
Efficient Numerical Transformer via Implicit Iterative Euler Method

Anonymous ACL submission

Abstract001

High-order numerical methods enhance Trans-002
former performance in tasks like NLP and003
CV, but introduce a performance-efficiency004
trade-off due to increased computational over-005
head. Our analysis reveals that conventional006
efficiency techniques, such as distillation, can007
be detrimental to the performance of these008
models, exemplified by PCformer. To explore009
more optimizable ODE-based Transformer ar-010
chitectures, we propose the Iterative Implicit011
Euler Transformer (IIET), which simplifies012
high-order methods using an iterative implicit013
Euler approach. This simplification not only014
leads to superior performance but also facil-015
itates model compression compared to PC-016
former. To enhance inference efficiency, we in-017
troduce Iteration Influence-Aware Distillation018
(IIAD). Through a continued training phase,019
IIAD eliminates non-essential iterations, reduc-020
ing IIET’s inference computational overhead021
by over 60% while maintaining 99.4% task per-022
formance accuracy. On lm-evaluation-harness,023
IIET demonstrates a 2.65% improvement over024
vanilla Transformers and a 0.8% gain over PC-025
former in average accuracy. The efficient vari-026
ant E-IIET achieves a 1.83x speedup and a per-027
formance gain exceeding 0.5% compared to028
PCformer.029

1 Introduction030

The integration of advanced numerical Ordinary031

Differential Equation (ODE) solvers into Trans-032

former architectures (Vaswani, 2017) has spurred033

significant progress in natural language process-034

ing (NLP) (Li et al., 2022, 2024; Tong et al.,035

2025) and image synthesis (Ho et al., 2020; Lu036

et al., 2022a,b; Zheng et al., 2024). Leverag-037

ing high-order methods, particularly Predictor-038

Corrector (PC) schemes, within Transformer resid-039

ual connections has demonstrated the capacity to040

enhance model learning without increasing parame-041

ter counts, offering a pathway to both performance042

and parameter efficiency (Li et al., 2022, 2024).043

However, the promise of high-order PCformers 044

(Li et al., 2024) is often constrained by deployment 045

inefficiencies. The inherent linear dependency in 046

nested computations across layers during inference 047

poses critical inference latency. A straightforward 048

approach to mitigating this deployment bottleneck 049

is Knowledge Distillation (Hinton, 2015; Kim and 050

Rush, 2016). However, our preliminary experi- 051

ments demonstrate that the inherent architectural 052

discrepancy between the predictor and corrector 053

within PCformers impedes effective knowledge 054

transfer via distillation. Our empirical investiga- 055

tions reveal a obvious 54% performance degrada- 056

tion in distilled student models, even the students 057

initialized with PCformer’s parameters. 058

Confronted with these deployment bottle- 059

necks, we pivot towards architectural innovations 060

grounded in numerical method principles. A naive 061

yet seemingly logical initial approach might be to 062

pursue uniformity in numerical methods between 063

predictor and corrector, such as pairing explicit and 064

backward Euler schemes. Similar attempts have 065

been validated in previous studies (Li et al., 2024; 066

Zhao et al., 2024), where a high-order predictor 067

combined with a backward Euler method demon- 068

strated promising results, particularly on smaller 069

datasets. However, ensuring solution precision in- 070

herently requires iterative solvers to obtain the final 071

solution, a process that shares the same merits as 072

high-order methods. Building on this insight, we 073

take a step further to explore whether an iterative 074

corrector mechanism is equally critical for achiev- 075

ing both superior solution fidelity and unlocking 076

genuine efficiency gains. 077

To this end, we introduce the Iterative Implicit 078

Euler Transformer (IIET). Concretely, in IIET, each 079

iteration represents a computational step within 080

an implicit Euler iterative solver, where multiple 081

corrections to the initial prediction are made to 082

ensure output precision. To further strengthen nu- 083

merical stability, we also employ linear multistep 084

1

methods during each correction step 1. This ar-085

chitecture, detailed in Figure 1 (d), is designed to086

not only achieve superior performance that scales087

with increasing iterations, exhibiting competitive088

results against PCformers, but also to be inherently089

compressible due to its iterative nature. Notably,090

our top-performing IIET models (340M and 740M091

parameters) achieve remarkable performance im-092

provements of 2.4% and 2.9% respectively over093

equivalent vanilla Transformers.094

In this way, we can effectively accelerate the in-095

ference of IIET via disitillation techniques. Here,096

we further propose an Iteration Influence-Aware097

Distillation (IIAD), inspired by structured pruning098

techniques (Men et al., 2024; Xia et al., 2023; Chen099

et al., 2024), to reduce redundant iterations. Specif-100

ically, IIAD first evaluates ‘iteration influence’ by101

measuring the similarity between the inputs and102

outputs of each iteration, determining the optimal103

number of iterations per layer. Subsequently, a104

continued pre-training phase is employed to re-105

store the model’s capabilities. This process yields106

efficient IIET (E-IIET), which demonstrably re-107

duces IIET’s inference computational overhead by108

over 60% while impressively maintaining 99.4%109

of its downstream task performance. Ultimately,110

our 340M and 740M parameter E-IIET models not111

only outperform the vanilla Transformer by 2.4 and112

2.3 points, respectively but also achieve a 1.83x113

speedup with a performance gain exceeding 0.5%114

compared to PCformers, showcasing a significant115

advancement in both performance and deployment116

efficiency.117

2 Background118

We begin by establishing the connection between119

residual connections and the Euler method, and120

then discuss Transformer optimization strategies121

informed by advanced explicit and implicit numer-122

ical solutions of ODEs. Our work builds upon123

the standard Transformer architecture (Vaswani,124

2017), which comprises a stack of identical lay-125

ers. For language modeling, each layer typically126

comprises a causal attention (CA) block and a feed-127

forward network (FFN) block. With residual con-128

nections, the output of each block can be formu-129

lated as yn+1 = yn + F(yn, θn), where F(yn, θn)130

represents the transformation performed by either131

the CA or FFN block with parameters θn.132

1IIET can be viewed as an instance of the PC paradigm,
employing an Euler predictor and an iterative Euler corrector.

