Under review as a conference paper at ICLR 2026

PROVABLY EFFICIENT HIGH-ORDER FLOW MATCHING
IN PIXEL SPACE

Anonymous authors
Paper under double-blind review

ABSTRACT

We introduce high-order PixelFlow (HopeFlow), which is the first cascade flow
model that learns both pixel-space velocity and acceleration fields end-to-end,
lifting image generation beyond the limitations of purely first-order supervi-
sion. By incorporating second-order dynamics, HopeFlow aligns mid-horizon
dependencies and high-curvature regions, yielding markedly smoother, more sta-
ble transport trajectories. The model trains directly on raw pixels—no VAE
encoder-decoder is required—and remains computationally affordable. We prove
that the HopeFlow model is computable by a TC® class of threshold circuits,
which operate with constant depth O(1) and a polynomial number of gates
poly(n). Moreover, by replacing exact attention with approximate attention lay-
ers, the end-to-end HopeFlow inference runs in almost quadratic time.

1 INTRODUCTION

Generative models (Esser et al., [2021; 2024; Labsl| [2024; [Podell et al., 2024} Ramesh et al., 2021}
Rombach et al.| 2022; Sun et al., |2024;|Yang et al., 2025) have fundamentally reshaped visual con-
tent creation, driving innovation in creative design, media production, and digital content genera-
tion. Among the various approaches, diffusion-based models (Esser et al.|[2024; Pernias et al.,[2024;
Podell et al.l 2024; Rombach et al.} 2022) have risen to prominence for their ability to synthesize
high-quality images, videos, and 3D assets with remarkable realism and diversity. In particular, la-
tent diffusion models (LDMs) (Ma et al ., 2024} [Peebles & Xie, [2023; Rombach et al., 2022)), driven
by the success of the Stable Diffusion (Rombach et al.|[2022)), have become the standard across mul-
tiple modalities. LDMs reduce computational overhead by encoding raw data into a compact latent
space via pre-trained Variational Autoencoders (VAEs) (Kingma et al., [2013)), facilitating efficient
denoising throughout the diffusion process. Despite their widespread success, LDMs commonly
treat the VAE and diffusion modules as distinct, decoupled components. This decoupling limits the
potential for joint optimization and poses challenges for end-to-end interpretability and performance
tuning.

PixelFlow (Chen et al.l [2025b) departs from the latent-space paradigm by operating directly in
raw pixel space, eliminating the need for pre-trained VAEs and separate upsamplers. It uses cas-
cade flow-matching (Lipman et al., 2023; |L1iu et al., 2023b) across multiple resolutions in a single
end-to-end model, dramatically reducing inference cost while preserving fidelity.

The limitation of PixelFlow is that its training objective matches only the instantaneous velocity
(first derivative) along each flow trajectory. By supervising solely on

dX;

Vi= T ey
it overlooks higher-order dynamics, causing erratic trajectories and unstable transitions in regions of
high curvature. To capture mid-horizon geometry, we extend the flow-matching loss to include the
second derivative (acceleration)

d2X
A= =5 2
enforcing alignment of both velocity and acceleration between model and data trajectories. This
second-order supervision provides explicit curvature guidance, yielding smoother trajectories and
more stable generative paths in complex regions.

Under review as a conference paper at ICLR 2026

Additionally, as image generation architectures become increasingly complex to meet high resolu-
tion, photorealistic demands, rigorous circuit-complexity analyses remain scarce. (Merrill & Sab-
harwal, [2023) show that DLOGTIME-uniform TCY circuits can simulate softmax-attention trans-
formers; (Chen et al., [2024)) prove RoPE adds no extra power; and (Ke et al., 2025) characterize the
complexity of VAR. Yet whether pixel-space flow-matching augments VAR’s expressive power is
still open. Likewise, PixelFlow streamlines generation by eliminating separate VAEs and upsam-
plers and reducing inference cost, but lacks runtime analysis; we identify the attention mechanism as
the primary bottleneck and accelerate it via low-rank approximation. We prove that our high-order
pixel flow modules admit DLOGTIME-uniform TC" implementations. We also establish the worst
case optimality for the HopeFlow. Lastly. we propose fast HopeFlow where its running time can be
reduced to O(n?+°(),

Roadmap. The remainder of the paper is organized as follows. Section [2]reviews related work on
HopeFlow. Section [3|introduces fundamental concepts from circuit complexity that underpin our
later analysis. Section [] details the mathematical formalizations for all HopeFlow modules. Sec-
tion [5] shows the circuit complexity and expressivity of HopeFlow. Section [6] shows that theoretical
convergence rate of HopeFlow. Section[/|introduces a potential improvement to the HopeFlow ar-
chitecture by replacing the attention layer with approximate attention layer. We conclude our paper
in Section[8]

2 RELATED WORK

We survey prior work in three main areas: flow- and diffusion-based image generation in Sec-
tion [2.1)), theoretical circuit-complexity analyses of learning architectures in Section [2.2] and
low-rank approximation techniques for accelerating transformer computations in Section

2.1 FLOW-BASED AND DIFFUSION-BASED MODELS

VAEs have become a fundamental component in recent diffusion-based (Rombach et al., 2022;
Podell et al., 2024} Yang et al., [2025)) and flow-based models (Ren et al., [2025} [Esser et al., [2024)).
To reduce computational costs, prior models commonly encode visual data into a lower-dimensional
latent space using VAEs. However, this compression often sacrifices high-frequency details and
information loss. This limitation sometime causes noticeable low-level artifacts in the generated
results (Podell et al.| [2024). Motivated by the goal of algorithmic simplicity and seamless end-to-
end optimization, our model avoids reliance on VAEs and instead operates directly in the original
pixel space.

Single-stage diffusion models (Balaji et al.,|2022;|Ho & Salimans| [2022; |Sohl-Dickstein et al.| 2015
work directly in pixel space and try to learn the full image distribution at once. While this works
for low-resolution images, it becomes too slow and costly for high-resolution ones. To solve this,
cascaded models (Gu et al., |2023; [Ho et al.l 2022 [Kim et al.l 2024} [Saharia et al., [2022) were
introduced. These models first create a low-resolution image and then use super-resolution steps to
increase the quality. However, these steps often start from random noise and depend on the earlier
output, making the process slow and hard to control. Also, since each stage is trained separately, the
whole model cannot be optimized end-to-end and needs special tricks to make all parts work well
together.

Recent research has revisited direct pixel-space generation with novel architectural innovations.
Simple Diffusion (Hoogeboom et al., [2023;2025) proposes a streamlined diffusion framework that
achieves high performance on popular datasets such as ImageNet through refinements in model
architecture and noise schedules. TarFlow (Zhai et al.l [2025)) introduces a Transformer-based nor-
malizing flow architecture that is capable of generating image directly in the pixel space. The fractal
generative models in FractalGen (Li et al.l 2025a) achieves high quality pixel-wise generation by
adopting recursive atomic module. PixelFlow (Chen et al. 2025b) achieves efficient pixel-space
generation by using cascade flow matching across scales in a single model. Inspired by the po-
tential of second-order dynamics, we propose HopeFlow, a model that learns pixel-space velocity
and acceleration fields end-to-end, thereby lifting image generation beyond the limitations of purely
first-order supervision and yielding markedly smoother, more stable transport trajectories.

Under review as a conference paper at ICLR 2026

Recent work has renewed interest in direct pixel-space generation by introducing new model designs.
Simple Diffusion (Hoogeboom et al., 2023 |2025) simplifies the diffusion process and improves
results on ImageNet through changes in the architecture and noise schedule. FractalGen (Li et al.|
2025a)) uses recursive building blocks to model images at the pixel level. TarFlow (Zhai et al.,
20235) applies a Transformer-based normalizing flow to directly generate images in pixel space.
PixelFlow (Chen et al., 2025b) improves efficiency by using flow matching across multiple scales in
a single model. Building on this progress, we introduce HopeFlow, which learns both velocity and
acceleration fields in pixel space. By including second-order dynamics and training the model end-
to-end, HopeFlow goes beyond first-order methods and produces smoother and more stable image
generation paths.

2.2 CIrcUIT COMPLEXITY

Circuit complexity studies the power of Boolean circuits by depth, size, and gate type, yielding
the hierarchy AC’ c TC - NCl, while the equality TC® = NC' remains open (Vollmer, [1999;
Arora & Barakl 2009). This framework bounds machine-learning expressivity: non-uniform TC"
can simulate AHAT's (Merrill et al.,|2022), L-uniform TC® can simulate SMATS (Liu et al., 2023al),
and both admit DLOGTIME-uniform TC° approximations (Merrill & Sabharwal, [2023). Circuit-
complexity techniques have been extended beyond standard Transformers to analyze a variety of
other models (Chen et al., 2025¢; |[Ke et al., 2025). These methods have been applied to alternative
architectures, including state-space models and recurrent frameworks.

2.3 ACCELERATION VIA LOW RANK APPROXIMATION

Low-rank approximation has emerged as a powerful technique for addressing the computational
challenges associated with modern transformer architectures. By approximating key operations such
as attention and gradient computations, these methods significantly reduce the time and resource
requirements of training and inference.

Accelerating Attention Mechanisms. Attention’s quadratic cost in context length hinders scala-
bility in modern LLMs (OpenAlL [2024; |AlL 2024; |Anthropicl [2024). Polynomial kernel approxima-
tions use low-rank factorizations to efficiently approximate the attention matrix (Aggarwal & Alman,
2022), bringing the per-layer computation for training and inference close to linear time (Alman &
Song|, 2023 [2024c)). This approach has been extended to tensor attention while maintaining near-
linear scaling (Alman & Song, 2024a)), and adapted for differentially private cross-attention (Liang
et al.,2024c) and RoPE-based attention (Alman & Song} 2024b). Complementary methods, such
as the conv-basis transform (Liang et al., 2024a)) and a range of pruning strategies (L1 et al., |2024;
Shen et al., 2025bja)) , further accelerate attention computation.

Approximating the Gradient. Low-rank approximation is a standard technique for reducing
the computational cost of transformer training (Liang et al., [2024bid; |Alman & Song} 2024c; Hu
et al.| [2024; |Chen et al., [2025a; [Liang et al.| [2024b} [Li et al.l 2025b)). In particular, the forward-
attention low-rank framework of (Alman & Song, [2023) is extended in (Alman & Song [2024c)) to
approximate attention gradients, markedly lowering gradient-computation overhead. This gradient-
approximation approach is then applied to multi-layer transformers in (Liang et al., [2024b)), show-
ing that backward passes can be executed in near-linear time. Meanwhile, (Liang et al.| |2024d)
extends the method in (Alman & Song, |[2024c) to a tensor-based attention model by leveraging the
forward-pass results of (Alman & Song] 2024al)), speeding up the training time of tensorized atten-
tion. Lastly, the low-rank approximation is adopted in the training of Diffusion Transformers (Hu
et al., [2024).

