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ABSTRACT

We introduce high-order PixelFlow (HopeFlow), which is the first cascade flow
model that learns both pixel-space velocity and acceleration fields end-to-end,
lifting image generation beyond the limitations of purely first-order supervi-
sion. By incorporating second-order dynamics, HopeFlow aligns mid-horizon
dependencies and high-curvature regions, yielding markedly smoother, more sta-
ble transport trajectories. The model trains directly on raw pixels—no VAE
encoder-decoder is required—and remains computationally affordable. We prove
that the HopeFlow model is computable by a TC0 class of threshold circuits,
which operate with constant depth O(1) and a polynomial number of gates
poly(n). Moreover, by replacing exact attention with approximate attention lay-
ers, the end-to-end HopeFlow inference runs in almost quadratic time.

1 INTRODUCTION

Generative models (Esser et al., 2021; 2024; Labs, 2024; Podell et al., 2024; Ramesh et al., 2021;
Rombach et al., 2022; Sun et al., 2024; Yang et al., 2025) have fundamentally reshaped visual con-
tent creation, driving innovation in creative design, media production, and digital content genera-
tion. Among the various approaches, diffusion-based models (Esser et al., 2024; Pernias et al., 2024;
Podell et al., 2024; Rombach et al., 2022) have risen to prominence for their ability to synthesize
high-quality images, videos, and 3D assets with remarkable realism and diversity. In particular, la-
tent diffusion models (LDMs) (Ma et al., 2024; Peebles & Xie, 2023; Rombach et al., 2022), driven
by the success of the Stable Diffusion (Rombach et al., 2022), have become the standard across mul-
tiple modalities. LDMs reduce computational overhead by encoding raw data into a compact latent
space via pre-trained Variational Autoencoders (VAEs) (Kingma et al., 2013), facilitating efficient
denoising throughout the diffusion process. Despite their widespread success, LDMs commonly
treat the VAE and diffusion modules as distinct, decoupled components. This decoupling limits the
potential for joint optimization and poses challenges for end-to-end interpretability and performance
tuning.

PixelFlow (Chen et al., 2025b) departs from the latent-space paradigm by operating directly in
raw pixel space, eliminating the need for pre-trained VAEs and separate upsamplers. It uses cas-
cade flow-matching (Lipman et al., 2023; Liu et al., 2023b) across multiple resolutions in a single
end-to-end model, dramatically reducing inference cost while preserving fidelity.

The limitation of PixelFlow is that its training objective matches only the instantaneous velocity
(first derivative) along each flow trajectory. By supervising solely on

Vt =
dXt

dt
, (1)

it overlooks higher-order dynamics, causing erratic trajectories and unstable transitions in regions of
high curvature. To capture mid-horizon geometry, we extend the flow-matching loss to include the
second derivative (acceleration)

At =
d2Xt

dt2
, (2)

enforcing alignment of both velocity and acceleration between model and data trajectories. This
second-order supervision provides explicit curvature guidance, yielding smoother trajectories and
more stable generative paths in complex regions.
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Additionally, as image generation architectures become increasingly complex to meet high resolu-
tion, photorealistic demands, rigorous circuit-complexity analyses remain scarce. (Merrill & Sab-
harwal, 2023) show that DLOGTIME-uniform TC0 circuits can simulate softmax-attention trans-
formers; (Chen et al., 2024) prove RoPE adds no extra power; and (Ke et al., 2025) characterize the
complexity of VAR. Yet whether pixel-space flow-matching augments VAR’s expressive power is
still open. Likewise, PixelFlow streamlines generation by eliminating separate VAEs and upsam-
plers and reducing inference cost, but lacks runtime analysis; we identify the attention mechanism as
the primary bottleneck and accelerate it via low-rank approximation. We prove that our high-order
pixel flow modules admit DLOGTIME-uniform TC0 implementations. We also establish the worst
case optimality for the HopeFlow. Lastly. we propose fast HopeFlow where its running time can be
reduced to O(n2+o(1)).

Roadmap. The remainder of the paper is organized as follows. Section 2 reviews related work on
HopeFlow. Section 3 introduces fundamental concepts from circuit complexity that underpin our
later analysis. Section 4 details the mathematical formalizations for all HopeFlow modules. Sec-
tion 5 shows the circuit complexity and expressivity of HopeFlow. Section 6 shows that theoretical
convergence rate of HopeFlow. Section 7 introduces a potential improvement to the HopeFlow ar-
chitecture by replacing the attention layer with approximate attention layer. We conclude our paper
in Section 8.

2 RELATED WORK

We survey prior work in three main areas: flow- and diffusion-based image generation in Sec-
tion 2.1), theoretical circuit-complexity analyses of learning architectures in Section 2.2, and
low-rank approximation techniques for accelerating transformer computations in Section 2.3.

2.1 FLOW-BASED AND DIFFUSION-BASED MODELS

VAEs have become a fundamental component in recent diffusion-based (Rombach et al., 2022;
Podell et al., 2024; Yang et al., 2025) and flow-based models (Ren et al., 2025; Esser et al., 2024).
To reduce computational costs, prior models commonly encode visual data into a lower-dimensional
latent space using VAEs. However, this compression often sacrifices high-frequency details and
information loss. This limitation sometime causes noticeable low-level artifacts in the generated
results (Podell et al., 2024). Motivated by the goal of algorithmic simplicity and seamless end-to-
end optimization, our model avoids reliance on VAEs and instead operates directly in the original
pixel space.

Single-stage diffusion models (Balaji et al., 2022; Ho & Salimans, 2022; Sohl-Dickstein et al., 2015)
work directly in pixel space and try to learn the full image distribution at once. While this works
for low-resolution images, it becomes too slow and costly for high-resolution ones. To solve this,
cascaded models (Gu et al., 2023; Ho et al., 2022; Kim et al., 2024; Saharia et al., 2022) were
introduced. These models first create a low-resolution image and then use super-resolution steps to
increase the quality. However, these steps often start from random noise and depend on the earlier
output, making the process slow and hard to control. Also, since each stage is trained separately, the
whole model cannot be optimized end-to-end and needs special tricks to make all parts work well
together.

Recent research has revisited direct pixel-space generation with novel architectural innovations.
Simple Diffusion (Hoogeboom et al., 2023; 2025) proposes a streamlined diffusion framework that
achieves high performance on popular datasets such as ImageNet through refinements in model
architecture and noise schedules. TarFlow (Zhai et al., 2025) introduces a Transformer-based nor-
malizing flow architecture that is capable of generating image directly in the pixel space. The fractal
generative models in FractalGen (Li et al., 2025a) achieves high quality pixel-wise generation by
adopting recursive atomic module. PixelFlow (Chen et al., 2025b) achieves efficient pixel-space
generation by using cascade flow matching across scales in a single model. Inspired by the po-
tential of second-order dynamics, we propose HopeFlow, a model that learns pixel-space velocity
and acceleration fields end-to-end, thereby lifting image generation beyond the limitations of purely
first-order supervision and yielding markedly smoother, more stable transport trajectories.
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Recent work has renewed interest in direct pixel-space generation by introducing new model designs.
Simple Diffusion (Hoogeboom et al., 2023; 2025) simplifies the diffusion process and improves
results on ImageNet through changes in the architecture and noise schedule. FractalGen (Li et al.,
2025a) uses recursive building blocks to model images at the pixel level. TarFlow (Zhai et al.,
2025) applies a Transformer-based normalizing flow to directly generate images in pixel space.
PixelFlow (Chen et al., 2025b) improves efficiency by using flow matching across multiple scales in
a single model. Building on this progress, we introduce HopeFlow, which learns both velocity and
acceleration fields in pixel space. By including second-order dynamics and training the model end-
to-end, HopeFlow goes beyond first-order methods and produces smoother and more stable image
generation paths.

2.2 CIRCUIT COMPLEXITY

Circuit complexity studies the power of Boolean circuits by depth, size, and gate type, yielding
the hierarchy AC0 ⊂ TC0 ⊆ NC1, while the equality TC0 = NC1 remains open (Vollmer, 1999;
Arora & Barak, 2009). This framework bounds machine-learning expressivity: non-uniform TC0

can simulate AHATs (Merrill et al., 2022), L-uniform TC0 can simulate SMATs (Liu et al., 2023a),
and both admit DLOGTIME-uniform TC0 approximations (Merrill & Sabharwal, 2023). Circuit-
complexity techniques have been extended beyond standard Transformers to analyze a variety of
other models (Chen et al., 2025c; Ke et al., 2025). These methods have been applied to alternative
architectures, including state-space models and recurrent frameworks.

2.3 ACCELERATION VIA LOW RANK APPROXIMATION

Low-rank approximation has emerged as a powerful technique for addressing the computational
challenges associated with modern transformer architectures. By approximating key operations such
as attention and gradient computations, these methods significantly reduce the time and resource
requirements of training and inference.

Accelerating Attention Mechanisms. Attention’s quadratic cost in context length hinders scala-
bility in modern LLMs (OpenAI, 2024; AI, 2024; Anthropic, 2024). Polynomial kernel approxima-
tions use low-rank factorizations to efficiently approximate the attention matrix (Aggarwal & Alman,
2022), bringing the per-layer computation for training and inference close to linear time (Alman &
Song, 2023; 2024c). This approach has been extended to tensor attention while maintaining near-
linear scaling (Alman & Song, 2024a), and adapted for differentially private cross-attention (Liang
et al., 2024c) and RoPE-based attention (Alman & Song, 2024b). Complementary methods, such
as the conv-basis transform (Liang et al., 2024a) and a range of pruning strategies (Li et al., 2024;
Shen et al., 2025b;a) , further accelerate attention computation.