2.1 Euler Method in Residual Networks 133

The Euler method provides a linear approximation 134

for first-order ODEs, defined as y′(t) = f(y(t), t) 135

with an initial value y(t0) = y0. Given a step size 136

h where tn+1 = tn + h, the method computes the 137

subsequent value yn+1 as: 138

yn+1 = yn + hf(yn, tn) (1) 139

where f(yn, tn) represents the rate of change of y, 140

determined by its current value and time t. Notably, 141

this formulation shares a structural similarity with 142

residual networks, where a trainable function, F(·), 143

approximates these changes. Consequently, from 144

an ODE perspective, residual connections can be in- 145

terpreted as a first-order discretization of the Euler 146

method. Although the success of residual connec- 147

tions highlights the benefits of the Euler method, its 148

first-order nature introduces significant truncation 149

errors (Li et al., 2022, 2024), limiting the precision 150

of yn+1. Fortunately, more advanced numerical 151

methods exist and have been successfully applied 152

to neural networks. 153

2.2 Advanced Numerical Transformers 154

To improve the precision of yn+1, the Runge-Kutta 155

(RK) method offers a more accurate alternative. In- 156

spired by the o-order RK method, the ODE Trans- 157

former (Li et al., 2022) replaces residual connec- 158

tions with a RK process: 159

yn+1 = yn +
∑o

i=1
γiFi (2) 160

F1 = F(yn, θn) (3) 161

Fi = F(yn +
∑i−1

j=1
βijFj , θn) (4) 162

where Fi represents the ith order results computed 163

by a shared transformer block F(∗, θn). The coef- 164

ficients γi, βij are learnable parameters. This archi- 165

tecture effectively mitigates truncation error, lead- 166

ing to significant performance gains in generation 167

tasks such as machine translation and abstractive 168

summarization. 169

Compared to explicit numerical methods, im- 170

plicit numerical methods typically offer higher pre- 171

cision and stability. The Predictor-Corrector (PC) 172

method, using an explicit predictor for initial esti- 173

mates and an implicit corrector for refinement, is a 174

classic example. Recent work has demonstrated the 175

benefits of integrating PC components into neural 176

network architecture. PCformer (Li et al., 2024) 177

2

�0

푏푙����

푏푙����−1

푏푙���0

��−1

��

��+1

× � 푖푡푒��푡푖��

푏�

푏�

��+1

(a) Vanilla Transformer (b) Linear Multi-step
Transformer

(c) Predictor-Corrector Transformer (d) Iterative Implicit Euler
Transformer

�0

푏푙����

푏푙����−1

푏푙���0

��−1

��

��+1

�0

푏푙����

푏푙����−1

푏푙���0

��−1

��

��+1

�0

푏푙����

푏푙����−1

푏푙���0

��−1

��

��+1
푖

Figure 1: Architectural comparison: (a) Vanilla Transformer; (b) Linear multistep-enhanced Transformer; (c)
PCformer with 2nd-order Runge-Kutta predictor and 1st-order Euler corrector; (d) Our proposed Iterative Implicit
Euler Transformer (IIET). The iteration steps r in IIET is configurable, with experimental validation determining
r = 3 as the optimal setting in this work.

