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Abstract

Causal inference methods that control for text-001
based confounders are becoming increasingly002
important in the social sciences and other dis-003
ciplines where text is readily available. How-004
ever, these methods rely on a critical assump-005
tion that there is no treatment leakage: that006
is, the text contains only information about007
the confounder and no information about treat-008
ment assignment (leading to post-treatment009
bias). However, this assumption may be un-010
realistic in real-world situations involving text,011
as human language is rich and flexible.012

We first define the leakage problem, discussing013
the identification and estimation challenges it014
raises. We also discuss the conditions under015
which leakage can be addressed by removing016
the treatment-related signal from the text in a017
pre-processing step we define as text distilla-018
tion. Then, using simulation, we investigate019
the mechanics of treatment leakage on esti-020
mates of the average treatment effect (ATE).021

1 Introduction022

In observational settings, scholars need to collect023

information about potential confounders in order024

to estimate the causal effect (τ ) of a treatment on025

an outcome. If we observed the set of confounders026

directly, we could condition on those quantities to027

recover unbiased causal effects. Yet, because some028

confounders U are difficult to measure directly,029

scholars are turning to alternative data sources,030

such as medical records, policy documents, or so-031

cial media posts, to indirectly measure (proxy) con-032

founders. Recent methodological frameworks sup-033

ply ways of integrating high-dimensional text data034

into causal estimation (Mozer et al., 2020; Roberts035

et al., 2020; Feder et al., 2021).036

However, prior literature has primarily assumed037

that documents only contain information about038

the confounder, and no information about the039

treatment—something we term the no-treatment-040

leakage assumption. When treatment leakage oc- 041

curs after treatment assignment, its bias is equiva- 042

lent to a post-treatment bias. 043

Treatment leakage leads to an identification chal- 044

lenge. The challenge is that W is both necessary 045

for adjusting (as it is a proxy) yet it is also a post- 046

treatment variable. Without treatment leakage, W 047

would not be a post-treatment variable, as it does 048

not harbour information about the treatment assign- 049

ment. But because of leakage, scholars would have 050

to accept bias arising from either adjusting on a 051

post-treatment variable or bias arising from not ad- 052

justing for unobserved confounding that parts of 053

W represents. Although several methodological 054

studies develop and adapt causal-inference meth- 055

ods for text data (Keith et al., 2020), almost no 056

studies examine the leakage bias dynamics. 057

Our work investigates the treatment-leakage 058

challenge. It shows that if W is the only available 059

text representing U and there exists a distillation 060

method, f , that has the ability to transform (e.g. 061

partition) W into its post-treatment WT and proxy 062

textual-components WU , then adjusting on WU is 063

then the best one can do in identifying τ . As WU 064

is not post-treatment, we can adjust for it to reduce 065

the bias when estimating τ . These f functions can 066

represent a human annotator, identifying and re- 067

moving parts of text (e.g., words, sentences) that 068

belong to WT and curating WU ; or, under addi- 069

tional assumptions, f can be based on supervised or 070

unsupervised machine-learning machine learning 071

models that transform the text or its representation. 072

In this paper, we define key assumptions and 073

demonstrate the mechanics of text distillation in 074

a simulated experiment. Using a language model, 075

we generate synthetic documents W so that they 076

contain information about the treatment assign- 077

ment, T , and the unobserved confounding, U , im- 078

printed paragraph-by-paragraph. Because we con- 079

trol which paragraph is affected by T (injecting 080

post-treatment bias) or by U (infusing knowledge 081
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about the confounder), we have an oracle distilla-082