Approximating the Gradient. Low-rank approximation is a standard technique for reducing
the computational cost of transformer training (Liang et al., 2024b;d; Alman & Song, 2024c; Hu
et al., 2024; Chen et al., 2025a; Liang et al., 2024b; Li et al., 2025b). In particular, the forward-
attention low-rank framework of (Alman & Song, 2023) is extended in (Alman & Song, 2024c) to
approximate attention gradients, markedly lowering gradient-computation overhead. This gradient-
approximation approach is then applied to multi-layer transformers in (Liang et al., 2024b), show-
ing that backward passes can be executed in near-linear time. Meanwhile, (Liang et al., 2024d)
extends the method in (Alman & Song, 2024c) to a tensor-based attention model by leveraging the
forward-pass results of (Alman & Song, 2024a), speeding up the training time of tensorized atten-
tion. Lastly, the low-rank approximation is adopted in the training of Diffusion Transformers (Hu
et al., 2024).

3 PRELIMINARY

We begin by fixing our core conventions in the Section 3.1. In Section 3.2, we then recall the
DLOGTIME-uniform Boolean circuit hierarchies NCi, ACi, and TCi along with their uniformity
requirements. Finally, we summarize known uniform TC0 constructions for floating point operations
in Section 3.3.

3
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3.1 NOTATIONS

Let X ∈ Rhw×d be a matrix, and denote its reshaped tensor form as X ∈ Rh×w×d. For any
positive integer n, we use [n] to denote the set {1, 2, . . . , n}, and define the set of natural numbers
as N := {0, 1, 2, . . . }. Consider a matrix X ∈ Rm×n, where Xi,j denotes the element in the i-th
row and j-th column. When xi ∈ {0, 1}∗, it represents a binary string of arbitrary length. More
generally, we use xi ∈ {0, 1}p to denote a binary string of fixed length p, where each bit is either
0 or 1. For a matrix X ∈ Rn×d, we define its infinity norm as ∥X∥∞ := maxi,j |Xi,j |, which
corresponds to the maximum absolute value among all entries of X .

3.2 CIRCUIT COMPLEXITY CLASS

Boolean circuit is a directed acyclic graph of logic gates and is used to compute Boolean function.
A language is a set of binary strings representing decision problems. A circuit family is L-uniform
if its circuit descriptions can be generated by a log-space Turing machine, whereas DLOGTIME-
uniformity requires a deterministic O(log n)-time algorithm to decide each gate’s type and wiring.
The class NCi comprises languages decidable by L-uniform families of polynomial-size and has
depth O((log n)i) circuits with bounded-fan-in gates. NCi may consist bounded fan-in AND,OR
and unit fan-in NOT. ACi is defined similarly but allows unbounded-fan-in AND/OR gates; and TCi

further extends ACi by including MAJORITY gate. We direct reader to Appendix A.1 for formal
definitions.

3.3 CIRCUIT COMPLEXITY OF FLOATING-POINT ARITHMETIC

In this section, we will introduce circuit-complexity of standard floating-point operations.
From (Chiang, 2025), basic arithmetic primitives and their iterated forms admit uniform TC0. We
also show that one can approximate both the exponential and square-root functions to within relative
error in uniform TC0. We denote by dstd, d⊗, d⊕, dexp, and dsqrt the depths required for standard
arithmetic, iterated multiplication, iterated addition, exponential approximation, and square-root ap-
proximation, respectively. We direct reader to Appendix A.2 for formal definitions and proofs.

4 THE HOPEFLOW ARCHITECTURE

In this section, we give a precise mathematical formulation of the HopeFlow architecture. In Sec-
tion 4.1 we introduce the core flow definitions and derive the velocity and acceleration fields at
each scale. Section 4.2 then describes the training procedure, and Section 4.3 presents the infer-
ence algorithm. For brevity, the full derivations and module-by-module formulas are collected in
Appendix B.

4.1 HOPEFLOW

We first introduce the core ideas of velocity field and acceleration field in the HopeFlow architecture.

Definition 4.1 (HopeFlow). Given the following:

• Input tensor: X ∈ Rh×w×c where h,w, c denote the height, width, and the number of
channels, respectively.

• Number of scales: S ∈ N.

• Downsampling function: ϕdown(·) : Rh×w×c → R(h/r)×(w/r)×c from Defintion B.2.

• Upsampling function: ϕup(·) : Rh×w×c → Rrh×rw×c from Definition B.1.

• Interpolation weights: functions α, β : [0, 1]→ R, with the following property:

α(t) + β(t) = 1, α(0) = 0, β(0) = 1, α(1) = 1, β(1) = 0,

and α, β are continuously differentiable so that α′, β′, α′′, β′′ exist on [0, 1].

4
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Then, the model does the following:

• Stage times: For each scale i ∈ [S], calculate t0i = (i− 1)/S and t1i = i/S.

• Noise tensor: For scale i, ϵi ∈ R(h/2i)×(w/2i)×c with every entry sampled from N (0, I).

• Coarse start state: For timestep t ∈ [t0i , t
1
i ], F

0
i = t0iϕup(ϕdown(X, 2

i+1), 2) + (1− t0i )ϵi
defining the start state of the flow from t0i to t1i .

• Coarse end state: For timestep t ∈ [t0i , t
1
i ], F

1
i = t1iϕdown(X, 2

i) + (1− t1i )ϵi defining the
end state of the flow from t0i to t1i .

• Interpolation: For timestep t ∈ [t0i , t
1
i ] F

t
i = α(t)F1

i + β(t)F0
i . defining a trajectory

between start state F0
i to end state F1

i .

• Velocity field: The first-derivative of the flow at scale i is V t
i = d

dtF
t
i = α′(t)F 1

i +

β′(t)F 0
i .

• Acceleration field: The second-derivative of the flow at scale i is At
i = d2

dt2F
t
i =

α′′(t)F 1
i + β′′(t)F 0

i .

Remark 4.2. The way PixelFlow and HopeFlow construct F 0
i and F 1

i is different from previous
FlowAR. The major reason is we do not send the pixels to latent space.

Remark 4.3. Following previous work (Liu et al., 2023b), we set α(t) = e−
1
4a(1−t)2− 1

2 b(1−t)

and β(t) =
√
1− α(t)2, so that at each t, F t

i = α(t)F 1
i + β(t)F 0

i . This choice ensures
constant-variance interpolation—since F 1

i and F 0
i are independent, Var(F t

i ) = α(t)2Var(F 1
i ) +

β(t)2Var(F 0
i ), and α(t)2 + β(t)2 = 1 keeps Var(F t

i ) fixed for all t. It also guarantees uni-
formly bounded derivatives: the explicit exponential form yields finite α′, α′′, β′, and β′′ on [0, 1],
avoiding the endpoint singularities or unbounded curvature that would arise under a polynomial or
piecewise-linear schedule.

We define the first-order HopeFlow architecture (FlowF) and second-order architecture (FlowH).
For brevity, we direct reader to Appendix B.3.

Definition 4.4 (First-Order HopeFlow Architecture, informal version of Definition B.8). Let X ∈
Rh×w×c be the input tensor (height h, width w, channels c), S ∈ N the number of scales with
base factor a ∈ N+ and scale factors ri = aK−i. For each i ∈ [S], let F1

i ∈ R(h/ri)×(w/ri)×c be
the downsampled end state, Ft

i the interpolated state at time ti ∈ [(i − 1)/S, i/S], and let Attni,
MLPi(·, c, d), LNi denote the attention, MLP, and layer-norm layers. The layer FFlowHi computes:

(α1, α2, β1, β2, γ1, γ2) = MLPi(F
1
i + ti1, c, 6c),

F′t
i = Attni(γ1 ◦ LNi(F

t
i) + β1) ◦ α1,

F′′t
i = MLPi(γ2 ◦ LNi(F

′t
i ) + β2, c, c) ◦ α2,

so that F′′t
i = FlowFi(F

1
i ,F

t
i, ti).

Definition 4.5 (Second-Order HopeFlow Architecture, informal version of Definition B.9). Let X ∈
Rh×w×c be the input tensor (height h, width w, channels c), S ∈ N the number of scales with base
factor a ∈ N+ and scale factors ri = aK−i. For each i ∈ [S], let F1

i ∈ R(h/ri)×(w/ri)×c be the
downsampled end state, Ft

i the interpolated state at time ti ∈ [(i − 1)/S, i/S], Ffirst
i the first order

HopeFlow, and let Attni, MLPi(·, c, d), LNi denote the attention, MLP, and layer-norm layers. The
layer FFlowHi computes:

(α1, α2, β1, β2, γ1, γ2) = MLPi(F
1
i + ti1, c, 6c),

F′t
i = MLPi(Concat(F

t
i,F

first
i ), 2, 1),

F′′t
i = Attni(γ1 ◦ LNi(F

′t
i ) + β1) ◦ α1,

F′′′t
i = MLPi(γ2 ◦ LNi(F

′′t
i ) + β2, c, c) ◦ α2,

so that F′′′t
i = FlowHi(F

1
i ,F

t
i,F

first
i , ti).
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4.2 TRAINING OF HOPEFLOW ARCHITECTURE

This subsection details the training procedure of the HopeFlow architecture, which operates across
multiple spatial scales to learn both first-order and second-order flow representations. At each scale,
the model is trained to reconstruct intermediate representations from noisy inputs using ground-truth
signals derived from the image data. The full training routine is summarized in Algorithm 1.

Algorithm 1 HopeFlow Training

1: procedure HOPEFLOWTRAINING(θ,D, S, {t0s, t1s}Ss=1)
2: /* θ denotes the model parameters of FlowF,FlowH */
3: /* D denotes the training dataset. */
4: /* S denotes the number of scale */
5: /* {t0s, t1s} denotes the start/end times for each scale */
6: while not converge do
7: Ximg ∼ D ▷ Sample an image from dataset.
8: ℓ← 0 ▷ Init loss as 0.
9: for s = 0→ (S − 1) do ▷ Train the model on S scales.

