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Abstract: In the complex dynamics of modern information systems such as e-commerce and stream-
ing services, managing uncertainty and leveraging information theory are crucial in enhancing
session-aware recommender systems (SARSs). This paper presents an innovative approach to SARSs
that combines static long-term and dynamic short-term preferences within a counterfactual causal
framework. Our method addresses the shortcomings of current prediction models that tend to capture
spurious correlations, leading to biased recommendations. By incorporating a counterfactual view-
point, we aim to elucidate the causal influences of static long-term preferences on next-item selections
and enhance the overall robustness of predictive models. We introduce a dual-tower architecture
with a novel data augmentation process and a self-supervised training strategy, tailored to tackle
inherent biases and unreliable correlations. Extensive experiments demonstrate the effectiveness of
our approach, outperforming existing benchmarks and paving the way for more accurate and reliable
session-based recommendations.

Keywords: information system; neural networks; session-aware recommender system; personalized
session-based recommendation; machine learning

1. Introduction

As e-commerce and content streaming services grow increasingly sophisticated, the
pursuit of personalized user experiences has propelled the advancement of information
theory applications within these domains. This has given rise to the burgeoning field of
next-item prediction in session-based recommendation systems (SBRSs), where concepts
drawn from entropy and information-theoretic frameworks are now being used to augment
personalization strategies [1,2]. Standard session-based recommendations leverage current
user interactions within sessions to predict next items. However, next-item prediction
has evolved into a more comprehensive approach with the evolution of session-aware
recommendation systems (SARSs) [3], which integrate the understanding of users’ static
long-term preferences alongside dynamic short-term preferences within a session. This
evolution has sparked a growing scholarly interest since it poses additional complexities in
unraveling how long-term and short-term preferences collectively shape the user’s choices
for the next item within a session [4].

Despite the popularity of this research area, current methodologies predominantly
employ machine learning models focused on recognizing patterns of correlations present
in the data [5]. Such a practice often culminates in models that inadvertently learn spu-
rious correlations and are susceptible to biases like selection bias, leading to suboptimal
performance [6]. A notable shortfall in these works is the underrepresentation of the causal
relationships between preferences and user choices, necessitating a paradigm shift in how
recommendations are approached. Moreover, extant studies minimally explore the exact
role of static long-term preferences within session-aware recommendations. Typically,
these preferences are merely considered an external data source from which deep learning
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techniques extract potentially useful features, without a causal perspective on their effect
and significance [1,2].

Prompted by these challenges, our work is motivated by the need to reconceptualize
session-aware recommendations by examining the causal relationships between static
long-term and dynamic short-term preferences and their resultant impact on the next-
item choice from a causal viewpoint. By adopting a causal lens, we aim to strengthen
the robustness of predictive models against unreliable correlations, thereby enhancing
performance. Furthermore, our work delves into the practical role that static long-term
preferences play by addressing counterfactual questions such as “how likely is the static
long-term preference to make a difference on the next-item selection in a session”.

In this paper, we introduce a novel perspective by dissecting and analyzing the effects
of static long-term preferences on next-item prediction tasks in session-aware recommen-
dations from a counterfactual causal framework [7]. This framework paves the way for a
deeper understanding of the intricate dynamics at play and the development of a coun-
terfactual learning model tailored for this task. The model is designed to mitigate the
learning of spurious correlations and data biases, thereby providing a more reliable and
accurate recommendation system. Additionally, from a technical standpoint, we propose a
dual-tower architecture alongside a counterfactual-enhanced data augmentation approach
to refine the training process inspired by the recent works in counterfactual learning [8],
aiming to develop an unbiased predictor for counterfactual questions using two decoder
models for factual and counterfactual data. This approach is inspired by the 2016 ICML
work of Johansson et al. [9] that utilizes domain adaptation for outcome prediction (i.e.,
next-item prediction in our work) across different treatment conditions (i.e., static long-
term preferences of factual and counterfactual sessions in our work), encouraging similar
representations of contextual variables (i.e., similar dynamic short-term preferences in our
work). This representation-based counterfactual learning methodology [8,9] has success-
fully been applied to graph learning, causal learning, and recommender systems. This
study further incorporates a novel self-supervised learning loss to augment the learning
mechanism instead of the additional balance loss in [8,9] to align the representations of
dynamic short-term preferences [5]. In essence, our primary contributions are as follows.

Contribution 1: We introduce a counterfactual causal framework specifically tai-
lored for session-aware recommender systems. This innovative framework is designed to
decipher the complex influence of static long-term preferences and is a step towards un-
derstanding user behavior in session-aware scenarios more profoundly. Unlike traditional
machine learning/deep learning models, which aim to fit associative patterns in the data,
the DTC model leverages causal learning and counterfactual learning to capture robust
causal relationships in predicting users’ next-item choices. Our approach minimizes the
risk of the model learning biased associations.

Contribution 2: At a technical level, we have conceptualized a novel dual-tower
architecture that adeptly balances factual sessions and counterfactual sessions, which, when
combined with our counterfactual data augmentation procedure, effectively mitigates the
inherent biases often present in typical recommender systems. Our counterfactual data
augmentation is pioneering in this domain, creating factual–counterfactual sessions that
embed significant causal relationships. The dual-tower structure allows for simultaneous
prediction of factual and counterfactual sessions, incorporating multi-task learning to
identify causal relationships in the augmented data. We also expand the self-supervised
loss methodology to encapsulate counterfactuals, leveraging repeated user interactions
with items in sessions as a signal for dynamic short-term preference.

