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Abstract

Residual neural networks (ResNets) have become widely used as they allow for smooth
and efficient training of deep neural network architectures. However, when trained on
small, noisy and high-dimensional data, ResNets may suffer from overfitting due to the
large amount of parameters. As a solution, a range of regularization methods have been
proposed. One promising approach relies on the proximal mapping technique which is com-
putationally efficient since it can be directly incorporated into the optimization algorithm.
However, the performance of ResNets with various convex or non-convex proximal regulariz-
ers remains under-explored on high-dimensional data. In our study, we develop a stochastic
adaptive proximal gradient ResNet method that can handle both convex and non-convex
regularizers that range from L0 to L∞. Moreover, we evaluate the prediction performance in
a supervised regression setting on three high-dimensional genomic data sets from mice, pig
and wheat. Traditional sparse linear proximal gradient methods are also implemented with
the same regularizers and evaluated for comparison. Experimental results demonstrate that
a ResNet with 18-layers and L 1

2
regularization outperforms other configurations on both

mice and pig datasets, as well as the sparse linear proximal gradient methods across all
the datasets. For the wheat data, a 15-layer ResNet configuration achieves the lowest test
mean squared error. These findings highlight the effectiveness of our regularized adaptive
proximal gradient ResNet method and its potential for prediction tasks on high-dimensional
genomic data.

1 Introduction

ResNets were introduced to address the difficulties associated with training of very deep neural networks
(He et al., 2016a). The main innovation of ResNets are skip connections which enable the network to
learn residual functions with reference to the layer inputs instead of learning unreferenced functions. This
architecture is beneficial in addressing the vanishing and exploding gradient problems. ResNets have emerged
as a powerful tool for nonlinear regression and classification, demonstrating robustness to extrapolation and
handling "out-of-distribution" data samples effectively (Bondarenko, 2021; Ge et al., 2022). By incorporating
shortcut residual connections, it has become possible to train much deeper multilayer perceptrons (MLPs)
and convolutional neural networks (CNNs) than was previously possible. ResNets have achieved record low
error rates, some important examples include Wide ResNet (Zagoruyko, 2016), ResNeXt (Xie et al., 2017)
and PyramidNet (Han et al., 2017). However, the ResNet architecture is on its own not sufficient to reduce
the generalization error because of overfitting.

To improve the performance of ResNets, different regularization methods that place more coherent constraints
on the model parameters have been proposed (Miyato et al., 2018; Santos & Papa, 2022). Data augmentation
techniques artificially increase the diversity of training data, helping to increase the robustness of the model
(Shorten & Khoshgoftaar, 2019). Early stopping halts training when the validation loss ceases to improve,
preventing the model from overfitting (Prechelt, 1998). Label smoothing softens hard labels, preventing
overconfidence in predictions and improving generalization (Müller et al., 2019). The dropout randomly
deactivates neurons during training, forcing networks to learn redundant features, which reduces overfitting
(Srivastava et al., 2014). Other widely used regularization methods include stochastic gradient descent
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(Zhang et al., 2021) and weight decay (Krogh & Hertz, 1991). Batch normalization techniques allow
for smooth gradient flow and stable training (Ioffe, 2015; Santurkar et al., 2018). Unfortunately, the
regularization effect of these approaches is generally too weak on high-dimensional input data.

High-dimensional data analysis is a rapidly growing field of research that focuses on data with a large number
of input variables, often much larger than the sample size. For example, high-throughput measurements in
genomics often contain thousands or millions of variables, such as single nucleotide polymorphism (SNP)
markers and gene expression data, for each individual observation (Davey et al., 2011; de Los Campos
et al., 2013). The interest in applying deep learning (DL) to various regression and classification problems is
increasing dramatically in many areas, so also in genomics (Eraslan et al., 2019; Yue et al., 2023). However,
when dealing with genomic data, the challenge of fitting ResNets becomes even more pronounced, not only
because of the high dimensionality but also because of the inherent noise within the data. Traditional data
augmentation and training-based regularization methods can mitigate some overfitting, but they often lack
effectiveness and are not well suited for structured constraints specific to genomic prediction. On the other
hand, proximal methods can easily enforce sparsity and other structural constraints on model weights, which
is particularly beneficial for high-dimensional genomic data (Fan et al., 2024).

