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Abstract

High-order numerical methods enhance Trans-
former performance in tasks like NLP and
CV, but introduce a performance-efficiency
trade-off due to increased computational over-
head. Our analysis reveals that conventional
efficiency techniques, such as distillation, can
be detrimental to the performance of these
models, exemplified by PCformer. To explore
more optimizable ODE-based Transformer ar-
chitectures, we propose the Iterative Implicit
Euler Transformer (IIET), which simplifies
high-order methods using an iterative implicit
Euler approach. This simplification not only
leads to superior performance but also facil-
itates model compression compared to PC-
former. To enhance inference efficiency, we in-
troduce Iteration Influence-Aware Distillation
(ITAD). Through a continued training phase,
ITAD eliminates non-essential iterations, reduc-
ing IIET’s inference computational overhead
by over 60% while maintaining 99.4% task per-
formance accuracy. On Im-evaluation-harness,
IIET demonstrates a 2.65% improvement over
vanilla Transformers and a 0.8% gain over PC-
former in average accuracy. The efficient vari-
ant E-IIET achieves a 1.83x speedup and a per-
formance gain exceeding 0.5% compared to
PCformer.

1 Introduction

The integration of advanced numerical Ordinary
Differential Equation (ODE) solvers into Trans-
former architectures (Vaswani, 2017) has spurred
significant progress in natural language process-
ing (NLP) (Li et al., 2022, 2024; Tong et al.,
2025) and image synthesis (Ho et al., 2020; Lu
et al., 2022a,b; Zheng et al., 2024). Leverag-
ing high-order methods, particularly Predictor-
Corrector (PC) schemes, within Transformer resid-
ual connections has demonstrated the capacity to
enhance model learning without increasing parame-
ter counts, offering a pathway to both performance
and parameter efficiency (Li et al., 2022, 2024).

However, the promise of high-order PCformers
(Li et al., 2024) is often constrained by deployment
inefficiencies. The inherent linear dependency in
nested computations across layers during inference
poses critical inference latency. A straightforward
approach to mitigating this deployment bottleneck
is Knowledge Distillation (Hinton, 2015; Kim and
Rush, 2016). However, our preliminary experi-
ments demonstrate that the inherent architectural
discrepancy between the predictor and corrector
within PCformers impedes effective knowledge
transfer via distillation. Our empirical investiga-
tions reveal a obvious 54% performance degrada-
tion in distilled student models, even the students
initialized with PCformer’s parameters.

Confronted with these deployment bottle-
necks, we pivot towards architectural innovations
grounded in numerical method principles. A naive
yet seemingly logical initial approach might be to
pursue uniformity in numerical methods between
predictor and corrector, such as pairing explicit and
backward Euler schemes. Similar attempts have
been validated in previous studies (Li et al., 2024;
Zhao et al., 2024), where a high-order predictor
combined with a backward Euler method demon-
strated promising results, particularly on smaller
datasets. However, ensuring solution precision in-
herently requires iterative solvers to obtain the final
solution, a process that shares the same merits as
high-order methods. Building on this insight, we
take a step further to explore whether an iterative
corrector mechanism is equally critical for achiev-
ing both superior solution fidelity and unlocking
genuine efficiency gains.

To this end, we introduce the Iterative Implicit
Euler Transformer (IIET). Concretely, in IIET, each
iteration represents a computational step within
an implicit Euler iterative solver, where multiple
corrections to the initial prediction are made to
ensure output precision. To further strengthen nu-
merical stability, we also employ linear multistep



methods during each correction step !. This ar-
chitecture, detailed in Figure 1 (d), is designed to
not only achieve superior performance that scales
with increasing iterations, exhibiting competitive
results against PCformers, but also to be inherently
compressible due to its iterative nature. Notably,
our top-performing IIET models (340M and 740M
parameters) achieve remarkable performance im-
provements of 2.4% and 2.9% respectively over
equivalent vanilla Transformers.