3 PRELIMINARY

We begin by fixing our core conventions in the Section In Section we then recall the
DLOGTIME-uniform Boolean circuit hierarchies NC*, AC*, and TC* along with their uniformity

requirements. Finally, we summarize known uniform TC constructions for floating point operations
in Section 3.3

Under review as a conference paper at ICLR 2026

3.1 NOTATIONS

Let X € RM’*d be a matrix, and denote its reshaped tensor form as X € R"*®*d For any
positive integer n, we use [n] to denote the set {1,2,...,n}, and define the set of natural numbers
as N :={0,1,2,...}. Consider a matrix X € R™*", where X, ; denotes the element in the i-th
row and j-th column. When x; € {0,1}*, it represents a binary string of arbitrary length. More
generally, we use x; € {0,1}? to denote a binary string of fixed length p, where each bit is either
0 or 1. For a matrix X € R"*%, we define its infinity norm as || X || := max; ; |X; ;|, which
corresponds to the maximum absolute value among all entries of X.

3.2 CIrRcUIT COMPLEXITY CLASS

Boolean circuit is a directed acyclic graph of logic gates and is used to compute Boolean function.
A language is a set of binary strings representing decision problems. A circuit family is L-uniform
if its circuit descriptions can be generated by a log-space Turing machine, whereas DLOGTIME-
uniformity requires a deterministic O(log n)-time algorithm to decide each gate’s type and wiring.
The class NC* comprises languages decidable by L-uniform families of polynomial-size and has
depth O((logn)?) circuits with bounded-fan-in gates. NC* may consist bounded fan-in AND, OR
and unit fan-in NOT. AC’ is defined similarly but allows unbounded-fan-in AND/OR gates; and TC
further extends AC’ by including MAJORITY gate. We direct reader to Appendix for formal
definitions.

3.3 CIRcUIT COMPLEXITY OF FLOATING-POINT ARITHMETIC

In this section, we will introduce circuit-complexity of standard floating-point operations.

From (Chiang, |2025)), basic arithmetic primitives and their iterated forms admit uniform TCY. We
also show that one can approximate both the exponential and square-root functions to within relative

error in uniform TC’. We denote by dstd, dg, dg, dexp, and dgsqrt the depths required for standard
arithmetic, iterated multiplication, iterated addition, exponential approximation, and square-root ap-
proximation, respectively. We direct reader to Appendix [A.2]for formal definitions and proofs.

4 THE HOPEFLOW ARCHITECTURE

In this section, we give a precise mathematical formulation of the HopeFlow architecture. In Sec-
tion [4.1] we introduce the core flow definitions and derive the velocity and acceleration fields at
each scale. Section [4.2] then describes the training procedure, and Section [4.3] presents the infer-
ence algorithm. For brevity, the full derivations and module-by-module formulas are collected in

Appendix
4.1 HoOPEFLOW

We first introduce the core ideas of velocity field and acceleration field in the HopeFlow architecture.
Definition 4.1 (HopeFlow). Given the following:

« Input tensor: X € R"*“*¢ where h,w, c denote the height, width, and the number of
channels, respectively.

* Number of scales: S € N.
« Downsampling function: @qoun () : R"*@%¢ — RO/7*(W/M)%¢ from Defintion|B.2]
« Upsampling function: ¢y, (-) : R"*w*¢ — R™X1wX¢ from Definition [B.1]
* Interpolation weights: functions «, § : [0, 1] — R, with the following property:
a(t) + B(t) = 1,(0) = 0, (0) = 1,a(1) =1, B(1) = 0,

and «, 8 are continuously differentiable so that o/, 5,/ , " exist on [0, 1].

Under review as a conference paper at ICLR 2026

Then, the model does the following:

* Stage times: For each scale i € [S], calculate t) = (i — 1)/S and t} =i/8S.

Yx (w/2%) xc

+ Noise tensor: For scale i, ¢; € R/ 2! with every entry sampled from N'(0, I).

« Coarse start state: For timestep t € [t9,t}], F? = t9¢up(ddown (X, 2071),2) + (1 — t9)¢;
defining the start state of the flow from t{ to t}.

* Coarse end state: For timestep t € [t9,t}], F} = tldgown (X, 2%) + (1 — t})e; defining the
end state of the flow from t? to t}.

« Interpolation: For timestep t € [t9,t}] F! = «a(t)F! + B(t)FY. defining a trajectory

R

between start state F) to end state F.

. Velocit%' field: The first-derivative of the flow at scale i is V! = LF! = o/ (t)F} +
p(t) Fy-

* Acceleration field: The second-derivative of the flow at scale i is Al = %F} =
o' (t) F + B (t) I
Remark 4.2. The way PixelFlow and HopeFlow construct F? and F} is different from previous
FlowAR. The major reason is we do not send the pixels to latent space.

Remark 4.3. Following previous work (Liu et al., 2023b), we set a(t) = e~ 19(1-1)°—3b(1=1)

and B(t) = /1 —«(t)?, so that at each t, F! = «(t) F} + B(t) F?. This choice ensures
constant-variance interpolation—since F' and F? are independent, Var(F}) = a(t)?Var(F}) +
B(t)*Var(F?), and o(t)? + B(t)> = 1 keeps Var(F}) fixed for all t. It also guarantees uni-
Jormly bounded derivatives: the explicit exponential form yields finite o/, o, 8, and 5" on [0, 1],
avoiding the endpoint singularities or unbounded curvature that would arise under a polynomial or
piecewise-linear schedule.

We define the first-order HopeFlow architecture (FlowF) and second-order architecture (FlowH).
For brevity, we direct reader to Appendix [B.3]

Definition 4.4 (First-Order HopeFlow Architecture, informal version of Definition [B.8). Ler X €
RIXwXe bo the input tensor (height h, width w, channels c), S € N the number of scales with
base factor a € N+ and scale factors r; = a™~*. For eachi € [S), let F} € R(h/mi)x(w/rixe pe
the downsampled end state, F' the interpolated state at time t; € [(i — 1)/S,i/S], and let Attn,,
MLP; (-, ¢, d), LN; denote the attention, MLP, and layer-norm layers. The layer FFlowH; computes:

(0417042751,52,’71,’}/2) = MLP%(le +t7;17C, 60))
Fi' = Attn; (71 o LN;(FY) + B1) o a,
F;/t = MLPl(’YQ @) LNZ(F;t) + 52, C, C) O (xg,

so that F!/* = FlowF;(F}, Ft t,).

K3

Definition 4.5 (Second-Order HopeFlow Architecture, informal version of Definition[B.9). Ler X €
RMXwXe po the input tensor (height h, width w, channels c), S € N the number of scales with base
factor a € N'© and scale factors r; = a®~". For eachi € [S], let F} € R/m)x(w/ri)xe pe the
downsampled end state, Ft the interpolated state at time t; € [(i — 1)/S,i/S], Fi't the first order
HopeFlow, and let Attn;, MLP; (-, ¢, d), LN, denote the attention, MLP, and layer-norm layers. The
layer FFlowH; computes:

(a1, a2, B1, B2, 71,72) = MLP;(F} + i1, ¢, 6¢),
F/* = MLP;(Concat(F¢, Fiist) 2 1),
F/% = Attn; (71 o LN;(F") + 1) o as,
F/"" = MLP; (72 o LN; (F}*) + B2, ¢,¢) 0 aa,

so that F/"* = FlowH, (F}, Fi, Fiirst ¢.).

1) (s 2

Under review as a conference paper at ICLR 2026

4.2 TRAINING OF HOPEFLOW ARCHITECTURE

This subsection details the training procedure of the HopeFlow architecture, which operates across
multiple spatial scales to learn both first-order and second-order flow representations. At each scale,
the model is trained to reconstruct intermediate representations from noisy inputs using ground-truth
signals derived from the image data. The full training routine is summarized in Algorithm I}

Algorithm 1 HopeFlow Training

1: procedure HOPEFLOWTRAINING(#, D, S, {t? 119)

2: /* 6 denotes the model parameters of FlowF, FlowH */

3 /* D denotes the training dataset. */

4: /* S denotes the number of scale */

5: /% {9, 1} denotes the start/end times for each scale */

6: while not converge do

7 Ximg ~ D > Sample an image from dataset.

8 {0 > Init loss as 0.

9: fors=0— (S—1)do > Train the model on S scales.
10 e~ N(0,1) > Sample random noise.
11: t ~[0,1] > Sample a random timestep.
12: FO < 19 dup (ddown Kimg, 2°71),2) + (1 — t9)e > Calculate start state.
13: F! < ¢l daown (Kimg, 2°) + (1 — tl)e > Calculate end state.
14: Floise < QuFt + B,F0 > Calculate noisy input.
15: Fgm — ojF' + BjF° > Calculate first-order ground-truth.
16: Fiecona < o F' + BF > Calculate second-order ground-truth.
17: F%rst < FlowF(F! i, F') > Predict FlowF.
18: ercond + FlowH(Ft ., F!,FL) > Predict FlowH.
19: ‘e < H Fﬁrst FgrthZ + ” Faecond Ftecond”% > Calmﬂate loss.
20: L0+ 10,
21: end for
22: 0 — Vol > Optimize parameter 6 with [.
23: end while
24: return ¢

25: end procedure

4.3 INFERENCE OF HOPEFLOW ARCHITECTURE

This subsection describes the inference process of HopeFlow architecture. Starting from pure Gaus-
sian noise, the model iteratively refines the image across multiple scales and timesteps by integrat-
ing both first- and second-order flow predictions. These predictions are generated by learned flow
matching modules and applied to progressively denoise and reconstruct the image. The complete
inference routine is outlined in Algorithm

5 COMPLEXITY OF HOPEFLOW ARCHITECTURE

In this section, we show the circuit-complexity bounds for HopeFlow. This relies on key results
about the complexity of their fundamental modules. For brevity, we refer the reader to Appendix [C]
for necessary theorems and proofs. Here, we present the main result.

We first prove that the first-order HopeFlow layer, FlowF, defined in Deﬁnitioncan be efficiently
simulated by a uniform TC circuit.

Lemma 5.1 (First-order HopeFlow layer computation in TC°, informal version of Lemma .
FlowF (X), as defined in Definition @ lies in the uniform TC class with depth 26dgq + 12dg +
2dsqrt, + dexp and size poly(n).

Under review as a conference paper at ICLR 2026

Algorithm 2 HopeFlow Inference

1: procedure HOPEFLOWINFERENCE(H, S, T)

2: /* 6 denotes the model parameters of FlowF, FlowH */

3 /* S denotes the number of scale */

4: /* T denotes the number of timesteps for each scale */

5: Ximg < N(0,1) > Init the Xjn, with random noise.
6: At 1/T > Calculate the step size At
7 fors=1— Sdo > Inference through .S stages.
8 fort=1—Tdo

9 Fﬁm FlowF (Ximg) > Calculate FlowF output.
10: Fgecond — FIowH(leg, i:\ﬁm) > Calculate FlowH output.
11: Ximg ¢ Ximg + Friret - AL+ 0.5 - Faccond - (At)? > Apply terms.
12: end for
13: if s # S then
14: Ximg < Pup Kimg, 2) > Upsample Xipg.
15: end if
16: end for
17: return X, > Return the final image.