employs an o-order RK predictor and a linear multi-178

step (Wang et al., 2019) corrector, defined as:179

yp = yn +
∑o

i=1
γ(1− γ)o−iFi (5)180

181 yn+1 = yn + αF(yp, θn) +

n∑
i=n−2

βF̃i (6)182

where Fi shares the same meaning as in Eq. 2183

and F̃i denotes the outputs of previous blocks.184

α, β, and γ are learnable coefficients. Specifically,185

PCformer’s predictor incorporates an Exponential186

Moving Average (EMA) to weight the contribu-187

tions of different orders, while the corrector inte-188

grates previous block outputs for increased pre-189

cision. PCformer achieves superior performance190

over the ODE Transformer and, to some extent,191

unifies structural paradigms for Transformers im-192

proved with implicit numerical methods. Our IIET193

can be interpreted as a specific instance within the194

PC paradigm, with a particular emphasis on the195

iterative corrector component.196

3 Iterative Implicit Euler Transformer197

In this section, we detail the theoretical founda-198

tion and core architectural design of the Iterative199

Implicit Euler Transformer (IIET). Our approach200

leverages the inherent stability of the implicit Euler201

method, a cornerstone of numerical analysis, to202

address key challenges in deep sequence modeling.203

3.1 Iterative Implicit Euler Method204

The implicit Euler method, also known as the Back-205

ward Euler method, is a foundational first-order im-206

plicit numerical technique celebrated for its robust 207

stability properties, particularly advantageous in 208

handling stiff systems (LeVeque, 2007). Unlike its 209

explicit counterparts, the implicit Euler method em- 210

ploys a backward difference quotient, formulated 211

as: 212

yn+1 = yn + hf(yn+1, tn+1). (7) 213

The implicit nature of Eq. 7, where the computation 214

of yn+1 depends on its value at the same time step 215

tn+1, inherently requires iterative solvers from nu- 216

merical analysis to obtain a solution. Specifically, 217

in traditional numerical methods for solving such 218

implicit equations, Newton’s iteration is frequently 219

employed due to its quadratic convergence rate and 220

robustness (Zhang et al., 2017; Shen et al., 2020; 221

Kim et al., 2024). However, within the context of 222

neural sequence modeling, where computational 223

efficiency and architectural simplicity are often pri- 224

oritized, we propose to investigate the efficacy of 225

a simpler alternative: fixed-point iteration. While 226

prior works like Li et al. (2024) have utilized ex- 227

plicit methods for initial approximations followed 228

by a single Backward Euler correction, the poten- 229

tial of iterative refinement within the implicit cor- 230

rector remains largely unexplored. 231

Thus, challenging the implicit assumption that 232

a strong predictor is sufficient for high precision 233

(Li et al., 2024), we propose the central hypothesis 234

that iterative refinement inside the implicit correc- 235

tor constitutes a pivotal mechanism for enhancing 236

solution fidelity. We argue that a single-step cor- 237

rection inherently limits the achievable accuracy, 238

3

particularly when modeling intricate sequence dy-239

namics and seeking high-fidelity representations of240

yn+1. Consequently, this work rigorously investi-241

gates whether leveraging iterative solutions within242

the implicit corrector can translate to demonstrable243

gains in downstream model performance.244

Intriguingly, our empirical findings reveal245

that computationally efficient fixed-point iteration246

(Rhoades, 1976) yields surprisingly high precision,247

often on par with the more computationally inten-248

sive Newton’s method, particularly within our neu-249

ral sequence modeling framework. Our proposed250

Iterative Implicit Euler (IIE) method commences251

with an initial approximation, y0n+1, derived from252

an explicit Euler step. This initial estimate is then253

iteratively refined through r fixed-point iterations254

as defined below:255

y0n+1 = yn + hf(yn, tn) (8)256

yin+1 = yn + hf(yi−1
n+1, tn+1), i ∈ [1..r]. (9)257

The final approximation yn+1 is thus given by yrn+1,258

representing the output of the rth iteration.259

The IIE method, while formally retaining its first-260

order numerical accuracy, achieves a significant261

enhancement in the approximation of yn+1through262

iterative refinement. This iterative process engen-263

ders a structured form of nested computations, su-264

perficially resembling higher-order methods, albeit265

through a fundamentally distinct mechanism rooted266

in repeated fixed-point iterations. Acknowledg-267

ing the increased computational cost, the inherent268

structural regularity of IIE, predicated solely on the269

preceding iteration’s output, emerges as a crucial270

enabler for inference efficiency optimizations, as271

detailed in Section 4. This carefully engineered272

balance between iteratively enhanced precision and273

structural simplicity underpins the design philoso-274

phy of the IIET architecture.275

3.2 Model Architecture276

Building on the IIE method, we propose the Iter-277

ative Implicit Euler Transformer (IIET) as a foun-278

dational architecture for sequence modeling, par-279

ticularly for large language models. Adopting the280

LLaMA architecture (Touvron et al., 2023b) (Trans-281

former++), IIET consists of N stacked transformer282

decoder layers. Each layer comprises a causal at-283

tention module followed by a feedforward mod-284

ule, and employs rotary positional encoding (Su285

et al., 2024), SiLU activation (Shazeer, 2020), and286

RMS normalization (Zhang and Sennrich, 2019).287

Given an input sequence x = x1, ..., xL of length 288

L, the initial input embeddings are represented as 289

X0 = [x1, ..., xL] ∈ RL×dmodel , where dmodel is the 290

hidden dimension. The output of each subsequent 291

layer is then computed as Xn = Decoder(Xn−1), 292

for n ∈ [1, N]. 293

The key distinction between IIET and Trans- 294

former++ lies in IIET’s integration of the IIE 295

method within each decoder layer (Figure 1). Un- 296

like Transformer++, which directly computes the 297

next layer’s output using a single Euler step, IIET 298

employs an iterative refinement process. Specifi- 299

cally, IIET first estimates an initial value, y0n+1, via 300

a single Euler step (Eq. 8): 301

y0n+1 = yn + F(yn, θn). (10) 302

where F(∗, θn) represents the nth transformer 303

layer with parameters θn. This initial estimate in 304

IIET corresponds to the direct output of each layer 305

in Transformer++. 306

In the subsequent iterations, our preliminary 307

experiments suggest that incorporating outputs 308

from previous layers, similar to Transformer- 309

DLCL (Wang et al., 2019), can enhance the perfor- 310

mance. We thus modify Eq. 9 as follows: 311

yin+1 = yn + αnF(yi−1
n+1, θn) +

n−1∑
j=0

αjF̃j , (11) 312

where i ∈ [1..r] denotes the iteration step, F̃j rep- 313

resents the output of the previous layers j, and α 314

represents learnable layer merge coefficients. Ap- 315

pendix A.1 details the computation flow within a 316

single IIET layer. 317

3.3 Experimental Setups 318

Limited by resources, our experiments primarily ex- 319

plore small-scale language modeling, benchmark- 320

ing IIET against a competitive Transformer base- 321

line incorporating modern architectural improve- 322

ments, as well as the PCformer, which employs an 323

advanced high-order method as a predictor and a 324

multistep method as a corrector. 325

Datasets and Evaluation Metrics. Our models 326

are pre-trained on SlimPajama (Soboleva et al., 327

2023) and tokenized using the LLaMA2 tok- 328

enizer (Touvron et al., 2023a). From the origi- 329

nal 627B-token dataset, we sampled 16B and 30B 330

tokens for training the 340M and 740M parame- 331

ter models, respectively. For comprehensive eval- 332

uation, we assess perplexity (PPL) on Wikitext 333

4

Wiki. LMB. LMB. PiQA Hella. SCIQ ARC-c Wino. Avg.
Scale Model ppl ↓ ppl ↓ acc ↑ acc_norm ↑ acc_norm ↑ acc ↑ acc_norm ↑ acc ↑ ↑
Pre-training Phase

340M Params Transformer++ 28.2 78.3 28.9 64.3 34.2 76.0 23.6 51.9 46.5
16B Tokens PCformer 25.7 47.0 33.1 64.9 36.3 77.5 24.7 53.3 48.3

IIET 25.0 30.5 37.1 65.2 36.9 79.4 23.9 51.0 48.9

740M Params Transformer++ 23.3 34.8 36.1 66.4 38.4 78.6 24.5 50.2 49.0
30B Tokens PCformer 21.2 22.0 41.0 66.3 41.3 82.0 23.3 51.2 50.9

IIET 20.7 21.1 41.2 68.9 42.5 82.1 23.8 53.1 51.9

Iteration Influence-Aware Distillation Phase

340M Params B-PCformer 27.2 50.4 32.2 64.6 34.9 78.0 24.7 51.3 47.6
5B Tokens B-IIET 27.0 34.6 36.1 64.0 35.0 80.7 23.0 51.5 48.4

E-IIET 25.7 30.9 37.4 64.4 35.8 80.4 23.5 52.1 48.9

740M Params B-PCformer 22.5 29.5 37.4 66.8 39.2 80.0 23.2 50.9 49.6
10B Tokens B-IIET 23.0 29.9 37.6 67.4 38.7 79.7 25.2 53.0 50.3

E-IIET 21.2 24.2 40.1 68.5 41.0 81.0 24.6 52.4 51.3

Table 1: Comparison of results between our models and baseline models in the Pre-training Phase and Iteration
Influence-Aware Distillation Phase. The individual task performance is via zero-shot. We report the main results on
the same set of tasks reported by Gu and Dao (2023). The last column shows the average over all benchmarks that
use (normalized) accuracy as the metric. Bold values represent the best results in each set.