Proximal mappings offer a principled way of efficient regularization on each residual block of a ResNet ar-
chitecture that provides a coherent iterative optimization framework (Bai et al., 2018). Adaptive proximal
gradient methods allow dynamic adjustments to learning rates while simultaneously incorporating regular-
ization terms, effectively balancing model complexity, weight sparsity and predictive accuracy (Yun et al.,
2020). This dual capability makes them particularly well-suited for high-dimensional genomic datasets,
where many input variables are redundant. In this study, we address two primary objectives: (1) Develop
stochastic adaptive proximal gradient methods for ResNets incorporating a broad range of regularization
functions. (2) Conduct a comprehensive evaluation of the impact of network size and the various regulariza-
tion functions on predictive accuracy in high-dimensional genomic prediction of continuous phenotypes. By
systematically exploring network size and employing different regularization strategies, we aim to identify
optimal configurations that effectively balance model complexity with predictive performance.

2 Related Work

To improve the training and performance of a deep neural network, the issues of shallow versus deep networks
have been extensively discussed in machine learning (Larochelle et al., 2007). Some studies have tried to
make ResNets as thin as possible by increasing the depth via bottleneck blocks (Zagoruyko, 2016). ResNets
address the depth problem by allowing the construction of very deep architectures without suffering from
vanishing or exploding gradient issues, which typically limits gradient flow during backpropagation in DL.
Additionally, identity mappings in residual blocks have been shown to accelerate training in very deep
networks, as they allow gradients to pass through unchanged across multiple layers (He et al., 2016b). Wide
ResNets were designed to prioritize width while reducing depth (Zagoruyko, 2016). These wide blocks
allow ResNets to capture high-dimensional features efficiently by compressing the number of parameters in
intermediate layers.

Training-based regularization methods play an important role in enhancing generalization and robustness of
ResNets. Dropout (Srivastava et al., 2014) is one of the most popular methods for reducing overfitting which
works by randomly deactivating a fraction of neurons during each forward pass. Early stopping (Prechelt,
1998) has shown to be a simple but powerful technique, stopping training at the point where validation
error starts to increase. Data augmentation (Shorten & Khoshgoftaar, 2019) can enrich the training dataset
by applying transformations such as rotations, cropping, or flipping of data, which introduces variability
and prevents memorization of the training set. Label smoothing (Müller et al., 2019) and stochastic depth
(Huang et al., 2016) have also been shown to improve ResNets’ performance, particularly in settings where
overfitting is of concern. Furthermore, ShakeDrop (Yamada et al., 2019) is a dynamic regularization strategy
for deep ResNet architectures, which injects stochasticity into the training process by perturbing residual
blocks. These methods have been crucial for training deep networks.

Normalization techniques have been introduced to improve gradient flow and stabilize training. Batch
Normalization (BatchNorm) (Ioffe, 2015; Wu et al., 2024) has become standard in CNNs, improving both
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the speed and the stability of training. BatchNorm works by normalizing the activations of the input layer
during training, which prevents small changes in weight updates from being amplified between layers. In
contrast, layer normalization (LayerNorm) (Ba, 2016) and weight normalization (WeightNorm) (Salimans
& Kingma, 2016) are designed for recurrent neural networks (RNNs) and fully connected architectures,
where traditional normalization techniques often fail. Based on the Dropout approach, (Liu et al., 2023)
proposed a regularization method for deep neural networks that penalizes the trace of the Hessian. However,
normalization techniques can be disrupted by stochastic training methods, such as stochastic gradient descent
(SGD) and dropout, leading to a high variance in training error (Bousquet & Elisseeff, 2002).