In this way, we can effectively accelerate the in-
ference of IIET via disitillation techniques. Here,
we further propose an Iteration Influence-Aware
Distillation (IIAD), inspired by structured pruning
techniques (Men et al., 2024; Xia et al., 2023; Chen
et al., 2024), to reduce redundant iterations. Specif-
ically, ITAD first evaluates ‘iteration influence’ by
measuring the similarity between the inputs and
outputs of each iteration, determining the optimal
number of iterations per layer. Subsequently, a
continued pre-training phase is employed to re-
store the model’s capabilities. This process yields
efficient IIET (E-IIET), which demonstrably re-
duces IIET’s inference computational overhead by
over 60% while impressively maintaining 99.4%
of its downstream task performance. Ultimately,
our 340M and 740M parameter E-IIET models not
only outperform the vanilla Transformer by 2.4 and
2.3 points, respectively but also achieve a 1.83x
speedup with a performance gain exceeding 0.5%
compared to PCformers, showcasing a significant
advancement in both performance and deployment
efficiency.

2 Background

We begin by establishing the connection between
residual connections and the Euler method, and
then discuss Transformer optimization strategies
informed by advanced explicit and implicit numer-
ical solutions of ODEs. Our work builds upon
the standard Transformer architecture (Vaswani,
2017), which comprises a stack of identical lay-
ers. For language modeling, each layer typically
comprises a causal attention (CA) block and a feed-
forward network (FFN) block. With residual con-
nections, the output of each block can be formu-
lated as yp+1 = Yn + F (Yn, On), where F (yn, 6,,)
represents the transformation performed by either
the CA or FEN block with parameters 6,,.

TIET can be viewed as an instance of the PC paradigm,
employing an Euler predictor and an iterative Euler corrector.

2.1 Euler Method in Residual Networks

The Euler method provides a linear approximation
for first-order ODEs, defined as v/ (t) = f(y(t),t)
with an initial value y(¢9) = yo. Given a step size
h where t, 1 = t, + h, the method computes the
subsequent value y,, 1 as:

Yntl = Yn + hf(ym tn) (D

where f(yn, tn) represents the rate of change of v,
determined by its current value and time ¢. Notably,
this formulation shares a structural similarity with
residual networks, where a trainable function, F(+),
approximates these changes. Consequently, from
an ODE perspective, residual connections can be in-
terpreted as a first-order discretization of the Euler
method. Although the success of residual connec-
tions highlights the benefits of the Euler method, its
first-order nature introduces significant truncation
errors (Li et al., 2022, 2024), limiting the precision
of yn41. Fortunately, more advanced numerical
methods exist and have been successfully applied
to neural networks.

2.2 Advanced Numerical Transformers

To improve the precision of y,, 1, the Runge-Kutta
(RK) method offers a more accurate alternative. In-
spired by the o-order RK method, the ODE Trans-
former (Li et al., 2022) replaces residual connec-
tions with a RK process:

Yot = Yo + ) %iFi @
F1 = F(Yn,0n) (3

i—1
Fi=Fyn + ijl BijFj bn) (4

where F; represents the i order results computed
by a shared transformer block F (x, 6,,). The coef-
ficients ;, 3;; are learnable parameters. This archi-
tecture effectively mitigates truncation error, lead-
ing to significant performance gains in generation
tasks such as machine translation and abstractive
summarization.

Compared to explicit numerical methods, im-
plicit numerical methods typically offer higher pre-
cision and stability. The Predictor-Corrector (PC)
method, using an explicit predictor for initial esti-
mates and an implicit corrector for refinement, is a
classic example. Recent work has demonstrated the
benefits of integrating PC components into neural
network architecture. PCformer (Li et al., 2024)



(a) Vanilla Transformer

(b) Linear Multi-step
Transformer

(¢) Predictor-Corrector Transformer

(d) Iterative Implicit Euler
Transformer

Figure 1: Architectural comparison: (a) Vanilla Transformer; (b) Linear multistep-enhanced Transformer; (c)
PCformer with 2nd-order Runge-Kutta predictor and 1st-order Euler corrector; (d) Our proposed Iterative Implicit
Euler Transformer (IIET). The iteration steps 7 in IIET is configurable, with experimental validation determining

r = 3 as the optimal setting in this work.

employs an o-order RK predictor and a linear multi-
step (Wang et al., 2019) corrector, defined as:

Y=t Y TIE )
Yn+l = Yn + 04]: ypa Z /8]: (6)
t=n—2

where F; shares the same meaning as in Eq. 2
and F; denotes the outputs of previous blocks.
«, B, and -y are learnable coefficients. Specifically,
PCformer’s predictor incorporates an Exponential
Moving Average (EMA) to weight the contribu-
tions of different orders, while the corrector inte-
grates previous block outputs for increased pre-
cision. PCformer achieves superior performance
over the ODE Transformer and, to some extent,
unifies structural paradigms for Transformers im-
proved with implicit numerical methods. Our IIET
can be interpreted as a specific instance within the
PC paradigm, with a particular emphasis on the
iterative corrector component.