(Wiki.) (Merity et al., 2016) and consider sev-334

eral downstream tasks covering common-sense335

reasoning and question answering: LAMBADA336

(LMB.) (Paperno et al., 2016), PiQA (Bisk et al.,337

2020), HellaSwag (Hella.) (Zellers et al., 2019),338

WinoGrande (Wino.) (Sakaguchi et al., 2021),339

ARC-Challenge (ARC-c) (Clark et al., 2018), and340

SCIQ (Welbl et al., 2017). We report PPL on Wiki-341

text and LAMBADA; length-normalized accuracy342

on HellaSwag, ARC-Challenge, and PiQA; and343

standard accuracy on the remaining tasks. All344

evaluations are conducted using the lm-evaluation-345

harness (Gao et al., 2021).346

Baselines. We evaluate IIET’s performance347

against two strong baselines: Transformer++ (Tou-348

vron et al., 2023a) and PCformer (Li et al., 2024).349

Transformer++ adopts the LLaMA architecture, in-350

corporating rotary positional embeddings, SiLU351

activation, and RMS normalization. PCformer em-352

ploys a 2nd-order Runge-Kutta predictor and a lin-353

ear multi-step corrector.2 For a fair comparison,354

all models were trained on the same dataset for an355

identical number of tokens.356

Training Details. We train all models from357

scratch at two scales, 340M and 740M parameters,358

to assess IIET’s performance across different sizes.359

All models are trained using AdamW (Loshchilov360

et al., 2017) with a maximum learning rate of 3e-4.361

2We also explored using a 4th-order Runge-Kutta predictor
and more complex correctors, but these resulted in increased
training costs without substantial performance improvements
in language modeling.

1 2 3 4

77.6

68.2
68.4

67.4

66.6

67.4

Pe
rp

le
xi

ty

IIET 55M

1 2 3 4

28.2

25.7
26.0

25.5

25.0
25.2

IIET 340M

Iterative Correction Steps

Figure 2: Perplexity (PPL) on the Wikitext test set for
the 55M and 340M IIET models as a function of itera-
tive correction steps. The purple and green dashed lines
represent the PPL of Transformer++ and PCformer, re-
spectively, at the same parameter scale.

The 340M models use a batch size of 0.5M tokens, 362

while the 740M models use a batch size of 1M to- 363

kens. We employ a cosine learning rate schedule 364

with a warmup ratio of 0.01, a weight decay of 365

0.01, and a gradient clipping of 1.0 for both model 366

sizes. 367

3.4 Experimental Results 368

Number of Iterations. We initiated the process 369

by identifying the optimal iteration steps r us- 370

ing the 340M IIET model and a smaller variant 371

with only 55 million parameters (detailed in Ap- 372

pendix A.3), and then applying the optimized value 373

to larger models. We evaluated the models’ per- 374

formance on Wikitext. The performance gains, as 375

illustrated in Figure 2, demonstrate the benefit of it- 376

erative correction. Specifically, IIET’s performance 377

exceeds PCformer at r = 2 and reaches its peak at 378

r = 3. 379

5

5 10 15 20 25 30
2.35

2.45

2.55

2.65

2.75

Total Steps (k)

Tr
ai

ni
ng

L
os

s
Transformer++

IIET-iter0

IIET-iter1

IIET-iter2
IIET

Figure 3: A comparison of training curves between
Transformer++ and IIET with different iteration counts
at the 340M parameter scale.

Results. The advantages of IIET are highlighted380

by its performance on large language model evalu-381

ation benchmarks. As demonstrated in Table 1 Pre-382

training Phase, IIET consistently surpasses Trans-383

former++ and PCformer with comparable capacity.384

At a parameter scale of 340 million, IIET achieves385

a mean accuracy of 2.4% higher than that of Trans-386

former++ and 0.6% higher than that of PCformer387

across all six challenging subtasks. Notably, the388

performance disparity amplifies progressively with389

increasing parameter scale, attaining 2.9% and 1%390

at 740 million parameters. This observation, con-391

sistent with Li et al. (2024)’s, confirms the robust392

scalability of IIET and similar numerical Trans-393

formers, showcasing their performance potential394

with increasing model parameters and training data.395

3.5 Analysis396

Impact of Iteration Steps. To further analyze397

the impressive performance of IIET, we conducted398

experiments with the 340 million parameter model.399

Figure 3 shows the training curves for IIET with400

different iteration steps. As the number of itera-401

tions increases, the model’s ability to fit the data402

gradually improves. The evaluation on the bench-403

mark confirms that IIET, with 1, 2, and 3 iterations,404

consistently outperforms Transformer++ across all405

tasks (Appendix A.2), which validates the effec-406

tiveness of the proposed method.407

Parameter Redundancy of IIET. We hypothe-408

size that the iterative correction process of IIET409

enhances learning efficiency and reduces parame-410

ter redundancy. To investigate this, we used Block411

Influenc (BI) (Men et al., 2024) to measure layer re-412

dundancy in IIET and Transformer++. BI assesses413

the influence of each model block on the hidden414

state by measuring the similarity between its input415

and output; lower similarity indicates higher influ-416

ence. Specifically, the BI of a Transformer block is417

Model 340M 740M

Inference Memory Inference Memory

Transformer++ 49.97 1.37 48.91 2.80
PCformer 14.14 1.41 14.38 2.86
IIET 11.07 1.42 10.95 2.89

IIET-iter0 42.66 1.37 42.03 2.80
IIET-iter1 21.64 1.39 21.47 2.83
IIET-iter2 14.63 1.41 14.33 2.86

E-IIET 25.95 1.38 22.12 2.83

Table 2: A comparison of inference speed (tokens per
second), memory consumption (GB) for baseline mod-
els, IIET with varying iteration counts, and E-IIET at
the 340M and 740M parameter scales.

