Collaborative Multi-Robot Non-Prehensile Manipulation
via Flow Matching Co-Generation

Yorai Shaoul', Zhe Chen?*, Naveed Gul Mohamed?*, Federico Pecora?, Maxim Likhachev', Jiaoyang Li'

dx: -0.02, dy: 0.04, do: 0.30

Plan Objects Generate

acoondzol |

o X
000 v 013 @x:0.00,dy:012.¢ |

2

A .}

—~

x
dx: 0.01, dy: 011, 3 ©

x: -0.02, dy: 0.04, d6: 0.30

Fig. 1: The Generative Collaboration (GCO) framework learns components that are hard to model and plans those that are
easy. From left to right: one iteration of GCO, coordinating seven robots collaboratively manipulating three large objects in a
shared space. Given image observations, it proposes motions for all objects, jointly generates contact points and manipulation
trajectories with flow matching co-generation, and plans multi-robot paths to convey the team to manipulation sites.

Abstract— Coordinating a team of robots to reposition multi-
ple objects in cluttered environments requires reasoning jointly
about where robots should establish contact, how to manipulate
objects once contact is made, and how to navigate safely and
efficiently at scale. Prior approaches typically fall into two
extremes—either learning the entire task or relying on privileged
information and hand-designed planners-both of which strug-
gle to handle diverse objects in long-horizon tasks. To address
these challenges, we present a unified framework for collab-
orative multi-robot, multi-object non-prehensile manipulation
that integrates flow matching co-generation with anonymous
multi-robot motion planning. Within this framework, a gener-
ative model co-generates contact formations and manipulation
trajectories from visual observations, while a novel motion
planner conveys robots at scale. Crucially, the same planner
also supports coordination at the object level, assigning manip-
ulated objects to larger target structures and thereby unifying
robot- and object-level reasoning within a single algorithmic
framework. Experiments in challenging simulated environments
demonstrate that our approach outperforms baselines in both
motion planning and manipulation tasks, highlighting the ben-
efits of generative co-design and integrated planning for scaling
collaborative manipulation to complex multi-robot, multi-object
settings. Visit gco—paper.github.io| for demonstrations.

I. INTRODUCTION

Multi-robot collaboration is a central ambition in robotics,
promising systems of robots that can accomplish tasks be-
yond the capabilities of an individual. A particularly com-
pelling example is multi-robot manipulation, where robots
must physically coordinate to move and position objects in
their environment. Applications range from the home, where
teams of robots tidy living spaces, to warehouse logistics,
where robots transport and align inventory.

Multi-robot manipulation poses unique challenges. Unlike
purely navigational coordination, robots must reason about
their own motions, the coupled dynamics of objects under
contact, and how to assign and reassign interactions across
multiple robots and objects. This coupling makes the prob-
lem complex: the space of possible robot—object assignments,

1Camegie Mellon University, {yshaoul, maxim, jiaoyanl}@cs.cmu.edu
2 Amazon Robotics, {zhecm, naveedgy, fpecora}@amazon.com
During part of the work, Yorai interned at Amazon Robotics. *Equal contribution.

contact formations, and coordinated motions grows quickly
with the number of robots and objects.

Prior methods approach this challenge from two extremes.
Learning-based approaches aim to capture the entire process
from data, which can model complex dynamics but often
sacrifices generalization and scalability [1]. Planning-based
approaches [2] leverage structure to compute coordinated
trajectories, but rely heavily on perfect models and can
be brittle when deployed in the real world. In contrast,
we argue for a middle ground: planning should be used
wherever structure allows, and learning should be applied
where models are uncertain or intractable to design by hand.

In this paper, we present a unified framework for collab-
orative manipulation that embodies this principle, with three
contributions: (i) The Generative Collaboration framework
(GCo) for scalable multi-robot, multi-object collaborative
manipulation. (ii) A flow matching co-generation interaction
model that proposes feasible and diverse contact and motion
strategies for objects observed through images alone. To
the best of our knowledge, this is the first use of discrete-
continuous flow matching co-generation in robotics. And (iii)
a new multi-robot motion planner (GSPI) that computes safe,
coordinated trajectories for conveying multiple entities to
goal configurations. We show that the GCO framework, and
individually the GSPI algorithm, both effectively solve more
complex and larger scale problems than existing methods to
manipulation and multi-robot motion planning.

II. PROBLEM FORMULATION

We study the problem of multi-robot collaborative ma-
nipulation, where a team of robots jointly transports multi-
ple objects to designated goal configurations through non-
prehensile interactions (i.e., pushing).

Let R = {R', R?,..., RN} denote the set of N holo-
nomic robots operating in a shared workspace WW C R2?,
modeled as disks of fixed radius > 0. The configuration of
robot R is ¢, € Q% C R?, and a trajectory of horizon H
is defined as a sequence of timed configurations and termed
7¢, with 7/ denoting the robot configuration at time ¢.

https://gco-paper.github.io

The environment also contains a set of M movable objects,
O = {o1,...,0n}, where a configuration of o; is ¢/ €
QJ C SE(2). The workspace may additionally contain static
obstacles that cannot be intersected by robots or objects.

A multi-object manipulation task specifies M goal config-
urations qi}goal, - ,qé\{goal for objects. We adopt an anony-
mous assignment between objects and goals: any object can
occupy any goal, and a problem is solved once all goals
are filled. This naturally captures applications like warehouse
distribution, where packages can be routed to any available
shipping station within a set of acceptable options.

The task objective is to compute a set of coordinated robot
trajectories 7 = {71, --- , 7V} such that, when executed, the
resulting coupled robot—object dynamics cause all objects
in O to reach the set of goal configurations {qf)7goal}i]\i1.
Importantly, the trajectories need not remain fixed throughout
execution. To cope with model mismatch and real-world
uncertainty, our framework interleaves planning with exe-
cution, allowing dynamic replanning and reassignment of
robot—object interactions as needed.

III. BACKGROUND

We now situate our work within the broader literature.
We survey related work in Sec. [[II-A] and provide relevant
background on flow matching for generative modeling
and on anonymous multi-robot motion planning ([II-C).