10: ϵ ∼ N (0, I) ▷ Sample random noise.
11: t ∼ [0, 1] ▷ Sample a random timestep.
12: F0 ← t0s ϕup(ϕdown(Ximg, 2

s+1), 2) + (1− t0s)ϵ ▷ Calculate start state.
13: F1 ← t1sϕdown(Ximg, 2

s) + (1− t1s)ϵ ▷ Calculate end state.
14: Ft

noise ← αtF
1 + βtF

0 ▷ Calculate noisy input.
15: Ft

first ← α′
tF

1 + β′
tF

0 ▷ Calculate first-order ground-truth.
16: Ft

second ← α′′
t F

1 + β′′
t F

0 ▷ Calculate second-order ground-truth.
17: F̂t

first ← FlowF(Ft
noise,F

1) ▷ Predict FlowF.
18: F̂t

second ← FlowH(Ft
noise,F

1, F̂t
first) ▷ Predict FlowH.

19: ℓc ← ∥F̂t
first − Ft

first∥22 + ∥F̂t
second − Ft

second∥22 ▷ Calculate loss.
20: ℓ← ℓ+ ℓc
21: end for
22: θ ← ∇θℓ ▷ Optimize parameter θ with l.
23: end while
24: return θ
25: end procedure

4.3 INFERENCE OF HOPEFLOW ARCHITECTURE

This subsection describes the inference process of HopeFlow architecture. Starting from pure Gaus-
sian noise, the model iteratively refines the image across multiple scales and timesteps by integrat-
ing both first- and second-order flow predictions. These predictions are generated by learned flow
matching modules and applied to progressively denoise and reconstruct the image. The complete
inference routine is outlined in Algorithm 2.

5 COMPLEXITY OF HOPEFLOW ARCHITECTURE

In this section, we show the circuit-complexity bounds for HopeFlow. This relies on key results
about the complexity of their fundamental modules. For brevity, we refer the reader to Appendix C
for necessary theorems and proofs. Here, we present the main result.

We first prove that the first-order HopeFlow layer, FlowF, defined in Definition B.8 can be efficiently
simulated by a uniform TC0 circuit.

Lemma 5.1 (First-order HopeFlow layer computation in TC0, informal version of Lemma C.8).
FlowF(X), as defined in Definition B.8, lies in the uniform TC0 class with depth 26dstd + 12d⊕ +
2dsqrt + dexp and size poly(n).

6
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Algorithm 2 HopeFlow Inference

1: procedure HOPEFLOWINFERENCE(θ, S, T )
2: /* θ denotes the model parameters of FlowF,FlowH */
3: /* S denotes the number of scale */
4: /* T denotes the number of timesteps for each scale */
5: Ximg ← N (0, I) ▷ Init the Ximg with random noise.
6: ∆t← 1/T ▷ Calculate the step size ∆t
7: for s = 1→ S do ▷ Inference through S stages.
8: for t = 1→ T do
9: F̂first ← FlowF(Ximg) ▷ Calculate FlowF output.

10: F̂second ← FlowH(Ximg, F̂first) ▷ Calculate FlowH output.
11: Ximg ← Ximg + F̂first ·∆t+ 0.5 · F̂second · (∆t)2 ▷ Apply terms.
12: end for
13: if s ̸= S then
14: Ximg ← ϕup(Ximg, 2) ▷ Upsample Ximg.
15: end if
16: end for
17: return Ximg ▷ Return the final image.
18: end procedure

The dstd, d⊕, dexp, and dsqrt are defined in Definition A.9, Definition A.10, and Definition A.11 re-
spectively. Then, we prove that the second-order HopeFlow layer, FlowH, defined in Definition B.9
can be simulated by a uniform TC0 circuit.

Lemma 5.2 (Second-order HopeFlow layer computation in TC0, informal version of Lemma C.9).
FlowH(X), as defined in Definition B.9, lies in the uniform TC0 class with depth 28dstd + 13d⊕ +
2dsqrt + dexp and size poly(n).

With Lemma 5.1 and Lemma 5.2, we show the HopeFlow models can be simulated by a uniform
TC0 circuit.

Theorem 5.3 (HopeFlow computation in TC0). Suppose the precision p ∈ O(poly(n)), X ∈
Rh×w×c, n = h = w, r ≤ n, c ≤ n, and K = O(1). The dstd, d⊕, dexp, and dsqrt are de-
fined in Definition A.9, Definition A.10, and Definition A.11 respectively. Then the HopeFlow model
lies in the uniform TC0 circuit family.

Proof. By Lemma C.2, Lemma C.3, Lemma C.6, Lemma C.5, C.8 and Lemma C.9, each layer in
HopeFlow Model lies in the uniform TC0 circuit with size poly(n) and depth O(1). Since there
exist finite K = O(1) layers, the composition of K circuit also lies in the uniform TC0 circuit with
size poly(n) and depth O(1).

Theorem 5.3 shows that a DLOGTIME-uniform TC0 circuit family can simualte a HopeFlow model
with poly(n) precision, constant depth, and poly(n) size. Inference therefore runs in O(1) parallel
time using only polynomially many simple threshold gates, and the wiring for each input size can
be generated in O(log n) time. As a result, even with its high-order components, HopeFlow remains
maximally parallelizable, low-latency, and hardware-friendly.

6 STATISTICAL CONVERGENCE GUARANTEES OF HOPEFLOW

In this section, we show that the HopeFlow architecture inherits worst-case optimal convergence
rates for learning both velocity and acceleration fields. Our main theorem is taken from (Gong et al.,
2025) and depends on a handful of key assumptions (Assumptions D.7, D.9, D.10, D.11, D.12, D.13,
D.14). Below, we verify that HopeFlow satisfies each of these assumptions.

We assume the true data distribution p0 is supported on [−1, 1]d. In practice, we linearly rescale
pixel-values from [0, 255]d into [−1, 1]d. Moreover, we assume p0 ∈ Bs

p,q([−1, 1]d) for some

7
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s > 0, p ≥ 1, q ≥ 1. Equivalently, p0 has s-order Besov regularity; any compactly supported Cs

density satisfies this. Thus Assumption D.7 holds.
Remark 6.1. Convolution with a nondegenerate Gaussian of width σ > 0 guarantees that the
“blurred” image density is infinitely differentiable. Consequently, p0 (after optional Gaussian blur)
lies in Bs

p,q for every s > 0 and 1 ≤ p, q ≤ ∞. Thus, assuming p0 ∈ Bs
p,q is no stronger than

assuming each true image density is Cs.

We provide a summary of the assumptions in (Gong et al., 2025) on α(t), β(t) pairs. The inter-
polation weights α(t), β(t) are required to satisfy the following: as t → 0, one has αt = b0, t

κ

and 1 − βt = b̃0, t
κ̄ for some κ, κ̄ > 0, ensuring α0 = 0 and β0 = 1; for all t ∈ [T0, 1], there

is a constant D0 ≥ 1 such that D−1
0 ≤ α2

t + β2
t ≤ D0; their first and second derivatives obey

|α′(t)| + |β′(t)| ≤ N,K0 and |α′′(t)| + |β′′(t)| ≤ N,K0 for some K0 > 0; and, when κ = 1/2,

there exist b1, D1 > 0 so that for any 0 ≤ γ < R0, one has
∫ N−γ

T0
(α′(t)2+β′(t)2), dt ≤ D1 log

b1 N

and
∫ N−γ

T0
(α′′(t)2 +β′′(t)2), dt ≤ D1 log

b1 N . If our α(t), β(t) satisfy these same conditions, then
the Theorem 6.2 and Theorem 6.3 hold for HopeFlow.
Theorem 6.2 (Bound Acceleration Error under Small t, Theorem 4.1 on page 9 in (Gong et al.,
2025)). If the following conditions hold: 1) Assume Assumption D.7, D.8, D.9, D.11, D.13, D.14
hold. 2) Let C6 be a constant independent of t. 3) Let x1 be the trajectory, x2 := ϕ1(x1, t) where
ϕ1 is the neural network in Lemma D.5. 4) Let x be defined as the concatenation of x1 and x2, i.e.,
x := [x1, x2].

Then there is a neural network u1 ∈ M(L,W,S,B) and a constant C, which is independent of t,
such that, for sufficiently large N ,∫

∥u1(x, t)− at(x1)∥22 · pt(x1)dx1 ≤ C6 · (α′′2
t logN + β′′2

t ) ·N− 2s
d ,

for any t ∈ [T0, 3T∗], where L = O(log4 N), ∥W∥∞ = O(N log6 N), S = O(N log8 N), B =
exp(O((logN) · (log logN))).
Theorem 6.3 (Bound Acceleration Error under Large t, Theorem 4.2 on page 9 in (Gong et al.,
2025)). If the following conditions hold: 1) Fix t∗ ∈ [T∗, 1] and take arbitrary η > 0. 2) Assume
Assumption D.7, D.8, D.9, D.11, D.13, D.14 hold. 3) Let C7 be a constant independent of t. 4) Let
x1 be the trajectory, x2 := ϕ2(x1, t) where ϕ2 is the neural network in Lemma D.6. 5) Let x be
defined as the concatenation of x1 and x2, i.e., x := [x1, x2].

Then there is a neural network u2 ∈ M(L,W,S,B) and a constant C, which is independent of t,
such that, for sufficiently large N ,∫

∥u2(x, t)− at(x1)∥22 · pt(x1)dx1 ≤ C7 · ((α′′
t )

2 logN + (β′′
t )

2) ·N−η,

for any t ∈ [2t∗, 1], where L = O(log4 N), ∥W∥∞ = O(N log6 N), S = O(N log8 N), B =
exp(O((logN) · (log logN))).
Remark 6.4. In particular, α′, α′′, β′, and β′′ are all finite for every t ∈ [0, 1], so we avoid the
endpoint singularities or unbounded curvature that would arise under a polynomial or piecewise-
linear schedule.

7 FAST HOPEFLOW

In this section, we propose a potential improvement to the HopeFlow architecture by replacing the
attention layer with approximate attention layer. Section 7.1 introduces the approximate attention. In
section 7.2, we show the Fast HopeFlow by replacing the original attention layers with approxmiate
attention layers. Lastly, we provide a formal analysis on inference running time of HopeFlow and
Fast HopeFlow in Section 7.3. We show that, with the approximate attention, we can reduce the
inference runtime from O(n4+o(1)) to O(n2+o(1)).