calculated as: 418

BIi = 1− EH,t

HT
i,tHi+1,t

||Hi,t||2||Hi+1,t||2
(12) 419

where Hi,t represents the tth row of the ith layer’s 420

input hidden states. We randomly sampled 5,000 421

text segments from Wikitext to calculate the BI 422

of each model. As shown in Figure 4, the influ- 423

ence of IIET’s blocks increases significantly with 424

iteration steps, demonstrating higher layer utiliza- 425

tion. This also indicates that the learning potential 426

of existing large-scale language models remains 427

under-exploited. 428

Inference Efficiency. While IIET achieves 429

strong downstream task performance, the addi- 430

tional computation introduced by the iterative struc- 431

ture also limits its inference speed. For autoregres- 432

sive generation in large language models, the ad- 433

ditional latency during inference is non-negligible. 434

Using a single A100 GPU, we compared the gen- 435

eration speed and memory usage of various large 436

model configurations during autoregressive infer- 437

ence. As shown in Table 2, while maintaining a 438

comparable memory footprint to Transformer++ at 439

the same parameter scale, Transformers enhanced 440

through numerical methods exhibit proportionally 441

higher inference latency. This increased latency 442

arises from the computational complexity of the 443

numerical solvers used for higher accuracy. Sim- 444

ilarly, for IIET models, the observed increase in 445

latency is directly proportional to the number of 446

inference iterations. 447

4 Iteration Influence-Aware Distillation 448

To improve IIET’s inference efficiency without sac- 449

rificing performance, we explored the potential of 450

continuous pre-training to enable a single forward 451

6

L01 L02 L03 L04 L05 L06 L07 L08 L09 L10 L11 L12 L13 L14 L15 L16 L17 L18 L19 L20 L21 L22 L23 L24

Layer Index

Transformer++

IIET-iter0

IIET-iter1

IIET-iter2

IIET

M
od

el
 A

rc
hi

te
ct

ur
e

0.87 0.26 0.24 0.18 0.17 0.23 0.04 0.05 0.04 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.06 0.05 0.05 0.05 0.06 0.10 0.11

0.79 0.31 0.22 0.17 0.20 0.18 0.18 0.21 0.32 0.28 0.19 0.19 0.13 0.05 0.06 0.06 0.06 0.06 0.05 0.05 0.02 0.03 0.08 0.37

0.81 0.38 0.29 0.16 0.42 0.40 0.40 0.53 0.28 0.25 0.19 0.20 0.24 0.16 0.24 0.10 0.06 0.09 0.07 0.07 0.15 0.22 0.23 0.22

0.69 0.33 0.28 0.15 0.26 0.40 0.25 0.24 0.28 0.32 0.19 0.15 0.23 0.17 0.23 0.16 0.23 0.22 0.10 0.10 0.46 0.04 0.29 0.36

0.80 0.36 0.14 0.20 0.32 0.16 0.27 0.19 0.22 0.22 0.15 0.27 0.56 0.50 0.26 0.19 0.43 0.77 0.65 0.47 0.42 0.56 0.38 0.34

Block Influence Analysis of 340M Parameter Model

0.2

0.4

0.6

0.8

B
lock Influence

Figure 4: Block Influence (BI) distribution across different model architectures at the 340M parameter scale. Higher
BI values indicate lower model redundancy.

L01 L02 L03 L04 L05 L06 L07 L08 L09 L10 L11 L12 L13 L14 L15 L16 L17 L18 L19 L20 L21 L22 L23 L24

Layer Index

initial cal

iterative cal 1

iterative cal 2

iterative cal 3

C
al

cu
la

tio
n

Ph
as

e

0.90 0.29 0.19 0.11 0.23 0.21 0.18 0.21 0.17 0.18 0.18 0.22 0.25 0.30 0.22 0.24 0.19 0.39 0.27 0.15 0.31 0.59 0.23 0.26

0.20 0.06 0.03 0.02 0.07 0.07 0.05 0.06 0.04 0.05 0.05 0.06 0.08 0.11 0.04 0.13 0.07 0.03 0.03 0.01 0.04 0.00 0.02 0.03

0.11 0.01 0.01 0.00 0.02 0.03 0.02 0.02 0.01 0.02 0.01 0.03 0.05 0.10 0.01 0.07 0.02 0.00 0.01 0.00 0.01 0.00 0.00 0.01

0.04 0.01 0.01 0.02 0.03 0.02 0.03 0.06 0.06 0.03 0.07 0.10 0.16 0.51 0.12 0.07 0.49 0.49 0.53 0.49 0.54 0.15 0.19 0.43

Iteration Influence Analysis of 340M IIET

0.2

0.4

0.6

0.8

Iteration Influence

Figure 5: Impact of different iteration stages on the hidden state within each layer of the 340M IIET model, which
we term iteration influence. Deeper colors indicate larger hidden state changes after this iteration. Due to space
constraints, the results for 740M models will be included in the appendix A.4.

pass that produces outputs equivalent to multiple452

iterative corrections. Although a warm-start knowl-453

edge distillation approach was initially considered,454

our findings (Section 4.3) indicate its difficulty in455

achieving model reconvergence to an optimal point.456

Recognizing that increased computational capac-457

ity is crucial for maximizing parameter utilization458

in IIET, we hypothesized that the varying roles of459

layers in representation building within the Trans-460

former architecture imply that not all layers require461

the same iteration steps for accurate output. To462

validate this, we analyzed the impact of each iter-463

ation on the hidden state within each block. As464

shown in Figure 5, we observed significant vari-465

ations in this impact across different layers, with466

deeper layers appearing to benefit more from addi-467

tional iterations.468

4.1 Methodology469

To enhance IIET’s inference efficiency, we pro-470

pose Iteration Influence-Aware Distillation (IIAD).471

IIAD analyzes the iterative process of a pre-trained472

IIET, identifying and eliminating redundant com-473

putations to produce an efficient IIET (E-IIET). A474

subsequent layer-wise self-distillation phase then475

recovers E-IIET’s performance.476

Iteration Influence. Iteration influence follows477

the same computational methodology as block in-478

fluence, differing in that its calculation is conducted479

within each individual IIET block. For the nth 480

block, we consider the input yn and the representa- 481

tions yin+1 from each iteration 3. Using Eq. 12, we 482

compute the pairwise differences between these 483

representations. We hypothesize that iterations 484

with an Iteration Influence below 0.1 are redun- 485

dant. As shown in Figure 5, a threshold of 0.1 486

allows the removal of most iterations while pre- 487

serving the initial computation within each block. 488

Based on this criterion, we statically determine the 489

minimum number of iterations required per layer, 490

reducing IIET’s computational cost without affect- 491

ing the number of model parameters. Specifically, 492

the total number of iterative correction was reduced 493

from 72 to 15 (340M) and 23 (740M). We refer to 494

this optimized structure as E-IIET. 495

Iteration Influence-Aware Distillation. E- 496

IIET’s continuous pre-training stage employs 497

a warm-start initialization strategy, directly 498

inheriting parameters from the pre-trained IIET 499

model to retain the knowledge acquired during 500

the initial pre-training phase. To enable E-IIET 501

to approximate the precise output representations 502

of IIET, we employ a fine-grained, block-specific 503

knowledge distillation framework via two comple- 504

mentary losses: 1) Mean Squared Error (MSE) 505

Loss: For each block, we use an MSE loss to make 506

3Note that the final iteration’s result is the current IIET
block’s output.