Contribution 3: The efficacy of our proposed methodologies has been substantiated
through extensive experimentation, wherein our model has exhibited superior performance
over several benchmarks and existing state-of-the-art systems. These experiments not
only reinforce the validity of our contributions but also provide a robust framework for
future explorations into refining recommendation strategies. Specifically, in Section 4.2, we
compare the DTC model with state-of-the-art and representative models, affirming superior
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performance. Section 4.3 provides an ablation study to decipher the contributions of the
counterfactual framework, data augmentation, dual-tower architecture, and self-supervised
learning. We further discuss our model’s limitations in addressing dynamic short-term
preferences in Section 4.4.

2. Related Work
2.1. Session-Aware Recommender Systems

Session-aware recommender systems have emerged as an advanced variant of the
traditional session-based recommender systems, augmenting the predictive prowess by
assimilating users’ long-term preferences with their spontaneous inclinations within ac-
tive sessions [3]. This deliberate integration attempts to bridge the gap in the predictive
narrative that SBRSs leave untold by solely relying on intra-session interactions [10].

The standard SBRSs are designed to forecast the users’ next interest item based on
active session data. Initial methods like Markov Chain-based models and Recurrent
Neural Network (RNN)-based models have predominantly focused on modeling the items’
sequential patterns within a session [11–15]. However, these models operate under a strong
sequential dependency assumption, which often does not reflect the multifaceted nature of
user–item interactions. This incongruence calls into question the effectiveness of RNNs in
environments where the order of interactions may not be strictly linear or highly correlated.

In pursuit of refining SBRSs, latent-factor-based models are proposed for learning
better representations [16–19]. In recent years, attention-based models have been intro-
duced to ascertain the relevance of each item within the session context for more accurate
next-item predictions [4,20,21]. Through this mechanism, models assign varying weights
to items, targeting those with a higher propensity to influence the user’s subsequent choice.
Even so, such systems exhibit a propensity to favor popular items, which leads to a biased
recommendation landscape that marginalizes less prevalent items.

Recently, graph neural networks (GNNs) have been widely adopted in SBRSs to
decipher the intricate item transitions within sessions [22,23]. GNNs stand out by effectively
capturing the complex item transition patterns, surpassing the capabilities of traditional
sequence-based approaches. Despite their ingenuity, the standard GNN applications in
SBRSs continue to overlook critical user-specific information, like long-term preferences,
not readily deducible from session interactions.

Contrastingly, session-aware systems like Hierarchical Recurrent Neural Network
(HRNN) models and II-RNN squarely address this by encoding user sessions and items
separately before unifying their representations for item prediction [24,25]. Other mod-
els delve into historical interactions to extract a user’s immutable long-term preference,
contributing to a more holistic recommendation system.

However, our work stands distinct in aiming to decipher the causality behind the
interplay of static long-term preferences, dynamic short-term preferences, and their joint
influence on next-item selection within SARSs. The proposed model within this paper
employs counterfactual learning to methodically unravel these causal relationships.

2.2. Counterfactual Learning for Recommender Systems

Counterfactual learning for recommender systems has been pivotal in tackling a
slew of inherent biases and shortcomings within the recommendation process [26,27].
Debiasing efforts like the MACR (model-agnostic counterfactual reasoning) framework
specifically target the ubiquity of popularity bias in recommender systems [28]. Similarly,
initiatives like the CR model address the distortion sustained from clickbait bias, providing
recommendations that transcend misleading engagement metrics [29].

Furthermore, the sparsity of user–item interactions has been addressed by papers
proposing novel data augmentation techniques to enhance sequential recommendation
quality [30–33]. Counterfactual reasoning has also been leveraged to provide explainability
in recommendations, as well as to promote fairness based on causal notions, essentially
advocating for a more equitable recommendation system [34,35].
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Our work aligns with a recent model named COCO, where counterfactual learning
methods are employed to account for out-session causes such as promotional events [5].
Unique to our work is the approach that uses counterfactual learning methodologies to
scrutinize the role of static long-term preferences in the next-item prediction task within
SARS. Additionally, COCO is grounded in the hypothesis: “If an item (i.e., the next item)
appears in the context of the target session, the user is more likely to select the item due to
the ISCs (i.e., the dynamic short-term preference of the user in this session)” [5]. Our current
study extends this hypothesis to encompass counterfactual sessions. Specifically, under
the condition of similar dynamic short-term preferences ensured by the Counterfactual
Interactions Matching method, an item appearing in either the factual or counterfactual
session implies a higher likelihood of selection by the user. This sheds new light on
a relatively underexplored facet of recommendation systems and underscores the need
to discern the subtle mechanisms shaping user preferences and their decision-making
processes in e-commerce platforms and beyond.

3. Method
3.1. Problem Statement

In our research, we articulate the set of users with the notation U = {u1, ..., u|U|}
and the set of items by V = {v1, ..., v|V|} within a dataset. For each user u ∈ U, they
have engaged with a sequence of user–item interactions, which are chronicled as a list
delineating the items involved in these interactions. When delving into the domain of
session-aware recommender systems (SARSs), these user interactions are organized into a
sequence of sessions. Each session encapsulates a list detailing a user’s interactions nested
within a compact timeframe. We designate a session using the symbol s = {vs

1, ..., vs
t},

where the subscript assigned to each item within s signifies its sequence of occurrence
during the session. The primary objective of a SARS involves forecasting the subsequent
interaction in a focal session s concretely, predicting the next item vs

t+1. This prediction is
grounded on accessible knowledge and information such as the user’s preferences and the
contextual dynamics of the session.

In the realm of counterfactual learning, attention is centered upon three pivotal vari-
ables: context, treatment, and outcome [8]. That is, provided the context of a data point, our
interest lies in the alteration of the outcome when a treatment shifts from an observed reality
(often referred to as the ’factual’) to an unobserved alternative (known as the ’counterfac-
tual’), which in turn informs us about the change in the outcome (known as the individual
causal effect). Within the scenario of our study, considering a session (i.e., a data point),
we perceive the observed session s as the context—a reflection of u’s dynamic short-term
preference. The treatment is conceived as the user u’s static long-term preference, and the
outcome is embodied by the next item vs

t+1 of the session s.

