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Abstract

Causal inference methods that control for text-
based confounders are becoming increasingly
important in the social sciences and other dis-
ciplines where text is readily available. How-
ever, these methods rely on a critical assump-
tion that there is no treatment leakage: that
is, the text contains only information about
the confounder and no information about treat-
ment assignment (leading to post-treatment
bias). However, this assumption may be un-
realistic in real-world situations involving text,
as human language is rich and flexible.

We first define the leakage problem, discussing
the identification and estimation challenges it
raises. We also discuss the conditions under
which leakage can be addressed by removing
the treatment-related signal from the text in a
pre-processing step we define as text distilla-
tion. Then, using simulation, we investigate
the mechanics of treatment leakage on esti-
mates of the average treatment effect (ATE).

1 Introduction

In observational settings, scholars need to collect
information about potential confounders in order
to estimate the causal effect (7) of a treatment on
an outcome. If we observed the set of confounders
directly, we could condition on those quantities to
recover unbiased causal effects. Yet, because some
confounders U are difficult to measure directly,
scholars are turning to alternative data sources,
such as medical records, policy documents, or so-
cial media posts, to indirectly measure (proxy) con-
founders. Recent methodological frameworks sup-
ply ways of integrating high-dimensional text data
into causal estimation (Mozer et al., 2020; Roberts
et al., 2020; Feder et al., 2021).

However, prior literature has primarily assumed
that documents only contain information about
the confounder, and no information about the
treatment—something we term the no-treatment-

leakage assumption. When treatment leakage oc-
curs after treatment assignment, its bias is equiva-
lent to a post-treatment bias.

Treatment leakage leads to an identification chal-
lenge. The challenge is that W is both necessary
for adjusting (as it is a proxy) yet it is also a post-
treatment variable. Without treatment leakage, W
would not be a post-treatment variable, as it does
not harbour information about the treatment assign-
ment. But because of leakage, scholars would have
to accept bias arising from either adjusting on a
post-treatment variable or bias arising from not ad-
justing for unobserved confounding that parts of
W represents. Although several methodological
studies develop and adapt causal-inference meth-
ods for text data (Keith et al., 2020), almost no
studies examine the leakage bias dynamics.

Our work investigates the treatment-leakage
challenge. It shows that if W is the only available
text representing U and there exists a distillation
method, f, that has the ability to transform (e.g.
partition) W into its post-treatment W and proxy
textual-components Wy, then adjusting on Wy is
then the best one can do in identifying 7. As Wy
is not post-treatment, we can adjust for it to reduce
the bias when estimating 7. These f functions can
represent a human annotator, identifying and re-
moving parts of text (e.g., words, sentences) that
belong to W and curating Wy;; or, under addi-
tional assumptions, f can be based on supervised or
unsupervised machine-learning machine learning
models that transform the text or its representation.

In this paper, we define key assumptions and
demonstrate the mechanics of text distillation in
a simulated experiment. Using a language model,
we generate synthetic documents W so that they
contain information about the treatment assign-
ment, 7', and the unobserved confounding, U, im-
printed paragraph-by-paragraph. Because we con-
trol which paragraph is affected by 7' (injecting
post-treatment bias) or by U (infusing knowledge



about the confounder), we have an oracle distilla-
tion function, f, that mimics human coding. This
oracle method perfectly distills W, and supplies
Wyr. Then, when using Wy; in our causal model,
we reduce bias of 7 markedly. Although our oracle
is idealized, it deepens intuition. In future work,
we will develop automated methods to obtain f.
By conceptualizing the problem of treatment
leakage in text data and investigating its impact,
scholars developing causal methods can be better
positioned to tailor their frameworks to reduce bias;
domain scholars can better calibrate their data col-
lection procedure to account for this leakage.