3 Iterative Implicit Euler Transformer

In this section, we detail the theoretical founda-
tion and core architectural design of the Iterative
Implicit Euler Transformer (IIET). Our approach
leverages the inherent stability of the implicit Euler
method, a cornerstone of numerical analysis, to
address key challenges in deep sequence modeling.

3.1 Iterative Implicit Euler Method

The implicit Euler method, also known as the Back-
ward Euler method, is a foundational first-order im-

plicit numerical technique celebrated for its robust
stability properties, particularly advantageous in
handling stiff systems (LeVeque, 2007). Unlike its
explicit counterparts, the implicit Euler method em-
ploys a backward difference quotient, formulated
as:

Ynt+1 = Yn + L (Ynt1, tng1)- @)

The implicit nature of Eq. 7, where the computation
of y,,4+1 depends on its value at the same time step
tn+1, inherently requires iterative solvers from nu-
merical analysis to obtain a solution. Specifically,
in traditional numerical methods for solving such
implicit equations, Newton’s iteration is frequently
employed due to its quadratic convergence rate and
robustness (Zhang et al., 2017; Shen et al., 2020;
Kim et al., 2024). However, within the context of
neural sequence modeling, where computational
efficiency and architectural simplicity are often pri-
oritized, we propose to investigate the efficacy of
a simpler alternative: fixed-point iteration. While
prior works like Li et al. (2024) have utilized ex-
plicit methods for initial approximations followed
by a single Backward Euler correction, the poten-
tial of iterative refinement within the implicit cor-
rector remains largely unexplored.

Thus, challenging the implicit assumption that
a strong predictor is sufficient for high precision
(Li et al., 2024), we propose the central hypothesis
that iterative refinement inside the implicit correc-
tor constitutes a pivotal mechanism for enhancing
solution fidelity. We argue that a single-step cor-
rection inherently limits the achievable accuracy,



particularly when modeling intricate sequence dy-
namics and seeking high-fidelity representations of
Yn+1- Consequently, this work rigorously investi-
gates whether leveraging iterative solutions within
the implicit corrector can translate to demonstrable
gains in downstream model performance.

Intriguingly, our empirical findings reveal
that computationally efficient fixed-point iteration
(Rhoades, 1976) yields surprisingly high precision,
often on par with the more computationally inten-
sive Newton’s method, particularly within our neu-
ral sequence modeling framework. Our proposed
Iterative Implicit Euler (ITE) method commences
with an initial approximation, 11, derived from
an explicit Euler step. This initial estimate is then
iteratively refined through r fixed-point iterations
as defined below:

3/2+1 = Yn + hf(Yn,tn) (8)
Yoi1 = Yo+ RF(Y b)), i€ [Lar]. (9)

The final approximation y,, 41 is thus given by y, . ¢,
representing the output of the " iteration.

The IIE method, while formally retaining its first-
order numerical accuracy, achieves a significant
enhancement in the approximation of y,,through
iterative refinement. This iterative process engen-
ders a structured form of nested computations, su-
perficially resembling higher-order methods, albeit
through a fundamentally distinct mechanism rooted
in repeated fixed-point iterations. Acknowledg-
ing the increased computational cost, the inherent
structural regularity of IIE, predicated solely on the
preceding iteration’s output, emerges as a crucial
enabler for inference efficiency optimizations, as
detailed in Section 4. This carefully engineered
balance between iteratively enhanced precision and
structural simplicity underpins the design philoso-
phy of the IIET architecture.

3.2 Model Architecture

Building on the IIE method, we propose the Iter-
ative Implicit Euler Transformer (IIET) as a foun-
dational architecture for sequence modeling, par-
ticularly for large language models. Adopting the
LLaMA architecture (Touvron et al., 2023b) (Trans-
former++), IIET consists of NV stacked transformer
decoder layers. Each layer comprises a causal at-
tention module followed by a feedforward mod-
ule, and employs rotary positional encoding (Su
et al., 2024), SiLU activation (Shazeer, 2020), and
RMS normalization (Zhang and Sennrich, 2019).

Given an input sequence z = 71, ..., 1, of length
L, the initial input embeddings are represented as
X0 =[zq,...,21] € RLXdmoaet where dpogel is the
hidden dimension. The output of each subsequent
layer is then computed as X™ = Decoder(X" 1),
forn € [1, N].