A. Related Work: Multi-Robot Manipulation

Much of the research on multi-robot coordination has
centered on geometric collision avoidance, where robots
are tasked with reaching goal positions while avoiding one
another and obstacles, mostly in simplified 2D grid environ-
ments [3-5], with some applied to robotic arms and drones
[6-8]. Far less attention has been given to collaboration
through interaction, where robots must not only avoid each
other but also physically engage with objects.

Early approaches addressed only parts of the problem or
relied on strong assumptions, avoiding the combinatorial and
physical challenges of jointly reasoning about assignments,
motions, and contact dynamics. For instance, Hartmann et
al. [9], addressed the task-and-motion planning (TAMP [10])
formulation of multi-robot rearrangement, scaling impres-
sively with objects and robots, but disregarded robot-object
physical interactions. Tang et al. [2] considered long-horizon
planning for physical manipulation, but restricted attention to
a single object whose exact shape and physical parameters
are known, enabling geometric analysis.

Recent work has sought to relax these assumptions by
learning all aspects of collaborative manipulation directly.
Feng et al. [1], along with related efforts [11, 12], pur-
sued hierarchical reinforcement learning (HRL), in which
low-level controllers handled locomotion while higher-level
policies determined how robots engage with objects. Al-
though in principle such approaches could scale, in practice
they have only been demonstrated on drastically simplified
problems—typically no more than two or three robots, a
single object, and environments with few or no obstacles.
Even within these restricted settings, HRL policies often

struggle with large transformations and obstacle avoidance.
By contrast, our work introduces algorithms that scale with
the number of robots and objects, even in cluttered spaces
where robots may be outnumbered by objects or vice versa.

In this work, we depart from approaches that either plan
under strong modeling assumptions or learn from scratch
in restricted settings, and instead leverage structure where
possible while learning only what is hard to model. We treat
collision-free navigation and task assignment as structured
subproblems amenable to planning, and learn contact strate-
gies (i.e., how robots engage objects and coordinate their
influence) from data. This perspective is supported by the
recent success of diffusion and flow matching methods for
learning local skills [13—15] and by the ability of planning
algorithms to globally coordinate large robot teams [5, 16].

B. Background: Flow Matching Co-Generation

Flow matching, a flexible method for generative modeling,
has recently found success in various domains, including
imitation learning for robotics [14], image generation [17],
and protein design [18]. In this work, we leverage flow
matching models to determine where robots should create
contact with objects, how many contact points to create, and
how to move once contact is established. Let us begin with
background on three flavors of flow matching: continuous,
discrete, and continuous-discrete co-generation.

Continuous Flow Matching casts generation as learning
a time-dependent velocity field wu; that transports a base
distribution pg into the data distribution p; [17]. For an
interpolated sample X := (1X — X))t + %X between a noisy
sample °X ~ po and a data sample 'X ~ p;, the flow
matching objective is to learn an estimated velocity field u?
that matches the sample velocity.

9* = afgmgnE0X~p0,1X~p1,te[O,1] ||(1X — OX) — uf(tX)||2

Generating new samples 1X is done by integrating the ODE

dt

While flow matching is powerful for continuous data (e.g.,
trajectory waypoints), categorical domains where samples
are sequences of values from a fixed set (e.g., choosing
contact points from a finite set of image pixels or text
generation [19]) benefit from a different treatment.

Discrete Flow Matching [19] is a framework for gener-
ating sequences K of discrete samples when elementes can
only take on values from a discrete, finite, state space % .
Let a sample from the space of discrete sequences of length
B € 7”0 elements be K := {KM) ... KB | KO ¢ ¢}
Given “noise” and data sequences 0K ~ Pd,0 and K ~ Dd, 1
an interpolated sample *K is obtained by mixing

t®) o Cat((l — t)dogcry + t51K(b)),

d 1
—X =u!(1X), °X ~py, X = OX+/ uf (1X)dt. (1)
0

where ¢ is the Dirac delta function and Cat is the categorical
distribution. Simply put, value K®) € 'K takes on the base
value °K®) with probability (1 — t) or the data value 'K
with probability ¢ € [0, 1].

The discrete flow matching objective is to predict dig
directly from an interpolated ‘K. This prediction which is
sampled from the generated distribution ;. t(tK) named the
discrete velocity, is superv1sed with a cross-entropy (CE) loss

Z CE (“d t(fK) 61K(b))1

with °K ~ pao, 'K ~ pa1, t 6 [0,1]. Generating new dis-
crete samples 1K is done by simulating a categorical Markov
chain, where each element K (%) transitions according to the
predicted discrete velocity uft over t € [0,1],

¢* = arg mln Eox 15 ¢

OK ~ Ddo; t+AtK(b) ~ Cat((tK(b))) (2)

The base distribution pg o we adopt in this work is the “mask”
distribution where all elements are set to a single value [M].
Flow Matching Co-Generation [18] attempts to jointly
generate tightly coupled discrete and continuous samples. Let
a joint state be (*X,'K) where 'K denotes discrete valued
sequence and *X denotes continuous valued samples. A co-
generative flow matching model learns a pair of fields

uit (th tK)? uz,t (tX’ tK)7

where !, is a continuous velocity and ug)t is a discrete

velocity, both conditioned on the discrete and continuous
variables. The training objective is the sum of continuous
and discrete flow matching losses, and generating new joint
samples (1X, 1K) is done by simultaneously integrating the
continuous ODE (Eq. [1) and evolving the discrete state ‘K
via a categorical Markov chain with transition probabilities
given by uf’t(tX ,'K) (Eq. , both starting from (°X, °K’) ~
(po, 6ty). In this work, we show that flow matching co-
generation can be an effective choice for learning contact
points and manipulation trajectories.