7.1 APPROXIMATE ATTENTION COMPUTATION

To improve the efficiency of attention computation, we introduce an approximate method that guar-
antees a controlled error.

8
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Definition 7.1 (Approximate Attention Computation AAttC(n, d,R, δ), Definition 1.2 in (Alman &
Song, 2023)). Let X ∈ Rn×d represent the input sequence, and let δ > 0 denote the allowed approx-
imation error. Suppose Q, K, and V are projection matrices in Rn×d, each with row norms bounded
above by a constant R, i.e., max{∥Q∥∞, ∥K∥∞, ∥V ∥∞} ≤ R, The procedure AAttC(n, d,R, δ)
returns an output N ∈ Rn×d that approximates the true attention output Attn(X) with entrywise
error bounded as ∥N − Attn(X)∥∞ ≤ δ.

We now give the runtime analysis of AAttC.

Lemma 7.2 (Subquadratic Runtime for Approximate Attention (Theorem 1.4 in (Alman & Song,
2023))). Consider the approximate attention mechanism AAttC defined in Definition 7.1. When the
embedding dimension is set as d = O(log n), the bound on weight norms is R = Θ(

√
log n), and

the approximation tolerance is δ = 1/poly(n), then the time required to compute AAttC satisfies
T (n, no(1), d) = n1+o(1), where T denotes the total runtime under the specified parameter settings.

7.2 FAST HOPEFLOW ARCHITECTURE

Using the approximate attention, we define the fast first-order HopeFlow and second-order Hope-
Flow layer by replacing the original attention layers with AAttC layers. We give formal definition
of fast first-order HopeFlow layer (FFlowF) in Definition E.1 and fast second-order HopeFlow layer
(FFlowH) in Definition E.2 in Appendix E.1.

7.3 RUNNING TIME

In this section, we formally analyze the running time complexity of HopeFlow and Fast HopeFlow
during inference. In Lemma 7.3, we show the total inference runtime of HopeFlow is bounded by
O(n4+o(1)).

Lemma 7.3 (Inference Runtime of Original HopeFlow Architecture, informal version of
Lemma E.3). Consider the original HopeFlow inference pipeline with the following parameters:
Let X ∈ Rh×w×c be the input tensor, and let K = O(1) be the number of scales. For each scale
i ∈ [K] and a base factor a ∈ N+, the scale factor is defined as ri := aK−i. The architecture in-
cludes upsampling functions ϕup,i(·, a) (Definition B.1), attention layers Attni(·) (Definition B.3),
feed-forward layers FFNi(·) (Definition B.5), first-order HopeFlow layers FlowFi(·, ·, ·) (Defini-
tion B.8), and second-order HopeFlow layers FlowHi(·, ·, ·, ·) (Definition B.9). Then, HopeFlow
achieves inference in O(n4+o(1)) time.

The total runtime is dominated by the running time of attention layers in HopeFlow. With approxi-
mate attention in Lemma 7.4, the total inference runtime of Fast HopeFlow is reduced to O(n2+o(1)).

Lemma 7.4 (Inference Runtime of Fast HopeFlow Architecture, informal version of Lemma E.4).
Consider the Fast HopeFlow inference pipeline with the following parameters: Let X ∈ Rh×w×c be
the input tensor, and let K = O(1) be the number of scales. For each scale i ∈ [K] and a base factor
a ∈ N+, the scale factor is defined as ri := aK−i. The architecture includes upsampling functions
ϕup,i(·, a) (Definition B.1), approximate attention layers AAttnCi(·) (Definition 7.1), feed-forward
layers FFNi(·) (Definition B.5), first-order Fast HopeFlow layers FFlowFi(·, ·, ·) (Definition E.1),
and second-order Fast HopeFlow layers FFlowHi(·, ·, ·, ·) (Definition E.2). Then, Fast HopeFlow
achieves inference in O(n2+o(1)) time.

8 CONCLUSION

We have presented HopeFlow, a high-order flow-matching architecture that extends PixelFlow by
incorporating multi-scale, high-order coupling to better capture complex dependencies in visual
data. Our theoretical analysis shows that HopeFlow retains the TC0 circuit complexity and statistical
convergence guarantees. Furthermore, we also propose a fast HopeFlow architecture. We hope
HopeFlow will inspire more future research in high-order supervision image modeling.

9
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Appendix
Roadmap. In Section A, we present all notations and background of this paper. In Section B, we
give a formal definition to the modules in HopeFlow. In Section C, we show the supplementary re-
sults on the circuit complexity of fundamental modules in the HopeFlow architecture. In Section D,
we establish the statistical convergence guarantees for the HopeFlow architecture. In Section E, we
provide supplementary definitions and time complexity proofs on fast HopeFlow architecture.

A PRELIMINARY

This section introduces foundational concepts and notation used throughout the paper. We review
standard Boolean circuit complexity classes, including NCi, ACi, and TCi, along with notions of
uniformity such as L-uniformity and DLOGTIME-uniformity. Then, we define floating-point rep-
resentations and present known results on computing basic arithmetic operations, exponentials, and
square roots within constant-depth TC0 circuits.

A.1 CIRCUIT COMPLEXITY CLASS

The following definitions are related to circuit complexity.
Definition A.1 (Boolean Circuit, page 102 of (Arora & Barak, 2009)). A Boolean circuit C with n
inputs and m outputs is a directed acyclic graph, for every n,m ∈ N. The Boolean circuit satisfies
the following structure:

• The n input nodes have no incoming edges.

• The m output nodes have no outgoing edges.

• All other nodes are called gate and labeled with one of AND,OR,NOT.

• All non-input nodes compute Boolean functions by applying their respective logical opera-
tions to the values received along their incoming edges.

We next provide the formal definition of languages associated with a specific Boolean circuit.
Definition A.2 (Languages Recognition, page 103 of (Arora & Barak, 2009)). Given a Boolean
circuit family C = {Cn}n∈N, we say that a language L ⊆ {0, 1}∗ is recognized by the C if the
following conditions hold:

• Length-specific circuits: Each circuit Cn in the family takes n-bit inputs, i.e., Cn :
{0, 1}n → {0, 1}.

• Correct recognition: For every string x ∈ {0, 1}∗, we have x ∈ L if and only if C|x|(x) =
1.

• Completeness: The family includes one circuit Cn for every input length n ∈ N.

We now present various classes of languages that can be recognized by different families of Boolean
circuits. We begin with the class NCi.

Definition A.3 (NCi, page 110 of (Arora & Barak, 2009)). A language is in NCi if the following
conditions hold:

• All gates have maximum fan-in of 2.

• It can be decided by Boolean ciruit with size O(poly(n)) and depth O((log n)i)

Another class related to NCi is ACi.
Definition A.4 (ACi, page 110 of (Arora & Barak, 2009)). A language is in ACi if the following
conditions hold:

• All gates are allowed to have unbounded fan-in.
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• It can be decided by Boolean ciruit with size O(poly(n)) and depth O((log n)i).

TCi extends ACi by introducing the MAJORITY gate. This gate evaluates to false when half or
more arguments are false and true otherwise.
Definition A.5 (TCi, (Vollmer, 1999)). A language is in TCi if the following conditions hold:

• All gates are allowed to have unbounded fan-in.

• It can be decided by threshold ciruit, which are Boolean circuits with
AND,OR,MAJORITY, with size O(poly(n)) and depth O((log n)i)

In this paper, we refer to any Boolean circuit that includes MAJORITY gates as a threshold circuit.
We now introduce two important notions of uniformity: L-uniformity and DLOGTIME-uniformity.
Definition A.6 (L-uniform Circuit Families, page 104 of (Arora & Barak, 2009)). For a circuit
familar {Cn}, if there exist a deterministic log-space computable function that takes 1n as input
and outputs the description of the circuit Cn, then {Cn} is L-uniform.

We now present the definition of DLOGTIME-uniformity.
Definition A.7 (DLOGTIME-uniform Circuit Families, (Barrington & Immerman, 1994)). For a
circuit familar {Cn}, if there exist a random-access log-space computable function that takes 1n as
input and outputs the description of the circuit Cn, then {Cn} is DLOGTIME-uniform.

A.2 CIRCUIT COMPLEXITY OF FLOATING-POINT ARITHMETIC

In this section, we introduce the complexity of floating-point number operations.
Definition A.8 (p-Bit Floating-Point Number, (Chiang, 2025)). Given a pair ⟨a, b⟩ where a is called
significand and b is called exponent, the p-bit floating-point number is defined as follows:

• a ∈ (−2p,−2p−1] ∪ {0} ∪ [2p−1, 2p).

• b ∈ [−2p, 2p).

This pair represents the real number a ·wb, where w is a fixed base. Fp represents the set of all p-bit
floating-point numbers.

The following definition shows the circuit complexity bounds for some floating-point operations.
Lemma A.9 (Floating-point operations in TC0, (Chiang, 2025)). Given floating-point numbers with
p ∈ O(poly(n)), the addition, comparison, division, and multiplication between two numbers,
product and sum between n numbers can be computed by uniform TC0 circuits. We define the
circuit depth of these operations as follows:

• The circuit depth of addition, comparison, division, and multiplication between two num-
bers is denoted as dstd.

• The circuit depth of sum between n numbers is denoted as d⊕.

• The circuit depth of product between n numbers is denoted as d⊗.

Lemma A.10 (Exponential approximation in TC0, (Chiang, 2025)). Given floating-point number x
with p ∈ O(poly(n)), the exp(x) can be computed in TC0 with a relative error of at most 2−p. The
circuit depth of exp(x) is denoted as dexp.

Lemma A.11 (Square root approximation in TC0, (Chiang, 2025)). Given floating-point number x
with p ∈ O(poly(n)), the

√
x can be rounded to the nearest floating-point number and computed in

TC0. The circuit depth of
√
x is denoted as dsqrt.