2 Treatment Leakage in Text Data

While the literature on dealing with confounding in
observational studies is established (Rubin, 1974),
recent advances have been made in the analysis
of text-based causal inference. Indeed, text W is
widely available in the health and social sciences
(Gentzkow et al., 2019; Kino et al., 2021), and can
be used to proxy for some confounders, U, that
would otherwise remain unobserved (Keith et al.,
2020). If the text only contains information about
U and no other factors, then W is a faithful repre-
sentation of U and we denote it as Wy;. However,
text, by its nature as a medium of creativity, rarely
has fixed boundaries, and can contain information
not only about confounders, but also leak informa-
tion about the treatment assignment and its effects.

The future- and backward-looking nature of text
can exacerbate treatment leakage. Documents that
often contain backward looking temporally (e.g.
in much of journalism) or has an unknown pro-
duction date, will like contain information about
the treatment and its effects. Using these docu-
ments directly for causal inference would inject
post-treatment bias. Conversely, documents that
reference the future (e.g., many public-policy docu-
ments in the economy and polity) may also lead to
unfavorable RMSE if they predict the future well
(see §2.1.2). As a result, a substantial amount of
real-world text containing rich information about
confounding factors might be affected by that lan-
guage can reference the future, post-treatment state.

2.1 Characterizing Treatment Leakage

We define treatment leakage as when the text, W,
is affected by treatment status, 7'.

Treatment leakage: 3 Wp, Wy C W,

so that there is a part of the text affected by T'
(i.e., W) and a part affected by U (i.e., Wy). In
general, these two parts could be intersecting, if,
for example, both the confounder and the treatment
affect the overall tone (sentiment) of a document.

The degree of treatment leakage can vary. First,
it depends on how much signal T injects into W7
Second, it also depends on the relative (distribu-
tional) strength of each partition Wy and W in
jointly composing the entire document W. Addi-
tionally, there will be random noise R irrelevant for
T and U, yet present in composing W. If we sim-
plify and assume that each partition carries strength
equal to the number of its elements (e.g., words)
and each element has the same strengths, then the
magnitude of treatment leakage is: ‘WUBVW,
taking values (0, 1).

2.1.1 Case 1: Text is Post-treatment

In one form of this phenomenon, the text is condi-
tionally dependent on the treatment status 7" given
a hidden confounder, U. Figure 1, panel a., shows
a directed acyclic graph (DAG) representing this
scenario where the text affected by the treatment
status. This sort of treatment leakage induces post-
treatment bias: when the text is affected by the
treatment, conditioning on the text (which is a col-
lider) opens the path from 7" to Y through W and
U, will in general yield biased estimates (in the
notation of Pearl (2015), (Y L T|W)a,).
Identification assumptions may also be hard to
maintain, with the treated/control units having dis-
tinct text features (e.g. if all treated units have as-
sociated texts referring to the treatment). This lack
of overlap would violate the identification assump-
tions of causal estimators such as Inverse Propen-
sity Score Weighting (IPW) (Heinrich et al., 2010),
and could lead to extreme estimated probabilities,
something we see empirically in Figure 3).

2.1.2 Other Cases

Figure 1 shows a case when text is post-treatment,
but in other cases the precise DAG structure may
not be known. For example, text may represent a
mediator if the document includes post-treatment
information and also affected the outcome (if, for
example, the text is congressional speech and the
outcome is a roll call vote). If the proxy text is pre-
treatment and directly affects the treatment, condi-
tioning on the treatment-related portion of the text
could increase the variance of estimation, leading
to unfavorable RMSE (Myers et al., 2011).
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Figure 1: A causal model consisting of observed vari-
ables (shaded): confounders (X)), treatment (1'), out-
come (YY), document (W), and unobserved variables
(unshaded): confounder (U) and residual factors (R).
The red-colored edge in a. represents the treatment
leakage. In b., A distillation function f has removed
the treatment information in the text, leaving only infor-
mation from the confounder. A perfect intervention of
f is equivalent with deleting the red arrow; a less than
perfect intervention reduces at least its dependence.

3 Text Distillation as Preprocessing

Text distillation is a form of text preprocessing.
It has to target any text (e.g., tone, words, sen-
tences) that belongs to W, and remove it from W.
Thus, distillation ensures that the treatment signal
is negated. As Figure 1, panel b. shows, if distil-
lation is perfectly successful, it results in cutting
the red arrow (from 7" to W). The arrow is cut,
because the distillation function has removed W
from W, supplying Wy, for causal analysis.