C. Background: AMRMP

Anonymous multi-robot motion planning (AMRMP) is a
foundational problem in robotics: given NN robots with start
configurations Qg s € Qk X Q% x --- x ON and a set of
interchangeable goals Q)R goal, the task is to compute safe
trajectories 7 such that the collection of terminal states
coincides with QR goal-

Most prior work on AMRMP studied the graph-based
abstraction known as anonymous multi-agent path finding
(AMAPF), where robots are modeled as points moving along
vertices and edges [16, 20-22]. Within this setting, most
methods focus on optimal or bounded sub-optimal path
finding and goal assignments, often building on Conflict-
Based Search (CBS) [3] to leverage its strong theoretical
guarantees. Other approaches emphasize scalability over op-
timality. TSWAP [16], for instance, is a highly efficient rule-
based algorithm that detects potential deadlocks and resolves
them by swapping goals between robots.

Encouraged by the success of algorithms in these discrete
point-robot domains, recent works have extended MAPF
(i.e., the non-anonymous counterpart to AMAPF) to continu-
ous settings by replacing grid edges with motion primitives,
short kinematically feasible transitions between configura-
tions [6, 7, 23]. Unfortunately, similarly adapting AMAPF

algorithms is not trivial: CBS-based methods lose much
of their efficiency without grid-specific enhancements, and
highly efficient rule-based methods like TSWAP can dead-
lock when applied to non-point robots and motion primitives.

In this work, we introduce GSPI (“Giuseppe”), a new
AMRMP algorithm that combines the efficiency of rule-
based MAPF methods with the deadlock resolution strategies
inspired by TSWAP and C-UNAV [24], adapted to motion-
primitive domains without introducing deadlocks or livelocks
in practice. GSPI forms a central building block of our gen-
erative collaboration framework, and with this background
in place we now turn to its introduction.

Algorithm 1 GCo: Generative Collaboration for Multi-
Robot Manipulation

Require: World state X, object set O, goal set {qf)’ goal} M |, robot set
R, policy mg, planner GSPI

while not all objects in goal set do

Xw, {T7}}L, OBSERVE()

{rly 1L, PLAN(GSPIL O, Xyy)

{TJ}M 1 EXTRACTTRANSFORMS ({7, Obj})
{BJ}M — BUDGETALLOCATION(R 0)
(K3, T3 WM o ({T9,T9, BI}M)

e e Y A S e

mamp
Teoop < PLAN(GSPI R, {K7})
EXECUTE(T¢oqp @ U{Tnjmmp}M

V. GENERATIVE COLLABORATION

We introduce GCO, a framework for interleaving learning
and planning in collaborative multi-robot systems. The core
principle of GCoO is simple: plan what can be modeled
well, and learn what cannot.

In the context of non-prehensile manipulation, we identify
two distinct operation modes that must be addressed by a
team of robots: they must generate manipulation motions
that define how robots interact with objects to induce de-
sired transformations, and they must generate cooperative
motions that bring robots into the appropriate configurations
to realize those interactions. Manipulation motions depend
on objects’ physical dynamics as well as stochasticity in
execution—making them natural candidates for learning. In
contrast, cooperative motions involve the geometric feasi-
bility of moving multiple entities through clutter, a domain
amenable to planning. GCO unifies these two modes in
a closed-loop framework, interleaving generation of data-
driven manipulation motions and planning of cooperative
trajectories to realize them (Alg. [I).

Each iteration begins with perception (line [2). Objects
o; are observed via images Z7, which are w x w occu-
pancy matrices, and the current world state &, is updated
with the states of robots and obstacles. Next, the planner
GsP1 is invoked at the object-level to generate short-horizon
trajectories Tob for each object (hne , from which short
transformation subgoals 77 are extracted (line E]) Robots
are then budgete‘ across all objects with non-zero 77, each
receiving B7 robots (line ' Finally, the learned manipu-
lation policy, termed 7y, co-generates object-centric contact

'In this work, we allocate robots as evenly as possible across all objects
that need to be manipulated, with idle robots sent to wait at safe locations.
When objects outnumber robots, robots are assigned by proximity.

points K7 and manipulation trajectories 7,2 . conditioned
on images, transforms, and robot budgets (hneb To realize
these motions, GSPI is called a second time at the robot
level to compute cooperative trajectories 7o, Which bring
robots to contact points (line [7). Once computed, these
free-space cooperative trajectories are concatenated with the
corresponding manipulation trajectories that begin at the
reached contact points and are then executed (line [§). This
process advances the system toward the object-goal set, and
the loop repeats until all object-goals have been achieved.

We detail GCO’s manipulation module in Sec. [[V-A] de-
scribe GSPI in Sec. | and present experiments comparing
GCo and GSPI to ex1st1ng baselines in Sec. [V]

A. Flow Matching Co-Generation for Manipulation

Our objective is to endow teams of robots with the ability
to generate object-level manipulation motions that achieve
target transformations 77 € SE(2). Central to this problem
is deciding both where robots should make contact with
objects and how they should move once contact is estab-
lished. We pursue a flow matching approach and introduce
three instantiations: GCO¢c7, which treats the task as a
monolithic synthesis problem by directly generating continu-
ous trajectories without explicit contact modeling; GCo¢ ¢,
which co-generates contact points and trajectories jointly in
continuous space, parameterizing contacts in the object frame
and trajectories as short waypoint sequences; and GCOpc,
which anchors contact points in the perceptual space through
discrete selection while generating trajectories continuously.
All three methods are effective and consistently outperform
baselines, while the co-generation variants provide added
stability, with the discrete—continuous formulation proving
the most reliable in challenging tasks (Sec. [V).

1) Direct Continuous Trajectory Generation (GCOcT):
In GCoc¢ 7, multi-robot manipulation is posed as generating
robot trajectories, treating their first state as a contact point:

7'] c RB‘“"”‘ X H x2

manip

Le., T2

manip contains Bp,.x trajectories (a maximum budget),
each of length H, whose values are unconstrained. Execut-

ing ’Tn]ldmp should transform o; by T7. To generate, noise
Omamp ~ N(0,I) is evolved into structured trajectories via

integration of a learned conditional velocity field u!:

1
7-m]amp / u@(mamp |Ij Tj Bj)d
0

While conceptually simple, generating unconstrained se-
quences of waypoints for all robots can be difficult to learn.
2) Continuous—Continuous Co-Generation (GCOcc):
GCoc¢ decomposes generation into two continuous com-
ponents: contact points in the local object frame, K7, and

manipulation trajectories rooted at the origin, 7:namp,

K= (0 R T

J)b H X2\ Bmax
manip ~— {T € R }bzl .