3.2. Overview of the Proposed Framework

This section introduces our novel counterfactual session-aware recommender system
model, which we refer to as the Dual-Tower Counterfactual Session-based Recommender
System, abbreviated as DTC-SBRS or simply DTC. The DTC model is designed to harness a
causal model to construct more robust causal relationships within the data. Its objective
is to mitigate the model’s acquisition of unreliable correlational information, thereby
enhancing the performance of the recommendation system. The core idea of the causal
model is to guide the learning of causal relationships within the dataset by addressing the
counterfactual question: “How likely does the static long-term preference influence the
selection of the next item in a session?” The DTC model comprises several key steps:

(1) Counterfactual Interactions Matching: Initially, for each session in the training set,
we generate a corresponding counterfactual session utilizing the nearest neighbor
matching to enhance the training data.

(2) Self-supervised-based Dual-Tower Counterfactual Learning: This stage employs
the idea of data augmentation to train the model, which involves using the original
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sessions (known as factual sessions) from the training set along with counterfactual
sessions generated through the Counterfactual Interactions Matching step. The recom-
mendation model being trained utilizes an attention-based architecture and features
a dual-tower structure. This dual-tower approach encourages parallel learning of
both factual and counterfactual sessions, promoting the model to discern causal re-
lationships by contrasting the different static long-term preferences between factual
and counterfactual sessions. Specifically, one tower targets the prediction of the next
item in the factual session, while the other tower focuses on the next item in the
counterfactual session. Multi-task learning strategies are applied to assimilate the
counterfactual insights from both factual and counterfactual sessions. To further
motivate the model to learn the different static long-term preferences and their causal
effects on next-item selection, our paper proposes a novel training objective function
based on self-supervised learning. The main concept is to control dynamic short-term
preferences and the causal relationship between these preferences and the next-item
decision. Under these conditions, distinct static long-term preferences of factual and
counterfactual sessions lead to varied choices of the next item.

(3) Intervention-based Counterfactual Recommendation: The DTC model integrates
ideas from collaborative filtering and counterfactual inference to predict the next
item in a target session. Conventionally, collaborative filtering techniques would first
identify a small quantity of neighbor sessions, or similar sessions, within the dataset
that are akin to the target session. The items from these neighbor sessions are then
predicted as the potential next items for the target session. The challenge with this
approach, however, lies in its heavy reliance on the computation method for session
similarity. Since SARSs must consider finding similar sessions with comparable dy-
namic short-term and static long-term preferences, the task becomes challenging, often
resulting in the retrieval of noisy data or similar sessions laden with disproportion-
ately popular items. Building on this, our research introduces an Intervention-based
Counterfactual Recommendation method founded on the principles of counterfactual
inference. Specifically, for a similar session s′ derived from the dataset for the target
session s, we employ counterfactual inference to hypothesize: what would be the next
item for s′ if the static long-term preference was the same as that of the user corre-
sponding to s. This counterfactual inference-based next-item prediction is anticipated
to closely align with the actual next item in the target session s, compared to direct
predictions based on s′ and its associated user’s long-term preference.

The forthcoming subsections will delve into the specifics of each part of the DTC model.

3.3. Counterfactual Interactions Matching

The aim of ‘Counterfactual Interactions Matching’ is to generate augmented data to
train the model proposed in this paper. From a causal perspective, our core idea at this
stage is to acquire a pair of data points that share the same context variable (in this case,
the dynamic short-term preference reflected in the session) but differ in their treatment (in
this case, the static long-term preference associated with the user of the session) and the
outcome (which is the next item in the session). This is arranged so that by comparing the
variation in outcome under different treatment conditions, we can understand the causal
relationships within the data.

Specifically, for each session s in the training set (referred to as the factual session),
with an associated user u, we search the training set for one of the most similar sessions
from a different user u′, denoted as session s′ (referred to as the counterfactual session).
The formula for calculating the similarity between sessions is as follows:

sim(s, s′) =
|s ∩ s′|
|s ∪ s′| (1)

We then obtain s′ as follows:
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s′ = argmax
s′

sim(s, s′) (2)

Since s′ originates from another user u′, the treatment variable for s′ differs from
that of s (meaning s and s′ have different static long-term preferences). However, since
s and s′ are similar, their dynamic short-term preferences are nearly identical. Under
this design, s and s′ serve as a pair of sessions with similar context (dynamic short-term
preference) and outcomes (the next items in the session) but different treatments (static
long-term preference).

By applying the method described above to every session s in the training set to
compute a corresponding counterfactual session s′, we merge all factual sessions from
the training set with the generated counterfactual sessions to obtain an enhanced train-
ing dataset.

3.4. Self-Supervised-Based Dual-Tower Counterfactual Learning

The goal of this section is to train a recommendation system model that can learn the
causal relationships within the model. Specifically, we propose two approaches to achieve
this objective:

The first approach is for the model to learn the causal relationships between static
long-term preferences, dynamic short-term preferences, and next items by comparing the
factual and counterfactual sessions in the augmented dataset. To this end, we designed
a neural network model with a dual-tower structure, where each tower is dedicated to
learning the data distribution of either factual or counterfactual sessions. Both towers
have identical structures and share parameters, implemented using attention-based neural
networks. The dual-tower framework is depicted in Figure 1.

User
Input Layer

Embedding

attention network

Next-Item
Prediction

Cause
Weights

Factual Session Candidate Item

Next Item Prediction

Dynamic Short-
term Preference

Modeling

Output:
score of
the items for
factual session

...

...

static long-term
preference

dynamic short-term
preference

User

attention network

Cause
Weights

Counterfactual Session Candidate Item

Next Item Prediction

Output:

...