7

E-IIET mimic the refined hidden states produced507

by IIET. This loss is computed as:508

LMSE =
1

n

n∑
i=1

∥hIIET
i − hE-IIET

i ∥22 (13)509

where hi are the outputs of the ith block. 2)510

Kullback-Leibler (KL) Divergence Loss: To fur-511

ther align prediction behavior, we calculate the KL512

divergence between the final output distributions513

of IIET and E-IIET:514

LKL = DKL
(
p(zIIET/τ) ∥ p(zE-IIET/τ)

)
(14)515

where z represents the logits and τ is the temper-516

ature coefficient. By combining these two loss517

functions, we train E-IIET to effectively capture518

the knowledge embedded within IIET’s iterative519

refinement process. The final training objective for520

continued pre-training is:521

LE-IIET = LCE + LMSE + LKL (15)522

4.2 Experiments523

To train E-IIET, we sample one-third of the total524

pre-training tokens for each configuration. We em-525

ploy a cosine decay learning rate schedule with a526

initial value of 2e-4, while maintaining all other527

pre-training hyperparameters. To evaluate the ef-528

fectiveness of IIAD, we compare E-IIET against529

two baseline student models with standard Euler530

structure: B-IIET (initialized with IIET parame-531

ters) and B-PCformer (initialized with PCformer532

parameters). All the baselines are trained using the533

fine-grained supervision method detailed in Sec-534

tion 4.1. For a fair comparison, we used the same535

evaluation dataset and metrics described in Sec-536

tion 3.3.537

4.3 Results538

Main Results. Table 1 shows the main results539

of Iteration Influence-Aware Distillation Phase.540

Direct distillation of PCformer and IIET into a541

standard Euler structure leads to significant per-542

formance degradation (i.e. B-PCformer, B-IIET),543

highlighting the critical role of the additional com-544

putational budget in higher-order methods for main-545

taining computational accuracy. Compared to546

IIET’s performance in the Pre-training Phase, E-547

IIET retains most of the model’s capabilities while548

reducing the average additional iterative compu-549

tational overhead by 70%. This demonstrates the550

effectiveness of the IIAD method.551

Inference Efficiency. We compared the infer- 552

ence speed and memory usage of our main models 553

on two parameter scales. Table 2 shows that E-IIET 554

achieves over a 2x speedup and improved memory 555

efficiency compared to IIET. However, due to the 556

additional FLOPs introduced by the necessary iter- 557

ative process, E-IIET still experiences some infer- 558

ence latency compared to the vanilla Transformer. 559

In future work, we expect to further explore the pos- 560

sibility of improving IIET efficiency by leveraging 561

techniques such as conditional computation. 562

5 Related Work 563

The connection between residual connections and 564

ODEs, initially proposed by Weinan (2017), has 565

spurred extensive research into ODE-based neural 566

network architectures. This includes innovative 567

designs like Neural ODEs (Chen et al., 2018) and 568

applications to convolutional networks (Zhu et al., 569

2023). Several works based on implicit Euler meth- 570

ods have focused on enhancing model adversar- 571

ial robustness and generalization capabilities (Kim 572

et al., 2024; Li et al., 2020), whereas we concen- 573

trate on improving language model performance. 574

Recent efforts have successfully applied ODE prin- 575

ciples to Transformers, exemplified by PCformer 576

(Li et al., 2024), which shows substantial improve- 577

ments in language modeling tasks. Our proposed 578

IIET, however, achieves stronger performance with 579

a simpler architecture and offers enhanced infer- 580

ence efficiency compared to PCformer. 581

6 Conclusions 582

We propose a novel Transformer architecture, the 583

Iterative Implicit Euler Transformer (IIET), de- 584

signed for enhanced language modeling perfor- 585

mance. IIET leverages the iterative implicit Eu- 586

ler method, providing substantial improvements 587

over vanilla Transformers with a simplified archi- 588

tecture compared to PCformer. Our experiments 589

show that IIET’s performance advantage over both 590

baselines grows with model size, with significant 591

gains observed at 340M and 740M parameters. Fur- 592

thermore, we introduce an inference acceleration 593

technique for IIET, which employs iteration influ- 594

ence analysis and continued pretraining to reduce 595

redundant computations. This approach achieves a 596

2× inference speedup while preserving the model’s 597

performance benefits. 598

8

7 Limitations599

Limitations in computational resources precluded600

the evaluation of IIET’s performance on larger lan-601

guage models. Additionally, the IIAD method, de-602

signed to improve efficiency over IIET, introduces603

further computational demands. Future research604

will focus on exploring the feasibility of determin-605

ing layer-specific iteration requirements during pre-606

training, thus facilitating the creation of efficient607

IIET models through single-pass training.608

References 609

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, 610
et al. 2020. Piqa: Reasoning about physical com- 611
monsense in natural language. In Proceedings of the 612
AAAI conference on artificial intelligence, volume 34, 613
pages 7432–7439. 614

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, 615
and David K Duvenaud. 2018. Neural ordinary dif- 616
ferential equations. Advances in neural information 617
processing systems, 31. 618

Xiaodong Chen, Yuxuan Hu, and Jing Zhang. 2024. 619
Compressing large language models by stream- 620
lining the unimportant layer. arXiv preprint 621
arXiv:2403.19135. 622

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, 623
Ashish Sabharwal, Carissa Schoenick, and Oyvind 624
Tafjord. 2018. Think you have solved question an- 625
swering? try arc, the ai2 reasoning challenge. arXiv 626
preprint arXiv:1803.05457. 627

Leo Gao, Jonathan Tow, Stella Biderman, Sid Black, 628
Anthony DiPofi, Charles Foster, Laurence Golding, 629
Jeffrey Hsu, Kyle McDonell, Niklas Muennighoff, 630
et al. 2021. A framework for few-shot language 631
model evaluation. Version v0. 0.1. Sept, 10:8–9. 632