For execution, 77°? are translated to begin at points &/’
A ﬂow matching model learns two velocity fields, u?
and ut for contacts and trajectories, and jointly evolves

(K7, 77 .) from noisy seeds (°/C7,0 77). In practice, we

dellp) . mdmp
couple Euler integration for both continuous components:
t+ALyG ¢
K7 = 'K +uy (K7 | mamp’IJ T’ BJ)At
ALt ¢
7;11amp - Tnamp + Uy (mamp ‘ K:j IJ TJ BJ)At

This decomposition reduces complexity by explicitly mod-
eling structure—where to create contact, and how to move—
but still requires continuous contact generation, which unnec-
essarily reasons over a space larger than that perceived.

3) Discrete—Continuous Co-Generation (GCOp¢c): Our
key contribution is the discrete—continuous formulation
GCopc, which couples the two components in different
representational spaces. We introduce discrete contact point
generation, where contacts are selected directly from the
finite set of pixels in the observed image. We write a state X7,
holding information about B,., contact points for an object
0;, as a sequence of 2B,,,,x discrete tokens {cj }23 max - with
each consecutive pair being equivalent to an (x,y) pixel
coordinate in the image frame. Formally:

K7 = {c{,c%,...
—

J
kl

cex = {1,...w}U{[M]}}'

J J

» €2Bmax —1° “2Bmax

D e ——
kJ>Bmax

Notationally, we write (K7)(*) to denote the i token in
the state. This formulation anchors the contact point space
to perceptual evidence while the set of manipulation motions
remains flexible in RBmax XHx2 T jke before, each trajectory
is rooted at the origin and later shifted to its contact point.

To generate new contact points and manipulation trajecto-
ries K7, T . . we couple Euler integration (continuous com-

manip”’
ponent) with Markov chain transitions (discrete component):

. AN O
(#0000~ Cat (0 | T 777, 57)”)
=il

manip ,t (mamp

t+At7¥1an1p

4) Variable Robot Budget: In practice, only a limited
number of robots may be available for manipulation. Training
separate models for each team size would be inefficient.
Instead, we train a single model that respects a robot budget
B. Our model always produces Bp,,x contacts and manipu-
lation trajectories, and masks entries that are not needed. We
use the special token [M] to denote unused outputs: in the
discrete case, k0 = ([M], [M]); in the continuous case,
contacts within £ of the mask token’s value are treated as
masked, i.e., when [[k7" — ([M], [M])| < e. In training,
supervision penalizes generated budgets Bi exceeding the
allocated budget B7: Lyygger = ijl ReLU(BJ — BY).

| KG9, T7,T9, BY)At.

B. GSPI: Robot- and Object-Level AMRMP

In GCo, planned objects transformations are supplied to
my (Sec. for generating manipulation strategies, and
robots plan motions to reach contact points. Both planning
stages falls under AMRMP: entities move in continuous
space, are indistinguishable, and must reach a set of inter-
changeable goals even when operating in tight proximity to
obstacles. Existing AMRMP planners are difficult to apply
directly; while they handle open spaces well, they struggle

when robots must approach surfaces or navigate narrow
clearances (Fig. f)—a key requirement in our setting.

One might instead extend scalable AMAPF algorithms
from point-robot grids to continuous motion-primitive do-
mains, but naive adaptations either impose coarse discretiza-
tions or introduce deadlocks (Sec. [lI-C)). To address these
challenges, we combine the efficiency of the grid-based
method PIBT with goal-swapping ideas inpired by TSWAP
and C-UNAV to develop GSPI, a new AMRMP algorithm
that scales robustly in continuous, cluttered environments.
Specifically, GSPI generalizes PIBT—a non-anonymous al-
gorithm originally designed for point robots on regular
grids—to the anonymous setting with circular robots and
motion primitives. The remainder of this section details the
design of GsSPI, starting from PIBT and outlining how our
proposed algorithm overcomes its limitations.

Algorithm 2 GsPI: Goal Swapping with Priority Inheritance

Blue lines are modifications to the PIBT algorithm.

Require: Robot set R = {R',..., RN} with configurations qk, € Qf,
anonymous goals QR goa1» Motion-primitive generators G*(g%).
initial priority order <, current target map g : R — QR goal

1 Initialize < to <ipit, random non-repeating, numbers in [0, 1].
2 while some R? not at any goal do
3 E«0

4 | for each R* in < do TRYSWAP(R?, g)

5 | for each R' in < do TRYMOVE(R?)

6 | Commit &; update qjé; demote R’ at goals to <y, increment others

7

8

> Edge reservations (per step).

return 7

function TRYMOVE(R?)

9 | £ gi(q}é); order by heuristic to g(RY)

10 | for each €' € £* do > Choose candidate primitives (i.e., edges).
11 if Je/ € £ with edge-edge conflict, continue > Primitive blocked
12 U<+ {RI#R"| R unreserved in £} > Lower-priority.
13 S+ {RI€U | e edge-state conflicts g} > “Stepped-on” set.
14 if S = () then £+ & U {e}; return true

15 Ecurr < & > Record current edge reservations.
16 E+Eu{e} > Tentatively commit to edge.

17 for each permutation 7 of S do

18 ok < true

19 for each R7 € 7 do

20 | if not TRYMOVE(RY) then ok < false; break

21 if ok then return true > All recursive calls succeeded.
22 | || else & + Ecurr > Roll back.

23| el (dh—ak); €<+ EU{el,}: return false

24 function TRYSWAP(R?, g)

25 | for each RJ with R’ = RI do > Consider lower priority robots.