...

dynamic short-term
preference static long-term

preference

score of
the items for
counterfactual session

Tower for Counterfactual SessionsTower for Factual Sessions

Figure 1. The dual-tower structure of the proposed DTC model.

Modeling User Preferences: We use a user’s embedding to represent static long-term
preference, denoted as h(u) = eu ∈ Rd. The calculation for dynamic short-term preference
h(s) is as follows:

h(s) = attention(avg(E(s), E(s), E(s))) (3)

Here, E(s) ∈ R|s|×d is the matrix of embeddings corresponding to all interactions
within s, and avg is a function to calculate the average of vectors. The attention neural
network attention(q, K, V) is defined as follows:

attention(q, K, V) = ∑
i

α(q, Ki)× Vi, (4)

with q ∈ Rd and K, V ∈ Rd×l representing matrices made of l vectors. Attention scores λ
are computed as follows:

α(q, Ki) = so f tmaxi(Ki · qT/
√

d). (5)
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Next-Item Prediction: Given a pair of a factual session s and its corresponding
counterfactual session s′, we predict the next item for both s and s′:

p(v|s, u) = δ(EHT
s,u)

p(v′|s′, u′) = δ(EHT
s′ ,u′)

(6)

Here, v and v′ represent the variables for the next item of s and s′, respectively,
E ∈ R|V|×d is the matrix of embeddings for all items, and the softmax function δ(x)i is
defined as follows:

δ(x)i =
exi

∑
|x|
j=1 exj

. (7)

Since the model needs to predict the next item for both factual and counterfactual
sessions, and the model used for prediction is symmetrical in structure and parameters, we
describe the model as having a dual-tower structure. H in the above equations is computed
as follows:

Hs,u = λh(s) + (1 − λ)h(u), (8)

where
λ(h(s), h(u)) = 1/(1 + e−WT(h(s)∥h(u)∥ev)+b)

This represents the weight of dynamic short-term preference, with 1 − λ as the weight
for static long-term preference. W ∈ Rd and b ∈ R are learnable parameters, ∥ denotes the
vector concatenate operation, and ev signifies the embedding of item v.

Training Dual-Tower Model with Cross Entropy Loss: Next-item prediction can be
viewed as a multi-class classification problem predicting the probability of all items being
the next item. For both factual and counterfactual sessions, we use Cross Entropy Loss as
the objective function for the two prediction targets of the dual-tower:

L1 = − 1
|S| ∑

s∈S

{[
log p(v = vs

+|s)

+ ∑
vs
−∈V,vs

− ̸=vs
+

log(1 − p(v = vs
−|s))

]

+ ϵ

[
log p(v = vs′

+|s′)

+ ∑
vs′
−∈V,vs′

− ̸=vs′
+

log(1 − p(v = vs′
−|s′))

]}
,

(9)

where S is the set of all factual sessions in the training set, vs
+ and vs′

+ are the real next-items
of s and s′, respectively, vs

− and vs′
− are next-items obtained through random negative

sampling, and ϵ is the weight of prediction for counterfactual session.
Self-supervised Learning for the DTC Model: By training the above-mentioned

dual-tower model using both factual and counterfactual sessions, we can analyze next-item
selections under contrasting static long-term preferences, keeping the dynamic short-term
preference constant. However, this overlooks another significant factor influencing users’
next-item selections, namely how users decide on next-items based on dynamic short-
term and static long-term preferences. For example, in certain session scenarios, users
might only consider static long-term preferences, leading to unrelated items within the
same session. Thus, the second approach to enhancing the model’s performance is to
propose a loss function based on self-supervised learning to assist the model in learning the
causal relationships included among the dynamic short-term preference, static long-term
preference, and next-item variables.
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Specifically, we introduce a self-supervised loss to aid the model in learning the
attention weights measuring the importance of dynamic short-term preference and static
long-term preference in the dual-tower model, namely the λ values from the equations
above. Our approach is inspired by the hypothesis presented in the WWW 2023 study [5],
which asserts that “If an item (i.e., the next item) appears in the context of the target session,
the user is more likely to select the item due to the inner-session causes (i.e., dynamic short-
term preferences within this session).” Our research broadens this hypothesis to include
counterfactual sessions. Under the premise of matching dynamic short-term preferences
facilitated by the Counterfactual Interactions Matching method, we assume that when
the real next-item is present in either the factual or counterfactual session, the weight of
dynamic short-term preference should be greater, and conversely, the weight of static short-
term preference should be smaller. This hypothesis draws from real-world observations
across various domains such as music recommendations and online shopping. In these
fields, users frequently engage with specific items over time, like repeatedly listening to a
favored song [36]. Such repetitive interactions highlight a user’s preference over a given
period, exemplifying a dynamic short-term preference that can be effectively modeled to
enhance recommendation accuracy. Consequently, we posit that the presence of the actual
next item in either the factual or counterfactual session should result in a higher weight
for dynamic short-term preference, and conversely, the weight of dynamic short-term
preference should be smaller. Based on this, we define the following pseudo-label to guide
the training of λ within the DTC model:

y(v, s) = 1[v ∈ s or v ∈ s′],

where 1[condition] is defined as follows:

1[condition] =

{
1, if condition is True,
0, if condition is False.