18: end procedure

The dspd, da, dexp, and dsqyt, are defined in Deﬁnition Definition[A.T0] and Definition [A.TT|re-
B.9

spectively. Then, we prove that the second-order HopeFlow layer, FlowH, defined in Definition
can be simulated by a uniform TCO circuit.

Lemma 5.2 (Second-order HopeFlow layer computation in TC°, informal version of Lemma .
FlowH(X), as defined in Deﬁm’tion@ lies in the uniform TC? class with depth 28dq + 13dg +
2dsqrt, + dexp and size poly(n).

With Lemma and Lemma [5.2] we show the HopeFlow models can be simulated by a uniform
TCY circuit.

Theorem 5.3 (HopeFlow computation in TC®). Suppose the precision p € O(poly(n)), X €
Rivxwxe ' = h = w, r < n, ¢ <n, and K = O(1). The dsa, de, dexp, and dsq are de-
fined in Definition Definition|A. 10} and Definition|A.I1|respectively. Then the HopeFlow model
lies in the uniform TCC circuit family.

Proof. By Lemma Lemma[C.3] Lemma Lemma and Lemma [C.9] each layer in
HopeFlow Model lies in the uniform TC circuit with size poly(n) and depth O(1). Since there

exist finite K = O(1) layers, the composition of K circuit also lies in the uniform TC circuit with
size poly(n) and depth O(1). O

Theorem [5.3[shows that a DLOGTIME-uniform TC circuit family can simualte a HopeFlow model
with poly(n) precision, constant depth, and poly(n) size. Inference therefore runs in O(1) parallel
time using only polynomially many simple threshold gates, and the wiring for each input size can
be generated in O(logn) time. As a result, even with its high-order components, HopeFlow remains
maximally parallelizable, low-latency, and hardware-friendly.

6 STATISTICAL CONVERGENCE GUARANTEES OF HOPEFLOW

In this section, we show that the HopeFlow architecture inherits worst-case optimal convergence
rates for learning both velocity and acceleration fields. Our main theorem is taken from (Gong et al.,

2025)) and depends on a handful of key assumptions (Assumptions[D.7} D.10}[D.11}(D.12}|D.13}
[D.14). Below, we verify that HopeFlow satisfies each of these assumptions.

We assume the true data distribution pg is supported on [—1,1]¢. In practice, we linearly rescale
pixel-values from [0,255]¢ into [—1,1]%. Moreover, we assume py € Bj ([—1,1]%) for some

Under review as a conference paper at ICLR 2026

s > 0,p > 1,q > 1. Equivalently, po has s-order Besov regularity; any compactly supported C'*
density satisfies this. Thus Assumption[D.7]holds.

Remark 6.1. Convolution with a nondegenerate Gaussian of width o > 0 guarantees that the
“blurred” image density is infinitely differentiable. Consequently, pg (after optional Gaussian blur)
lies in B, , for every s > 0 and 1 < p,q < oo. Thus, assuming po € By, , is no stronger than
assuming each true image density is C°.

We provide a summary of the assumptions in (Gong et al., [2025) on «(t), 5(t) pairs. The inter-
polation weights «(t), 8(t) are required to satisfy the following: as ¢ — 0, one has ay = bg, t"*
and 1 — 3; = Eg,tﬁ for some k,k > 0, ensuring ap = 0 and By = 1; for all ¢t € [Ty, 1], there
is a constant Dy > 1 such that Dy < af + 62 < Dy; their first and second derivatives obey
o/ (&) + |8'(t)] < N, Ky and | (t)] + |8”(t)] < N, Ky for some Ky > 0; and, when x = 1/2,
there exist by, D > 0 so that forany 0 < v < Ry, one has fg (o' (#)24B'(t)?),dt < Dylog" N

and fgﬂ (@ (t)2+ B"(t)2),dt < Dy log” N.If our a(t), B(¢) satisfy these same conditions, then
the Theorem [6.2]and Theorem [6.3| hold for HopeFlow.
Theorem 6.2 (Bound Acceleration Error under Small ¢, Theorem 4.1 on page 9 in (Gong et al.,

2025)). If the following conditions hold: 1) Assume Assumption [D.7] [D.8| [D.9} [D-11} |D.13} |D.14]
hold. 2) Let Cg be a constant independent of t. 3) Let x1 be the trajectory, xo := ¢1(x1,t) where
¢1 is the neural network in Lemma@] 4) Let x be defined as the concatenation of x1 and xs, i.e.,
x = |21, x2].

Then there is a neural network vy € M(L,W, S, B) and a constant C, which is independent of t,
such that, for sufficiently large N,

_2s

/ s (. £) — ag(@1) |- pr(ea)day < Co - (a?log N + BJ2) - N~ |

for any t € [Ty, 3T.], where L = O(log* N), |[W||lsc = O(Nlog® N), S = O(Nlog® N),B =
exp(O((log N) - (loglog N))).

Theorem 6.3 (Bound Acceleration Error under Large ¢, Theorem 4.2 on page 9 in (Gong et al.,
2025)). If the following conditions hold: 1) Fix t, € [Ty, 1] and take arbitrary n > 0. 2) Assume
Assumption|[D.7] [D.9 [D.11) [D-I3| [D-14| hold. 3) Let C7 be a constant independent of t. 4) Let
x1 be the trajectory, To := ¢o(x1,t) where ¢o is the neural network in Lemma @ 5) Let x be
defined as the concatenation of x1 and s, i.e., x := [T1,X2].

Then there is a neural network us € M(L, W, S, B) and a constant C, which is independent of t,
such that, for sufficiently large N,

/”“2(3«”70 = ar(z1)]3 - pe(21)dar < C7 - ((0f)?log N + (8/)%) - N77,

for any t € [2t,,1], where L = O(log* N),||[W|lsc = O(Nlog® N), S = O(Nlog® N),B =
exp(O((log N) - (loglog N))).

Remark 6.4. In particular, o/, o, B, and 5" are all finite for every t € [0,1], so we avoid the
endpoint singularities or unbounded curvature that would arise under a polynomial or piecewise-
linear schedule.

7 FAST HOPEFLOW

In this section, we propose a potential improvement to the HopeFlow architecture by replacing the
attention layer with approximate attention layer. Section[7.T]introduces the approximate attention. In
section[7.2] we show the Fast HopeFlow by replacing the original attention layers with approxmiate
attention layers. Lastly, we provide a formal analysis on inference running time of HopeFlow and
Fast HopeFlow in Section We show that, with the approximate attention, we can reduce the
inference runtime from O (n*T°(M) to O(n?toM).

7.1 APPROXIMATE ATTENTION COMPUTATION

To improve the efficiency of attention computation, we introduce an approximate method that guar-
antees a controlled error.

Under review as a conference paper at ICLR 2026

Definition 7.1 (Approximate Attention Computation AAttC(n, d, R, ¢), Definition 1.2 in (Alman &
Song,[2023)). Let X € R"* represent the input sequence, and let § > 0 denote the allowed approx-
imation error. Suppose Q, K, and 'V are projection matrices in R"*%, each with row norms bounded
above by a constant R, i.e., max{||Q|lco, | K |lco;s |V |loo} < R, The procedure AAttC(n,d, R,)
returns an output N € R™*? that approximates the true attention output Attn(X) with entrywise
error bounded as |N — Attn(X)||oo < 0.

We now give the runtime analysis of AAttC.

Lemma 7.2 (Subquadratic Runtime for Approximate Attention (Theorem 1.4 in (Alman & Song,
2023))). Consider the approximate attention mechanism AAttC defined in Definition en the
embedding dimension is set as d = O(logn), the bound on weight norms is R = ©(y/logn), and
the approximation tolerance is § = 1/ poly(n), then the time required to compute AAttC satisfies
T (n, neW, d) = n'toM) swhere T denotes the total runtime under the specified parameter settings.

7.2 FAST HOPEFLOW ARCHITECTURE

Using the approximate attention, we define the fast first-order HopeFlow and second-order Hope-
Flow layer by replacing the original attention layers with AAttC layers. We give formal definition
of fast first-order HopeFlow layer (FFlowF) in Definition[E.T|and fast second-order HopeFlow layer

(FFlowH) in Definition[E.2]in Appendix

7.3 RUNNING TIME

In this section, we formally analyze the running time complexity of HopeFlow and Fast HopeFlow
during inference. In Lemma we show the total inference runtime of HopeFlow is bounded by
O(n4+o(1))_

Lemma 7.3 (Inference Runtime of Original HopeFlow Architecture, informal version of
Lemma E}) Consider the original HopeFlow inference pipeline with the following parameters:
Let X € R"%X¢ pe the input tensor, and let K = O(1) be the number of scales. For each scale
i € [K] and a base factor a € N¥, the scale factor is defined as r; := a™ ~'. The architecture in-
cludes upsampling functions ¢uyp i (-, a) (Definition , attention layers Attn;(-) (Definition ,
feed-forward layers FFN;(-) (Definition [B.3), first-order HopeFlow layers FlowF;(-,-,-) (Defini-
tion @) and second-order HopeFlow layers FlowH;(-,-, -,) (Definition . Then, HopeFlow
achieves inference in O(n**t°M) time.

The total runtime is dominated by the running time of attention layers in HopeFlow. With approxi-
mate attention in Lemma the total inference runtime of Fast HopeFlow is reduced to O(n?°(1)),

Lemma 7.4 (Inference Runtime of Fast HopeFlow Architecture, informal version of Lemma .
Consider the Fast HopeFlow inference pipeline with the following parameters: Let X € R"*WX¢ pe
the input tensor, and let K = O(1) be the number of scales. For each scale i € [K| and a base factor
a € N7, the scale factor is defined as r; := o’ ~*. The architecture includes upsampling functions
Gup,i(+, a) (Definition|B.1), approximate attention layers AAttnC;(-) (Definition[7.1), feed-forward
layers FFN;(-) (Definition , first-order Fast HopeFlow layers FFlowF;(-, -,) (Definition ,
and second-order Fast HopeFlow layers FFlowH;(-, -, -, -) (Definition . Then, Fast HopeFlow
achieves inference in O(n*T°1)) time.

8 CONCLUSION

We have presented HopeFlow, a high-order flow-matching architecture that extends PixelFlow by
incorporating multi-scale, high-order coupling to better capture complex dependencies in visual
data. Our theoretical analysis shows that HopeFlow retains the TC” circuit complexity and statistical
convergence guarantees. Furthermore, we also propose a fast HopeFlow architecture. We hope
HopeFlow will inspire more future research in high-order supervision image modeling.

Under review as a conference paper at ICLR 2026

ETHIC STATEMENT

This paper does not involve human subjects, personally identifiable data, or sensitive applications.
We do not foresee direct ethical risks. We follow the ICLR Code of Ethics and affirm that all aspects
of this research comply with the principles of fairness, transparency, and integrity.

REPRODUCIBILITY STATEMENT

We ensure reproducibility of our theoretical results by including all formal assumptions, definitions,
and complete proofs in the appendix. The main text states each theorem clearly and refers to the
detailed proofs. No external data or software is required.

REFERENCES

Amol Aggarwal and Josh Alman. Optimal-degree polynomial approximations for exponentials and
gaussian kernel density estimation. In Proceedings of the 37th Computational Complexity Con-
ference, 2022.