26 di,a7di,b <~ diSt(qa{vg(Rz))vdiSt(Q%7g(R]))

27 | dja,djp + dist(qg, 9(R)), dist(qg, 9(R"))

28 ifd;p, <dia > Swap benefits higher-priority robot.
and d;p, +d;, < dj o +dj, then > Benefits system.

29

30 | L

swap g(R') < g(R/)
swap < (R") << (R7)

1) Priority Inheritance with Backtracking (PIBT):
PIBT [5] is a multi-agent path-finding algorithm for point
robots traversing edges and vertices on a shared graph.
Shown in Alg. 2] in black, PIBT assigns each robot a dy-
namically changing priority (line [I) and operates in discrete
timesteps. At each step, PIBT iterates through robots by
priority and asks each to commit to an action (TRYMOVE in
line E]) On a robot’s turn, it first sorts its available actions
(transitions along edges incident to its current vertex) by
a heuristic—typically the progress an action makes toward
its goal (line P)—and prunes out any actions that collide
with obstacles or higher-priority robots. From the remaining
valid transitions, if its best option does not collide with any

other robot’s position, it commits to that action (line @
Otherwise, it identifies the blocking robot and requests that it
moves away (line 20). This is done by calling TRYMOVE on
the blocking robot, temporarily granting it the higher robot’s
priority so it can ask lower-priority robots to make way for
it. This recursive chain continues until all robots commit
to collision-free actions, accommodating the request of the
initiating robot. If a recursive call fails—meaning a robot
cannot find a feasible move—the algorithm backtracks and
tries the next-best action for the parent robot. If all options
fail, the robot waits (line @]) Finally, all committed motions
are executed together, completing one timestep (line [6)).

2) Limitations of PIBT: An important detail in PIBT is
that priorities of robots en route to their goals gradually
increase, while those of robots that reach their goals are reset
to their lowest level (line [6). This rule gives active robots
precedence over stationary ones. However, it can also create
livelocks: when goals and paths overlap, a robot at its goal
may be pushed away by another. Once the displacing robot
reaches its own goal, its priority drops in turn, allowing the
first robot to push back. The two can continue alternating
endlessly. This failure mode stems from PIBT fixed goal
assignments. In our manipulation framework, any robot can
occupy any contact point. Capitalizing on this flexibility, we
develop Goal Swapping with Priority Inheritance (GSPI): an
AMRMP planner for non-point robots with motion primitives
that shares PIBT’s lightweight structure without suffering
from livelocks in practice.

3) The GSP1 Algorithm: At its core, GSPI follows the
structure of PIBT and operates in iterations, where in each
iteration robots commit to actions and execute them. In PIBT,
each iteration consists solely of a move stage (line [5), where
robots select and execute actions. In GSPI, we add the swap
stage (line [)), where robots may exchange goals.

The move stage resembles that of PIBT but includes
modifications that extend it to continuous domains with disk-
shaped robots. In PIBT, each candidate action corresponds
to traversing a graph edge and can, at most, be blocked
by a single other robot occupying the destination vertex. In
contrast, GSPI operates with motion primitives and non-zero
robot footprints. As a result, a candidate action may intersect
several lower-priority robots if their configurations overlap
with the primitive. To handle this, GSPI constructs the set
S of all affected robots (line [13) and asks them to yield to
the higher-priority robot by creating a recursive TRYMOVE
call for each one, with later recursive calls treating earlier
ones as higher-priority (line 20). GSPI explores all orderings
of affected robots in S (line ; if one ordering succeeds,
the motion is accepted, and otherwise, the system rolls back
(line 22) and tries the next candidate primitive.

In the swap stage, GSPI iterates over robots by priority and
evaluates whether exchanging goals and priorities between
pairs would improve overall progress. A swap is proposed
for a pair when two conditions hold (line [28): (i) the higher-
priority robot is closer to the other’s goal than to its own, and
(ii) the exchange does not increase the total team distance.
If both are satisfied, the robots swap goals and priorities
(lines 29] and 30). The goal-swapping stage serves two key

Success Rate Heatmap by Environment and Method

&L

Method
Success Rate Heatmap by Environment and Method

0 | 0.05

Number of Robots : Environment

Success Rate vs Number of Robots Cost per Robot by Environment >

o e -
T a0 - 2 0 g”

_® e~ - pd 25Xy 030 oso 1nn LYW 0.80 | 1.00 | 0.90 | 0.90 | 1.00 | 1.00 | 1.00
g ~p—" £
]
e
Il

Slalom Mess

§
& & & &

Oemay wall Mess
Number of Robots ! Environment Method

Fig. 2: Multi-robot multi-object manipulation results. GCO consistently outperformed
MAPUSH and HEURISTIC baselines with GCOp¢ performing the best. Top row: Easy,
Wall, and Slalom (single and multi-object versions) setups. Middle and bottom rows:
single- and multi-object manipulation, respectively. We report overall success rates (left
column), overall average distance traveled per robot (middle), and a breakdown of
success rates. Number in method names is the number of robots available in the scene.

vel with Shape Example (r:

o K
% 02 os o0 2
Lo
Sus

s Rate vs Shape Noise Level - Wall

Noise Level with Shape Example (randomized in experiments)

Fig. 3: Robustness to shape pertur-
bations. Top: three robots manip-
ulating objects drastically different
from their training set. Middle and
bottom: success rates in the Empty

purposes. First, it relaxes fixed robot—goal assignments and
promotes efficient routing in the anonymous case, where any
robot may occupy any goal. Second, in practice, it eliminates
the livelocks that arise in PIBT’s fixed-goal formulation,
where robots can repeatedly push one another without either
remaining at a goal. Intuitively, livelocks occur in PIBT when
a high-priority robot pushes a lower-priority robot off its goal
and continues to push until reaching its own goal. In GSPI,
such a situation triggers a goal swap: the higher-priority robot
takes the closer goal, removing the need for the two robots
to move head-to-head, and avoids a livelock. As we show in
Sec. GsPI is a fast and scalable AMRMP algorithm.