Based on this assumption, we calculate the self-supervised loss as follows:

L2 =
1
|S| ∑

s∈S
BCE(λ, y(vs

+, s)) + BCE((1 − λ), y(vs
+, s)) (10)

where BCE is the Binary Cross Entropy, defined as follows:

BCE(x, y) = y · log x + (1 − y) · log(1 − x)

Finally, we combine L1, the loss for training the model to predict the next-item from
the augmented data, with L2, the loss helping the model to learn the causal relationships
among users’ dynamic short-term preference, static long-term preference, and next-item
variables, to form the DTC model’s loss function:

L = L1 + β ∗ L2,

where β ∈ [0, 1] is a trade-off parameter.
Discussion: The dual-tower structure conceptually originates from the work presented

at ICML 2022 [8], aiming to develop an unbiased predictor for counterfactual questions
using two decoder models for factual and counterfactual data. This approach is inspired
by the 2016 ICML work [9] that utilizes domain adaptation for outcome prediction (i.e.,
next-item prediction in our work) across different treatment conditions (i.e., static long-term
preferences of factual and counterfactual sessions in our work), encouraging similar repre-
sentations of contextual variables (i.e., similar dynamic short-term preferences in our work).
This representation-based counterfactual learning methodology [8,9] has successfully been
applied to graph learning, causal learning, and recommender systems. In our study, we



Entropy 2024, 26, 516 9 of 18

opt for a self-supervised loss (Equation (10)) instead of an additional balance loss as in [8,9]
to align the representations of dynamic short-term preferences.

3.5. Intervention-Based Counterfactual Recommendation

The objective of this section is to enhance the model’s performance in the prediction
phase through counterfactual inference. In our work, we apply a collaborative filtering
framework to predict the next item for a target session s, and we introduce counterfactual
interventions for unreliable neighbor sessions found in the dataset by the collaborative
filtering model.

Traditional collaborative filtering methods directly use the items from neighbor ses-
sions as the next-item prediction for s. However, this approach often yields neighbor
sessions that are not similar to s, primarily because traditional methods compute ses-
sion similarity by considering only the interactions within s, neglecting the long-term
preferences of the user associated with s. In this paper, we propose a method based on
counterfactual inference to calculate neighbor sessions that are similar to the current session.
The neighbor sessions obtained by this method are generated by the model rather than
those observed by traditional methods. Therefore, we can control the generation process
of neighbor sessions to produce sessions that are similar to the target session while also
considering diversity, thus improving the performance of collaborative filtering.

Specifically, given a target session s, we first identify the K most similar neighbor
sessions s′i ∈ S, i ∈ [1, K] from the training set by calculating session similarity, along with
their corresponding users u′

i ∈ Ns(u), where Ns(u) represents the set of users from s’s
neighbor sessions. Next, we use the DTC model introduced in the previous section to
answer the counterfactual question, “How would user u′ select the next item in session s?”
by calculating the following formula:

p(v|s, u′)

Subsequently, we predict the next item for s using the following formula:

p(v|s, u) =
1
C ∑

u′
i∈Ns(u)

sim(s, s′i)× p(v|s, u′
i),

where C is the normalization factor.
This method leverages the precision of individual user preferences and the power of

collaborative filtering to yield a more refined, counterfactually informed prediction for the
next item in the target session.

4. Experiments
4.1. Experimental Settings

Baseline Algorithms: Our comprehensive comparison includes a spectrum of pioneer-
ing session-based and sequential recommendation systems, each underpinned by distinct
computational paradigms including collaborative filtering, state-of-the-art recurrent net-
works, attentional, memory-augmented, and graph-based neural networks. Specifically,
our ambit entails five session-based recommendation systems (SBRSs)—SKNN, GRU4Rec,
STAMP, CSRM, and SRGNN—paired with six session-aware recommendation systems
(SARSs) that encompass both enduring long-term user preferences and the dynamic nature
of short-term preferences. These systems comprise HGRU, II-RNN, SASRec, BERT4Rec,
INSERT, and COCO, each contributing a unique approach for gleaning insights from user
interaction data.

• SKNN: This straightforward model introduces a collaborative angle to the context
of sessions, homing in on items from sessions that share similarities with the active
session, much like comparing neighborhoods to find the best result [37].
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• GRU4Rec: Unpacking the sequence of choices a user makes, GRU4Rec brings into
use gated recurrent units within an RNN to capture the patterns of a user’s evolving
interests during a session [13].

• STAMP: STAMP employs an innovative memory-based neural network enhanced
with attention mechanisms to pinpoint precise user desires at a given moment, using
this focus to guide the next-item recommendation [38].

• CSRM: A memory-neural-network-based SBRS that uses attention networks to learn
session similarities and make recommendations based on neighbor sessions and their
similarities [39].

• SRGNN: A graph-neural-network-based SBRS that represents sessions as graphs
and employs a graph neural network to recommend items based on item transition
patterns extracted from the graph [23].

The following five SARSs consider both static long-term preference and dynamic
short-term preference:

• HGRU: HGRU employs a hierarchical RNN where one RNN models sequential
patterns in the session context, and the other RNN learns a user’s preferences across
their sessions [24].

• II-RNN: II-RNN utilizes information from the most recent session to complement and
initialize the RNN modeling the target session [25].

• SASRec: SASRec is a self-attention-based sequential RS designed to model users’
interaction sequences. In this work, we concatenate all interactions of each user to
form user sequences [40].

• BERT4Rec: BERT4Rec is a deep bidirectional self-attention-based sequential RS model.
BERT4Rec adopts the Cloze objective and predicts an item based on its context and
the user’s historical interactions [41].

• INSERT: INSERT is an SBRS that considers both users’ static long-term preferences
and short-term preference in sessions. It is designed for next-item recommendations
in short sessions based on few-shot learning and meta-learning [10].

• COCO: COCO is a state-of-the-art SARS and utilizes counterfactual learning to learn
representations of inner-session causes and outer-session causes for better recommen-
dation performance [5].

Datasets: We conduct experiments on two publicly available real-world datasets used
in previous works:

• Last.fm (Last.fm and Delicious are from https://grouplens.org/datasets/hetrec-2011
/, accessed on 1 May 2024.) used in [3] contains logs of users’ music listening behaviors
in the Last.fm online music service.