Meta Al Introducing meta llama 3: The most capable openly available 1lm to date, 2024. https:
//ai.meta.com/blog/meta—1llama-3/.

Josh Alman and Zhao Song. Fast attention requires bounded entries. In Advances in Neural Infor-
mation Processing Systems, 2023.

Josh Alman and Zhao Song. How to capture higher-order correlations? generalizing matrix soft-
max attention to kronecker computation. In The Twelfth International Conference on Learning
Representations, 2024a.

Josh Alman and Zhao Song. Fast rope attention: Combining the polynomial method and fast fourier
transform. manuscript, 2024b.

Josh Alman and Zhao Song. The fine-grained complexity of gradient computation for training large
language models. In The Thirty-eighth Annual Conference on Neural Information Processing
Systems, 2024c.

Anthropic. The claude 3 model family: Opus, sonnet, haiku, 2024. https://www-cdn.
anthropic.com/de8ba9b01lc9ab7cbabf5c33b80b7bbc618857627 /Model
Card_Claude_3.pdf.

Sanjeev Arora and Boaz Barak. Computational complexity: a modern approach. Cambridge Uni-
versity Press, 2009.

Yogesh Balaji, Seungjun Nah, Xun Huang, Arash Vahdat, Jiaming Song, Qinsheng Zhang, Karsten
Kreis, Miika Aittala, Timo Aila, Samuli Laine, et al. ediff-i: Text-to-image diffusion models with
an ensemble of expert denoisers. arXiv preprint arXiv:2211.01324, 2022.

D Mix Barrington and Neil Immerman. Time, hardware, and uniformity. In Proceedings of IEEE
9th Annual Conference on Structure in Complexity Theory, 1994,

Bo Chen, Xiaoyu Li, Yingyu Liang, Jiangxuan Long, Zhenmei Shi, and Zhao Song. Circuit com-
plexity bounds for rope-based transformer architecture. arXiv preprint arXiv:2411.07602, 2024.

Bo Chen, Yingyu Liang, Zhizhou Sha, Zhenmei Shi, and Zhao Song. Hsr-enhanced sparse attention
acceleration. In The Second Conference on Parsimony and Learning (Proceedings Track), 2025a.

Shoufa Chen, Chongjian Ge, Shilong Zhang, Peize Sun, and Ping Luo. Pixelflow: Pixel-space
generative models with flow. arXiv preprint arXiv:2504.07963, 2025b.

Yifang Chen, Xiaoyu Li, Yingyu Liang, Zhenmei Shi, and Zhao Song. The computational limits of
state-space models and mamba via the lens of circuit complexity. In The Second Conference on
Parsimony and Learning (Proceedings Track), 2025¢.

10

https://ai.meta.com/blog/meta-llama-3/
https://ai.meta.com/blog/meta-llama-3/
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf

Under review as a conference paper at ICLR 2026

David Chiang. Transformers in uniform tc®. Transactions on Machine Learning Research, 2025.

Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming transformers for high-resolution image
synthesis. In Proceedings of the IEEE/CVF conference on computer vision and pattern recogni-
tion, 2021.

Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Miiller, Harry Saini, Yam
Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers
for high-resolution image synthesis. In Forty-first international conference on machine learning,
2024.

Kenji Fukumizu, Taiji Suzuki, Noboru Isobe, Kazusato Oko, and Masanori Koyama. Flow matching
achieves almost minimax optimal convergence. In The Thirteenth International Conference on
Learning Representations, 2025.

Chengyue Gong, Xiaoyu Li, Yingyu Liang, Jiangxuan Long, Zhenmei Shi, Zhao Song, and Yu Tian.
Theoretical guarantees for high order trajectory refinement in generative flows. arXiv preprint
arXiv:2503.09069, 2025.

Jiatao Gu, Shuangfei Zhai, Yizhe Zhang, Joshua M Susskind, and Navdeep Jaitly. Matryoshka
diffusion models. In The Twelfth International Conference on Learning Representations, 2023.

Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. arXiv preprint
arXiv:2207.12598, 2022.

Jonathan Ho, Chitwan Saharia, William Chan, David J Fleet, Mohammad Norouzi, and Tim Sali-
mans. Cascaded diffusion models for high fidelity image generation. Journal of Machine Learning
Research, 2022.

Emiel Hoogeboom, Jonathan Heek, and Tim Salimans. simple diffusion: End-to-end diffusion for
high resolution images. In International Conference on Machine Learning, 2023.

Emiel Hoogeboom, Thomas Mensink, Jonathan Heek, Kay Lamerigts, Ruiqi Gao, and Tim Sali-
mans. Simpler diffusion: 1.5 fid on imagenet512 with pixel-space diffusion. In Proceedings of
the Computer Vision and Pattern Recognition Conference, 2025.

Jerry Yao-Chieh Hu, Weimin Wu, Zhuoru Li, Sophia Pi, Zhao Song, and Han Liu. On statistical
rates and provably efficient criteria of latent diffusion transformers (dits). In Advances in Neural
Information Processing Systems, 2024.

Yekun Ke, Xiaoyu Li, Yingyu Liang, Zhenmei Shi, and Zhao Song. Circuit complexity bounds for
visual autoregressive model. arXiv preprint arXiv:2501.04299, 2025.

Dongjun Kim, Chieh-Hsin Lai, Wei-Hsiang Liao, Yuhta Takida, Naoki Murata, Toshimitsu Uesaka,
Yuki Mitsufuji, and Stefano Ermon. Pagoda: Progressive growing of a one-step generator from a
low-resolution diffusion teacher. In Advances in Neural Information Processing Systems, 2024.

Diederik P Kingma, Max Welling, et al. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Black Forest Labs. Flux. https://github.com/black—-forest—-labs/flux, 2024.

Tianhong Li, Qinyi Sun, Lijie Fan, and Kaiming He. Fractal generative models. arXiv preprint
arXiv:2502.17437, 2025a.

Xiaoyu Li, Yingyu Liang, Zhenmei Shi, and Zhao Song. A tighter complexity analysis of sparsegpt.
arXiv preprint arXiv:2408.12151, 2024.

Xiaoyu Li, Yingyu Liang, Jiangxuan Long, Zhenmei Shi, Zhao Song, and Zhen Zhuang. Neural al-
gorithmic reasoning for hypergraphs with looped transformers. arXiv preprint arXiv:2501.10688,
2025b.

Yingyu Liang, Heshan Liu, Zhenmei Shi, Zhao Song, Zhuoyan Xu, and Junze Yin. Conv-basis: A
new paradigm for efficient attention inference and gradient computation in transformers. arXiv
preprint arXiv:2405.05219, 2024a.

11

https://github.com/black-forest-labs/flux

Under review as a conference paper at ICLR 2026

Yingyu Liang, Zhizhou Sha, Zhenmei Shi, Zhao Song, and Yufa Zhou. Multi-layer transformers
gradient can be approximated in almost linear time. arXiv preprint arXiv:2408.13233, 2024b.

Yingyu Liang, Zhenmei Shi, Zhao Song, and Yufa Zhou. Differential privacy of cross-attention with
provable guarantee. arXiv preprint arXiv:2407.14717, 2024c.

Yingyu Liang, Zhenmei Shi, Zhao Song, and Yufa Zhou. Tensor attention training: Provably effi-
cient learning of higher-order transformers. arXiv preprint arXiv:2405.16411, 2024d.

Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matthew Le. Flow match-
ing for generative modeling. In The Eleventh International Conference on Learning Representa-
tions, 2023.

Bingbin Liu, Jordan T Ash, Surbhi Goel, Akshay Krishnamurthy, and Cyril Zhang. Transformers
learn shortcuts to automata. In The Eleventh International Conference on Learning Representa-
tions, 2023a.

Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and
transfer data with rectified flow. In The Eleventh International Conference on Learning Repre-
sentations, 2023b.

Nanye Ma, Mark Goldstein, Michael S Albergo, Nicholas M Boffi, Eric Vanden-Eijnden, and Sain-
ing Xie. Sit: Exploring flow and diffusion-based generative models with scalable interpolant
transformers. In European Conference on Computer Vision, 2024.

William Merrill and Ashish Sabharwal. A logic for expressing log-precision transformers. In Ad-
vances in neural information processing systems, 2023.

William Merrill, Ashish Sabharwal, and Noah A Smith. Saturated transformers are constant-depth
threshold circuits. In Transactions of the Association for Computational Linguistics, 2022.

Kazusato Oko, Shunta Akiyama, and Taiji Suzuki. Diffusion models are minimax optimal distribu-
tion estimators. In International Conference on Machine Learning, 2023.

OpenAl Introducing openai ol-preview. https://openai.com/index/
introducing-openai-ol-preview/, 2024. Accessed: September 12.

William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, 2023.

Pablo Pernias, Dominic Rampas, Mats Leon Richter, Christopher Pal, and Marc Aubreville.
Wiirstchen: An efficient architecture for large-scale text-to-image diffusion models. In The
Twelfth International Conference on Learning Representations, 2024.

Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Miiller, Joe
Penna, and Robin Rombach. Sdxl: Improving latent diffusion models for high-resolution image
synthesis. In The Twelfth International Conference on Learning Representations, 2024.

Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen,
and Ilya Sutskever. Zero-shot text-to-image generation. In International conference on machine
learning, 2021.

Sucheng Ren, Qihang Yu, Ju He, Xiaohui Shen, Alan Yuille, and Liang-Chieh Chen. Flowar: Scale-
wise autoregressive image generation meets flow matching. In Forty-second International Con-
ference on Machine Learning, 2025.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Bjorn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, 2022.

Chitwan Saharia, Jonathan Ho, William Chan, Tim Salimans, David J Fleet, and Mohammad
Norouzi. Image super-resolution via iterative refinement. In IEEE transactions on pattern analy-
sis and machine intelligence, 2022.

12

 https://openai.com/index/introducing-openai-o1-preview/
 https://openai.com/index/introducing-openai-o1-preview/

Under review as a conference paper at ICLR 2026

Xuan Shen, Zhao Song, Yufa Zhou, Bo Chen, Yanyu Li, Yifan Gong, Kai Zhang, Hao Tan, Jason
Kuen, Henghui Ding, Zhihao Shu, Wei Niu, Pu Zhao, Yanzhi Wang, and Jiuxiang Gu. Lazy-
dit: Lazy learning for the acceleration of diffusion transformers. In Proceedings of the AAAI
Conference on Artificial Intelligence, 2025a.

Xuan Shen, Zhao Song, Yufa Zhou, Bo Chen, Jing Liu, Ruiyi Zhang, Ryan A. Rossi, Hao Tan, Tong
Yu, Xiang Chen, Yufan Zhou, Tong Sun, Pu Zhao, Yanzhi Wang, and Jiuxiang Gu. Numerical
pruning for efficient autoregressive models. In Proceedings of the AAAI Conference on Artificial
Intelligence, 2025b.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International conference on machine learn-
ing, 2015.