In our manipulation framework GCO, we use GSPI both
to convey robots to their assigned contact points (Alg. [T}
line [7) and to compute transformations 77 for each object
0; (Alg. EI, lines |§| and E[) For the former, we run GSPI at the
robot level until all robots occupy goals, and for the latter,
we invoke GSPI at the object level for two iterations.

V. EXPERIMENTAL EVALUATION

We evaluated GCO and GSPI across a diverse set of ma-
nipulation and motion-planning scenarios designed to probe
performance in increasing coordination difficulty, horizon
length, scale, and object complexity.

A. Manipulation Experiments

We constructed 300 problems spanning three regimes:
single-object manipulation, enabling direct comparison with
HRL baselines (Fig. [2] middle row); multi-object manipula-
tion, testing scalability and inter-object coordination (Fig. [2]
bottom row); and out-of-distribution (OOD) scenarios, eval-
uating robustness to novel objects drastically different from
those seen in training (Fig. [3). Success required all objects
within 15 cm and 0.5 rad of targets, and cost was the average
distance traveled per robot. Single-object problems were
repeated 10 times, with the rest repeating 5 times.

and Wall maps, both with 4 objects.

1) Evaluated Methods: We included all GCO variants,
trained on a shared datasetE| We compared GCO against
MAPUSH [1], a recent reinforcement-learning method for
multi-agent single-object pushinéﬂ and a geometric baseline
inspired by [26] referred to as HEURISTIC, which mirrors the
GCo pipeline but replaces the learned policy 7y with a hand-
designed contact and trajectory generator. Succinctly, given
an object o; and requested transformation 77, HEURISTIC
draws evenly spaced lines (as many as the budget allows)
from the object’s centroid against its requested direction of
travel and selects contact points where these lines intersect
with the object’s boundary; emulating execution-time robot
motion to contact. HEURISTIC generates manipulation tra-
jectories by applying T7 to the contact points and linearly
interpolating between the original and transformed points.
Robot radii were 0.1 meters.

2) Single-Object Manipulation Problems: In the simplest
regime, we considered a single square object and robot teams
of one to three. We conducted our experiments in three maps:
Empty, Easy, and Slalom. In Empty and Easy, robots were
asked to translate the object by 1 m without rotation or by
2 m while rotating by 2 rad, respectively. In both settings, we
requested motions along £z and +y; Empty was obstacle-
free, while Easy contained a single obstacle between start
and goal. In Slalom, the object was asked to reach the
other side of the maze-like environment from bottom to top,
emphasizing long-horizon manipulation (Fig. [2).

3) Multi-Object Manipulation Problems: Scaling up, we
requested teams of 3, 6, or 9 robots to manipulate up to five
objects with randomized shapes and sizes over translations

2Qur training set contained 20,000 samples of variable-sized boxes and
cylinders. Data were collected in MuJoCo [25] by simulating teams of
varying sizes executing diverse contact formations and recording outcomes.

3We used the official implementation and provided 2-robot models.
Additionally, we simplified the problems given to MAPUSH to resemble
those it has been trained on: we allowed a translation tolerance of 0.5m
and ignored orientation errors (github.com/collaborative-mapush/MAPush).

Success Rate vs Number of Robots

Total Cost vs Number of Robots (with 95% CI)
Average Iteration Time vs Number of Robots (with 95% CI)

((((((

sml L dy
L eR P

B’ == O=1=0
s 60 0 100 120
Number of Robots
Success Rate vs Number of Robots

0000, ’
n'...o
s by
s % 10
$ ek ”_o_“\a/"\m
$ H
% [08

50
g
2 4o
3
°

P &0 5
Number of Robots.

o

o P

~
~

el

A @

.
\?.._D._qj.‘_g—k E[

Number of Robots

Number of Robots

Number of Robots.

Fig. 4: GSPI analysis. Illustrations on the left show planned trajectories for all robots in freespace (top row), cluttered (middle
row), and stress-test (bottom row) scenarios. The plots show success rates, costs, and iteration times in freespace (top row)
and cluttered (bottom row) scenarios. GSPI solved significantly more problems than baselines with on-par or better cost.

of up to six meters and rotations of roughly 2.5 radians.
For our tests, we reused Empty and Slalom maps, this time
with more objects, and added two new settings: Wall and
Mess. In the Empty and Wall maps, up to five objects were
placed in a row and were required to move to a parallel
row of goals 2m away. Wall had a wide obstacle blocking
the center. In the Mess setting, four scattered objects were
required to be arranged in a square formation, and in the
Slalom map, objects were asked to traverse tight corridors in
a maze, where manipulation errors could result in blocked
progress. In all problems, we shuffled the initial object—goal
assignment, requiring goal swaps for efficient solutions.

4) Out-Of-Distribution Problems: Despite being trained
only on boxes and cylinders, we evaluated GCO on general
polygon and “T-shaped” objects. Polygons with noise o were
generated by radially shifting vertices on a rectangle (placed
mid-edges and on corners) by ReL.U(¢), where € ~ N (0, o).

5) Manipulation Results: Overall, our results indicate that
GCo scales well to multi-robot, multi-object manipulation
and that GCOp¢ is consistently the most stable as task
difficulty increases. In single-object tasks (Fig. 2] middle
row), all GCo variants achieved higher success rates and
lower costs than the baselines across most settings. MAPUSH
performed well in the simplest case but quickly degraded on
longer-horizon problems. HEURISTIC was inconsistent and
sensitive to team size, with failures often caused by brittle
contact choices that led to slip. In contrast, GCO solved
nearly all problems, with cost per robot decreasing with team
size, suggesting efficient use of additional robots. In multi-
object tasks (Fig. 2] bottom row), a clear hierarchy emerged:
GCopc achieved the highest success rates and lowest costs,
with GCocc and GCoOc7 trailing but still outperforming
the heuristic baseline; MAPUSH was not applicable in this
regime. In OOD tests, despite being trained only on boxes
and cylinders, GCO remained robust on deformed shapes,
with GCopc showing a slow degradation as noise increased
(Fig. 3). We allowed methods long computation limits to
evaluate only their manipulation capacity: 100 iterations for
GCo and HEURISTIC, and 2 simulation minutes for MA -
PUSH. Overall, we find these manipulation results especially
promising since our problem sets extend the difficulty of
common prior settings in object count and shape, team size,
horizon length, and obstacles [1, 11, 12, 27].