Adaptive gradient methods are another important way to optimize deep neural networks, especially when
fixed learning rate schedules under-perform (Zhao & Huang, 2023). Although the traditional SGD method
is suitable for many problems, it often struggles with slow convergence due to its sensitivity to learning rate
selection. Adaptive gradient methods like Adam (Parikh & Boyd, 2014; Lee & Lee, 2019), RMSProp (Yang
et al., 2020), and Adagrad (Duchi et al., 2011) have been developed to dynamically adjust learning rates,
enabling faster convergence and improving stability during training (Duchi et al., 2011). Adagrad modifies
the learning rate for each parameter based on the historical sum of squared gradients. This adjustment
prevents large updates to frequently occurring features, ensuring that less frequent features receive more
significant updates. However, Adagrad’s learning rate tends to shrink excessively over time, limiting its
effectiveness for long-term training (Duchi et al., 2011). RMSProp addresses this issue by maintaining a
moving average of squared gradients, which decays exponentially over time. This prevents learning rates
from decaying too quickly (Tieleman & Hinton, 2012). Adam further builds on RMSProp by incorporating
momentum, which helps smooth out noisy gradient updates. Adam maintains two moving averages: one for
the gradient (first moment) and one for the squared gradient (second moment), which are used to adapt the
learning rates for each parameter. Hence, Adam benefits from both momentum-based and adaptive learning
methods, making it one of the most widely used optimizers in deep learning (Kingma, 2014). Using the
non-linear self-adaptive mechanism, self-adaptive gradient descent search algorithm (SaGDSA) can guide
the whole search process and facilitate escape from local optima (Xue et al., 2022). The adaptive gradient
methods have been effective in various deep learning tasks, especially in applications to high-dimensional
data (Becker et al., 2019).

Proximal regularization techniques are powerful techniques for improving the generalization and perfor-
mance of neural networks. Unlike traditional gradient descent, which updates parameters based solely on
smooth gradients, proximal gradient methods incorporate a regularization step that allows for non-smooth
constraints to be imposed on the model parameters (Beck, 2017; Klambauer et al., 2017). ProxQuant
reformulates quantized neural network training as a regularized optimization problem, allowing the use of
proximal gradients to optimize quantized weights efficiently (Bai et al., 2018). Proximal methods have
also been integrated with adaptive first-order methods like Adam and RMSProp, enhancing their ability to
handle non-smooth regularizers (Lee & Lee, 2019). By implementing the adaptive step size scheme from the
optimization methods Adagrad and Adam, AdaProx (Melchior et al., 2019) avoids the need for explicit com-
putation of the Lipschitz constants and reduce per-iteration cost. Proximal methods allow the regularization
to be applied separately from the gradient update, thus enabling the model to handle non-differentiable
points and achieve better generalization while maintaining computational efficiency (Becker et al., 2019).
Weighted proximal operators have been proposed to incorporate the adaptive learning rates in Adam and
RMSProp (Ukil et al., 2021). Based on the idea of weight decay, (Yang et al., 2022) presented Pathprox
which provides an alternative proximal gradient algorithm for network training with effective regularization.

Unlike traditional regularization methods, which primarily focus on data augmentation or weight decay, our
method enables more precise control over model complexity by adjusting regularization terms dynamically,
thereby reducing redundancy in the learned features and improving the model’s generalization ability. Our
paper present an efficient stochastic adaptive proximal gradient ResNet method, which incorporates a wide
range of convex and non-convex regularizers, from L0 to L∞, into the optimization process. The motivation
behind this approach is to address the overfitting issue that arises in high-dimensional, noisy data by using
proximal mappings to enforce structural constraints on the model’s parameters.
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3 Methods