Albert Gu and Tri Dao. 2023. Mamba: Linear-time 633
sequence modeling with selective state spaces. arXiv 634
preprint arXiv:2312.00752. 635

Geoffrey Hinton. 2015. Distilling the knowledge in a 636
neural network. arXiv preprint arXiv:1503.02531. 637

Jonathan Ho, Ajay Jain, and Pieter Abbeel. 2020. De- 638
noising diffusion probabilistic models. Advances 639
in neural information processing systems, 33:6840– 640
6851. 641

Mihyeon Kim, Juhyoung Park, and Youngbin Kim. 642
2024. Im-bert: Enhancing robustness of bert through 643
the implicit euler method. In Proceedings of the 644
2024 Conference on Empirical Methods in Natural 645
Language Processing, pages 16217–16229. 646

Yoon Kim and Alexander M Rush. 2016. Sequence- 647
level knowledge distillation. arXiv preprint 648
arXiv:1606.07947. 649

Randall J. LeVeque. 2007. Finite difference methods for 650
ordinary and partial differential equations - steady- 651
state and time-dependent problems. SIAM. 652

Bei Li, Quan Du, Tao Zhou, Yi Jing, Shuhan Zhou, Xin 653
Zeng, Tong Xiao, JingBo Zhu, Xuebo Liu, and Min 654
Zhang. 2022. Ode transformer: An ordinary differen- 655
tial equation-inspired model for sequence generation. 656
arXiv preprint arXiv:2203.09176. 657

Bei Li, Tong Zheng, Rui Wang, Jiahao Liu, Qingyan 658
Guo, Junliang Guo, Xu Tan, Tong Xiao, Jingbo 659
Zhu, Jingang Wang, et al. 2024. Predictor- 660
corrector enhanced transformers with exponential 661
moving average coefficient learning. arXiv preprint 662
arXiv:2411.03042. 663

9

Mingjie Li, Lingshen He, and Zhouchen Lin. 2020. Im-664
plicit euler skip connections: Enhancing adversarial665
robustness via numerical stability. In International666
Conference on Machine Learning, pages 5874–5883.667
PMLR.668

Ilya Loshchilov, Frank Hutter, et al. 2017. Fixing669
weight decay regularization in adam. arXiv preprint670
arXiv:1711.05101, 5.671

Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongx-672
uan Li, and Jun Zhu. 2022a. Dpm-solver: A fast ode673
solver for diffusion probabilistic model sampling in674
around 10 steps. Advances in Neural Information675
Processing Systems, 35:5775–5787.676

Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongx-677
uan Li, and Jun Zhu. 2022b. Dpm-solver++: Fast678
solver for guided sampling of diffusion probabilistic679
models. arXiv preprint arXiv:2211.01095.680

Xin Men, Mingyu Xu, Qingyu Zhang, Bingning Wang,681
Hongyu Lin, Yaojie Lu, Xianpei Han, and Weipeng682
Chen. 2024. Shortgpt: Layers in large language683
models are more redundant than you expect. arXiv684
preprint arXiv:2403.03853.685

Stephen Merity, Caiming Xiong, James Bradbury, and686
Richard Socher. 2016. Pointer sentinel mixture mod-687
els. arXiv preprint arXiv:1609.07843.688

Denis Paperno, Germán Kruszewski, Angeliki Lazari-689
dou, Quan Ngoc Pham, Raffaella Bernardi, Sandro690
Pezzelle, Marco Baroni, Gemma Boleda, and Raquel691
Fernández. 2016. The lambada dataset: Word pre-692
diction requiring a broad discourse context. arXiv693
preprint arXiv:1606.06031.694

BE Rhoades. 1976. Comments on two fixed point itera-695
tion methods. Journal of Mathematical Analysis and696
Applications, 56(3):741–750.697

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavat-698
ula, and Yejin Choi. 2021. Winogrande: An adver-699
sarial winograd schema challenge at scale. Commu-700
nications of the ACM, 64(9):99–106.701

Noam Shazeer. 2020. Glu variants improve transformer.702
arXiv preprint arXiv:2002.05202.703

Jiawei Shen, Zhuoyan Li, Lei Yu, Gui-Song Xia, and704
Wen Yang. 2020. Implicit euler ode networks705
for single-image dehazing. In Proceedings of the706
IEEE/CVF Conference on Computer Vision and Pat-707
tern Recognition Workshops, pages 218–219.708

Daria Soboleva, Faisal Al-Khateeb, Robert Myers, Ja-709
cob R Steeves, Joel Hestness, and Nolan Dey. 2023.710
Slimpajama: A 627b token cleaned and deduplicated711
version of redpajama.712

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan,713
Wen Bo, and Yunfeng Liu. 2024. Roformer: En-714
hanced transformer with rotary position embedding.715
Neurocomputing, 568:127063.716

Anh Tong, Thanh Nguyen-Tang, Dongeun Lee, Duc 717
Nguyen, Toan Tran, David Leo Wright Hall, Cheong- 718
woong Kang, and Jassik Choi. 2025. Neural ode 719
transformers: Analyzing internal dynamics and adap- 720
tive fine-tuning. In ICT.R.2025 Poster. Unpublished. 721

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier 722
Martinet, Marie-Anne Lachaux, Timothée Lacroix, 723
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal 724
Azhar, et al. 2023a. Llama: Open and effi- 725
cient foundation language models. arXiv preprint 726
arXiv:2302.13971. 727

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al- 728
bert, Amjad Almahairi, Yasmine Babaei, Nikolay 729
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti 730
Bhosale, et al. 2023b. Llama 2: Open founda- 731
tion and fine-tuned chat models. arXiv preprint 732
arXiv:2307.09288. 733

A Vaswani. 2017. Attention is all you need. Advances 734
in Neural Information Processing Systems. 735

Qiang Wang, Bei Li, Tong Xiao, Jingbo Zhu, 736
Changliang Li, Derek F Wong, and Lidia S Chao. 737
2019. Learning deep transformer models for ma- 738
chine translation. arXiv preprint arXiv:1906.01787. 739

Ee Weinan. 2017. A proposal on machine learning via 740
dynamical systems. Communications in Mathemat- 741
ics and Statistics, 1(5):1–11. 742

Johannes Welbl, Nelson F Liu, and Matt Gardner. 2017. 743
Crowdsourcing multiple choice science questions. 744
arXiv preprint arXiv:1707.06209. 745