3.1 Assumptions for Valid Distillation

Distillation relies on W and its key components
being separable: that it can be decomposed into
two portion (e.g., sets of paragraphs), where the
first is only determined by U and the second only
by T'. That is,

Separability Assumption: Wy N Wrp =0
Assuming separability, a perfect distillator will pro-
duce W* = f(W) that is equivalent to the con-
founder, Wy;. Perfect distillation means that the
distillator f identified text that contains the same in-
formation about U as Wy has. Thus, W* = Wy,
and if Wy is a valid adjustment set, then W* is
that as well. The separability assumption is appeal-
ing because it implies that researchers only need to
find a valid partition of the text (and do not need to
consider all possible text transformations).

This separability assumption is particularly plau-
sible for text data, which by its nature consists of
a sequence of linguistic signifiers which can be
decomposed into smaller units (e.g. paragraphs).

While plausible for many circumstances, in
some cases, separability may not hold, as when

the entire tone of the text is affected by the treat-
ment. In this more complicated setting, we need
a more general assumption, that the transformed
text, W*, is conditionally independent of 7" given
U. That is, the conditional mutual information
between W* and T given U is zero, while infor-
mation about U in W* is maintained. Despite
the benefits of this more general framing, because
U is unobserved, it may be difficult for investiga-
tors to assess whether the assumption is satisfied or
whether ethically problematic information has been
included in the f function (e.g., race; Menon and
Williamson (2018)). Unlike numerical data, as text
data is readable, scholars can examine and validate
whether W* still contains information about 7'.

4 Experimental Setup

We use simulation to illustrate the dynamics of text
distillation and build on the framework for evaluat-
ing text-based causal inference methods introduced
by Wood-Doughty et al. (2021). We generate nu-
merical covariates from the model in Figure 1; the
general procedure is described in §A, with imple-
mentation details in §B. Parameters are selected
so that ATE estimates 7 are biased if the estimator
does not account for the unobserved confounder U'.
Following Wood-Doughty et al. (2021), we gen-
erate documents, W, by sampling from an English-
language GPT-2 model (Radford et al., 2019). In
contrast to their approach, text generation is condi-
tioned not only on U but also on 7'. As described
in detail in §A, we define paragraph-level topics,
where some topics are associated with U, some
with T, and some with a residual topic related only
to other background variables (R in Figure 1). For
a given paragraph topic, we define a number of
prompts and a distribution shift that increases the
probability of generating topic-related keywords.
As we simulate and record which paragraphs are
affected by 7" and by U, our distillator f has oracle
properties. We can then use f to investigate three
idealized distillation scenarios. The first is when a
distillator was not applied or the distillator failed
to do any distillation f(W') = W. It outputs the
same corpus. The second is when it perfectly dis-
tills W, excluding all paragraphs affected by 7.
That is, apply f(W') = W™ such that W* = Wy.
The third scenario is when f was overly aggressive
and "accidentally" removed not only 7'— but also
U-related paragraphs, resulting in W**. This cor-
pus violates the proxy-faithfulness assumption that



W** fully measures U. Then, we use the three
corpora, one at a time, for causal inference. We use
an Inverse Propensity Weighting (IPW) esitmator,
fully described in §C.

5 Experiments and Results

Based on the setting described in §4, our analysis
produces six estimates, three based on distillation
and three based on facts about the data-generating
process. Figure 2 shows all estimates.
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Figure 2: Estimates under different distillation regimes.

The first estimate, 71 = 5.5, is the baseline
where all information is known to the outcome
model, including U. Because this linear model
adjusting for U and X is equivalent to the data-
generating model, and the estimated effect would
be equal to the true value of 5 without sampling
noise. The bootstrapped 95% confidence interval
(CD) is 3.4 to 7.6. The second estimate, 75 = -2.3,
is obtained when U is omitted from the model to
induce omitted variable bias (CI: -4.2, -0.1).