3.1 Problem Formulation

ResNets can be susceptible to overfitting when trained on small, noisy or high-dimensional datasets due
to their deep architecture and large number of parameters (Hinton et al., 2012). Regularization is an
essential strategy to mitigate this issue by imposing constraints on the network’s structure and enhancing
generalization (Ukil et al., 2021). The optimization problem for training networks with regularization can
be formalized as:

minimize
θ∈Rd

F(θ) = L(θ) + λR(θ), (1)

where θ ∈ Rd denotes the network parameters, L(θ) is the empirical loss function, λ > 0 is a regularization
parameter and R(θ) is a data-independent regularizer, which encourages more effective models and leads to
a better estimation (Bousquet & Elisseeff, 2002). Proximal gradient methods are particularly well-suited
for solving such optimization problems as they incorporate regularization terms, including non-differentiable
ones, directly into the training process (Liang et al., 2023). These methods can ensure that the network
parameters are within reasonable bounds and prevent them from becoming excessively large, which would
otherwise have a negative impact on predicting unseen data.

Minimizing the above objective function defined is typically accomplished using stochastic first-order opti-
mization techniques applied to the k-th random mini-batch of the data:

minimize
θ∈Rd

F(θ) =
n−1∑
k=0
Fk(θ). (2)

3.2 Adaptive Proximal Gradient Descent Methods for ResNets with Various Regularizer

Adaptive proximal gradient descent methods (Duchi et al., 2011; Tieleman & Hinton, 2012) adjust the
learning rate based on past gradient information, introducing a form of preconditioning by scaling gradients
based on their historical magnitudes. By combining proximal updates with adaptive preconditioning, the
recently introduced ProxGEN offers a robust and flexible optimization method that addresses complex
regularization of both non-smooth and non-convex regularization terms in neural network training (Yun
et al., 2021). Based on the ADAM optimizer (Kingma, 2014) and the idea of diagonal preconditioners (Pock
& Chambolle, 2011), the preconditioner for ProxGEN can be formulated as Ct =

√
β2Ct−1 + (1− β2)g2

t ,
where gt is the gradient of a stochastic mini-batch at iteration t and β2 ∈ [0, 1). Given a non-empty proximal
mapping

proxf (θ) = arg min
z
{f(z) + 1

2 ∥z − θ∥2}, (3)

the update rule for the weight parameters then becomes

θt+1 = proxCt+δI
αtλR(·)(θt − αt(Ct + δI)−1mt), (4)

where mt = β1mt−1 +(1−β1)gt represents the first-order momentum, θt is the parameter vector at iteration
t, λ > 0 is the penalty factor, αt is the adaptive learning rate and θt+1 is the new parameter vector at
iteration t + 1. The small constant δ ensures the positive definiteness of the matrix Ct + δI. One of the
key challenges with the momentum mt in above equation is the initialization bias that occurs when mt−1 is
set to zero at the start of optimization. When gt is large, this bias will hinder convergence, especially early
in training. The bias correction method in ADAM is designed to mitigate this initialization bias using the
decay rates β1 and β2 for the first and second moments, respectively. Algorithm 1 outlines the full ProxGEN
method for a general choice of differentiable loss and closed-form proximal regularization functions.

We now take a look at how to generalize the regularization function R(θ). The closed-form solution for a
general Lq regularization problem can be written as

θ̂ = arg min
θ
{(θ − z)2 + λ ∥θ∥q}, (5)
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Algorithm 1 Adaptive Stochastic Proximal Gradient Descent for ResNets with Regularization
Require: Stepsize sequence {αt}T

t=1, momentum parameters β1 ∈ [0, 1), β2 ∈ [0, 1), regularization parame-
ter λ, small constant δ > 0, regularization function R (e.g., Lq, MCP, SCAD).

1: Initialize: Network parameters θ1 ∈ Rp, momentum m0 = 0 ∈ Rp, preconditioner matrix C0 = 0 ∈
Rp×p.