Peize Sun, Yi Jiang, Shoufa Chen, Shilong Zhang, Bingyue Peng, Ping Luo, and Zehuan Yuan.
Autoregressive model beats diffusion: Llama for scalable image generation. arXiv preprint
arXiv:2406.06525, 2024.

Heribert Vollmer. Introduction to circuit complexity: a uniform approach. Springer Science &
Business Media, 1999.

Zhuoyi Yang, Jiayan Teng, Wendi Zheng, Ming Ding, Shiyu Huang, Jiazheng Xu, Yuanming Yang,
Wenyi Hong, Xiaohan Zhang, Guanyu Feng, et al. Cogvideox: Text-to-video diffusion models
with an expert transformer. In The Thirteenth International Conference on Learning Representa-
tions, 2025.

Shuangfei Zhai, Ruixiang ZHANG, Preetum Nakkiran, David Berthelot, Jiatao Gu, Huangjie Zheng,
Tianrong Chen, Miguel Angel Bautista, Navdeep Jaitly, and Joshua M Susskind. Normaliz-
ing flows are capable generative models. In Forty-second International Conference on Machine
Learning, 2025.

13

Under review as a conference paper at ICLR 2026

Appendix

Roadmap. In Section |Al we present all notations and background of this paper. In Section B} we
give a formal definition to the modules in HopeFlow. In Section|C] we show the supplementary re-
sults on the circuit complexity of fundamental modules in the HopeFlow architecture. In Section[D]
we establish the statistical convergence guarantees for the HopeFlow architecture. In Section[E} we
provide supplementary definitions and time complexity proofs on fast HopeFlow architecture.

A PRELIMINARY

This section introduces foundational concepts and notation used throughout the paper. We review
standard Boolean circuit complexity classes, including NC’, AC’, and TC’, along with notions of
uniformity such as L-uniformity and DLOGTIME-uniformity. Then, we define floating-point rep-
resentations and present known results on computing basic arithmetic operations, exponentials, and
square roots within constant-depth TC circuits.

A.1 CiIrcuIlT COMPLEXITY CLASS

The following definitions are related to circuit complexity.

Definition A.1 (Boolean Circuit, page 102 of (Arora & Barak} 2009)). A Boolean circuit C withn
inputs and m outputs is a directed acyclic graph, for every n,m € N. The Boolean circuit satisfies
the following structure:

* The n input nodes have no incoming edges.
* The m output nodes have no outgoing edges.
* All other nodes are called gate and labeled with one of AND, OR, NOT.

* All non-input nodes compute Boolean functions by applying their respective logical opera-
tions to the values received along their incoming edges.

We next provide the formal definition of languages associated with a specific Boolean circuit.

Definition A.2 (Languages Recognition, page 103 of (Arora & Barak) 2009)). Given a Boolean
circuit family C = {C, }nen, we say that a language L C {0, 1}* is recognized by the C if the
following conditions hold:

 Length-specific circuits: Each circuit C,, in the family takes n-bit inputs, ie., Cy, :
{0,1}" — {0,1}.

* Correct recognition: For every string x € {0,1}*, we have x € L if and only if C|,|(z) =
1.

» Completeness: The family includes one circuit C,, for every input length n € N.

We now present various classes of languages that can be recognized by different families of Boolean
circuits. We begin with the class NC*.

Definition A.3 (NC’, page 110 of (Arora & Barak, 2009)). A language is in NC' if the following
conditions hold:

» All gates have maximum fan-in of 2.

o It can be decided by Boolean ciruit with size O(poly(n)) and depth O((logn)?)

Another class related to NC is AC'.

Definition A.4 (AC’, page 110 of (Arora & Barak, 2009)). A language is in AC' if the following
conditions hold:

» All gates are allowed to have unbounded fan-in.

14

Under review as a conference paper at ICLR 2026

* It can be decided by Boolean ciruit with size O(poly(n)) and depth O((logn)?).

TC" extends AC’ by introducing the MAJORITY gate. This gate evaluates to false when half or
more arguments are false and true otherwise.

Definition A.5 (TC’, (Vollmer, [1999)). A language is in TC" if the following conditions hold:
* All gates are allowed to have unbounded fan-in.

e It can be decided by threshold ciruit, which are Boolean circuits with
AND, OR, MAJORITY, with size O(poly(n)) and depth O((logn)*)

In this paper, we refer to any Boolean circuit that includes MAJORITY gates as a threshold circuit.
We now introduce two important notions of uniformity: L-uniformity and DLOGTIME-uniformity.

Definition A.6 (L-uniform Circuit Families, page 104 of (Arora & Barak, [2009)). For a circuit
familar {C,,}, if there exist a deterministic log-space computable function that takes 1™ as input
and outputs the description of the circuit Cy,, then {C), } is L-uniform.

We now present the definition of DLOGTIME-uniformity.

Definition A.7 (DLOGTIME-uniform Circuit Families, (Barrington & Immermanl [1994)). For a
circuit familar {Cy, }, if there exist a random-access log-space computable function that takes 1™ as
input and outputs the description of the circuit Cy,, then {C),} is DLOGTIME-uniform.

A.2 CIRCUIT COMPLEXITY OF FLOATING-POINT ARITHMETIC

In this section, we introduce the complexity of floating-point number operations.

Definition A.8 (p-Bit Floating-Point Number, (Chiang,[2025)). Given a pair (a,b) where a is called
significand and b is called exponent, the p-bit floating-point number is defined as follows:

e ae(=2r, 2071 U {0} U 2Pt 2P).

o be[-2P,2P)
This pair represents the real number a - w®, where w is a fixed base. F,, represents the set of all p-bit
floating-point numbers.

The following definition shows the circuit complexity bounds for some floating-point operations.

Lemma A.9 (Floating-point operations in TC®, (Chiang| 2025)). Given floating-point numbers with
p € O(poly(n)), the addition, comparison, division, and multiplication between two numbers,

product and sum between n numbers can be computed by uniform TC® circuits. We define the
circuit depth of these operations as follows:

» The circuit depth of addition, comparison, division, and multiplication between two num-
bers is denoted as dgiq.

* The circuit depth of sum between n numbers is denoted as dg;.

* The circuit depth of product between n numbers is denoted as dg.

Lemma A.10 (Exponential approximation in TCO, (Chiang} 2025)). Given floating-point number x
with p € O(poly(n)), the exp(z) can be computed in TC" with a relative error of at most 27P. The
circuit depth of exp(z) is denoted as dexp.

Lemma A.11 (Square root approximation in TCO, (Chiang, |2025)). Given floating-point number x
with p € O(poly(n)), the \/x can be rounded to the nearest floating-point number and computed in
TCC. The circuit depth of \/x is denoted as dsgrt-

B THE HOPEFLOW ARCHITECTURE

This section provides a formal mathematical specification of the HopeFlow architecture. We begin
by defining the fundamental sample operations, including nearest upsampling and bilinear down-
sampling. Next, we describe the building blocks of the autoregressive transformer, such as attention,

15

Under review as a conference paper at ICLR 2026

MLP, feedforward, and normalization layers, and then formally define the autoregressive transformer
itself. We then introduce the full HopeFlow model, presenting both its first-order (Definition [B.§)
and second-order (Definition [B.9) variants.

B.1 SAMPLE FUNCTION

We start with the upsampling and downsampling functions.

Definition B.1 (Nearest Upsampling Function). The upsampling function ¢.p(X,r) takes X €
R wXe gnd r > 1 as input and returns Y € RT™h"X< Specifically, for i € [rh],j € [rw],l € [c],

Yi’j’l = XL%J)L%LZ

Next, we define the bilinear downsampling function used in HopeFlow.

Definition B.2 (Bilinear Downsampling Function). The downsampling function ¢qown (X, r) takes
X € RP¥wxe > 1 and a bilinear transformation matrix ® 4o, € RO/ TW/M)X00 4¢ input and
returns Y € RU/mIx(w/m)xe specifically, gaown (X, 1) does the following:

* Collapse the spatial dimensions of the input tensor X into a matrix X € Rhwxe,

e Multiply by the downsampling operator to get
Y = Pgown X.

e restore its spatial layout by reshaping Y intoY € R(/m)x(w/r)xc,

B.2 AUTOREGRESSIVE TRANSFORMER

In this section, we list formal definitions of each layer within the autoregressive transformer.

Definition B.3 (Attention Layer). The attention layer Attn(X) takes X € RM“X¢ and returns
Y € RXwxe Specifically, Attn(X) does the following:

* Collapse the spatial dimensions of the input tensor X into a matrix X € RhM>c,

* Compute the unnormalized attention scores:
A;j=exp (X; WoWgX],) Vi, j € [hw].
where Wo, Wi, Wy € R€*¢ are query, key, and value projection matrices.
» Compute output matrix:
Y := DPAXWy € Rwxe,
where D = diag(Al,) € RMwxhw,

* Restore its spatial layout by reshaping Y into Y € RM<wxe,

We now define the multi-layer perceptron (MLP) layer.

Definition B.4 (MLP Layer). The MLP layer MLP(X, ¢, d) takes X € R"*"*¢ a5 input and returns
Y € Rxwxd_ specifically, MLP (X, ¢, d) does the following:

* Collapse the spatial dimensions of the input tensor X into a matrix X € RM>¢,
* Compute:
Y. =X; W +b,Vj € [hw]
where W € RS and b € R1*¢,

* Restore its spatial layout by reshaping Y into Y € R wxd,

16

Under review as a conference paper at ICLR 2026

With the definition of MLP, the feedforward layer is defined as follows.

Definition B.5 (Feedforward Layer). The feedforward layer FFN(X, c) takes X € R"*%*¢ as input
and returns Y € RPXwXe_ Specifically, FFN(X, c) does the following:

* Collapse the spatial dimensions of the input tensor X into a matrix X € RhM>c,
* Compute
Y—j’* = X]‘,* + ReLU(Xj,*Wl + bl)WQ + b27Vj S [hw]
where W1, Wo € R°*€ and by, by € R1*¢,

* Restore its spatial layout by reshaping Y into Y € RI<wxe,

To proceed, the normalization layer is defined as follows.

Definition B.6 (Layer Normalization Layer). The layer normalization layer LN(X) takes X €
RM>wXe a5 input and returns Y € RP¥WXe_ Specifically, LN(X) does the following:

* Collapse the spatial dimensions of the input tensor X into a matrix X € RM>¢,

* Compute
Y. = M,VJ € [hw]
o2
J
where
1 (6] 1 C
n=- > Xigs of = -2 (Xjik—m)”.
k=1 k=1

* Restore its spatial layout by reshaping Y into Y € R"wxe,

We now define the autoregressive transformer used in the HopeFlow model.

Definition B.7 (Autoregressive Transformer). Assume we have:

e Number of scales: S € N is the intermediate steps in HopeFlow.

* Input tokens: For each i € [K], the Gdown from Definition returns Y; €
R/ r)x(w/ri)xe \where r; = o~ and a € N7 is the scaling base.