The third estimate, 73, uses IPW to estimate the
ATE (see §C). Here, we use the non-disitilled doc-
uments, W, to estimate propensities. As Figure
2 shows, in the absence of distillation, the bias
increases compared to conditioning on X alone,
producing 73 = —7.0 (CI: -9.4, -4.6). The fourth
estimate, 74, applies overly aggressive distillation.
This approach gives a result similar to the unad-
justed estimate: 74 = —2.9 (CL: -5.1, -0.6).

The fifth estimate, 7, applies oracle distillation
by removing the paragraphs we know were affected
by T'. Using W*, the bias is reduced substantially,
yielding an estimate 75 = 3.5 (CI: 1.2, 5.8). As the
CI of this 7 includes the true 7 = 5, we conclude
that distillation successfully recovers 7. However,
we note that this recovery is not perfect and will be
affected by sampling and modeling parameters.

The sixth estimate, 7¢, demonstrates the impact
of model selection for the propensity estimator. Us-

ing the frue (simulated) propensity, the IPW esti-
mate is 73 = 4.9 (CI: 2.2, 7.6). This result shows
that further gains could be made by careful model
selection (Chernozhukov et al., 2018).

Figure 3 shows distributions of propensity values
for 73, 75, and 7. Without distillation (red), the
estimated propensities cluster near O and 1. T is
predicted almost perfectly, as mentioned in §2.1.1,
causing the IPW estimate to to be similar to the
unweighted one. Conversely, with distillation, the
predicted probabilities are now similar to the data-
generating propensities, and thereby, the resulting
causal estimate is improved.
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Figure 3: Estimated and true assignment probabilities.

6 Discussion

This paper shows the critical role of the no-
treatment-leakage assumption when using text for
causal inference. While text is becoming an estab-
lished data source, it may harbour valuable infor-
mation about a confounder but also contaminating
information about post-treatment effects. This is-
sue has seen little discussion in text-based causal
inference literature, but has the potential to severely
bias causal estimates, potentially leading to false
discoveries or invalid policy recommendations.
Our study has limitations. First, more work is
required to show how the no-treatment-leakage as-
sumption operates under different covariance struc-
tures. Second, a larger simulation framework is
needed to decompose estimator bias and variance.
For extensions, we recommend two paths. First,
while this paper focuses on treatment leakage, there
are other types of leakage when a single document
is a function of multiple causal nodes. Thus, a
generalization of the no-treatment-leakage assump-
tion is the no-node-leakage assumption. Second,
researchers need a framework when human parti-
tioning of text is not possible due to corpus size.
Automatic distillation could be attempted with ad-
ditional assumptions, perhaps building from the
literature on removing sensitive information in data
(Bolukbasi et al., 2016; Ravfogel et al., 2020).
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A Synthetic Data Generation

We first summarize the general approach in this
section and provide details for the simulation in §5
in the next section.

For each document ¢, we first draw observed and
unobserved confounders X; and U;, and then the
treatment 7;. For each paragraph j in the docu-
ment, we draw a paragraph topic Z;;, depending
on the values of U; and T}, and then a prompt Wl%
depending on the value of Z;;. Finally, we sample
from the GPT-2 language model' to generate the

"We used the implementation from the HuggingFace repos-
itory, https://huggingface.co/gpt2.
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paragraph text W;;, starting from the prompt Wi(;-
and with a vocabulary distribution shift defined by
Z;j. Algorithm 1 shows the pseudocode.

Algorithm 1 Generation of synthetic data.

forcel,... N
Xi~ fx
Ui~ fu
T; ~ Bernoulli(sigmoid( fr(X;, U;)))
Y ~ fy( X, Ui, T;)
forjel,....K
Zi; ~ Categorical(fz(U;, T5))
W ~ Categorical(fyo(Zi;))
Wi ~LM(W2, Z;;)

YR

In the pseudocode above, the functions fx, fu,
fr,and fy define the distributions of the observed
confounders, unobserved confounder, treatment
and outcome, respectively. On the paragraph level,
the function f7 defines a categorical distribution
over paragraph topics, and fy0 a categorical distri-
bution over prompts.