tion function, f , that mimics human coding. This083

oracle method perfectly distills W , and supplies084

WU . Then, when using WU in our causal model,085

we reduce bias of τ̂ markedly. Although our oracle086

is idealized, it deepens intuition. In future work,087

we will develop automated methods to obtain f .088

By conceptualizing the problem of treatment089

leakage in text data and investigating its impact,090

scholars developing causal methods can be better091

positioned to tailor their frameworks to reduce bias;092

domain scholars can better calibrate their data col-093

lection procedure to account for this leakage.094

2 Treatment Leakage in Text Data095

While the literature on dealing with confounding in096

observational studies is established (Rubin, 1974),097

recent advances have been made in the analysis098

of text-based causal inference. Indeed, text W is099

widely available in the health and social sciences100

(Gentzkow et al., 2019; Kino et al., 2021), and can101

be used to proxy for some confounders, U , that102

would otherwise remain unobserved (Keith et al.,103

2020). If the text only contains information about104

U and no other factors, then W is a faithful repre-105

sentation of U and we denote it as WU . However,106

text, by its nature as a medium of creativity, rarely107

has fixed boundaries, and can contain information108

not only about confounders, but also leak informa-109

tion about the treatment assignment and its effects.110

The future- and backward-looking nature of text111

can exacerbate treatment leakage. Documents that112

often contain backward looking temporally (e.g.113

in much of journalism) or has an unknown pro-114

duction date, will like contain information about115

the treatment and its effects. Using these docu-116

ments directly for causal inference would inject117

post-treatment bias. Conversely, documents that118

reference the future (e.g., many public-policy docu-119

ments in the economy and polity) may also lead to120

unfavorable RMSE if they predict the future well121

(see §2.1.2). As a result, a substantial amount of122

real-world text containing rich information about123

confounding factors might be affected by that lan-124

guage can reference the future, post-treatment state.125

2.1 Characterizing Treatment Leakage126

We define treatment leakage as when the text, W ,127

is affected by treatment status, T .128

Treatment leakage: ∃WT ,WU ⊆W ,129

so that there is a part of the text affected by T 130

(i.e., WT ) and a part affected by U (i.e., WU ). In 131

general, these two parts could be intersecting, if, 132

for example, both the confounder and the treatment 133

affect the overall tone (sentiment) of a document. 134

The degree of treatment leakage can vary. First, 135

it depends on how much signal T injects into WT . 136

Second, it also depends on the relative (distribu- 137

tional) strength of each partition WU and WT in 138

jointly composing the entire document W . Addi- 139

tionally, there will be random noiseR irrelevant for 140

T and U , yet present in composing W . If we sim- 141

plify and assume that each partition carries strength 142

equal to the number of its elements (e.g., words) 143

and each element has the same strengths, then the 144

magnitude of treatment leakage is: |WT |
|WU∪WT∪R| , 145

taking values (0, 1). 146

2.1.1 Case 1: Text is Post-treatment 147

In one form of this phenomenon, the text is condi- 148

tionally dependent on the treatment status T given 149

a hidden confounder, U . Figure 1, panel a., shows 150

a directed acyclic graph (DAG) representing this 151

scenario where the text affected by the treatment 152

status. This sort of treatment leakage induces post- 153

treatment bias: when the text is affected by the 154

treatment, conditioning on the text (which is a col- 155

lider) opens the path from T to Y through W and 156

U , will in general yield biased estimates (in the 157

notation of Pearl (2015), (Y 6⊥ T |W )GT
). 158

Identification assumptions may also be hard to 159

maintain, with the treated/control units having dis- 160

tinct text features (e.g. if all treated units have as- 161

sociated texts referring to the treatment). This lack 162

of overlap would violate the identification assump- 163

tions of causal estimators such as Inverse Propen- 164

sity Score Weighting (IPW) (Heinrich et al., 2010), 165

and could lead to extreme estimated probabilities, 166

something we see empirically in Figure 3). 167

2.1.2 Other Cases 168

Figure 1 shows a case when text is post-treatment, 169

but in other cases the precise DAG structure may 170

not be known. For example, text may represent a 171

mediator if the document includes post-treatment 172

information and also affected the outcome (if, for 173

example, the text is congressional speech and the 174

outcome is a roll call vote). If the proxy text is pre- 175

treatment and directly affects the treatment, condi- 176

tioning on the treatment-related portion of the text 177

could increase the variance of estimation, leading 178

to unfavorable RMSE (Myers et al., 2011). 179
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Figure 1: A causal model consisting of observed vari-
ables (shaded): confounders (X), treatment (T ), out-
come (Y ), document (W ), and unobserved variables
(unshaded): confounder (U ) and residual factors (R).
The red-colored edge in a. represents the treatment
leakage. In b., A distillation function f has removed
the treatment information in the text, leaving only infor-
mation from the confounder. A perfect intervention of
f is equivalent with deleting the red arrow; a less than
perfect intervention reduces at least its dependence.