The key distinction between IIET and Trans-
former++ lies in IIET’s integration of the IIE
method within each decoder layer (Figure 1). Un-
like Transformer++, which directly computes the
next layer’s output using a single Euler step, IIET
employs an iterative refinement process. Specifi-
cally, IIET first estimates an initial value, 39, |, via
a single Euler step (Eq. 8):

Y0 1 = Y + F(Yn, 0n). (10)

where F(x,0,) represents the nth transformer
layer with parameters 6,,. This initial estimate in
IIET corresponds to the direct output of each layer
in Transformer++.

In the subsequent iterations, our preliminary
experiments suggest that incorporating outputs
from previous layers, similar to Transformer-
DLCL (Wang et al., 2019), can enhance the perfor-
mance. We thus modify Eq. 9 as follows:

n—1

Yhi1 = Un + onF (Yt 0n) + > oy, (11)
7=0

where i € [1..r] denotes the iteration step, F rep-
resents the output of the previous layers j, and «
represents learnable layer merge coefficients. Ap-
pendix A.1 details the computation flow within a
single IIET layer.

3.3 Experimental Setups

Limited by resources, our experiments primarily ex-
plore small-scale language modeling, benchmark-
ing IIET against a competitive Transformer base-
line incorporating modern architectural improve-
ments, as well as the PCformer, which employs an
advanced high-order method as a predictor and a
multistep method as a corrector.

Datasets and Evaluation Metrics. Our models
are pre-trained on SlimPajama (Soboleva et al.,
2023) and tokenized using the LLaMA2 tok-
enizer (Touvron et al., 2023a). From the origi-
nal 627B-token dataset, we sampled 16B and 30B
tokens for training the 340M and 740M parame-
ter models, respectively. For comprehensive eval-
uation, we assess perplexity (PPL) on Wikitext



Wiki. LMB. | LMB. PiQA Hella. SCIQ ARC-c  Wino. | Avg.
Scale Model ppll ppld | accT acc_normT acc_norm?t acctT acc_norm?T acc?tT | T
Pre-training Phase
340M Params Transformer++ | 28.2  78.3 | 28.9 64.3 342 76.0 23.6 51.9 [46.5
16B Tokens ~ PCformer 25.7 47.0 | 33.1 64.9 36.3 77.5 24.7 53.3 (483
ET 25.0 30.5 | 371 65.2 36.9 79.4 23.9 51.0 |48.9
740M Params Transformer++ | 23.3  34.8 | 36.1 66.4 38.4 78.6 24.5 50.2 [49.0
30B Tokens ~ PCformer 212 220 | 410 66.3 41.3 82.0 23.3 51.2 | 50.9
ET 20.7 211 | 41.2 68.9 42.5 82.1 23.8 53.1 | 519
Iteration Influence-Aware Distillation Phase
340M Params B-PCformer 272 504 | 322 64.6 34.9 78.0 24.7 51.3 | 47.6
5B Tokens B-IIET 27.0 34.6 | 36.1 64.0 35.0 80.7 23.0 51.5 | 484
E-IIET 257 309 | 374 64.4 35.8 80.4 23.5 52.1 |48.9
740M Params B-PCformer 225 295 | 374 66.8 39.2 80.0 232 509 |49.6
10B Tokens ~ B-IIET 23.0 299 | 37.6 67.4 38.7 79.7 25.2 53.0 |50.3
E-IIET 212 242 | 40.1 68.5 41.0 81.0 24.6 524 | 51.3

Table 1: Comparison of results between our models and baseline models in the Pre-training Phase and Iteration
Influence-Aware Distillation Phase. The individual task performance is via zero-shot. We report the main results on
the same set of tasks reported by Gu and Dao (2023). The last column shows the average over all benchmarks that
use (normalized) accuracy as the metric. Bold values represent the best results in each set.

(Wiki.) (Merity et al., 2016) and consider sev-
eral downstream tasks covering common-sense
reasoning and question answering: LAMBADA
(LMB.) (Paperno et al., 2016), PiQA (Bisk et al.,
2020), HellaSwag (Hella.) (Zellers et al., 2019),
WinoGrande (Wino.) (Sakaguchi et al., 2021),
ARC-Challenge (ARC-c) (Clark et al., 2018), and
SCIQ (Welbl et al., 2017). We report PPL on Wiki-
text and LAMBADA,; length-normalized accuracy
on HellaSwag, ARC-Challenge, and PiQA; and
standard accuracy on the remaining tasks. All
evaluations are conducted using the Im-evaluation-
harness (Gao et al., 2021).