B THE HOPEFLOW ARCHITECTURE

This section provides a formal mathematical specification of the HopeFlow architecture. We begin
by defining the fundamental sample operations, including nearest upsampling and bilinear down-
sampling. Next, we describe the building blocks of the autoregressive transformer, such as attention,

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

MLP, feedforward, and normalization layers, and then formally define the autoregressive transformer
itself. We then introduce the full HopeFlow model, presenting both its first-order (Definition B.8)
and second-order (Definition B.9) variants.

B.1 SAMPLE FUNCTION

We start with the upsampling and downsampling functions.

Definition B.1 (Nearest Upsampling Function). The upsampling function ϕup(X, r) takes X ∈
Rh×w×c and r ≥ 1 as input and returns Y ∈ Rrh×rw×c. Specifically, for i ∈ [rh], j ∈ [rw], l ∈ [c],

Yi,j,l = X⌊ i
r ⌋,⌊

j
r ⌋,l

.

Next, we define the bilinear downsampling function used in HopeFlow.

Definition B.2 (Bilinear Downsampling Function). The downsampling function ϕdown(X, r) takes
X ∈ Rh×w×c, r ≥ 1, and a bilinear transformation matrix Φdown ∈ R(h/r·w/r)×hw as input and
returns Y ∈ R(h/r)×(w/r)×c. Specifically, ϕdown(X, r) does the following:

• Collapse the spatial dimensions of the input tensor X into a matrix X ∈ Rhw×c.

• Multiply by the downsampling operator to get

Y = ΦdownX.

• restore its spatial layout by reshaping Y into Y ∈ R(h/r)×(w/r)×c.

B.2 AUTOREGRESSIVE TRANSFORMER

In this section, we list formal definitions of each layer within the autoregressive transformer.

Definition B.3 (Attention Layer). The attention layer Attn(X) takes X ∈ Rh×w×c and returns
Y ∈ Rh×w×c. Specifically, Attn(X) does the following:

• Collapse the spatial dimensions of the input tensor X into a matrix X ∈ Rhw×c.

• Compute the unnormalized attention scores:

Ai,j := exp
(
Xi,∗WQW

⊤
KX⊤

j,∗
)
,∀i, j ∈ [hw].

where WQ,WK ,WV ∈ Rc×c are query, key, and value projection matrices.

• Compute output matrix:

Y := D−1AXWV ∈ Rhw×c.

where D = diag(A1n) ∈ Rhw×hw.

• Restore its spatial layout by reshaping Y into Y ∈ Rh×w×c.

We now define the multi-layer perceptron (MLP) layer.

Definition B.4 (MLP Layer). The MLP layer MLP(X, c, d) takes X ∈ Rh×w×c as input and returns
Y ∈ Rh×w×d. Specifically, MLP(X, c, d) does the following:

• Collapse the spatial dimensions of the input tensor X into a matrix X ∈ Rhw×c.

• Compute:

Yj,∗ = Xj,∗W + b,∀j ∈ [hw]

where W ∈ Rc×d and b ∈ R1×d.

• Restore its spatial layout by reshaping Y into Y ∈ Rh×w×d.
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With the definition of MLP, the feedforward layer is defined as follows.
Definition B.5 (Feedforward Layer). The feedforward layer FFN(X, c) takes X ∈ Rh×w×c as input
and returns Y ∈ Rh×w×c. Specifically, FFN(X, c) does the following:

• Collapse the spatial dimensions of the input tensor X into a matrix X ∈ Rhw×c.

• Compute

Yj,∗ = Xj,∗ +ReLU
(
Xj,∗W1 + b1

)
W2 + b2,∀j ∈ [hw]

where W1,W2 ∈ Rc×c and b1, b2 ∈ R1×c.

• Restore its spatial layout by reshaping Y into Y ∈ Rh×w×c.

To proceed, the normalization layer is defined as follows.
Definition B.6 (Layer Normalization Layer). The layer normalization layer LN(X) takes X ∈
Rh×w×c as input and returns Y ∈ Rh×w×c. Specifically, LN(X) does the following:

• Collapse the spatial dimensions of the input tensor X into a matrix X ∈ Rhw×c.

• Compute

Yj,∗ =
Xj,∗ − µj√

σ2
j

,∀j ∈ [hw]

where

µj =
1

c

c∑
k=1

Xj,k, σ2
j =

1

c

c∑
k=1

(Xj,k − µj)
2.

• Restore its spatial layout by reshaping Y into Y ∈ Rh×w×c.

We now define the autoregressive transformer used in the HopeFlow model.
Definition B.7 (Autoregressive Transformer). Assume we have:

• Number of scales: S ∈ N is the intermediate steps in HopeFlow.

• Input tokens: For each i ∈ [K], the ϕdown from Definition B.2 returns Yi ∈
R(h/ri)×(w/ri)×c, where ri = aK−i and a ∈ N+ is the scaling base.

• Upsampling function: For i ∈ [K], ϕup,i(·, a) : R(h/ri)×(w/ri)×c → R(h/ri+1)×(w/ri+1)×c

is defined in Definition B.1.

• Attention layer: For i ∈ [K], Attni(·) : R(
∑i

j=1 h/rj ·w/rj)×c → R(
∑i

j=1 h/rj ·w/rj)×c, as
defined in Definition B.3.

• Feedforward layer: For i ∈ [K], FFNi(·) : R(
∑i

j=1 h/rj ·w/rj)×c → R(
∑i

j=1 h/rj ·w/rj)×c,
as defined in Definition B.5.

• Initial condition: Zinit ∈ R(h/r1)×(w/r1)×c is the initial token map encoding class infor-
mation.

The autoregressive transformer proceeds as follows:

• Initialization: Set Z1 := Zinit.

• Iterative token construction: Computes

Z
i
:= Concat(Zinit, ϕup,1(Y

1, a), . . . , ϕup,i−1(Y
i−1, a)) ∈ R(

∑i
j=1 h/rj ·w/rj)×c, ∀i ≥ 2, i ∈ [K]

where Concat reshapes and concatenates the upsampled tokens into a unified spatial se-
quence.
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• Transformer block: Compute:

TFi(Z
i
) := FFNi(Attni(Z

i
)) ∈ R(

∑i
j=1 h/rj ·w/rj)×c, ∀i ∈ [K].

• Output extraction: From TFi(Zi), extract the last h/ri ·w/ri rows and reshape to form the
output:

Ŷi ∈ R(h/ri)×(w/ri)×c.

B.3 HOPEFLOW ARCHITECTURE

We define the first-order and second-order of the HopeFlow architecture.
Definition B.8 (First-Order HopeFlow Architecture, formal version of Definition 4.4). Assume we
have:

• S ∈ N denotes the scale number in HopeFlow, and i ∈ [S]

• For a base factor a ∈ N+, ri := aK−i denotes the scale factor.

• The interpolation state Ft
i ∈ R(h/ri)×(w/ri)×c is computed from Definition 4.1.

• The end state F1
i ∈ R(h/ri)×(w/ri)×c is computed from downsampling.

• The timestep ti ∈ [(i− 1)/S, i/S].

• Attni(·) : Rh/ri×w/ri×c → Rh/ri×w/ri×c is defined in Definition B.3.

• MLPi(·, c, d) : Rh/ri×w/ri×c → Rh/ri×w/ri×c is defined in Definition B.4.

• LNi(·) : Rh/ri×w/ri×c → Rh/ri×w/ri×c is defined in Definition B.6.

The first-order HopeFlow layers proceeds as follows:

• Compute time-conditioned parameters:

α1, α2, β1, β2, γ1, γ2 := MLPi(F
1
i + ti · 1(h/ri)×(w/ri)×c, c, 6c).

• Compute intermediate variables:

F′t
i := Attni(γ1 ◦ LN(Ft

i) + β1) ◦ α1,

where ◦ is the element-wise product.

• Compute final projection:

F′′t
i := MLPi(γ2 ◦ LN(F′t

i ) + β2, c, c) ◦ α2.

We denote first-order HopeFlow as F′′t
i := FlowFi(F

1
i ,F

t
i, ti) .

Definition B.9 (Second-Order HopeFlow Architecture, formal version of Definition 4.5). Given the
following:

• S ∈ N denotes the scale number in HopeFlow, and i ∈ [S]

• For a base factor a ∈ N+, ri := aK−i denotes the scale factor.

• The interpolation state Ft
i ∈ R(h/ri)×(w/ri)×c is computed from Definition 4.1.

• The end state F1
i ∈ R(h/ri)×(w/ri)×c is computed from downsampling.

• The timestep ti ∈ [(i− 1)/S, i/S].

• Attni(·) : Rh/ri×w/ri×c → Rh/ri×w/ri×c is defined in Definition B.3.
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• MLPi(·, c, d) : Rh/ri×w/ri×c → Rh/ri×w/ri×c is defined in Definition B.4.

• LNi(·) : Rh/ri×w/ri×c → Rh/ri×w/ri×c is defined in Definition B.6.

• Ffirst
i ∈ R(h/ri)×(w/ri)×c denotes the output of the first-order HopeFlow in Defintion B.8.

The second-order HopeFlow layers proceeds as follows:

• Compute time-conditioned parameters:

α1, α2, β1, β2, γ1, γ2 := MLPi(F
1
i + ti · 1(h/ri)×(w/ri)×c, c, 6c).

• Project dimension:

F′t
i := MLPi(Concat(F

t
i,F

first
i ), 2, 1).

• Compute intermediate variables:

F′′t
i := Attni(γ1 ◦ LN(F′t

i ) + β1) ◦ α1,

where ◦ is the element-wise product.

• Compute final projection:

F′′′t
i := MLPi(γ2 ◦ LN(F′′t

i ) + β2, c, c) ◦ α2.

We denote second-order HopeFlow as F′′′t
i := FlowHi(F

1
i ,F

t
i,F

first
i , ti)

C COMPLEXITY OF HOPEFLOW ARCHITECTURE

We analyze the circuit complexity of each module in the HopeFlow architecture in this section. We
begin by showing that core operations—such as matrix multiplication, upsampling, and downsam-
pling—are computable in uniform TC0. We then establish TC0 implementations for key neural
layers including MLP, feedforward, attention, and layer normalization. Finally, we demonstrate that
both first-order and second-order HopeFlow layers can be realized in uniform TC0 with constant
depth and polynomial size circuits.