3 Text Distillation as Preprocessing180

Text distillation is a form of text preprocessing.181

It has to target any text (e.g., tone, words, sen-182

tences) that belongs to WT , and remove it from W .183

Thus, distillation ensures that the treatment signal184

is negated. As Figure 1, panel b. shows, if distil-185

lation is perfectly successful, it results in cutting186

the red arrow (from T to W ). The arrow is cut,187

because the distillation function has removed WT188

from W , supplying WU for causal analysis.189

3.1 Assumptions for Valid Distillation190

Distillation relies on W and its key components191

being separable: that it can be decomposed into192

two portion (e.g., sets of paragraphs), where the193

first is only determined by U and the second only194

by T . That is,195

Separability Assumption: WU ∩WT = ∅196

Assuming separability, a perfect distillator will pro-197

duce W ∗ = f(W ) that is equivalent to the con-198

founder, WU . Perfect distillation means that the199

distillator f identified text that contains the same in-200

formation about U as WU has. Thus, W ∗ = WU ,201

and if WU is a valid adjustment set, then W ∗ is202

that as well. The separability assumption is appeal-203

ing because it implies that researchers only need to204

find a valid partition of the text (and do not need to205

consider all possible text transformations).206

This separability assumption is particularly plau-207

sible for text data, which by its nature consists of208

a sequence of linguistic signifiers which can be209

decomposed into smaller units (e.g. paragraphs).210

While plausible for many circumstances, in211

some cases, separability may not hold, as when212

the entire tone of the text is affected by the treat- 213

ment. In this more complicated setting, we need 214

a more general assumption, that the transformed 215

text, W ∗, is conditionally independent of T given 216

U . That is, the conditional mutual information 217

between W ∗ and T given U is zero, while infor- 218

mation about U in W ∗ is maintained. Despite 219

the benefits of this more general framing, because 220

U is unobserved, it may be difficult for investiga- 221

tors to assess whether the assumption is satisfied or 222

whether ethically problematic information has been 223

included in the f function (e.g., race; Menon and 224

Williamson (2018)). Unlike numerical data, as text 225

data is readable, scholars can examine and validate 226

whether W ∗ still contains information about T . 227

4 Experimental Setup 228

We use simulation to illustrate the dynamics of text 229

distillation and build on the framework for evaluat- 230

ing text-based causal inference methods introduced 231

by Wood-Doughty et al. (2021). We generate nu- 232

merical covariates from the model in Figure 1; the 233

general procedure is described in §A, with imple- 234

mentation details in §B. Parameters are selected 235

so that ATE estimates τ̂ are biased if the estimator 236

does not account for the unobserved confounder U . 237

Following Wood-Doughty et al. (2021), we gen- 238

erate documents, W , by sampling from an English- 239

language GPT-2 model (Radford et al., 2019). In 240

contrast to their approach, text generation is condi- 241

tioned not only on U but also on T . As described 242

in detail in §A, we define paragraph-level topics, 243

where some topics are associated with U , some 244

with T , and some with a residual topic related only 245

to other background variables (R in Figure 1). For 246

a given paragraph topic, we define a number of 247

prompts and a distribution shift that increases the 248

probability of generating topic-related keywords. 249

As we simulate and record which paragraphs are 250

affected by T and by U , our distillator f has oracle 251

properties. We can then use f to investigate three 252

idealized distillation scenarios. The first is when a 253

distillator was not applied or the distillator failed 254

to do any distillation f(W ) = W . It outputs the 255

same corpus. The second is when it perfectly dis- 256

tills W , excluding all paragraphs affected by T . 257

That is, apply f(W ) = W ∗ such that W ∗ = WU . 258

The third scenario is when f was overly aggressive 259

and "accidentally" removed not only T− but also 260

U -related paragraphs, resulting in W ∗∗. This cor- 261

pus violates the proxy-faithfulness assumption that 262
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W ∗∗ fully measures U . Then, we use the three263

corpora, one at a time, for causal inference. We use264

an Inverse Propensity Weighting (IPW) esitmator,265

fully described in §C.266

5 Experiments and Results267

Based on the setting described in §4, our analysis268

produces six estimates, three based on distillation269

and three based on facts about the data-generating270

process. Figure 2 shows all estimates.271

Adjusting with the true 
treatment propensity τ6 

Adjusting for confounder 
with distilled text τ5 

Adjusting for confounder 
with over−distilled text τ4 

Adjusting for confounder 
with non−distilled text τ3 

Unadjusting for true 
confounder τ2 

Adjusting for true 
confounder τ1 

−10 −5 0 5
Estimated treatment effect

Figure 2: Estimates under different distillation regimes.