Baselines. We evaluate IIET’s performance
against two strong baselines: Transformer++ (Tou-
vron et al., 2023a) and PCformer (Li et al., 2024).
Transformer++ adopts the LLaMA architecture, in-
corporating rotary positional embeddings, SiLU
activation, and RMS normalization. PCformer em-
ploys a 2nd-order Runge-Kutta predictor and a lin-
ear multi-step corrector.” For a fair comparison,
all models were trained on the same dataset for an
identical number of tokens.

Training Details. We train all models from
scratch at two scales, 340M and 740M parameters,
to assess IIET’s performance across different sizes.
All models are trained using AdamW (Loshchilov
et al., 2017) with a maximum learning rate of 3e-4.

We also explored using a 4th-order Runge-Kutta predictor
and more complex correctors, but these resulted in increased
training costs without substantial performance improvements
in language modeling.

IIET 55M TIET 340M
‘ f T 77.67 T T 3871
68.4
= 26.0
=
1)
=] 7.4 67.4 753
o
&~ 252
g 25.0
| | | | | | | |
1 2 3 4 1 2 3 4

Iterative Correction Steps

Figure 2: Perplexity (PPL) on the Wikitext test set for
the 55M and 340M IIET models as a function of itera-
tive correction steps. The purple and dashed lines
represent the PPL of Transformer++ and PCformer, re-
spectively, at the same parameter scale.

The 340M models use a batch size of 0.5M tokens,
while the 740M models use a batch size of 1M to-
kens. We employ a cosine learning rate schedule
with a warmup ratio of 0.01, a weight decay of
0.01, and a gradient clipping of 1.0 for both model
sizes.

3.4 Experimental Results

Number of Iterations. We initiated the process
by identifying the optimal iteration steps 7 us-
ing the 340M IIET model and a smaller variant
with only 55 million parameters (detailed in Ap-
pendix A.3), and then applying the optimized value
to larger models. We evaluated the models’ per-
formance on Wikitext. The performance gains, as
illustrated in Figure 2, demonstrate the benefit of it-
erative correction. Specifically, IIET’s performance
exceeds PCformer at 7 = 2 and reaches its peak at
r=3.
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Figure 3: A comparison of training curves between
Transformer++ and IIET with different iteration counts
at the 340M parameter scale.

Results. The advantages of IIET are highlighted
by its performance on large language model evalu-
ation benchmarks. As demonstrated in Table 1 Pre-
training Phase, IIET consistently surpasses Trans-
former++ and PCformer with comparable capacity.
At a parameter scale of 340 million, IIET achieves
a mean accuracy of 2.4% higher than that of Trans-
former++ and 0.6% higher than that of PCformer
across all six challenging subtasks. Notably, the
performance disparity amplifies progressively with
increasing parameter scale, attaining 2.9% and 1%
at 740 million parameters. This observation, con-
sistent with Li et al. (2024)’s, confirms the robust
scalability of IIET and similar numerical Trans-
formers, showcasing their performance potential
with increasing model parameters and training data.

3.5 Analysis

Impact of Iteration Steps. To further analyze
the impressive performance of IIET, we conducted
experiments with the 340 million parameter model.
Figure 3 shows the training curves for IIET with
different iteration steps. As the number of itera-
tions increases, the model’s ability to fit the data
gradually improves. The evaluation on the bench-
mark confirms that IIET, with 1, 2, and 3 iterations,
consistently outperforms Transformer++ across all
tasks (Appendix A.2), which validates the effec-
tiveness of the proposed method.