B. GSPI AMRMP Experimental Analysis

To evaluate GSPI in isolation from GCO, we constructed
274 AMRMP tasks with up to 125 robots spanning three
regimes: obstacle-free environments for large-scale tests
(Fig. [top plots and illustrations), obstacle-dense maps
requiring tight coordination (Fig.] bottom plots and middle
illustrations), and targeted stress tests designed to expose
common failure modes (Fig.] bottom left illustrations). A
run was successful if all robots safely reached goals; solution
cost was the sum of travel distances. Problems were repeated
five times with random initial robot-goal assignments.

1) Evaluated Methods: We compared GSPI to state-of-
the-art and adapted baselines. The primary comparator was
C-UNAV [24], which uses ORCA [28] for navigation and a
goal-swapping mechanismﬁ We also included TSWAP and
PIBT, adapted to operate over motion primitives rather than
grid edges. GSPI, PIBT, and TSWAP used the same primitive
set: short (5 cm) motions in eight cardinal directions. GSPI,
C-UNAV, and TSWAP leverage goal swaps, while PIBT does
not; we included PIBT due to its algorithmic similarity to
GSPI to isolate the contribution of goal swapping within a
PIBT-like structure. As all methods commit one multi-robot
move per iteration, we also report iteration time, defined as
the average compute time required to commit to a move.

2) Freespace AMRMP Problems: Seeking to quantify
GSPI’s ability to scale to large team sizes, we created three
obstacle-free problem families with up to 125 robots. Our
setups included transitions between formations where a high
degree of symmetry and proximity between robots arose.

3) Cluttered AMRMP Problems: For evaluating coordi-
nation among obstacles and bottlenecks, we created three
additional maps with team sizes up to 30 robots. These
include formation transitions around obstacles, a slalom-style
map that forces robots through a narrow passage, and a
funnel-like variant that further tightens the bottleneck.

4) Stress-Test AMRMP Problems: To probe common fail-
ure modes under tight coupling and constrained geometry,
we created five targeted stress-test problems (illustrated in
Fig. [bottom left). These included tight layouts with densely
packed goals, where robots needed to coordinate group

4We implemented C-UNAV by adding goal-swapping to the ORCA code
from the same authors (github.com/PathPlanning/ORCA-algorithm).

motions to progress. We also included an enclosed map
where starts and goals overlap, but robots cannot move. They
must exchange goals in order to find a solving assignment.

5) AMRMP Results: GSPI consistently solved more in-
stances than competing methods while achieving lower or
comparable solution costs. PIBT frequently failed due to
livelocks, and TSWAP often deadlocked, particularly in
symmetric settings. C-UNAV performed better in open space
but struggled in scenarios with higher robot- or obstacle-
density. This behavior persisted despite substantial ORCA
parameter tuning. In contrast, GSPI remained robust across
all tested scales, including teams exceeding 100 robots.
Qualitatively, the trajectories in Fig. [] that show robots
rarely crossing paths indicate that GSPI performed effective
goal swapping and quickly improved on the initial random
robot-goal assignments. Otherwise, trajectories would have
been intertwined. Finally, the stress tests were particularly
discriminative. GSPI solved 100% of the 80 runs, whereas
TSWAP solved 12.5%, PIBT solved 2.5%, and C-UNAV
solved 0%. These results suggest that GSPI not only scales
well and effectively negotiates heavily contested regions, but
also circumvents common failure modes.

VI. CONCLUSION

We introduced GCO, a unified framework for collabo-
rative multi-robot, multi-object non-prehensile manipulation
that combines the strengths of generative modeling and
multi-robot motion planning. At its core, GCO leverages
flow matching co-generation to propose contact formations
and manipulation trajectories directly from perception, and
integrates them with GSPI, a new scalable algorithm for
anonymous multi-robot motion planning. This enables robots
not only to decide how to interact with objects, but also to
coordinate efficiently across large teams and dense clutter.

Through extensive experiments, we demonstrated that
GCo consistently outperformed reinforcement learning and
heuristic baselines in single- and multi-object manipulation,
and that the discrete—continuous instantiation delivered the
best performance. Moreover, we showed that GSPI achieved
substantial scalability in AMRMP, successfully solving dense
problems with more than one hundred robots where prior
approaches struggle. In this light, we find that generative
co-design, coupled with lightweight planning, is a powerful
recipe for collaborative manipulation.

REFERENCES

[1] Y. Feng, C. Hong, Y. Niu, S. Liu, Y. Yang, and D. Zhao, “Learning
multi-agent loco-manipulation for long-horizon quadrupedal pushing,”
in IEEE International Conference on Robotics and Automation, 2025.

[2] Z. Tang, Y. Feng, and M. Guo, “Collaborative planar pushing of
polytopic objects with multiple robots in complex scenes,” arXiv
preprint arXiv:2405.07908, 2024.

[3] G. Sharon, R. Stern, A. Felner, and N. R. Sturtevant, “Conflict-based
search for optimal multi-agent pathfinding,” Artificial Intelligence,
2015.

[4] J. Li, W. Ruml, and S. Koenig, “Eecbs: A bounded-suboptimal search
for multi-agent path finding,” in Proceedings of the AAAI Conference
on Artificial Intelligence, vol. 35, no. 14, 2021, pp. 12353-12362.

[5] K. Okumura, M. Machida, X. Défago, and Y. Tamura, ‘“Priority
inheritance with backtracking for iterative multi-agent path finding,”
in Proceedings of the Twenty-Eighth International Joint Conference
on Artificial Intelligence, 2019.

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

Y. Shaoul, I. Mishani, M. Likhachev, and J. Li, “Accelerating search-
based planning for multi-robot manipulation by leveraging online-
generated experiences,” in 34th International Conference on Auto-
mated Planning and Scheduling, 2024.