The first estimate, τ̂1 = 5.5, is the baseline272

where all information is known to the outcome273

model, including U . Because this linear model274

adjusting for U and X is equivalent to the data-275

generating model, and the estimated effect would276

be equal to the true value of 5 without sampling277

noise. The bootstrapped 95% confidence interval278

(CI) is 3.4 to 7.6. The second estimate, τ̂2 = -2.3,279

is obtained when U is omitted from the model to280

induce omitted variable bias (CI: -4.2, -0.1).281

The third estimate, τ̂3, uses IPW to estimate the282

ATE (see §C). Here, we use the non-disitilled doc-283

uments, W , to estimate propensities. As Figure284

2 shows, in the absence of distillation, the bias285

increases compared to conditioning on X alone,286

producing τ̂3 = −7.0 (CI: -9.4, -4.6). The fourth287

estimate, τ̂4, applies overly aggressive distillation.288

This approach gives a result similar to the unad-289

justed estimate: τ̂4 = −2.9 (CI: -5.1, -0.6).290

The fifth estimate, τ̂5, applies oracle distillation291

by removing the paragraphs we know were affected292

by T . Using W ∗, the bias is reduced substantially,293

yielding an estimate τ̂5 = 3.5 (CI: 1.2, 5.8). As the294

CI of this τ̂ includes the true τ = 5, we conclude295

that distillation successfully recovers τ . However,296

we note that this recovery is not perfect and will be297

affected by sampling and modeling parameters.298

The sixth estimate, τ̂6, demonstrates the impact299

of model selection for the propensity estimator. Us-300

ing the true (simulated) propensity, the IPW esti- 301

mate is τ̂6 = 4.9 (CI: 2.2, 7.6). This result shows 302

that further gains could be made by careful model 303

selection (Chernozhukov et al., 2018). 304

Figure 3 shows distributions of propensity values 305

for τ̂3, τ̂5, and τ̂6. Without distillation (red), the 306

estimated propensities cluster near 0 and 1. T is 307

predicted almost perfectly, as mentioned in §2.1.1, 308

causing the IPW estimate to to be similar to the 309

unweighted one. Conversely, with distillation, the 310

predicted probabilities are now similar to the data- 311

generating propensities, and thereby, the resulting 312

causal estimate is improved. 313

0

1

2

0.00 0.25 0.50 0.75 1.00
Treatment−assignment probability

D
en

si
ty

 

Estimated with 
  distillation
Estimated without 
 distillation
True

Figure 3: Estimated and true assignment probabilities.

6 Discussion 314

This paper shows the critical role of the no- 315

treatment-leakage assumption when using text for 316

causal inference. While text is becoming an estab- 317

lished data source, it may harbour valuable infor- 318

mation about a confounder but also contaminating 319

information about post-treatment effects. This is- 320

sue has seen little discussion in text-based causal 321

inference literature, but has the potential to severely 322

bias causal estimates, potentially leading to false 323

discoveries or invalid policy recommendations. 324

Our study has limitations. First, more work is 325

required to show how the no-treatment-leakage as- 326

sumption operates under different covariance struc- 327

tures. Second, a larger simulation framework is 328

needed to decompose estimator bias and variance. 329

For extensions, we recommend two paths. First, 330

while this paper focuses on treatment leakage, there 331

are other types of leakage when a single document 332

is a function of multiple causal nodes. Thus, a 333

generalization of the no-treatment-leakage assump- 334

tion is the no-node-leakage assumption. Second, 335

researchers need a framework when human parti- 336

tioning of text is not possible due to corpus size. 337

Automatic distillation could be attempted with ad- 338

ditional assumptions, perhaps building from the 339

literature on removing sensitive information in data 340

(Bolukbasi et al., 2016; Ravfogel et al., 2020). 341
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paragraph text Wij , starting from the prompt W 0
ij447

and with a vocabulary distribution shift defined by448

Zij . Algorithm 1 shows the pseudocode.449

Algorithm 1 Generation of synthetic data.

for i ∈ 1, . . . , N
Xi ∼ fX
Ui ∼ fU
Ti ∼ Bernoulli(sigmoid(fT (Xi, Ui)))
Yi ∼ fY (Xi, Ui, Ti)
for j ∈ 1, . . . ,K
Zij ∼ Categorical(fZ(Ui, Ti))
W 0
ij ∼ Categorical(fW 0(Zij))

Wij ∼ LM(W 0
ij , Zij)