Parameter Redundancy of IIET. We hypothe-
size that the iterative correction process of IIET
enhances learning efficiency and reduces parame-
ter redundancy. To investigate this, we used Block
Influenc (BI) (Men et al., 2024) to measure layer re-
dundancy in IIET and Transformer++. BI assesses
the influence of each model block on the hidden
state by measuring the similarity between its input
and output; lower similarity indicates higher influ-
ence. Specifically, the BI of a Transformer block is

Model | 340M 740M
\Inference Memory Inference Memory

Transformer++| 49.97 1.37 48.91 2.80
PCformer 14.14 1.41 14.38 2.86
IIET 11.07 1.42 10.95 2.89
IIET-iterO 42.66 1.37 42.03 2.80
IIET-iter1 21.64 1.39 21.47 2.83
HET-iter2 14.63 1.41 14.33 2.86
E-IIET | 25.95 138 | 2212 2.83

Table 2: A comparison of inference speed (tokens per
second), memory consumption (GB) for baseline mod-
els, IIET with varying iteration counts, and E-IIET at
the 340M and 740M parameter scales.

calculated as:

HZtHi—&-l,t
| H ¢ |2 [Hit1e]|2

BL = 1 — Ex, (12)

where H; ; represents the ' row of the i layer’s
input hidden states. We randomly sampled 5,000
text segments from Wikitext to calculate the BI
of each model. As shown in Figure 4, the influ-
ence of IIET’s blocks increases significantly with
iteration steps, demonstrating higher layer utiliza-
tion. This also indicates that the learning potential
of existing large-scale language models remains
under-exploited.

Inference Efficiency. While IIET achieves
strong downstream task performance, the addi-
tional computation introduced by the iterative struc-
ture also limits its inference speed. For autoregres-
sive generation in large language models, the ad-
ditional latency during inference is non-negligible.
Using a single A100 GPU, we compared the gen-
eration speed and memory usage of various large
model configurations during autoregressive infer-
ence. As shown in Table 2, while maintaining a
comparable memory footprint to Transformer++ at
the same parameter scale, Transformers enhanced
through numerical methods exhibit proportionally
higher inference latency. This increased latency
arises from the computational complexity of the
numerical solvers used for higher accuracy. Sim-
ilarly, for IIET models, the observed increase in
latency is directly proportional to the number of
inference iterations.

4 Iteration Influence-Aware Distillation

To improve IIET’s inference efficiency without sac-
rificing performance, we explored the potential of
continuous pre-training to enable a single forward
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Figure 4: Block Influence (BI) distribution across different model architectures at the 340M parameter scale. Higher

BI values indicate lower model redundancy.

Iteration Influence Analysis of 340M IIET

iterative cal 3 - 0.04 0.01 0.01 0.02 003 006 006 003 007

0.10

0.

16 0.12  0.07 0.15 0.19 [ 043

é 0.8 g
t iterative cal 2 - 0.11  0.01 001 000 0.02 003 002 002 001 002 001 003 005 010 001 007 002 000 001 000 001 000 000 001 0.6 g’
E}
S

R . ~-04 5
= iterativecal 1 - 020 006 003 002 007 007 005 006 004 005 005 006 008 0.11 004 013 007 003 003 001 004 000 002 003 gl
3 -02 &
S I=}
© initial cal ﬂ 029 019 011 023 021 018 021 017 0.8 018 022 025 030 022 024 0.9 039 027 015 031 023 026 @

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 T 1 1

N 3\ &) > 5 © 3 $ 9 QS N 2 > > 5 o A > 9o N N Ay 9l D

STIFFIFIFEFIITIIPITIISTSITIPPP P

Layer Index

Figure 5: Impact of different iteration stages on the hidden state within each layer of the 340M IIET model, which
we term iteration influence. Deeper colors indicate larger hidden state changes after this iteration. Due to space
constraints, the results for 740M models will be included in the appendix A 4.

pass that produces outputs equivalent to multiple
iterative corrections. Although a warm-start knowl-
edge distillation approach was initially considered,
our findings (Section 4.3) indicate its difficulty in
achieving model reconvergence to an optimal point.
Recognizing that increased computational capac-
ity is crucial for maximizing parameter utilization
in I[IET, we hypothesized that the varying roles of
layers in representation building within the Trans-
former architecture imply that not all layers require
the same iteration steps for accurate output. To
validate this, we analyzed the impact of each iter-
ation on the hidden state within each block. As
shown in Figure 5, we observed significant vari-
ations in this impact across different layers, with
deeper layers appearing to benefit more from addi-
tional iterations.

4.1 Methodology

To enhance IIET’s inference efficiency, we pro-
pose Iteration Influence-Aware Distillation (ITAD).
ITAD analyzes the iterative process of a pre-trained
IIET, identifying and eliminating redundant com-
putations to produce an efficient IIET (E-IIET). A
subsequent layer-wise self-distillation phase then
recovers E-IIET’s performance.