C.1 COMPUTING MATRIX PRODUCTS IN TC0

To support later results, we establish that matrix multiplication over floating-point numbers can be
efficiently performed within TC0.

Lemma C.1 (Matrix Multiplication in TC0, Lemma B.1 in (Chen et al., 2024)). Suppose the
floating-point precision p ∈ O(poly(n)), and let X ∈ Fn1×d

p and Y ∈ Fd×n2
p be two floating-

point matrices with dimensions bounded by n1, n2 ∈ O(poly(n)). Then, the XY , denoting the
matrix product, can be computed by a uniform threshold circuit TC0 with the following complexity:

• Circuit size: poly(n),

• Circuit depth: dstd + d⊕,

where dstd and d⊕ denote the depths required for basic arithmetic and iterated addition, as defined
in Lemma A.9.

C.2 COMPUTING DOWN-SAMPLING AND UP-SAMPLING IN TC0

We now show that nearest-neighbor upsampling can be efficiently computed within the TC0 com-
plexity class.

Lemma C.2 (Nearest-Neighbor Upsampling in TC0). As defined in Defintion B.1, the nearest-
neighbor upsampling function ϕup(X, r) upsample the input tensor X ∈ Rh×w×c by a scale factor
r ≥ 1. Suppose the precision p ∈ O(poly(n)), n = h = w, r ≤ n, and c ≤ n. ϕup(X, r) ∈ TC0

with the following complexity:
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• Circuit size: poly(n),

• Circuit depth: O(1).

Proof. We show that every output entry is produced in constant depth. For each output index (i, j, l),
the upsampling mapping must compute

Yi,j,l = X⌊i/r⌋, ⌊j/r⌋, l. (3)

First, computing the quotients ⌊i/r⌋ and ⌊j/r⌋ for i, j ∈ [nr] is division by the fixed constant r,
which is known to lie in uniform TC0 at constant depth and polynomial size. Second, once we
have the integer indices i′ = ⌊i/r⌋ and j′ = ⌊j/r⌋, wiring the single input value Xi′,j′,l through
to the output is just a multiplexing operation over poly(n) wires—again realizable in uniform TC0

at constant depth. Since these two subcircuits (fixed-constant division and unbounded-fan-in multi-
plexing) both run in parallel for all (i, j, l), the entire nearest-neighbor upsampling is implemented
in constant depth and polynomial size.

We now turn our attention to the downsampling function and show that it can also be computed
within the TC0 complexity class.

Lemma C.3 (Downsampling in TC0). As defined in Definition B.2, the linear downsampling func-
tion ϕdown(X, r) downsample the input tensor X ∈ Rh×w×c by a scale factor r ≥ 1. Suppose the
precision p ∈ O(poly(n)), n = h = w, r ≤ n, and c ≤ n. ϕdown(X, r) ∈ TC0 with the following
complexity:

• Circuit size: poly(n),

• Circuit depth: dstd + d⊕.

Proof. From Definition B.2, the down-sampling function is simply a matrix multiplication between
a flattened input tensor and a bilinear transformation matrix. The matrix multiplication is in TC0 by
Lemma C.1.

C.3 COMPUTING MULTIPLE-LAYER PERCEPTRON IN TC0

In this subsection, we show the MLP layer lies within the uniform threshold circuit family.

Lemma C.4 (MLP Computation in TC0). As defined in Definition B.4, the MLP(X, c, d) takes
X ∈ Rh×w×c as input. Suppose the precision p ∈ O(poly(n)), n = h = w, r ≤ n, and c ≤ n.
MLP(X, c, d) ∈ TC0 with the following complexity:

• Circuit size: poly(n),

• Circuit depth: 2dstd + d⊕,

Proof. For each row j ∈ [hw], computing the matrix-vector product Xj,∗ ·W requires depth dstd +
d⊕ by Lemma C.1. Adding the bias vector b then requires an additional depth of dstd by Part 1 of
Lemma A.9 (basic floating-point addition). Thus, the total depth is 2dstd + d⊕. Since all rows are
independent, the circuit depth remains the same, and width is O(poly(n)).

C.4 COMPUTING FEED-FORWARD LAYER IN TC0

In this subsection, we show the feedforward network layer lies within the uniform threshold circuit
family.

Lemma C.5 (FFN Computation in TC0). As defined in Definition B.5, the FFN(X) takes X ∈
Rh×w×c as input. Suppose the precision p ∈ O(poly(n)), n = h = w, r ≤ n, and c ≤ n.
FFN(X) ∈ TC0 with the following complexity:

• Circuit size: poly(n),
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• Circuit depth: 6dstd + 2d⊕.

Proof. We break down the FFN computation for each j ∈ [hw] as follows:

• By Lemma C.4, computing the affine transformation Xj,∗W1 + b1 requires depth 2dstd +
d⊕.

• Applying the ReLU activation σ to the result takes an additional depth of dstd by Part 1 of
Lemma A.9.

• The next affine transformation A1W2 + b2, where A1 = σ(Xj,∗W1 + b1), also requires
depth 2dstd + d⊕ by Lemma C.4.

• Finally, computing the residual connection Xj,∗ + A2 (where A2 = A1W2 + b2) requires
depth dstd.

Summing all components gives a total depth of 6dstd + 2d⊕. Since the computation for each j ∈
[hw] can be performed in parallel, the overall circuit remains within this depth and has polynomial
size.

C.5 COMPUTING SINGLE ATTENTION LAYER IN TC0

In this subsection, we show that a single attention layer lies within the uniform threshold circuit
family.

Lemma C.6 (Attention Layer in TC0). As defined in Definition B.3, the Attn(X) takes X ∈ Rh×w×c

as input. Suppose the precision p ∈ O(poly(n)), n = h = w, r ≤ n, and c ≤ n. Attn(X) ∈ TC0

with the following complexity:

• Circuit size: poly(n),

• Circuit depth: 6(dstd + d⊕) + dexp.

Proof. We decompose the attention layer into several computational stages:

• Key-Query Product: The term WQW
⊤
K is precomputed and fixed. The matrix-vector prod-

uct Xi,∗WQW
⊤
KX⊤

j,∗ requires two applications of matrix multiplication, yielding depth
2(dstd + d⊕) by Lemma C.1.

• Score Computation and Exponentiation: Computing each pairwise attention score si,j as
above, followed by computing Ai,j = exp(si,j), adds dexp to the total depth. Hence, the
full attention matrix A can be computed with depth 3(dstd + d⊕) + dexp.

Next, we perform the normalization and projection steps:

• Row Normalization: Computing the row-wise sums D = diag(A1n) requires depth d⊕;
inverting the diagonal matrix D requires depth dstd.

• Value Projection: Computing AXWV (matrix multiplication followed by linear projection)
requires depth 2(dstd + d⊕). Multiplying with D−1 adds an additional depth of dstd.

Summing all contributions gives the total depth is 6(dstd + d⊕) + dexp, and the total circuit size
remains poly(n).
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C.6 COMPUTING LAYER-WISE NORM LAYER IN TC0

In this subsection, we show that a layer normalization layer lies within the uniform threshold circuit
family.

Lemma C.7 (Layer Normalization in TC0). As defined in Definition B.6, the LN(X) takes X ∈
Rh×w×c as input. Suppose the precision p ∈ O(poly(n)), n = h = w, r ≤ n, and c ≤ n.
LN(X) ∈ TC0 with the following complexity:

• Circuit size: poly(n),

• Circuit depth: 5dstd + 2d⊕ + dsqrt.

Proof. The computation of LN(X) involves the following components for each j ∈ [hw]:

• Mean computation: As shown in Lemma A.9, calculating µj = 1
c

∑c
k=1 Xj,k requires

depth dstd + d⊕.

• Variance computation: Calculating σ2
j = 1

c

∑c
k=1(Xj,k − µj)

2 requires two additional
applications of floating-point operations, yielding depth 2dstd + d⊕.

• Normalization: Computing the normalized output Yj,∗ =
Xj,∗−µj√

σ2
j

requires subtracting

the mean and dividing by the square root of the variance. This adds another depth of
2dstd + d⊕ + dsqrt by Lemmas A.9 and A.11.

Summing all contributions, the total circuit depth is 5dstd + 2d⊕ + dsqrt, and the total size remains
poly(n).

C.7 COMPUTING FIRST-ORDER HOPEFLOW LAYER IN TC0

In this subsection, we show that the first-order HopeFlow layer lies within the uniform threshold
circuit family.

Lemma C.8 (First-order HopeFlow layer computation in TC0, formal version of Lemma 5.1). As
defined in Definition B.8, the FlowF(X) takes X ∈ Rh×w×c as input. Suppose the precision p ∈
O(poly(n)), n = h = w, r ≤ n, and c ≤ n. FlowF(X) ∈ TC0 with the following complexity:

• Circuit size: poly(n).

• Circuit depth: 26dstd + 12d⊕ + 2dsqrt + dexp.

Proof. The first step of first-order HopeFlow is a MLP and by Lemma C.4, it is in a TC0 family
with depth 2dstd + d⊕ and size of poly(n).

The second step is a layer normalization layer and by Lemma C.7, LN(Ft
i) is in a TC0 family with

depth 5dstd + 2d⊕ + dsqrt. By Lemma A.9, A1 = γ1 ◦ LN(Ft) + β1 is in a TC0 family with depth
2dstd. By Lemma C.6, A2 = Attn(A1) is in a TC0 family with depth 6(dstd + d⊕) + dexp. By
Lemma A.9 again, scaling A2 ◦ α1 is in a TC0 family with depth dstd. The total depth requires
14dstd + 8d⊕ + dsqrt + dexp for step 2.