+ Upsampling function: For i € [K], ¢up.i(-,a) : RP/ridx(w/ri)xe y Rlb/rica)x(w/riza)xe
is defined in Definition

* Attention layer: Fori € [K], Attn;(-) : R(Zj=1 h/riw/ri)xe _y R(Ejor h/rjw/ri)xe g
defined in Definition|B.3]

« Feedforward layer: For i € [K], FFN;(-) : R(Zj=1 M/riw/r)xe _y 55y h/ryw/rs)xe
as defined in Definition|[B.5]

« Initial condition: Zin;; € RO/ m)x(W/m)xe js the initial token map encoding class infor-
mation.

The autoregressive transformer proceeds as follows:
« Initialization: Set Z1 := Zipnit.
* Iterative token construction: Computes
Z = Concat(Zinit, fup,1 (Y1), . . bupa-1(Y' ™1, 0)) € REjb/riw/r)xe i > 9 ¢ [K]

where Concat reshapes and concatenates the upsampled tokens into a unified spatial se-
quence.

17

Under review as a conference paper at ICLR 2026

* Transformer block: Compute:

TF:(Z) := FFN;(Attn;(Z)) € RE5=1 h/miw/rixe i ¢ (K],

% 7

* Output extraction: From TF;(Z;), extract the last h/r; - w/r; rows and reshape to form the
output:

?i c R(h/r,;)x(w/m)xc-

B.3 HOPEFLOW ARCHITECTURE

We define the first-order and second-order of the HopeFlow architecture.

Definition B.8 (First-Order HopeFlow Architecture, formal version of Definition @) Assume we
have:

* S € N denotes the scale number in HopeFlow, and i € [S]
s For a base factor a € N, r; := o'~ denotes the scale factor.
* The interpolation state Ft € R/ mi)x(w/ri)xe js computed from Deﬁnition
* The end state F} € RUW/rixw/ri)xe jg computed from downsampling.
* The timestep t; € [(1 — 1)/S,1/5].
o Attn;(-) : RM/rixw/rixe _ Rh/rixw/rixe js defined in Deﬁnition
o MLP;(-, ¢,d) : RP/mixw/rixe _ Rh/rixw/rixe jg deofined in Deﬁnition
o LN;(-) : RP/mixw/rixe _ Rh/rixw/rixe jg defined in Deﬁnition@
The first-order HopeFlow layers proceeds as follows:
* Compute time-conditioned parameters:
a1, az, B, Be, 11,72 := MLP;(F} +t; - Lih/r)x (w/r:) xe» G 6C).
e Compute intermediate variables:
FI .= Attn;(y1 o LN(F}) + 1) o ax,
where o is the element-wise product.

e Compute final projection:

F/ .= MLP; (72 o LN(F*) + B, ¢, ¢) 0 o.

We denote first-order HopeFlow as F!'* := FlowF;(F}, Fi ;).

3

Definition B.9 (Second-Order HopeFlow Architecture, formal version of Definition @ Given the
following:

* S € Ndenotes the scale number in HopeFlow, and i € [S]

s For a base factor a € N, r; := a®~* denotes the scale factor.

e The interpolation state F! € R/ r)x(w/ri)xe i computed from Deﬁnition
s The end state F} € R(W/r)xw/ri)xe i computed from downsampling.

* The timestep t; € [(i —1)/S,i/95].

o Attn;(-) : RM/rixw/rixe _ Rh/rixw/rixe js defined in Deﬁnition

18

Under review as a conference paper at ICLR 2026

* MLP;(+,¢,d) : R/ rixw/rixe _y Rh/rixw/rixe js defined in Deﬁnition

o LN;(-) : RA/mixw/rixe _y Rh/rixw/rixe jg dofined in Deﬁnition@

. F‘?rSt e R(W/ri)x(w/ri)xe depotes the output of the first-order HopeFlow in Deﬁntion@]
The second-order HopeFlow layers proceeds as follows:

* Compute time-conditioned parameters:

o, a2, Br, Bas 1,72 1= MLP; (Ff 4t - L) x (/i) s € 6€).

* Project dimension:

F/t .= MLP;(Concat(Ft, Flirst) 2 1).

(2 K2

* Compute intermediate variables:
F/* := Attn; (71 o LN(F) + B1) o g,
where o is the element-wise product.

* Compute final projection:
F/'t := MLP;(v2 o LN(F/*) + Ba, ¢,) 0 aia.

We denote second-order HopeFlow as F!/"* := FlowH, (F}, Ft, Fiirst ¢.)

2 (s 2

C COMPLEXITY OF HOPEFLOW ARCHITECTURE

We analyze the circuit complexity of each module in the HopeFlow architecture in this section. We
begin by showing that core operations—such as matrix multiplication, upsampling, and downsam-
pling—are computable in uniform TC®. We then establish TC® implementations for key neural
layers including MLP, feedforward, attention, and layer normalization. Finally, we demonstrate that
both first-order and second-order HopeFlow layers can be realized in uniform TC® with constant
depth and polynomial size circuits.

C.1 COMPUTING MATRIX PRODUCTS IN TC

To support later results, we establish that matrix multiplication over floating-point numbers can be
efficiently performed within TCP.

Lemma C.1 (Matrix Multiplication in TCO, Lemma B.1 in (Chen et al.l 2024)). Suppose the
Sloating-point precision p € O(poly(n)), and let X € F;“Xd and 'Y € F3*™ be two floating-
point matrices with dimensions bounded by ni,ny € O(poly(n)). Then, the XY, denoting the
matrix product, can be computed by a uniform threshold circuit TC® with the following complexity:

* Circuit size: poly(n),
* Circuit depth: dgq + dg,
where dsiq and dg denote the depths required for basic arithmetic and iterated addition, as defined

in Lemma

C.2 COMPUTING DOWN-SAMPLING AND UP-SAMPLING IN TC°

We now show that nearest-neighbor upsampling can be efficiently computed within the TC® com-
plexity class.

Lemma C.2 (Nearest-Neighbor Upsampling in TC"). As defined in Defintion the nearest-
neighbor upsampling function ¢y, (X,) upsample the input tensor X € RIXwXe py g scale factor
r > 1. Suppose the precision p € O(poly(n)), n = h = w, r < n, and ¢ < n. dup(X,r) € TC°
with the following complexity:

19

Under review as a conference paper at ICLR 2026

* Circuit size: poly(n),
* Circuit depth: O(1).

Proof. We show that every output entry is produced in constant depth. For each output index (i, j,),
the upsampling mapping must compute

Yiji=X\i/r), Li/r], 1" 3)

First, computing the quotients |i/r| and [j/r| for i,j € [nr] is division by the fixed constant r,
which is known to lie in uniform TC? at constant depth and polynomial size. Second, once we
have the integer indices i’ = |i/r| and j* = |j/r], wiring the single input value X; j; through
to the output is just a multiplexing operation over poly(n) wires—again realizable in uniform TC"
at constant depth. Since these two subcircuits (fixed-constant division and unbounded-fan-in multi-
plexing) both run in parallel for all (4, j,1), the entire nearest-neighbor upsampling is implemented
in constant depth and polynomial size. O

We now turn our attention to the downsampling function and show that it can also be computed
within the TC® complexity class.

Lemma C.3 (Downsampling in TCY. As defined in Deﬁnition the linear downsampling func-
tion Gaown (X,) downsample the input tensor X € R"*WX¢ by q scale factor r > 1. Suppose the

precision p € O(poly(n)), n = h =w, r < n, and ¢ < n. Gaown(X,r) € TC® with the following
complexity:

* Circuit size: poly(n),

* Circuit depth: dgq + dg.

Proof. From Definition[B.2] the down-sampling function is simply a matrix multiplication between

a flattened input tensor and a bilinear transformation matrix. The matrix multiplication is in TC° by
LemmalC1l O

C.3 COMPUTING MULTIPLE-LAYER PERCEPTRON IN TC°

In this subsection, we show the MLP layer lies within the uniform threshold circuit family.

Lemma C.4 (MLP Computation in TC®). As defined in Definition the MLP(X, ¢, d) takes
X € R"™wXe a5 input. Suppose the precision p € O(poly(n)), n = h = w, r < n, and ¢ < n.
MLP(X, ¢,d) € TC® with the following complexity:

* Circuit size: poly(n),

* Circuit depth: 2dgq + dg,
Proof. For each row j € [hw], computing the matrix-vector product X . - W requires depth dgq +
dg by Lemma|[C.1] Adding the bias vector b then requires an additional depth of dgq by Part 1 of

Lemma (basic floating-point addition). Thus, the total depth is 2dsq + dg. Since all rows are
independent, the circuit depth remains the same, and width is O(poly(n)). O

C.4 COMPUTING FEED-FORWARD LAYER IN TC

In this subsection, we show the feedforward network layer lies within the uniform threshold circuit
family.

Lemma C.5 (FEN Computation in TC°). As defined in Definition the FEN(X) takes X €
RM>wXe g5 input. Suppose the precision p € O(poly(n)), n = h = w, r < n, and ¢ < n.
FEN(X) € TC with the following complexity:

* Circuit size: poly(n),

20

Under review as a conference paper at ICLR 2026

* Circuit depth: 6dsiq + 2dg.
Proof. We break down the FFN computation for each j € [hw] as follows:

* By Lemma computing the affine transformation X; . W + b; requires depth 2dg¢q +
@.

* Applying the ReL.U activation o to the result takes an additional depth of dgsq by Part 1 of
Lemma

* The next affine transformation A, Wy + ba, where A; = o (X .W1 + b1), also requires
depth 2dsq + dg by Lemmal|C.4

* Finally, computing the residual connection X . + Ao (where Ay = A1 W5 + by) requires
depth dgq.

Summing all components gives a total depth of 6dsiq + 2dg. Since the computation for each j €
[hw] can be performed in parallel, the overall circuit remains within this depth and has polynomial
size. O

C.5 COMPUTING SINGLE ATTENTION LAYER IN TC®

In this subsection, we show that a single attention layer lies within the uniform threshold circuit
family.

Lemma C.6 (Attention Layer in TC). As defined in Deﬁnition the Attn(X) takes X € Rh>xwxe
as input. Suppose the precision p € O(poly(n)), n = h = w, r < n, and ¢ < n. Attn(X) € TC’
with the following complexity:

* Circuit size: poly(n),

* Circuit depth: 6(ds;a + dgy) + dexp.
Proof. We decompose the attention layer into several computational stages:

* Key-Query Product: The term W W, is precomputed and fixed. The matrix-vector prod-
uct X; WoWiX JT . requires two applications of matrix multiplication, yielding depth

2(dstqa + dg) by Leinma

* Score Computation and Exponentiation: Computing each pairwise attention score s; ; as
above, followed by computing A; ; = exp(s; ;), adds dexp to the total depth. Hence, the
full attention matrix A can be computed with depth 3(dsta + de) + dexp-

Next, we perform the normalization and projection steps:

* Row Normalization: Computing the row-wise sums D = diag(A1,,) requires depth dg;
inverting the diagonal matrix D requires depth dgq-

* Value Projection: Computing AX Wy, (matrix multiplication followed by linear projection)
requires depth 2(dsq + dg). Multiplying with D~! adds an additional depth of dgq.