Mengzhou Xia, Tianyu Gao, Zhiyuan Zeng, and Danqi 746
Chen. 2023. Sheared llama: Accelerating language 747
model pre-training via structured pruning. arXiv 748
preprint arXiv:2310.06694. 749

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali 750
Farhadi, and Yejin Choi. 2019. Hellaswag: Can a 751
machine really finish your sentence? arXiv preprint 752
arXiv:1905.07830. 753

Biao Zhang and Rico Sennrich. 2019. Root mean square 754
layer normalization. Advances in Neural Information 755
Processing Systems, 32. 756

Xingcheng Zhang, Zhizhong Li, Chen Change Loy, and 757
Dahua Lin. 2017. Polynet: A pursuit of structural 758
diversity in very deep networks. In Proceedings of 759
the IEEE conference on computer vision and pattern 760
recognition, pages 718–726. 761

Wenliang Zhao, Lujia Bai, Yongming Rao, Jie Zhou, 762
and Jiwen Lu. 2024. Unipc: A unified predictor- 763
corrector framework for fast sampling of diffusion 764
models. Advances in Neural Information Processing 765
Systems, 36. 766

Kaiwen Zheng, Cheng Lu, Jianfei Chen, and Jun Zhu. 767
2024. Dpm-solver-v3: Improved diffusion ode solver 768
with empirical model statistics. Advances in Neural 769
Information Processing Systems, 36. 770

10

Mai Zhu, Bo Chang, and Chong Fu. 2023. Con-771
volutional neural networks combined with runge–772
kutta methods. Neural Computing and Applications,773
35(2):1629–1643.774

A Appendix775

A.1 IIET Algorithm776

Algorithm 1 details the computation flow within a777

single IIET layer, where H stores the previously778

computed.779

Algorithm 1 Iterative Implicit Euler Paradigm
1: procedure IIET BLOCK(yn, H)
2: F0

n ← F(yn, θn) ▷ Compute initial value
3: H.add(F0

n) ▷ Store F 0
n

4: for i← 0 to r − 1 do
5: Compute yi

n+1 using H via Eq. 11
6: Fi+1

n ← F(yi
n+1, θn) ▷ Compute correct value

7: H.update(Fi
n → Fi+1

n) ▷ Update F i
n

8: end for
9: Compute yr

n+1 using H via Eq. 11
10: return yr

n+1 ▷ Return the layer output
11: end procedure

A.2 Performance details of the model with780

different iterations.781

We evaluated the downstream task performance of782

the 340M model trained with varying numbers of783

iterations, as described in Section 3.5. As shown784

in Table 3, with an increase in the number of it-785

erations, the performance of IIET on downstream786

tasks progressively improved. It achieved com-787

parable performance to PCformer at two iteration788

corrections. Using identical training data, IIET789

showed superior data fitting ability, as indicated790

by its perplexity (PPL) scores, compared to other791

models.792

A.3 55M IIET model793

We train the IIET model with 55 million param-794

eters to validate the optimal iteration steps. The795

model is stack of 12 layers with a hidden dimen-796

sion 512. The IIET model achieved optimal results797

at the third iteration for both the 55 million and 340798

million parameter scales.799

A.4 Iteration Influence of 740M IIET800

11

Wiki. LMB. LMB. PiQA Hella. SCIQ ARC-c Wino. Avg.
Model ppl ↓ ppl ↓ acc ↑ acc_norm ↑ acc_norm ↑ acc ↑ acc_norm ↑ acc ↑ ↑

Transformer++ 28.2 78.3 28.9 64.3 34.2 76.0 23.6 51.9 46.5
PCformer 25.7 47.0 33.1 64.9 36.3 77.5 24.7 53.3 48.3
IIET 25.0 30.5 37.1 65.2 36.9 79.4 23.9 51.0 48.9

IIET-iter0 27.07 48.52 32.43 65.07 34.80 78.30 23.46 50.36 47.40
IIET-iter1 25.96 36.34 34.43 64.69 36.07 76.30 23.29 50.12 47.48
IIET-iter2 25.49 35.76 34.64 64.96 36.80 77.20 24.23 51.85 48.28

Table 3: Performance comparison of IIET with varying iteration counts at 340 million parameters.

L01 L02 L03 L04 L05 L06 L07 L08 L09 L10 L11 L12 L13 L14 L15 L16 L17 L18 L19 L20 L21 L22 L23 L24

Layer Index

initial cal

iterative cal 1

iterative cal 2

iterative cal 3

C
al

cu
la

tio
n

Ph
as

e

0.95 0.29 0.25 0.21 0.22 0.17 0.16 0.19 0.17 0.14 0.19 0.23 0.28 0.47 0.48 0.22 0.30 1.12 1.58 0.34 0.31 0.14 0.31 0.47

0.32 0.08 0.07 0.07 0.06 0.04 0.08 0.06 0.06 0.03 0.05 0.07 0.12 0.02 0.05 0.10 0.16 0.06 0.16 0.06 0.13 0.02 0.00 0.00

0.19 0.03 0.03 0.06 0.02 0.01 0.07 0.02 0.03 0.01 0.02 0.03 0.11 0.01 0.01 0.06 0.05 0.02 0.03 0.02 0.06 0.00 0.00 0.00

0.07 0.04 0.02 0.10 0.02 0.44 0.35 0.08 0.10 0.06 0.05 0.09 0.30 0.60 0.36 0.16 1.17 1.55 0.60 0.30 0.27 0.36 0.48 0.22

Iteration Influence Analysis of 740M IIET

0.5

1.0

1.5 Iteration Influence

Figure 6: Impact of different iteration stages on the hidden state within each layer of the 740M IIET model, which
we term iteration influence. Deeper colors indicate larger hidden state changes after this iteration.

12

	Introduction
	Background
	Euler Method in Residual Networks
	Advanced Numerical Transformers

	Iterative Implicit Euler Transformer
	Iterative Implicit Euler Method
	Model Architecture
	Experimental Setups
	Experimental Results
	Analysis

	Iteration Influence-Aware Distillation
	Methodology
	Experiments
	Results

	Related Work
	Conclusions
	Limitations
	Appendix
	IIET Algorithm
	Performance details of the model with different iterations.
	55M IIET model
	Iteration Influence of 740M IIET