• Delicious is a dataset that contains user tagging records in a social-network-based
bookmarking system named Delicious.

Data Preparation: The process of preparing datasets mirrors the methodologies es-
tablished in prior research on session-aware recommendation systems [3,5,10,25]. Our
approach entails the following steps: initially, we filter out users and items exhibiting
less than 10 interactions to remove noise and improve dataset quality. We then organize
interactions into sessions based on a clear temporal criterion: if two consecutive interactions
occurred within a 6 h timeframe, they are bundled into one session; if not, they are split
across two distinct sessions. This is performed to capture meaningful interaction sequences.
Sessions that do not provide adequate context for analysis—specifically, those with a
single interaction or those with more than twenty—are also discarded. The refinement
process aims to create sessions that are optimally sized for effective predictive modeling.
Post-preprocessing, we summarize the core characteristics of the datasets as displayed in
Table 1.

https://grouplens.org/datasets/hetrec-2011/
https://grouplens.org/datasets/hetrec-2011/
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Table 1. The detailed statistical information of the two datasets used in the experiments.

Last.fm Delicious

#sessions 5915 45,772
#interactions 38,367 249,919
#users 1101 1752
#items 711 5047
#interactions per user 34.85 142.65
#interactions per session 6.49 5.46
#sessions per user 5.37 26.13

Evaluation Protocol: Our research adopted a robust 5-fold cross-validation method to
ascertain consistently reliable results. The dataset’s session data were randomly segregated
into five subsets of equal size. Each fold of the experiment used one of these subsets as the
test set, while the remainder formed the training set. This rotation occurred five times to
ensure comprehensive testing, and we calculated an average of the outcomes to present
our findings. In an effort to eliminate any potential result bias, we standardized folds to
include every user and each product in the training set. Furthermore, for the test sets, we
randomly extracted half of the sessions to create the validation set. Within each testing
session, we sequentially targeted each item, using preceding items as the session’s context
for predictions. For every algorithm, we ranked items according to their recommendation
scores and identified the top-K products. With these products, we calculated recall@K,
NDCG@K, and MRR@K to quantify model effectiveness.

Evaluation Metrics: For performance metrics, we applied recall@K, normalized dis-
counted cumulative gain (NDCG)@K, and Mean Reciprocal Rank (MRR)@K, established
ranking measures used widely in the field for evaluating SBRS performance [5,40]. Re-
call@K measures the proportion of relevant items that are successfully retrieved within the
top-K recommendations. It provides insight into the model’s ability to retrieve relevant
items. NDCG@K considers the position of relevant items in the top-K recommendations,
rewarding placements higher up in the list more heavily. It reflects both the relevance and
rank of the recommended items. MRR@K focuses on the rank position of the first relevant
item in the top-K recommendation list. Higher MRR@K values indicate that relevant items
appear earlier in the recommendations.

Fairness and Robustness: To ensure the fairness of our evaluation, we employed a grid
search method over hyperparameters for all models. We start by setting hyperparameters
as recommended in the originating research to ascertain optimal performance for each
algorithm. By systematically tuning each model, we aimed to minimize biases and provide
a level playing field for comparison. We used an early stopping mechanism based on the
validation set performance to prevent overfitting. This strategy not only enhances the
generalization power of our models but also ensures that the reported performance metrics
are reflective of real-world conditions. Our primary focus was the algorithms’ ability to
recommend the next item in short sessions, an area where certain SARS models have shown
particular strength.

Reproducibility: The key settings for the benchmark algorithms are as follows: KNN
selects 500 similar sessions, CSRM utilizes 256 memory slots, II-RNN adopts 50-dimensional
embeddings, INSERT considers 10 similar sessions, both SASRec and BERT4Rec implement
2 layers of attention with 2 heads each, and for COCO-SBRS, we apply early stopping
contingent on R@20 from the validation set, limiting the process to a maximum of 50 epochs.
We set the learning rate at 0.01, the session count at 10, and the trade-off parameter
uniformly at 1 for all tests conducted. The implementation of the proposed DTC-SBRS
leverages the PyTorch framework along with GPU acceleration to facilitate model training.
We employ Xavier Initialization for the random generation of user and item embeddings, a
prevalent technique in machine learning.
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4.2. Recommendation Performance Evaluation

In the experiments conducted, we performed comparative evaluations to ascertain the
efficacy of the newly developed Dynamic Tower Configuration (DTC) against established
session-aware recommender systems (SARSs). The aim was to determine the relative
performance enhancements achieved through the implementation of DTC, as documented
in our results reflected in Table 2.

Table 2. The evaluation results of all compared methods on two datasets. The metrics used for
evaluation are Recall@5 (R@5), Recall@20 (R@20), NDCG@5 (N@5), NDCG@20 (N@20), MRR@5
(M@5), and MRR@20 (M@20). We employ 5-fold cross-validation and report the average values
for each metric. Higher values indicate better performance for the evaluation metrics. The best
performing method is indicated by bold numbers, while the second-best performing method is
indicated by underlined numbers. An asterisk (*) denotes a significant improvement at a significance
level of p < 0.05.