Summing all contributions gives the total depth is 6(dstq + dg) + dexp, and the total circuit size
remains poly(n). O

21

Under review as a conference paper at ICLR 2026

C.6 COMPUTING LAYER-WISE NORM LAYER IN TC

In this subsection, we show that a layer normalization layer lies within the uniform threshold circuit
family.

Lemma C.7 (Layer Normalization in TC®). As defined in Definition IB:61 the LN(X) takes X €
RM>wXe g5 input. Suppose the precision p € O(poly(n)), n = h = w, r < n, and ¢ < n.
LN(X) € TC® with the following complexity:

* Circuit size: poly(n),
e Circuit depth: bdsq + 2dg + dsqrt-

Proof. The computation of LN(X) involves the following components for each j € [hw]:

* Mean computation: As shown in Lemma calculating 11; = 1377 | X, requires
depth dgtq + dg-

* Variance computation: Calculating 07 = 2377 | (X, — p;)? requires two additional
applications of floating-point operations, yielding depth 2dgstq + dg.

* Normalization: Computing the normalized output Y; , = Xj’*;“ 1 requires subtracting
o

the mean and dividing by the square root of the variance. This adds another depth of

2dstq + dg + dsqrt by Lemmas[A.9)and

Summing all contributions, the total circuit depth is 5dstq + 2dg + dsqrt, and the total size remains
poly(n). O

C.7 COMPUTING FIRST-ORDER HOPEFLOW LAYER IN TC’

In this subsection, we show that the first-order HopeFlow layer lies within the uniform threshold
circuit family.

Lemma C.8 (First-order HopeFlow layer computation in TC’, formal version of Lemma . As
defined in Definition the FlowF(X) takes X € R"wX¢ g5 input. Suppose the precision p €
O(poly(n)), n = h = w, r < n, and ¢ < n. FlowF(X) € TC" with the following complexity:

* Circuit size: poly(n).

* Circuit depth: 26dsq + 12dg + 2dsqrt + dexp-

Proof. The first step of first-order HopeFlow is a MLP and by Lemma itis ina TC° family
with depth 2dsq + dg and size of poly(n).

The second step is a layer normalization layer and by Lemma , LN(F!) isin a TC family with
depth 5dgtqa + 2dg + dsqre. By Lemma A; =y oLN(F;) + By isina TCO family with depth
2dgtq. By Lemma As = Attn(A;) isin a TC family with depth 6(dspa + dg) + dexp- BY
Lemma again, scaling A o vy isin a TCY family with depth dyq. The total depth requires
14dstq + 8dg + dsqrt + dexp for step 2.

The third step is a layer normalization layer and by Lemma|C.7) LN(F/) is in a TC° family with
depth 5dgsiq + 2de + dsqrs. By Lemma Az = v o LN(F}!) + By isin a TC? family with
depth 2dgq. By Lemma Ay = MLP(As,¢,¢) isina TC° family with depth 2dgtq + dg. By
Lemma again, A4 o ay requires depth dgiq. The total depth requires 10dstq + 3dg + dsqrt for
step 3.

In summary, FlowF(X) isin a TCO family with depth 26dq +12da +2dsqrt +dexp and size poly(n).
O

22

Under review as a conference paper at ICLR 2026

C.8 COMPUTING SECOND-ORDER HOPEFLOW LAYER IN TC’

In this subsection, we show that the second-order HopeFlow layer lies within the uniform threshold
circuit family.

Lemma C.9 (Second-order HopeFlow layer computation in TC", formal version of Lemma .
As defined in Definition the FlowH(X) takes X € R" W< gs input. Suppose the precision
p € O(poly(n)), n = h =w, r <n, and ¢ < n. FlowH(X) € TC" with the following complexity:

* Circuit size: poly(n).

* Circuit depth: 28dsq + 13dg + 2dsqrt + dexp-

Proof. The first step of second-order HopeFlow is a MLP and by Lemma itisina TC® family
with depth 2dsq + dg and size of poly(n).

The second step is a layer normalization layer and by Lemma , LN(F!) isin a TC family with
depth 5dgstqa + 2dg + dsqrt. By Lemma A; =y oLN(F;) + By isina TCO family with depth
2dstq. By Lemma As = Attn(A;) isin a TC° family with depth 6(dsta + de) + dexp- By
Lemma again, scaling As o aq is in a TC family with depth dyq. The total depth requires
14dstq + 8dg + dsqrt + dexp for step 2.

The third step is a layer normalization layer and by Lemmal|C.7, LN(F/) is in a TC° family with
depth 5dgspq + 2de + dsqrs. By Lemma Az = vy o LN(F}!) + By isin a TC family with
depth 2dgq. By Lemma Ay = MLP(A43,¢,c) isin a TC° family with depth 2dstq + dg. By
Lemma again, A4 o ay requires depth dgyq. The total depth requires 10dsyq + 3dg + dsqre for
step 3.

In the last step, by Lemma|C.7) LN(F/*) is in a TC° family with depth 5dsta + 2dg + dsqre- By
Lemma A3 = 2 o LN(F/*) + B2 is in a TC° family with depth 2dsq. By Lemma
Ay = MLP (43, ¢, ¢) is in a TCY family with depth 2dgq + de. By Lemma again, A4 o g isin
aTC® family with depth dgq. The total depth is 10dstq + 3dg + dsqrt-

In summary, FlowH(X) is in a TCY family with depth 28dgq + 13dg + 2dsqrt + dexp and size
poly(n) to simulate the second-order HopeFlow layer.

O

D STATISTICAL CONVERGENCE GUARANTEES OF HOPEFLOW

This section establishes the statistical convergence guarantees for the HopeFlow architecture. We
begin by introducing the necessary mathematical background, including the modulus of smoothness
and Besov spaces (Section [D.I). We then define key time partitioning variables used to analyze
the convergence over different regimes. In Section we present error bounds for first-order
flow matching in both small-time and large-time regimes. Finally, Section lists the technical
assumptions on the data distribution and flow parameters required for the convergence results to
hold.

D.1 BESOV SPACE

To quantify the smoothness of a function, we use the r-th modulus of smoothness.

Definition D.1 (r-th Modulus of Smoothness, Definition 2.2 on Page 3 in (Oko et al., [2023)). Let
p € (0,00] and let f € LP(Q). The r-th modulus of smoothness of f is defined by:

wrp(f1) = o 1AL ()l

hll2<t

where the r-th order difference operator A}, (f) is given by:
., St o (0 (=17 - f(z+jh) if x4 jh € Qfor all j;
AL (f)(x) == { G)

J=0\j
0 otherwise.

23

Under review as a conference paper at ICLR 2026

With the definition of the modulus of smoothness in place, we now introduce the Besov space
B, ,(§2), which provides a more nuanced characterization of function smoothness.

Definition D.2 (Besov Space B, ,(£2), Definition 2.3 on page 3 in (Oko et al.l 2023)). Let the
following parameters be given:

*p>0,g<00 ands >0,
o Letr = |s] + 1,
* Let wyp,(f,t) denote the r-th modulus of smoothness of f, as defined in Deﬁnition

Then the Besov space By, (1) is defined as the set:
By =A{f e L") | £y, < oo},
where
00/, g 1 . .

Hlge = Uo o wns(£ 0155 if g < oo

fo = \suprsolt—wnp (0} ifg = oo,
is the Besov seminorm and

Ifllg,, = Ifllo + | flB;,

is the full norm.

To facilitate the analysis, we partition the time horizon into regimes where different approximation
arguments apply. The following definition introduces key time thresholds and dyadic steps used to
control the behavior of «(t), 5(t), and their derivatives.

Definition D.3 (Time Variables and Partition, Definition 5.10 on page 11 in (Gong et al.| 2025))). We
define the following time-related variables:

o Initial time: Ty := N~ fo,
¢ Intermediate threshold: T}, := N —(k71=0)/ a,

* Boundary time: ¢;, € [T}, 31.] denotes a critical transition point where different general-
ization bounds are applied.

* Dyadic sequence: For j € [K], define t; 1= 2t;_1, with the base case ty := Ty and the
final value ty = 1.

D.2 FIRST ORDER ERROR BOUND

We now present a preliminary result to characterize the error bound in first-order flow matching.
The following definition introduces the form of the interpolated vector field and its derivatives.

Definition D.4 (Interpolated Vector Field and Derivatives). Let x1,9 and x1 1 denote the initial and
target distributions, respectively. Define the time-dependent vector field x1 ; as:

iy = a0 + BiT1,

where oy and [y are time-dependent interpolation functions. The first and second time derivatives
of x1 are given by:

/ ! !

Ty = 0T1,0 + Bz,
1 12 1!

Ty, = w10+ BT

We now present two approximation results that provide error bounds for first-order flow matching,
depending on the time regime.

Lemma D.5 (Theorem 7 in (Fukumizu et al.,|[2025)). Suppose the following conditions hold:

* Assumptions[D.7)[D.8)[D.9, [D.10}[D.12] and|D.14)are satisfied.

24

Under review as a conference paper at ICLR 2026

* oy and B are defined as in Definition|D.4)
* Cg is a constant independent of t.
Then, for sufficiently large N, there exists a neural network ¢1 € M(L, W, S, B) such that
[161(21,0) = @) - pulon) s < Co - (P og N + 57) - N30,
forallt € [Ty, 3T,], where the network parameters satisfy:
L=0(og"N), [[W]ls =0(N1log’N), S=0(Nlog®N), B =exp(O(logN loglogN)).
Lemma D.6 (Theorem 8 in (Fukumizu et al.,|[2025)). Suppose the following conditions hold:

o Fixanyt, € [T, 1] and arbitrary n > 0.

* Assumptions|D.7} [D.8] [DT0|[DT2] and[D.T4|are satisfied.
* oy and B, are defined as in Definition|D.4]

* C7 > 0is a constant independent of t.

Then there exists a neural network ¢o € M(L, W, S, B) such that
/||¢2(9617t) —vi(x1) |3 - pe(1) doey < Cr - (a?log N + %) - N7,

forallt € [2t,,1], where the network parameters satisfy:

L=0(®og"N), [[W|e =O(N), S=0(t;9N%), B =-exp(O(logN loglogN)).

D.3 BASIC ASSUMPTIONS

Our analysis relies on the following assumptions regarding the target probability distribution Fj.

Assumption D.7 (Target Distribution Regularity, Assumption 5.2 in (Gong et al., [2025)). Let I j‘f,
denote the contracted cube defined by

If = |—14 N~U=r0) g — N—“—“)r,

where N is the sample size and the parameters r and § satisfy Assumption[D.9) We assume that the
target probability distribution Py has support on 1% and that its density pq satisfies:

o pO S B;/7q/ (Id),'

* po € B ,(I%\ Ify) with § > max{6s,1}.
Assumption D.8 (Density Bounds, Assumption 5.3 in (Gong et all 2025)). There exists a constant
Co > 0 such that the target density py satisfies the uniform bounds:

Co_l <po(xz1) < Co, Va, eI

Assumption D.9 (Interpolation Function Parametrization, Assumption 5.4 in (Gong et al.| [2025)).
Let k > 1/2, by > 0, K > 0, and by > 0. For sufficiently small t > Ty, we assume:

ay = bot”, 1— B = bot".
Additionally, there exists a constant Dy > 0 such that:
Dyl <ai +Bf <Dy, Vte[Ip,1].