Similarly to Wood-Doughty et al. (2021), we use
two mechanisms to condition the generation of a
paragraph on a topic Z: a prompt and a vocabulary
distribution shift. The distribution shift is designed
to promote a set of keywords related to the topic
and we implement it by multiplying the language
model probabilities by a topic-specific vector 6,
of scale factors:

P'(w|context, Z) < Pov(w|context) - 07 (w)
B Parameterization Used in §5

In §5, we generated N = 10,000 instances, each
consisting of numerical values and a document.
We used the following distributions to generate the
document-level variables: fx was a 3-dimensional
isotropic Gaussian; fyy was an even coin toss; fr
was linear in X; and U;; fy was Gaussian with a
mean defined by a linear function of X, U;, and
T; and a fixed standard deviation.

Each document consisted of K = 20 paragraphs.
For the paragraph generation, we defined five dif-
ferent topics: two corresponding to positive and
negative treatment values; two corresponding to
positive and negative values of the unobserved con-
founder; one general background topic that was
unrelated to U or 1" (but conceptually thought of
as controlled by other “residual” variables R). For
a document with given values of U and T', we set

the topic distribution f to select the U topic with
a probability of 0.2, the T" topic with a probability
of 0.2, and the general topic with a probability of
0.6.

The generated texts were designed to simulate a
hypothetical use case where the researchers want
to investigate the effect of IMF programs on some
country-level indicator (cf. Daoud et al., 2019). The
treatment variable 7' represents the presence or
absence of an IMF program; the unseen confounder
U represents the political situation of the country
with respect to the IMF. For each topic except the
general topic, we define four different prompts:
for instance, for a positive treatment value, one
of the prompts was The International Monetary
Fund mandates the deregulation of [COUNTRY]’s
labor market. In the analysis, “/COUNTRY]” is
substituted by randomly sampled country names.

All topics except the general topic defined a
distribution shift used when generating from the
language model. We used 8 topic keywords for
each of these topics. For these keywords, the cor-
responding entries in the vocabulary distribution
shift vector log 7 were set to a value that defines
the strength of the effect of 7" on W; for all other
words except these keywords, log 67 was 0. Since
our focus in this paper is on a clear-cut use case
where the effects are strong, we set the strength
parameter to a value of 4, which gives a noticeable
effect on the generated texts.

The text generation model was run on a single
GPU (NVIDIA GeForce GTX TITAN X). Gener-
ating the 10,000 documents took around 10 hours.
The generation of random text is within the in-
tended use of the GPT-2 model.”

C IPW Details

C.1 Background

The ATE is defined as 7 = E[Y;(1) — Y;(0)], where
Y;(t) is the potential outcome for unit ¢ under
treatment t. It can be identified in randomized
experiments (Rubin, 1974). However, the situa-
tion is more complicated in the observational set-
ting, where the treatment is not randomized to units
but could be correlated with confounders, X;, that
are associated with the treatment and the outcome.
In that setting, we can, with additional assump-
tions, still recover the ATE using Inverse Propensity
Weighting (IPW) or related robust methods (Funk
et al., 2011), where observations are weighted by

https://huggingface.co/gpt?2


https://huggingface.co/gpt2

the inverse of their estimated treatment probabil-
ities 7(X;) = Pr(T; = 1|X;) (Rosenbaum and

Rubin, 1983): 7 = £ S0 { s — {0 |

C.2 Estimation

ATE estimates based on Inverse Propensity Weight-
ing (see §C.1) require the estimation of the propen-
sity scores, Pr(T|X,W). To estimate these
scores, we applied a L;-regularized logistic re-
gression model using the glmnet package in R.
The regularization strength (\) was set automati-
cally via 10-fold cross-validation. When estimating
propensities, we represented the (non-distilled or
distilled) document as an Lo-normalized TF-IDF
vector using the 256 most frequent terms in the
vocabulary, while the numerical covariates X were
standardized.