Iteration Influence. Iteration influence follows
the same computational methodology as block in-
fluence, differing in that its calculation is conducted

within each individual IIET block. For the n'*
block, we consider the input ¥,, and the representa-
tions v, 1 from each iteration 3. Using Eq. 12, we
compute the pairwise differences between these
representations. We hypothesize that iterations
with an Iteration Influence below 0.1 are redun-
dant. As shown in Figure 5, a threshold of 0.1
allows the removal of most iterations while pre-
serving the initial computation within each block.
Based on this criterion, we statically determine the
minimum number of iterations required per layer,
reducing IIET’s computational cost without affect-
ing the number of model parameters. Specifically,
the total number of iterative correction was reduced
from 72 to 15 (340M) and 23 (740M). We refer to
this optimized structure as E-IIET.

Iteration Influence-Aware Distillation. E-
IIET’s continuous pre-training stage employs
a warm-start initialization strategy, directly
inheriting parameters from the pre-trained IIET
model to retain the knowledge acquired during
the initial pre-training phase. To enable E-IIET
to approximate the precise output representations
of IIET, we employ a fine-grained, block-specific
knowledge distillation framework via two comple-
mentary losses: 1) Mean Squared Error (MSE)
Loss: For each block, we use an MSE loss to make

*Note that the final iteration’s result is the current IIET
block’s output.



E-IIET mimic the refined hidden states produced
by IIET. This loss is computed as:

1 — ]
Lais =~ 2; =T — S (13)
1=

where h; are the outputs of the i** block. 2)
Kullback-Leibler (KL) Divergence Loss: To fur-
ther align prediction behavior, we calculate the KL
divergence between the final output distributions
of IIET and E-IIET:

Ly = Dxo (p(2""/7) || p(=""T /7)) (14

where z represents the logits and 7 is the temper-
ature coefficient. By combining these two loss
functions, we train E-IIET to effectively capture
the knowledge embedded within IIET’s iterative
refinement process. The final training objective for
continued pre-training is:

Leuer = Lcg + Lumse + LkL (15)

4.2 Experiments

To train E-IIET, we sample one-third of the total
pre-training tokens for each configuration. We em-
ploy a cosine decay learning rate schedule with a
initial value of 2e-4, while maintaining all other
pre-training hyperparameters. To evaluate the ef-
fectiveness of IIAD, we compare E-IIET against
two baseline student models with standard Euler
structure: B-IIET (initialized with IIET parame-
ters) and B-PCformer (initialized with PCformer
parameters). All the baselines are trained using the
fine-grained supervision method detailed in Sec-
tion 4.1. For a fair comparison, we used the same
evaluation dataset and metrics described in Sec-
tion 3.3.

4.3 Results

Main Results. Table 1 shows the main results
of Iteration Influence-Aware Distillation Phase.
Direct distillation of PCformer and IIET into a
standard Euler structure leads to significant per-
formance degradation (i.e. B-PCformer, B-IIET),
highlighting the critical role of the additional com-
putational budget in higher-order methods for main-
taining computational accuracy. Compared to
IIET’s performance in the Pre-training Phase, E-
IIET retains most of the model’s capabilities while
reducing the average additional iterative compu-
tational overhead by 70%. This demonstrates the
effectiveness of the IIAD method.

Inference Efficiency. We compared the infer-
ence speed and memory usage of our main models
on two parameter scales. Table 2 shows that E-IIET
achieves over a 2x speedup and improved memory
efficiency compared to IIET. However, due to the
additional FLOPs introduced by the necessary iter-
ative process, E-IIET still experiences some infer-
ence latency compared to the vanilla Transformer.
In future work, we expect to further explore the pos-
sibility of improving IIET efficiency by leveraging
techniques such as conditional computation.

5 Related Work

The connection between residual connections and
ODEs, initially proposed by Weinan (2017), has
spurred extensive research into ODE-based neural
network architectures. This includes innovative
designs like Neural ODEs (Chen et al., 2018) and
applications to convolutional networks (Zhu et al.,
2023). Several works based on implicit Euler meth-
ods have focused on enhancing model adversar-
ial robustness and generalization capabilities (Kim
et al., 2024; Li et al., 2020), whereas we concen-
trate on improving language model performance.
Recent efforts have successfully applied ODE prin-
ciples to Transformers, exemplified by PCformer
(Li et al., 2024), which shows substantial improve-
ments in language modeling tasks. Our proposed
IIET, however, achieves stronger performance with
a simpler architecture and offers enhanced infer-
ence efficiency compared to PCformer.