Assumption D.10 (First-Order Derivative Bounds, Assumption 5.5 in (Gong et al., |2025)). 3K, >
0 and K is a constant such that the first derivatives of oy and By satisfy:

o) + (8] < N¥o, vt e [Tp, 1]

25

Under review as a conference paper at ICLR 2026

Assumption D.11 (Second-Order Derivative Bounds, Assumption 5.6 in (Gong et all 2025)).
dKy > 0 and Ky is a constant such that the second derivatives of oy and By satisfy:

/| + 18] < N0, Vt e [Ty, 1.

Assumption D.12 (Integral Bound on First Derivatives for x = 1/2, Assumption 5.7 in (Gong et al.,
2025)). Let s be the smoothness parameter from Definition|D.2} and let k satisfy Assumption
Let Ty be defined as in Deﬁnition@ and fix Ry > —+1

min{k,7}"

If kK = 1/2, then there exist constants by > 0 and Dy > 0 such that, for any 0 < v < Ry, the
following bound holds:

N~
/ (04;2 + 522) dt < Dy -log™ N.

To

Assumption D.13 (Integral Bound on Second Derivatives for k = 1/2, Assumption 5.8 in (Gong
et al.,[2025)). Under the same setting as Assumption|D.12] there exist constants by > 0 and D1 > 0
such that, for any 0 < v < Ry, the following bound holds:

N*'Y
/ (a2 + B/%) dt < Dy - log” N.
To

Assumption D.14 (Bounded Derivative of Conditional Mean, Assumption 5.9 in (Gong et al.|
2025)). There exists a constant C, > 0 such that, for all t € [Ty, 1],

E PROVABLY EFFICIENT CRITERIA

d
duy /ypt(y | $1>dyH <C(Cr.

This section introduces the Fast HopeFlow architecture and establishes its provable efficiency. Sec-
tion [E.T| formally defines the first- and second-order variants of Fast HopeFlow, which incorporate
approximate attention to reduce computational complexity. Section [E.2] analyzes the inference run-
time of the original HopeFlow architecture, demonstrating a baseline complexity of O(n**+°(1)).
Sectionpresents the runtime analysis for Fast HopeFlow and proves a near-quadratic runtime of
O(n?**°W)) using approximate attention mechanisms.

E.1 FAST HOPEFLOW ARCHITECTURE

We define the first-order and second-order of the Fast HopeFlow architecture.
Definition E.1 (First-Order Fast HopeFlow Architecture). Assume we have:

* S € N denotes the scale number in Fast HopeFlow, and i € [S]
s For a base factor a € N7, r; := a® % denotes the scale factor.
* The interpolation state Ft € R/ m)x(w/ri)xe js computed from Deﬁnition
s The end state F} € R(W/rx(w/ri)xe i computed from downsampling.
* The timestep t; € [(i — 1)/S,4/5].
o AAtEnG;(+) : RM/rixw/rixe _ Rh/rixw/rixe js defined in Deﬁnition
© MLP;(-,¢,d) : RM/rixw/rixe Rh/rixw/rixe s defined in Definition [B.4)
o LN;(4): R/ rixw/rixe _y Rh/rixw/rixe jg defined in Deﬁnition@
The first-order Fast HopeFlow layers proceeds as follows:

* Compute time-conditioned parameters:

a1, g, B, B2 11572 i= MLP(F] 4t - L /ry) x (/i) xe €5 6€).

26

Under review as a conference paper at ICLR 2026

* Compute intermediate variables:
FI* .= AAttnC; (1 o LN(FE) + B1) o oy,
where o is the element-wise product.

* Compute final projection:

Y = MLPi(72 0 LN(FY) + B2, ,) 0 .

We denote first-order Fast HopeFlow as F!/* := FFlowF;(F}, Ft ¢;).

IERRERZ)

Definition E.2 (Second-Order Fast HopeFlow Architecture). Given the following:
* S € N denotes the scale number in Fast HopeFlow, and i € [S]
o For a base factor a € NT, r; := a®~* denotes the scale factor.
e The interpolation state F! € R/ r)x(w/ri)xe i computed from Deﬁnition
* The end state F} € R/ r)xw/ri)xe jg computed from downsampling.
* The timestep t; € [(1 — 1)/5,1/5].
o AAtEnG;(+) : RM/mixw/rixe _ Rh/rixw/rixe js defined in Deﬁnition
o MLP;(-, ¢,d) : RP/rmixw/rixe _y Rh/rixw/rixe jg defined in Deﬁnition
o LN;(+): R/ rixw/rixe _y Rh/rixw/rixe jg defined in Deﬁnition@

o Flisst ¢ R/ r)x(w/ri)Xe denotes the output of the first-order Fast HopeFlow in Defin-
tion[B.8l

The second-order Fast HopeFlow layers proceeds as follows:
* Compute time-conditioned parameters:
a1, g, B, B2 1572 i= MLP(F} 4t - L /ry)x (/i) e €5 6€).
* Project dimension:
Fi' := MLP;(Concat(F}, F{"*"),2,1).
* Compute intermediate variables:
F/'t .= AAttnC; (1 o LN(F) + B1) o a,
where o is the element-wise product.

* Compute final projection:

F;Nt = '\/“_PZ(,Y2 o LN(F;/t) + 62’0, c) o (xg.

We denote second-order Fast HopeFlow as F!!"* := FFlowH, (F}, Ft, Ffirst #,)

7 (R K3
E.2 RUNTIME ANALYSIS OF THE ORIGINAL HOPEFLOW INFERENCE PIPELINE

In this subsection, we give a runtime analysis about the HopeFlow inference pipeline.

Lemma E.3 (Inference Runtime of Original HopeFlow Architecture, formal version of Lemma(7.3).
Given the following:

o X € RPXWX¢ s the input tensor.

o K = O(1) is the number of scales, and i € [K].

27

Under review as a conference paper at ICLR 2026

e For a base factor a € NT, a® =% is the scale factor.

* dup,i(-,a) is the upsampling function from Definition
* Attn,(-) is the attention layer from Definition|B.3|

* FFN; (") is the feed forward layer from Deﬁmnon-

» FlowF;(-,-, ") is the first-order HopeFlow layer from Deﬁnition

(-
* FlowH,(:,-,, ") is the second-order HopeFlow layer from Deﬁnition@

HopeFlow achieves inference in O(n*T°(1)) time.

Proof. We analyze the runtime of upsampling layers, first-order HopeFlow layer, and second-order
HopeFlow layer respective.

We start with the upsampling layers. Each layer ¢ in the HopeFlow model con-
tains @up.1(+,2),..., Pup,i—1(+,2) upsampling functions. The ¢yp;—1(-,2) function runs in
O(n?*c/22(K=7)) time, and the total runtime of all upsampling function in layer i is O(n%c - 53¢ -
(1 — §5)). Summarizing all layers, the total runtime of upsampling functions the HopeFlow model
is:

1
up—ZO 22K'(_E))
_O(2+o(1)

Then, we analyze the runtime of first-order HopeFlow layer. The input tensor for each layer i is
(n/2K=%) x (n / 2K=%) x ¢, and the runtime of each layer is dominated by the attention layer that is
O(n*c/2*¥~%)), Summarizing all layers, the total runtime of first-order HopeFlow is

TFlowF = Z O(n*c/24 K1)

i=1
_ O(’I’L4+O(1)).

Lastly, we analyze the runtime of second-order HopeFlow layer. The input tensor for each layer i is
(n/25-%) x (n/2K *Z) x ¢, and the runtime of each layer is also dominated by the attention layer
thatis O(n'c/ 24(K=1)) Summarizing all layers, the total runtime of second-order HopeFlow is

7T:IOWH = Z O(n4c/24(K7i))
i=1

— O(4+0(1))

Hence, the total runtime of HopeFlow architecture is

7:)ri = 7:1p + ﬁlowF + ﬁlowH
= O(n4+°(1)).

E.3 RUNTIME ANALYSIS OF THE FAST HOPEFLOW INFERENCE PIPELINE

In this subsection, we give a runtime analysis about the Fast HopeFlow inference pipeline.
Lemma E.4 (Inference Runtime of Fast HopeFlow Architecture). Given the following:

o X € RPXWX¢ s the input tensor.

o K = O(1) is the number of scales, and i € [K].

28

Under review as a conference paper at ICLR 2026

s For a base factor a € N7, r; := a® " is the scale factor.

* dup,i(-,a) is the upsampling function from Definition

AAttnC;(-) is the attention layer from Definition

FEN;(-) is the feed forward layer from Definition[B.5]

FFlowF;(-, -,) is the first-order Fast HopeFlow layer from Definition

FFlowH; (-, -, -, -) is the second-order Fast HopeFlow layer from DeﬁnitiOn

Fast HopeFlow achieves inference in O(n**°W) time.

Proof. The total runtime of upsampling functions remain O(n?T°(1)). As we replace the atten-
tion layer with the approximate attention, the runtime of each first-order Fast HopeFlow layer is

dominated by MLP which is O(n2t°(M), and Tepiowr = Y i, O(n2T°1)) = O(n2+°()). Simi-
larly, the second-order Fast HopeFlow layer is Trriowr = Zfil O(n?*t°M) = O(n*t°(M)). Hence
ﬁast = Tlp + 7—FFlowF + 7iﬁFlowH = O(n2+0(1))~

O

LLM USAGE DISCLOSURE

LLMs were used only to polish language, such as grammar and wording. These models did not
contribute to idea creation or writing, and the authors take full responsibility for this paper’s content.

29

	Introduction
	Related Work
	Flow-based and diffusion-based models
	Circuit Complexity
	Acceleration via Low Rank Approximation

	Preliminary
	Notations
	Circuit Complexity Class
	Circuit Complexity of Floating-Point Arithmetic

	The HopeFlow Architecture
	HopeFlow
	Training of HopeFlow Architecture
	Inference of HopeFlow Architecture

	Complexity of HopeFlow Architecture
	Statistical Convergence Guarantees of HopeFlow
	Fast HopeFlow
	Approximate Attention Computation
	Fast HopeFlow Architecture
	Running Time

	Conclusion
	Preliminary
	Circuit Complexity Class
	Circuit Complexity of Floating-Point Arithmetic

	The HopeFlow Architecture
	Sample Function
	Autoregressive Transformer
	HopeFlow Architecture

	Complexity of HopeFlow Architecture
	Computing Matrix Products in
	Computing Down-Sampling and Up-Sampling in
	Computing Multiple-layer Perceptron in
	Computing Feed-Forward Layer in
	Computing Single Attention Layer in
	Computing Layer-wise Norm Layer in
	Computing First-Order HopeFlow Layer in
	Computing Second-Order HopeFlow Layer in

	Statistical Convergence Guarantees of HopeFlow
	Besov Space
	First Order Error Bound
	Basic Assumptions

	Provably Efficient Criteria
	Fast HopeFlow Architecture
	Runtime Analysis of the Original HopeFlow Inference Pipeline
	Runtime Analysis of the Fast HopeFlow Inference Pipeline

