Rejected trials were appended at the end of the respective block, to ensure the com-

plete datasets for each participant. The two tasks and viewing conditions were combined according to a 2x2 design, so there were

four conditions overall.

Participants received instructions before the start of each block, indicating whether they canmove their eyes and whether to count

all letters or ignore A’s. They confirmed they had understood by pressing any key, and then the block would begin. The four practice

blocks were assigned to the four conditions in the following order: (1) simple counting, free gaze, (2) ignore distracters, free gaze, (3)

simple counting, fixed gaze, (4) ignore distracters, fixed gaze. For the experimental blocks, condition order was randomly assigned,

subject to the constraint that each condition appeared once in the first group of four blocks, and once in the second group. Thus,

every participant completed one practice- and two experimental blocks for each condition.

Each trial followed the same structure: (1) A circle converged toward a fixation point in the screen’s centre within two seconds. (2)

Once the point disappeared, the stimulus was presented in a 728x728 square in the centre of the screen. It remained there until either

two seconds elapsed, or the participant pressed spacebar to confirm that they were ready to respond. (3) Following presentation of a

mask image to suppress iconic memory for 0.1 seconds and a gap of 0.5 seconds, (4) the response screen was displayed, which

asked participants to press keyboard keys 3, 4, 5, or 6 to indicate the number of target items. Their response was displayed on

the screen and they were asked to confirm their response by pressing the button again. Once the participant confirmed, they either

received feedback (correct or incorrect) or, if they hadmoved their gaze too far away from the centre of the screen in a fixed gaze trial,

a message reporting trial rejection for 1.5 seconds. After a brief interval of 0.5 seconds, the next trial followed.

QUANTIFICATION AND STATISTICAL ANALYSIS

Neural network simulations
Pattern of errors during learning

To see how the performance of the dual-stream RNN developed through training, we inspected confusion matrices saved at several

performance-based checkpoints during training: 25% correct, 50% correct, 75% correct, and the final model at convergence. The

confusion matrices in Figure 5A reflect the pattern of errors made by the dual-stream RNN on the validation set of the ignore dis-

tracters task at the end of the epoch in which its training performance crossed the corresponding threshold, averaged over 20 rep-

etitions with different random seed. These epoch checkpoints were insufficient to understand how the pattern of errors develops in

the CNN because the CNN learns very quickly—it can easily pass through the 25% correct and 50% correct threshold within the
e4 Neuron 112, 1–12.e1–e5, December 18, 2024
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same epoch. We therefore recorded the accuracy per number class encountered on eachmini-batch during training. This provided a

fine-grained view of how the per-class accuracy developed during training and allowed comparison with the dual-stream RNN.

Coherence effect

To test whether our model displays the coherence effect, in which humans tend to find arrays of more similar items to be more

numerous,39 we needed to evaluate our model on different levels of item coherence. Without any large changes to the parameters

of our image generation process, we obtained four different levels of item coherence by varying the number of unique item shapes

within an image. At the most coherent (or least distinctive) level, all items within an image are exactly the same letter. At the least

coherent (or most distinctive) level, items are as distinctive as possible, given the parameters of the dataset. Arrays of four or five

items will include all four unique letters (BCDE). For arrays of less than four items, each item will be a different letter. At the two in-

termediate levels of coherence, themaximum number of unique itemswithin an image is two and three respectively. The dual-stream

RNN was trained on an equal mixture of all four coherence levels so that all tests would be in-distribution.

Neural coding analyses

We analysed the responses of the 1024 units in the recurrent layer of the dual-stream RNN to the 5000 images in the OOD both test

set (simple counting) and on each of the 12 glimpses per image. All analyseswere performed inMATLAB (2023a, TheMathWorks Inc.,

Natick, MA) using custom code.

Number Coding. For each unit and on each glimpse, we calculated themean response to each number class to see how the single-

unit response to numerosity evolved over glimpses. We calculated the preferred numerosity for each unit as the number class that

elicited the largest mean response over all glimpses. Units were then grouped according to their preferred numerosity and number

tuning curves were calculated as themean response over glimpses within units that preferred the same numerosity. Gaussian curves

were fit to these tuning profiles using MATLAB’s fit function in the space of linear numerosity and log numerosity. To inspect the ge-

ometry of the population response, we first calculated the pairwise Euclidean distances between themean response to each number

class (averaged over glimpses) and then applied classical multidimensional scaling (MDS) on the resulting dissimilarity matrices. This

produced the 2D representation displayed in Figure 6H. To test the dimensionality of the population activity, we split the trials into two

halves which were dimensionality reduced separately according to the same procedure described above except that the pairwise

distances were calculated on the responses to each image rather than the mean responses to each number class. Then a multiple

linear regression was trained to predict the first half of the dataset from its dimensionality reduced version. This trained model was

then tested on the second half of the dataset. The dimensionality of the reduction that produces the highest variance explained pro-

vides an estimate of the dimensionality of the population activity. We repeated this process on 1000 different random splits of the

dataset.

Spatial Coding. To calculate spatial response fields for each unit, we defined a tiling of the whole image minus a 5% border on all

sides resulting in a 20x20 grid of 400 tiles. For each tile, we identified all glimpses whose position was within the bounds of the tile.

Then, the spatial response field (RF) was calculated for each unit as the mean response to glimpses directed at each tile. We deter-

mined the 2D Gaussian of best fit for each RF by performing a grid search over the 400 candidate means and 40 standard deviations

sampled along an exponential curve from 1% to 50% of the image width. We calculated the eccentricity of each RF as the Euclidean

distance from the RF’s mean to the centre of the image.

Human experiment
Behavioural analysis

Behavioural analyses were performed in Python version 3.10.8 (Python Software Foundation) using the Statsmodels python package

version 0.14.1. For each participant, the accuracy per condition was calculated as the number of correct trials out of the total number

of trials in that condition. Performance was compared across conditions using a 2x2 ANOVA (Type III) and subsequent Tukey HSD

Test (n=24). For five of the participants, 1–8 (out of 288) trials were missing due to a recording error. These trials did not belong to a

particular condition, and thus none of the participants’ data were excluded from the analysis.
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