In the pseudocode above, the functions fX , fU ,450

fT , and fY define the distributions of the observed451

confounders, unobserved confounder, treatment452

and outcome, respectively. On the paragraph level,453

the function fZ defines a categorical distribution454

over paragraph topics, and fW 0 a categorical distri-455

bution over prompts.456

Similarly to Wood-Doughty et al. (2021), we use457

two mechanisms to condition the generation of a458

paragraph on a topic Z: a prompt and a vocabulary459

distribution shift. The distribution shift is designed460

to promote a set of keywords related to the topic461

and we implement it by multiplying the language462

model probabilities by a topic-specific vector θZ463

of scale factors:464

P ′(w|context, Z) ∝ PLM(w|context) · θZ(w)465

B Parameterization Used in §5466

In §5, we generated N = 10,000 instances, each467

consisting of numerical values and a document.468

We used the following distributions to generate the469

document-level variables: fX was a 3-dimensional470

isotropic Gaussian; fU was an even coin toss; fT471

was linear in Xi and Ui; fY was Gaussian with a472

mean defined by a linear function of Xi, Ui, and473

Ti and a fixed standard deviation.474

Each document consisted of K = 20 paragraphs.475

For the paragraph generation, we defined five dif-476

ferent topics: two corresponding to positive and477

negative treatment values; two corresponding to478

positive and negative values of the unobserved con-479

founder; one general background topic that was480

unrelated to U or T (but conceptually thought of481

as controlled by other “residual” variables R). For482

a document with given values of U and T , we set483

the topic distribution fZ to select the U topic with 484

a probability of 0.2, the T topic with a probability 485

of 0.2, and the general topic with a probability of 486

0.6. 487

The generated texts were designed to simulate a 488

hypothetical use case where the researchers want 489

to investigate the effect of IMF programs on some 490

country-level indicator (cf. Daoud et al., 2019). The 491

treatment variable T represents the presence or 492

absence of an IMF program; the unseen confounder 493

U represents the political situation of the country 494

with respect to the IMF. For each topic except the 495

general topic, we define four different prompts: 496

for instance, for a positive treatment value, one 497

of the prompts was The International Monetary 498

Fund mandates the deregulation of [COUNTRY]’s 499

labor market. In the analysis, “[COUNTRY]” is 500

substituted by randomly sampled country names. 501

All topics except the general topic defined a 502

distribution shift used when generating from the 503

language model. We used 8 topic keywords for 504

each of these topics. For these keywords, the cor- 505

responding entries in the vocabulary distribution 506

shift vector log θZ were set to a value that defines 507

the strength of the effect of T on W ; for all other 508

words except these keywords, log θZ was 0. Since 509

our focus in this paper is on a clear-cut use case 510

where the effects are strong, we set the strength 511

parameter to a value of 4, which gives a noticeable 512

effect on the generated texts. 513

The text generation model was run on a single 514

GPU (NVIDIA GeForce GTX TITAN X). Gener- 515

ating the 10,000 documents took around 10 hours. 516

The generation of random text is within the in- 517

tended use of the GPT-2 model.2 518

C IPW Details 519

C.1 Background 520

The ATE is defined as τ = E[Yi(1)−Yi(0)], where 521

Yi(t) is the potential outcome for unit i under 522

treatment t. It can be identified in randomized 523

experiments (Rubin, 1974). However, the situa- 524

tion is more complicated in the observational set- 525

ting, where the treatment is not randomized to units 526

but could be correlated with confounders, Xi, that 527

are associated with the treatment and the outcome. 528

In that setting, we can, with additional assump- 529

tions, still recover the ATE using Inverse Propensity 530

Weighting (IPW) or related robust methods (Funk 531

et al., 2011), where observations are weighted by 532

2https://huggingface.co/gpt2
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the inverse of their estimated treatment probabil-533

ities π̂(Xi) = P̂r(Ti = 1|Xi) (Rosenbaum and534

Rubin, 1983): τ̂ = 1
n

∑n
i=1

{
TiYi
π̂(Xi)

− (1−Ti)Yi
1−π̂(Xi)

}
.535

C.2 Estimation536

ATE estimates based on Inverse Propensity Weight-537

ing (see §C.1) require the estimation of the propen-538

sity scores, P̂r(T |X,W ). To estimate these539

scores, we applied a L1-regularized logistic re-540

gression model using the glmnet package in R.541

The regularization strength (λ) was set automati-542

cally via 10-fold cross-validation. When estimating543

propensities, we represented the (non-distilled or544

distilled) document as an L2-normalized TF-IDF545

vector using the 256 most frequent terms in the546

vocabulary, while the numerical covariates X were547

standardized.548
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