Y. Shaoul, R. Veerapaneni, M. Likhachev, and J. Li, “Unconstraining
multi-robot manipulation: Enabling arbitrary constraints in ecbs with
bounded sub-optimality,” in Proceedings of the International Sympo-
sium on Combinatorial Search, 2024.

W. Honig, J. A. Preiss, T. S. Kumar, G. S. Sukhatme, and N. Ayanian,
“Trajectory planning for quadrotor swarms,” IEEE Transactions on
Robotics, 2018.

V. N. Hartmann, A. Orthey, D. Driess, O. S. Oguz, and M. Toussaint,
“Long-horizon multi-robot rearrangement planning for construction
assembly,” IEEE Transactions on Robotics, 2023.

C. R. Garrett, R. Chitnis, R. Holladay, B. Kim, T. Silver, L. P. Kael-
bling, and T. Lozano-Pérez, “Integrated task and motion planning,”
Annual Review of Control, Robotics, and Autonomous Systems, 2021.
O. Nachum, M. Ahn, H. Ponte, S. Gu, and V. Kumar, “Multi-Agent
Manipulation via Locomotion using Hierarchical Sim2Real,” 2019.
Z. Xiong, B. Chen, S. Huang, W.-W. Tu, Z. He, and Y. Gao,
“Mge: Unleashing the power of interaction with multi-agent quadruped
environment,” in International Conference on Intelligent Robots and
Systems (IROS), 2024.

C. Chi, Z. Xu, S. Feng, E. Cousineau, Y. Du, B. Burchfiel, R. Tedrake,
and S. Song, “Diffusion policy: Visuomotor policy learning via action
diffusion,” The International Journal of Robotics Research, 2023.

K. Black, N. Brown, D. Driess, A. Esmail, M. Equi, C. Finn, N. Fusai,
L. Groom, K. Hausman, B. Ichter, et al., “m: A vision-language-action
flow model for general robot control,” CoRR, 2024.

J. Carvalho, A. T. Le, M. Baierl, D. Koert, and J. Peters, “Motion
planning diffusion: Learning and planning of robot motions with dif-
fusion models,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2023.

K. Okumura and X. Défago, “Solving simultaneous target assignment
and path planning efficiently with time-independent execution,” Arti-
ficial Intelligence, p. 103946, 2023.

Y. Lipman, R. T. Chen, H. Ben-Hamu, M. Nickel, and M. Le, “Flow
matching for generative modeling,” in The Eleventh International
Conference on Learning Representations, 2022.

A. Campbell, J. Yim, R. Barzilay, T. Rainforth, and T. Jaakkola,
“Generative flows on discrete state-spaces: Enabling multimodal flows
with applications to protein co-design,” in International Conference on
Machine Learning. PMLR, 2024.

I. Gat, T. Remez, N. Shaul, F. Kreuk, R. T. Chen, G. Synnaeve,
Y. Adi, and Y. Lipman, “Discrete flow matching,” Advances in Neural
Information Processing Systems, 2024.

J. Yu and S. M. LaValle, “Multi-agent path planning and network
flow,” in Algorithmic Foundations of Robotics X: Proceedings of the
Tenth Workshop on the Algorithmic Foundations of Robotics, 2013.
W. Honig, S. Kiesel, A. Tinka, J. Durham, and N. Ayanian, “Conflict-
based search with optimal task assignment,” in Proceedings of the
International Joint Conference on Autonomous Agents and Multiagent
Systems, 2018.

Y. Tang, S. Koenig, and J. Li, “Ita-ecbs: A bounded-suboptimal
algorithm for combined target-assignment and path-finding problem,”
in International Symposium on Combinatorial Search, 2024.

B. J. Cohen, S. Chitta, and M. Likhachev, “Search-based planning
for manipulation with motion primitives,” in 2010 IEEE International
Conference on Robotics and Automation, 2010, pp. 2902-2908.

S. Dergachev and K. Yakovlev, “Decentralized unlabeled multi-agent
navigation in continuous space,” in International Conference on Inter-
active Collaborative Robotics. Springer, 2024, pp. 186-200.

E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine
for model-based control,” in IEEE/RSJ international conference on
intelligent robots and systems, 2012.

J. Chen, M. Gauci, W. Li, A. Kolling, and R. Grof}, “Occlusion-based
cooperative transport with a swarm of miniature mobile robots,” IEEE
Transactions on Robotics, vol. 31, no. 2, pp. 307-321, 2015.

S. Jeon, M. Jung, S. Choi, B. Kim, and J. Hwangbo, “Learning
whole-body manipulation for quadrupedal robot,” IEEE Robotics and
Automation Letters, 2023.

J. Van Den Berg, S. J. Guy, M. Lin, and D. Manocha, “Reciprocal
n-body collision avoidance,” in Robotics Research: The 14th Interna-
tional Symposium ISRR. Springer, 2011, pp. 3-19.

	Introduction
	Problem Formulation
	Background
	Related Work: Multi-Robot Manipulation
	Background: Flow Matching Co-Generation
	Background: AMRMP

	Generative Collaboration
	Flow Matching Co-Generation for Manipulation
	Direct Continuous Trajectory Generation (GCoCT)
	Continuous–Continuous Co-Generation (GCoCC)
	Discrete–Continuous Co-Generation (GCoDC)
	Variable Robot Budget

	Gspi: Robot- and Object-Level AMRMP
	Priority Inheritance with Backtracking (PIBT)
	Limitations of PIBT
	The Gspi Algorithm

	Experimental Evaluation
	Manipulation Experiments
	Evaluated Methods
	Single-Object Manipulation Problems
	Multi-Object Manipulation Problems
	Out-Of-Distribution Problems
	Manipulation Results

	Gspi AMRMP Experimental Analysis
	Evaluated Methods
	Freespace AMRMP Problems
	Cluttered AMRMP Problems
	Stress-Test AMRMP Problems
	AMRMP Results

	Conclusion
	References