The third step is a layer normalization layer and by Lemma C.7, LN(F′t
i ) is in a TC0 family with

depth 5dstd + 2d⊕ + dsqrt. By Lemma A.9, A3 = γ2 ◦ LN(F′t
i ) + β2 is in a TC0 family with

depth 2dstd. By Lemma C.4, A4 = MLP(A3, c, c) is in a TC0 family with depth 2dstd + d⊕. By
Lemma A.9 again, A4 ◦ α2 requires depth dstd. The total depth requires 10dstd + 3d⊕ + dsqrt for
step 3.

In summary, FlowF(X) is in a TC0 family with depth 26dstd+12d⊕+2dsqrt+dexp and size poly(n).
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C.8 COMPUTING SECOND-ORDER HOPEFLOW LAYER IN TC0

In this subsection, we show that the second-order HopeFlow layer lies within the uniform threshold
circuit family.
Lemma C.9 (Second-order HopeFlow layer computation in TC0, formal version of Lemma 5.2).
As defined in Definition B.9, the FlowH(X) takes X ∈ Rh×w×c as input. Suppose the precision
p ∈ O(poly(n)), n = h = w, r ≤ n, and c ≤ n. FlowH(X) ∈ TC0 with the following complexity:

• Circuit size: poly(n).

• Circuit depth: 28dstd + 13d⊕ + 2dsqrt + dexp.

Proof. The first step of second-order HopeFlow is a MLP and by Lemma C.4, it is in a TC0 family
with depth 2dstd + d⊕ and size of poly(n).

The second step is a layer normalization layer and by Lemma C.7, LN(Ft
i) is in a TC0 family with

depth 5dstd + 2d⊕ + dsqrt. By Lemma A.9, A1 = γ1 ◦ LN(Ft) + β1 is in a TC0 family with depth
2dstd. By Lemma C.6, A2 = Attn(A1) is in a TC0 family with depth 6(dstd + d⊕) + dexp. By
Lemma A.9 again, scaling A2 ◦ α1 is in a TC0 family with depth dstd. The total depth requires
14dstd + 8d⊕ + dsqrt + dexp for step 2.

The third step is a layer normalization layer and by Lemma C.7, LN(F′t
i ) is in a TC0 family with

depth 5dstd + 2d⊕ + dsqrt. By Lemma A.9, A3 = γ2 ◦ LN(F′t
i ) + β2 is in a TC0 family with

depth 2dstd. By Lemma C.4, A4 = MLP(A3, c, c) is in a TC0 family with depth 2dstd + d⊕. By
Lemma A.9 again, A4 ◦ α2 requires depth dstd. The total depth requires 10dstd + 3d⊕ + dsqrt for
step 3.

In the last step, by Lemma C.7, LN(F′′t
i ) is in a TC0 family with depth 5dstd + 2d⊕ + dsqrt. By

Lemma A.9, A3 = γ2 ◦ LN(F′′t
i ) + β2 is in a TC0 family with depth 2dstd. By Lemma C.4,

A4 = MLP(A3, c, c) is in a TC0 family with depth 2dstd + d⊕. By Lemma A.9 again, A4 ◦ α2 is in
a TC0 family with depth dstd. The total depth is 10dstd + 3d⊕ + dsqrt.

In summary, FlowH(X) is in a TC0 family with depth 28dstd + 13d⊕ + 2dsqrt + dexp and size
poly(n) to simulate the second-order HopeFlow layer.

D STATISTICAL CONVERGENCE GUARANTEES OF HOPEFLOW

This section establishes the statistical convergence guarantees for the HopeFlow architecture. We
begin by introducing the necessary mathematical background, including the modulus of smoothness
and Besov spaces (Section D.1). We then define key time partitioning variables used to analyze
the convergence over different regimes. In Section D.2, we present error bounds for first-order
flow matching in both small-time and large-time regimes. Finally, Section D.3 lists the technical
assumptions on the data distribution and flow parameters required for the convergence results to
hold.

D.1 BESOV SPACE

To quantify the smoothness of a function, we use the r-th modulus of smoothness.
Definition D.1 (r-th Modulus of Smoothness, Definition 2.2 on Page 3 in (Oko et al., 2023)). Let
p ∈ (0,∞] and let f ∈ Lp(Ω). The r-th modulus of smoothness of f is defined by:

wr,p(f, t) := sup
∥h∥2≤t

∥∆r
h(f)∥p,

where the r-th order difference operator ∆r
h(f) is given by:

∆r
h(f)(x) :=

{∑r
j=0

(
r
j

)
· (−1)r−j · f(x+ jh) if x+ jh ∈ Ω for all j;

0 otherwise.
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With the definition of the modulus of smoothness in place, we now introduce the Besov space
Bs

p,q(Ω), which provides a more nuanced characterization of function smoothness.

Definition D.2 (Besov Space Bs
p,q(Ω), Definition 2.3 on page 3 in (Oko et al., 2023)). Let the

following parameters be given:

• p > 0, q ≤ ∞, and s > 0,

• Let r := ⌊s⌋+ 1,

• Let wr,p(f, t) denote the r-th modulus of smoothness of f , as defined in Definition D.1.

Then the Besov space Bs
p,q(Ω) is defined as the set:

Bs
p,q := {f ∈ Lp(Ω) | ∥f∥Bs

p,q
<∞},

where

|f |Bs
p,q

=

{
(
∫∞
0

(t−swr,p(f, t))
q dt

t )
1
q if q <∞;

supt>0{t−swr,p(f, t)} if q =∞,

is the Besov seminorm and

∥f∥Bs
p,q

:= ∥f∥p + |f |Bs
p,q

is the full norm.

To facilitate the analysis, we partition the time horizon into regimes where different approximation
arguments apply. The following definition introduces key time thresholds and dyadic steps used to
control the behavior of α(t), β(t), and their derivatives.
Definition D.3 (Time Variables and Partition, Definition 5.10 on page 11 in (Gong et al., 2025)). We
define the following time-related variables:

• Initial time: T0 := N−R0 .

• Intermediate threshold: T∗ := N−(κ−1−δ)/d.

• Boundary time: tj∗ ∈ [T∗, 3T∗] denotes a critical transition point where different general-
ization bounds are applied.

• Dyadic sequence: For j ∈ [K], define tj := 2tj−1, with the base case t0 := T0 and the
final value tK := 1.

D.2 FIRST ORDER ERROR BOUND

We now present a preliminary result to characterize the error bound in first-order flow matching.
The following definition introduces the form of the interpolated vector field and its derivatives.
Definition D.4 (Interpolated Vector Field and Derivatives). Let x1,0 and x1,1 denote the initial and
target distributions, respectively. Define the time-dependent vector field x1,t as:

x1,t := αtx1,0 + βtx1,1,

where αt and βt are time-dependent interpolation functions. The first and second time derivatives
of x1,t are given by:

x′
1,t = α′

tx1,0 + β′
tx1,1,

x′′
1,t = α′′

t x1,0 + β′′
t x1,1.

We now present two approximation results that provide error bounds for first-order flow matching,
depending on the time regime.
Lemma D.5 (Theorem 7 in (Fukumizu et al., 2025)). Suppose the following conditions hold:

• Assumptions D.7, D.8, D.9, D.10, D.12, and D.14 are satisfied.
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• αt and βt are defined as in Definition D.4.

• C6 is a constant independent of t.

Then, for sufficiently large N , there exists a neural network ϕ1 ∈M(L,W, S,B) such that∫
∥ϕ1(x1, t)− vt(x1)∥22 · pt(x1) dx1 ≤ C6 ·

(
α′2
t logN + β′2

t

)
·N−2s/d,

for all t ∈ [T0, 3T∗], where the network parameters satisfy:

L = O(log4 N), ∥W∥∞ = O(N log6 N), S = O(N log8 N), B = exp(O(logN log logN)).

Lemma D.6 (Theorem 8 in (Fukumizu et al., 2025)). Suppose the following conditions hold:

• Fix any t∗ ∈ [T∗, 1] and arbitrary η > 0.

• Assumptions D.7, D.8, D.9, D.10, D.12, and D.14 are satisfied.

• αt and βt are defined as in Definition D.4.

• C7 > 0 is a constant independent of t.

Then there exists a neural network ϕ2 ∈M(L,W, S,B) such that∫
∥ϕ2(x1, t)− vt(x1)∥22 · pt(x1) dx1 ≤ C7 ·

(
α′2
t logN + β′2

t

)
·N−η,

for all t ∈ [2t∗, 1], where the network parameters satisfy:

L = O(log4 N), ∥W∥∞ = O(N), S = O(t−dκ
∗ Nδκ), B = exp(O(logN log logN)).

D.3 BASIC ASSUMPTIONS

Our analysis relies on the following assumptions regarding the target probability distribution P0.
Assumption D.7 (Target Distribution Regularity, Assumption 5.2 in (Gong et al., 2025)). Let IdN
denote the contracted cube defined by

IdN :=
[
−1 +N−(1−κδ), 1−N−(1−κδ)

]d
,

where N is the sample size and the parameters κ and δ satisfy Assumption D.9. We assume that the
target probability distribution P0 has support on Id and that its density p0 satisfies:

• p0 ∈ Bs
p′,q′(I

d);

• p0 ∈ Bš
p′,q′(I

d \ IdN ) with š > max{6s, 1}.
Assumption D.8 (Density Bounds, Assumption 5.3 in (Gong et al., 2025)). There exists a constant
C0 > 0 such that the target density p0 satisfies the uniform bounds:

C−1
0 ≤ p0(x1) ≤ C0, ∀x1 ∈ Id.

Assumption D.9 (Interpolation Function Parametrization, Assumption 5.4 in (Gong et al., 2025)).
Let κ ≥ 1/2, b0 > 0, κ̃ > 0, and b̃0 > 0. For sufficiently small t ≥ T0, we assume:

αt = b0t
κ, 1− βt = b̃0t

κ̃.

Additionally, there exists a constant D0 > 0 such that:

D−1
0 ≤ α2

t + β2
t ≤ D0, ∀t ∈ [T0, 1].