Last.fm Delicious

R@5 N@5 M@5 R@20 N@20 M@20 R@5 N@5 M@5 R@20 N@20 M@20

SKNN 0.235 0.116 0.077 0.536 0.202 0.107 0.111 0.055 0.037 0.293 0.107 0.055
GRU4Rec 0.331 0.238 0.207 0.542 0.298 0.228 0.234 0.172 0.151 0.390 0.216 0.167
STAMP 0.269 0.190 0.164 0.500 0.256 0.187 0.150 0.104 0.089 0.294 0.105 0.103
CSRM 0.342 0.250 0.220 0.562 0.312 0.241 0.197 0.144 0.126 0.346 0.186 0.141
SR-GNN 0.265 0.186 0.160 0.477 0.246 0.181 0.205 0.149 0.130 0.354 0.191 0.145

HGRU 0.340 0.242 0.209 0.576 0.309 0.233 0.218 0.160 0.141 0.377 0.205 0.156
II-RNN 0.359 0.259 0.223 0.586 0.323 0.248 0.257 0.189 0.166 0.424 0.236 0.183
SASRec 0.346 0.206 0.141 0.651 0.201 0.178 0.193 0.130 0.071 0.385 0.184 0.093
BERT4Rec 0.304 0.182 0.142 0.622 0.273 0.174 0.207 0.101 0.084 0.369 0.186 0.100
INSERT 0.364 0.258 0.224 0.589 0.323 0.246 0.264 0.196 0.174 0.436 0.245 0.191
COCO 0.504 0.289 0.205 0.793 0.374 0.238 0.359 0.215 0.163 0.520 0.263 0.180

DTC 0.519 * 0.298 * 0.224 0.814 * 0.385 * 0.256 * 0.385 * 0.229 * 0.177 * 0.564 * 0.282 * 0.196 *

Across two distinct datasets, we observed varying levels of performance among the
competing algorithms. Notably, the initial subset comprising SKNN, GRU4Rec, STAMP,
CSRM, and SR-GNN demonstrated subpar outcomes when placed in juxtaposition with
their counterparts. This observation can be attributed to their primary focus on user
short-term preference, neglecting static long-term preference. To illustrate, SKNN showed
limitations in encapsulating complex item trends and individual user tastes in its similarity
computation. STAMP, employing attention neural networks, excelled in distilling insights
from sessions populated with less informative items. CSRM’s efficiency is ultimately
dependent on its ability to discern session similarities using attention networks while
conjointly harnessing a robust session encoding via memory neural networks. GRU4Rec
and SR-GNN, each with unique mechanisms to capture sequential and transitional item
patterns within sessions, find their performance tethered to the prevalence of these patterns
within the dataset.

In contrast, algorithms like HGRU, II-RNN, SASRec, BERT4Rec, INSERT, and COCO
extended their analytical purview, incorporating both dynamic short-term preferences
and static long-term preference into their operational frameworks. HGRU adeptly adapts
to changes in user preferences across consecutive sessions, utilizing a user-level RNN
to portray this variability. II-RNN posits a stationary user preference model between
sessions, leveraging the latest session data to enrich the contextual understanding of the
targeted session. Both SASRec and BERT4Rec expand the interaction sequence to include
the session of interest and all prior user interactions, thus harnessing rich data to extricate
nuanced preferences utilizing advanced neural networks. INSERT, a leading algorithm
for short-session item recommendations, employs a tailored session comparison module
to capture insights across user interactions. According to Table 2, INSERT outshines its
predecessors concerning most metrics. Nevertheless, it struggles to locate akin sessions
within the dataset, especially when grappling with nuanced session-specific and external
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factors. COCO distinguishes itself by delivering marked advancements in both Recall
and NDCG measures, which can be credited to its counterfactual computation model that
effectively addresses session similarity challenges arising from sparse data, considering
both session-intrinsic and extrinsic factors. Nonetheless, it fails to specifically target static
long-term preferences and does not fully exploit counterfactual elements present within
the dataset.

In the case of the proposed DTC model, it introduces an innovative approach by
generating counterfactual sessions through counterfactual questions, subsequently aug-
menting the dataset. Leveraging this expanded dataset, the dual-tower structure coupled
with multi-task learning empowers the model to discern the intricate causal relationships
amongst long-term preferences, dynamic short-term interests, and the next-item predic-
tions. Furthermore, the addition of self-supervised learning fosters a deeper understanding
of the causal relationships interwoven between varying parameters.

4.3. Ablation Study

In this experiment, we examined the efficiency of different simplified versions of our
DTC model, with the intent of analyzing the impact of each component in our counterfactual
framework approach on the task of next-item recommendation.

We introduced three modified versions of the DTC model for our evaluation: (1) DTC
w/o CF, which is essentially the principal model without the counterfactual framework,
e.g., dual-tower structure, counterfactual data augmentation, and self-supervised learning;
(2) DTC w/o dual-tower architecture, merely utilizing factual session data for training by
setting the ϵ to zero; (3) DTC w/o SSL, essentially excluding the self-supervised loss as
defined in Equation (10).

The comparative results, as provided in Table 3, show the performance metrics for the
three simplified DTC models alongside the DTC model across the Delicious and Lastfm
datasets. The results reveal that the DTC w/o CF lagged in performance, underscoring
the significance of our proposed counterfactual framework. The results suggest that deep
learning models, although considering both the static long-term and dynamic short-term
user preferences, struggle to accurately model causal relationships within SARSs without
the aid of counterfactual insights. It is evident from the worse performances of DTC
w/o DT and DTC w/o SSL, when measured against the DTC model, that both the dual-
tower structure and the application of self-supervised learning, including counterfactual
data augmentation, serve as catalysts in amplifying the efficacy of our proposed DTC
framework. Our dual-tower design enhances DTC’s output by engaging in an elaborate
analysis of counterfactual learning and fostering the model’s ability to unravel complex
causal relationships. Further, the integration of self-supervised learning encourages DTC
with refined weights of causal relationships, supporting its capability to discern the true
causal interplay amongst established long-term preferences, dynamic short-term interests,
and next-item selections.

Table 3. Recommendation performance of DTC and its simplified variants on Delicious and Lastfm.
The best performing method is indicated by bold numbers.