6 Conclusions

We propose a novel Transformer architecture, the
Iterative Implicit Euler Transformer (IIET), de-
signed for enhanced language modeling perfor-
mance. IIET leverages the iterative implicit Eu-
ler method, providing substantial improvements
over vanilla Transformers with a simplified archi-
tecture compared to PCformer. Our experiments
show that IIET’s performance advantage over both
baselines grows with model size, with significant
gains observed at 340M and 740M parameters. Fur-
thermore, we introduce an inference acceleration
technique for IIET, which employs iteration influ-
ence analysis and continued pretraining to reduce
redundant computations. This approach achieves a
2x inference speedup while preserving the model’s
performance benefits.



7 Limitations

Limitations in computational resources precluded
the evaluation of IIET’s performance on larger lan-
guage models. Additionally, the [IAD method, de-
signed to improve efficiency over IIET, introduces
further computational demands. Future research
will focus on exploring the feasibility of determin-
ing layer-specific iteration requirements during pre-
training, thus facilitating the creation of efficient
IIET models through single-pass training.
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A Appendix
A.1 IIET Algorithm

Algorithm 1 details the computation flow within a
single IIET layer, where H stores the previously
computed.

Algorithm 1 Iterative Implicit Euler Paradigm

1: procedure IIET BLOCK(yn, H)

2: Fo  F (¥Yn,0n) > Compute initial value
3:  H.add(FD) > Store F,
4: fori <~ Otor —1do

5: Compute yy, 7 using H via Eq. 11

6: Fir' « F(yi,1,0n) > Compute correct value
7: H.update(Fi, — Fif1) > Update F}.
8: end for

9: Compute yy, 1 using H via Eq. 11
10: return yy, ;1 > Return the layer output

11: end procedure

A.2 Performance details of the model with
different iterations.

We evaluated the downstream task performance of
the 340M model trained with varying numbers of
iterations, as described in Section 3.5. As shown
in Table 3, with an increase in the number of it-
erations, the performance of IIET on downstream
tasks progressively improved. It achieved com-
parable performance to PCformer at two iteration
corrections. Using identical training data, IIET
showed superior data fitting ability, as indicated
by its perplexity (PPL) scores, compared to other
models.

A3 55M IIET model

We train the IIET model with 55 million param-
eters to validate the optimal iteration steps. The
model is stack of 12 layers with a hidden dimen-
sion 512. The IIET model achieved optimal results
at the third iteration for both the 55 million and 340
million parameter scales.

A.4 TIteration Influence of 740M IIET
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Wiki. LMB. | LMB. PiQA Hella. SCIQ ARC-¢c  Wino. | Avg.
Model ppld ppld | acct acc_norm T acc_normt acct acc_norm T acc? T
Transformer++ | 28.2 783 | 289 64.3 34.2 76.0 23.6 519 | 46.5
PCformer 25,7 47.0 | 33.1 64.9 36.3 71.5 24.7 53.3 | 483
IIET 25.0 305 | 37.1 65.2 36.9 79.4 23.9 51.0 | 48.9
IIET-iterO 27.07 48.52 | 32.43 65.07 34.80 78.30 23.46 50.36 | 47.40
ET-iter1 25.96 36.34 | 34.43 64.69 36.07 76.30 23.29 50.12 | 47.48
IIET-iter2 25.49 35.76 | 34.64 64.96 36.80 77.20 24.23 51.85 | 48.28

Table 3: Performance comparison of IIET with varying iteration counts at 340 million parameters.

Iteration Influence Analysis of 740M IIET

iterative cal 3 - 0.07 0.04 0.02 010 002 044 035 008 0.0 006 005 009 030 060 036 016 0.60 030 027 036 048 022 []_5

iterative cal 2 - 0.19  0.03 003 006 002 001 007 002 003 001 002 003 011 001 001 006 005 002 003 002 006 000 000 0.00

iterative cal 1 - 032 0.08 0.07 007 006 004 008 006 006 003 005 007 012 002 005 010 016 006 0.16 006 0.13 002 0.00 0.00 - 05

initial cal -ﬁ 029 025 021 022 017 016 019 017 014 019 023 028 047 048 022 030 mﬂ 034 031 014 031 047
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Layer Index

Figure 6: Impact of different iteration stages on the hidden state within each layer of the 740M IIET model, which
we term iteration influence. Deeper colors indicate larger hidden state changes after this iteration.
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