Assumption D.10 (First-Order Derivative Bounds, Assumption 5.5 in (Gong et al., 2025)). ∃K0 >
0 and K0 is a constant such that the first derivatives of αt and βt satisfy:

|α′
t|+ |β′

t| ≤ NK0 , ∀t ∈ [T0, 1].
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Assumption D.11 (Second-Order Derivative Bounds, Assumption 5.6 in (Gong et al., 2025)).
∃K0 > 0 and K0 is a constant such that the second derivatives of αt and βt satisfy:

|α′′
t |+ |β′′

t | ≤ NK0 , ∀t ∈ [T0, 1].

Assumption D.12 (Integral Bound on First Derivatives for κ = 1/2, Assumption 5.7 in (Gong et al.,
2025)). Let s be the smoothness parameter from Definition D.2, and let κ satisfy Assumption D.9.
Let T0 be defined as in Definition D.3, and fix R0 ≥ s+1

min{κ,κ̄} .

If κ = 1/2, then there exist constants b1 > 0 and D1 > 0 such that, for any 0 ≤ γ < R0, the
following bound holds: ∫ N−γ

T0

(
α′2
t + β′2

t

)
dt ≤ D1 · logb1 N.

Assumption D.13 (Integral Bound on Second Derivatives for κ = 1/2, Assumption 5.8 in (Gong
et al., 2025)). Under the same setting as Assumption D.12, there exist constants b1 > 0 and D1 > 0
such that, for any 0 ≤ γ < R0, the following bound holds:∫ N−γ

T0

(
α′′2
t + β′′2

t

)
dt ≤ D1 · logb1 N.

Assumption D.14 (Bounded Derivative of Conditional Mean, Assumption 5.9 in (Gong et al.,
2025)). There exists a constant CL > 0 such that, for all t ∈ [T0, 1],∥∥∥∥ d

dx1

∫
y pt(y | x1) dy

∥∥∥∥ ≤ CL.

E PROVABLY EFFICIENT CRITERIA

This section introduces the Fast HopeFlow architecture and establishes its provable efficiency. Sec-
tion E.1 formally defines the first- and second-order variants of Fast HopeFlow, which incorporate
approximate attention to reduce computational complexity. Section E.2 analyzes the inference run-
time of the original HopeFlow architecture, demonstrating a baseline complexity of O(n4+o(1)).
Section E.3 presents the runtime analysis for Fast HopeFlow and proves a near-quadratic runtime of
O(n2+o(1)) using approximate attention mechanisms.

E.1 FAST HOPEFLOW ARCHITECTURE

We define the first-order and second-order of the Fast HopeFlow architecture.
Definition E.1 (First-Order Fast HopeFlow Architecture). Assume we have:

• S ∈ N denotes the scale number in Fast HopeFlow, and i ∈ [S]

• For a base factor a ∈ N+, ri := aK−i denotes the scale factor.

• The interpolation state Ft
i ∈ R(h/ri)×(w/ri)×c is computed from Definition 4.1.

• The end state F1
i ∈ R(h/ri)×(w/ri)×c is computed from downsampling.

• The timestep ti ∈ [(i− 1)/S, i/S].

• AAttnCi(·) : Rh/ri×w/ri×c → Rh/ri×w/ri×c is defined in Definition 7.1.

• MLPi(·, c, d) : Rh/ri×w/ri×c → Rh/ri×w/ri×c is defined in Definition B.4.

• LNi(·) : Rh/ri×w/ri×c → Rh/ri×w/ri×c is defined in Definition B.6.

The first-order Fast HopeFlow layers proceeds as follows:

• Compute time-conditioned parameters:

α1, α2, β1, β2, γ1, γ2 := MLPi(F
1
i + ti · 1(h/ri)×(w/ri)×c, c, 6c).
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• Compute intermediate variables:

F′t
i := AAttnCi(γ1 ◦ LN(Ft

i) + β1) ◦ α1,

where ◦ is the element-wise product.

• Compute final projection:

F′′t
i := MLPi(γ2 ◦ LN(F′t

i ) + β2, c, c) ◦ α2.

We denote first-order Fast HopeFlow as F′′t
i := FFlowFi(F

1
i ,F

t
i, ti) .

Definition E.2 (Second-Order Fast HopeFlow Architecture). Given the following:

• S ∈ N denotes the scale number in Fast HopeFlow, and i ∈ [S]

• For a base factor a ∈ N+, ri := aK−i denotes the scale factor.

• The interpolation state Ft
i ∈ R(h/ri)×(w/ri)×c is computed from Definition 4.1.

• The end state F1
i ∈ R(h/ri)×(w/ri)×c is computed from downsampling.

• The timestep ti ∈ [(i− 1)/S, i/S].

• AAttnCi(·) : Rh/ri×w/ri×c → Rh/ri×w/ri×c is defined in Definition 7.1.

• MLPi(·, c, d) : Rh/ri×w/ri×c → Rh/ri×w/ri×c is defined in Definition B.4.

• LNi(·) : Rh/ri×w/ri×c → Rh/ri×w/ri×c is defined in Definition B.6.

• Ffirst
i ∈ R(h/ri)×(w/ri)×c denotes the output of the first-order Fast HopeFlow in Defin-

tion B.8.

The second-order Fast HopeFlow layers proceeds as follows:

• Compute time-conditioned parameters:

α1, α2, β1, β2, γ1, γ2 := MLPi(F
1
i + ti · 1(h/ri)×(w/ri)×c, c, 6c).

• Project dimension:

F′t
i := MLPi(Concat(F

t
i,F

first
i ), 2, 1).

• Compute intermediate variables:

F′′t
i := AAttnCi(γ1 ◦ LN(F′t

i ) + β1) ◦ α1,

where ◦ is the element-wise product.

• Compute final projection:

F′′′t
i := MLPi(γ2 ◦ LN(F′′t

i ) + β2, c, c) ◦ α2.

We denote second-order Fast HopeFlow as F′′′t
i := FFlowHi(F

1
i ,F

t
i,F

first
i , ti)

E.2 RUNTIME ANALYSIS OF THE ORIGINAL HOPEFLOW INFERENCE PIPELINE

In this subsection, we give a runtime analysis about the HopeFlow inference pipeline.
Lemma E.3 (Inference Runtime of Original HopeFlow Architecture, formal version of Lemma 7.3).
Given the following:

• X ∈ Rh×w×c is the input tensor.

• K = O(1) is the number of scales, and i ∈ [K].
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• For a base factor a ∈ N+, ri := aK−i is the scale factor.

• ϕup,i(·, a) is the upsampling function from Definition B.1.

• Attni(·) is the attention layer from Definition B.3.

• FFNi(·) is the feed forward layer from Definition B.5.

• FlowFi(·, ·, ·) is the first-order HopeFlow layer from Definition B.8.

• FlowHi(·, ·, ·, ·) is the second-order HopeFlow layer from Definition B.9.

HopeFlow achieves inference in O(n4+o(1)) time.

Proof. We analyze the runtime of upsampling layers, first-order HopeFlow layer, and second-order
HopeFlow layer respective.

We start with the upsampling layers. Each layer i in the HopeFlow model con-
tains ϕup,1(·, 2), . . . , ϕup,i−1(·, 2) upsampling functions. The ϕup,i−1(·, 2) function runs in
O(n2c/22(K−i)) time, and the total runtime of all upsampling function in layer i is O(n2c · 1

22K
·

(1 − 1
4i )). Summarizing all layers, the total runtime of upsampling functions the HopeFlow model

is:

Tup =

K∑
i=1

O(n2c · 1

22K
· (1− 1

4i
))

= O(n2+o(1)).

Then, we analyze the runtime of first-order HopeFlow layer. The input tensor for each layer i is
(n/2K−i)× (n/2K−i)× c, and the runtime of each layer is dominated by the attention layer that is
O(n4c/24(K−i)). Summarizing all layers, the total runtime of first-order HopeFlow is

TFlowF =

K∑
i=1

O(n4c/24(K−i))

= O(n4+o(1)).

Lastly, we analyze the runtime of second-order HopeFlow layer. The input tensor for each layer i is
(n/2K−i) × (n/2K−i) × c, and the runtime of each layer is also dominated by the attention layer
that is O(n4c/24(K−i)). Summarizing all layers, the total runtime of second-order HopeFlow is

TFlowH =

K∑
i=1

O(n4c/24(K−i))

= O(n4+o(1)).

Hence, the total runtime of HopeFlow architecture is

Tori = Tup + TFlowF + TFlowH

= O(n4+o(1)).

E.3 RUNTIME ANALYSIS OF THE FAST HOPEFLOW INFERENCE PIPELINE

In this subsection, we give a runtime analysis about the Fast HopeFlow inference pipeline.
Lemma E.4 (Inference Runtime of Fast HopeFlow Architecture). Given the following:

• X ∈ Rh×w×c is the input tensor.

• K = O(1) is the number of scales, and i ∈ [K].

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

• For a base factor a ∈ N+, ri := aK−i is the scale factor.

• ϕup,i(·, a) is the upsampling function from Definition B.1.

• AAttnCi(·) is the attention layer from Definition 7.1.

• FFNi(·) is the feed forward layer from Definition B.5.

• FFlowFi(·, ·, ·) is the first-order Fast HopeFlow layer from Definition E.1.

• FFlowHi(·, ·, ·, ·) is the second-order Fast HopeFlow layer from Definition E.2.

Fast HopeFlow achieves inference in O(n2+o(1)) time.

Proof. The total runtime of upsampling functions remain O(n2+o(1)). As we replace the atten-
tion layer with the approximate attention, the runtime of each first-order Fast HopeFlow layer is
dominated by MLP which is O(n2+o(1)), and TFFlowF =

∑K
i=1 O(n2+o(1)) = O(n2+o(1)). Simi-

larly, the second-order Fast HopeFlow layer is TFFlowF =
∑K

i=1 O(n2+o(1)) = O(n2+o(1)). Hence
Tfast = Tup + TFFlowF + TFFlowH = O(n2+o(1)).

LLM USAGE DISCLOSURE

LLMs were used only to polish language, such as grammar and wording. These models did not
contribute to idea creation or writing, and the authors take full responsibility for this paper’s content.
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