Dataset Variant R@5 N@5 R@20 N@20

Last.fm

DTC w/o CF 0.325 0.201 0.643 0.292
DTC w/o DT 0.504 0.289 0.793 0.374
DTC w/o SSL 0.510 0.295 0.809 0.382
DTC 0.519 0.298 0.814 0.385

Delicious

DTC w/o CF 0.214 0.137 0.397 0.190
DTC w/o DT 0.359 0.215 0.520 0.263
DTC w/o SSL 0.333 0.206 0.523 0.262
DTC 0.385 0.229 0.564 0.282
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4.4. Recommendation Performance on Sessions with Different Lengths

In this group of experiments, we evaluate how well different methods perform on ses-
sion data of varying lengths. Here, “session length” refers to the count of user interactions
in a given session. With shorter sessions, there is naturally less behavioral data to extract
information, decreasing the likelihood that item selections are influenced by dynamic
short-term preferences that are based on recent interactions. The ability of each algorithm
to perform across sessions of different lengths gives us insight into their capacity to grasp
the relationship between static long-term preference, the dynamic short-term preference,
and how these preferences play out in session-aware recommendation systems. We carried
out these comparative tests on two distinct datasets, and the outcomes are presented in
Figures 2 and 3.
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Figure 2. Recommendation performance of all methods on sessions with different lengths on Last.fm.
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Figure 3. Recommendation performance of all methods on sessions with different lengths on Delicious.

From the graphical data presented, we observe the following: (1) Across both datasets,
our DTC model consistently surpasses the baseline approaches in terms of both Recall@20
and NDCG@20 metrics for sessions of length less than five. This confirms DTC’s robust
approach to modeling the intricate cause-and-effect within SARS and its ability to sidestep
spurious correlations that do not hold true causation. (2) As we analyze sessions with
more interactions, a downward trend in DTC’s performance is apparent. The model shows
its strengths clearly for sessions with five or fewer interactions. This decline suggests
a potential weakness of DTC in harnessing valuable insights from lengthier sessions,
potentially due to our choice to use a straightforward attention neural network to capture
the dynamic short-term preference. Given these findings, we recommend that for datasets
prone to longer sessions, an upgrade from the attention-based mechanism in the DTC to a
more advanced session-encoding model would be advantageous for capturing the dynamic
short-term preferences.

4.5. Hyper-Parameters Sensitivity Test

In this section, we conduct a set of tests to evaluate the response of the DTC model
to changes in the hyper-parameter ϵ. This parameter is crucial as it governs the weights
given to actual sessions versus generated counterfactual sessions in the training phase, as
outlined in Equation (9).

The findings from these tests are graphically represented in Figure 4. Figure 4 illus-
trates that the DTC’s effectiveness improves when ϵ is increased up to 0.4, but it starts to
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drop off when ϵ exceeds this value. These observations suggest that the most effective
balance between real and counterfactual session information for the DTC model is achieved
when ϵ is set at 0.4.
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Figure 4. Sensitivity of ϵ on Last.FM.

5. Discussion

In this section, we discuss the characteristics, advantages, and limitations of the DTC
model proposed in this work.

Characteristics: The DTC model leverages causal learning to capture the interplay
between static long-term preferences, dynamic short-term preferences, and next-item
choices, enhancing predictive accuracy in session-aware recommender systems.

Advantages: By focusing on causal rather than associative relationships, the DTC
model mitigates the risks of bias inherent in traditional methods, leading to more robust
predictions.

Limitations: Although our assumptions about self-supervised learning are based on
statistical findings from real-world data, these assumptions may not universally enhance
model performance across all domains and datasets. The model design may not align
with every scenario. Future work should consider tailoring the assumptions and model
design to the specific characteristics of the dataset being used. This could involve adapting
the self-supervised learning approach based on the domain’s unique features and user
behavior patterns.

Our research primarily focused on the causal relationship between dynamic short-term
preferences, static long-term preferences, and next-item recommendations. Thus, modeling
user preferences was not the central aspect of this study. We employed basic methods
for modeling dynamic short-term preferences and static long-term preferences, such as
ignoring the sequential order and time-dependent features of interactions and using simple
user embeddings for capturing static long-term preferences. These simplistic approaches
are evidently inadequate and might limit the model’s performance. Future studies should
explore more sophisticated user preference modeling techniques. Advanced methods that
capture the sequential order and temporal characteristics of interactions, as well as enriched
user embedding techniques, could significantly enhance the effectiveness of user preference
models. Additionally, investigating causal relationships tailored to different user preference
modeling approaches could further improve recommendation accuracy.

The DTC-SBRS model’s reliance on sufficient counterfactual data may limit its applica-
bility in scenarios with sparse data or limited user interactions. Exploring advanced data
augmentation techniques, leveraging transfer learning, or employing generative models
to synthesize counterfactual data could mitigate challenges posed by data sparsity and
enhance model robustness.

6. Conclusions

In summary, this paper offers a promising approach to enhancing session-aware rec-
ommendation systems through a causal lens. We have introduced a framework and model
which, while still at an early stage, shows potential in addressing biases and improving
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predictions by considering long-term user preferences. Our empirical results demonstrate
the DTC model’s superior performance in session-aware recommendation scenarios. The
model effectively captures causalities between dynamic short-term, static long-term user
preferences, and next-item choice, leading to more accurate and relevant recommendations.
The demonstrated improvement in recommendation quality indicates the potential for
significant impact when implemented in industrial applications, such as e-commerce plat-
forms, music streaming services, and content recommendation systems. The DTC model’s
robust performance on diverse datasets suggests its versatility across different domains.

Looking ahead, further work is needed to fully validate and refine our methods in
diverse real-world scenarios. We hope to expand our research to include more varied data
and contexts to test the generalizability and effectiveness of our approach. Additionally,
we aim to explore the integration of our model with other machine learning techniques to
unlock even richer, more personalized user experiences. Our pursuit for a deeper, causal
understanding of user preferences in recommendation systems is just beginning, and we
invite the research community to join us in this endeavor.
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