2: for t = 1, 2, . . . , T do
3: Compute the gradient on a random mini-batch: gt ← ∇θL(θt)
4: Update the momentum: mt ← β1mt−1 + (1− β1)gt

5: Update the preconditioner: Ct ←
√

β2Ct−1 + (1− β2)g2
t

6: Update the weight parameters using the proximal operator:

θt+1 = proxCt+δI
αtλR

(
θt − αt(Ct + δI)−1mt

)
7: end for

where R(θ) = ∥θ∥q represents the Lq penalty function for 0 ≤ q ≤ ∞. We extend the application of sparse
Lq regularization beyond the conventional range 0 ≤ q ≤ 1 to encompass cases where q > 1, and therefore
end up with regularizers with the following penalty functions: L0, L 1

2
, L 2

3
, L1, L 4

3
, L 3

2
, L2, L3, L4 and L∞. In

addition, we also explore the smoothly clipped absolute deviation (SCAD) (Mehranian et al., 2013) and
the minimax concave penalty (MCP) (Zhang, 2010) regularizers. This set of regularizers provides deeper
insights into the behavior of various proximal operators and their effects on ResNets in the case of high-
dimensional genomic datasets. Figure 1 compares these non-convex and convex penalty functions and their
corresponding proximal operators for a single parameter θ ∈ R. The mathematical details of the different
regularization functions and their proximal operators are provided in the Appendix A.

3.3 Convergence Guarantees

In this study, we consider three different kinds of penalty functions: the convex norm functions Lq where
q ≥ 1, the non-convex fractional quasinorm functions L 1

2
and L 2

3
which descend strictly towards the zero

vector from all directions, and the L0 penalty function which is non-convex and has a zero gradient at all
points where it is differentiable, and is therefore problematic. In existing research work (Yun et al., 2020),
it has been shown that the ProxGEN family of stochastic proximal gradient descent methods converge in
mean to a stationary point, which however might not be a global minimum. For the L0 penalty function, the
stationary point will not be a global minimum unless further narrow restrictions are made on the number of
non-zero components and the initial parameter vector is chosen well enough.

For the adaptive proximal methods using ResNets with various regularizations, the goal is to find an ϵ-
stationary point for the minimization problem (1) where ϵ is the required precision. To derive the convergence
bound, some mild conditions were assumed to hold in (Yun et al., 2020): L− smoothness (C− 1), bounded
variance (C− 2), final step-vector conditions (C− 3), and sufficient positive-definitess (C− 4). Among
these conditions, (C− 1), (C− 2) are standard in convergence analysis for optimization algorithms designed
for deep learning such as ADAM (Bai et al., 2018; Melchior et al., 2019). The conditions (C− 3) and (C− 4)
are plausible, since it is well-known that the parameter vector of an overparametrized neural network hardly
changes from the initial point during the training (Du et al., 2018). The details of guaranteed convergence for
the minimization problem (1) with non-convex and convex penalty functions are provided in the Appendix
B. Based on Theorem 1 for general convergence and Corollary 1 for constant mini-batch sizes shown in (Yun
et al., 2020), we make the following remarks about our results and their relationship with prior work:

• On convergence results. Corollary 1 in (Yun et al., 2020) states a computational complexity of
order O(1/ϵ4) for SGD to find ϵ-stationary points, assuming the four conditions (C− 1) to (C− 4)
for non-convex cases. Regarding the convex regularizers, the convergence to a global minimum is
well-established under standard assumptions. For high-dimensional genomic data, the upper bounds
for the norms of the step size and the gradient should have small positive constant values such that
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(a) Non-convex penalty functions.
(b) Proximal operators of non-convex penalty
functions.

(c) Convex penalty functions.
(d) Proximal operators of convex penalty func-
tions.

Figure 1: Comparison of non-convex and convex penalty functions and their proximal operators.

∥θt+1 − θt∥ ≤ D and ∥gt∥ ≤ G, where D > 0 and G > 0. This helps to avoid slow convergence and
to adjust the gradient’s variation.

• Advantages of adaptive proximal methods. According to Theorem 1 in (Yun et al., 2020),
the constant γ, which affects the convergence, depends on the constants Q1, Q2, and Q3 that
are proportional to 1/γ. For the genomic data, we set Ct =

√
(1− β2)

∑t
τ=1 βt−τ

2 gτ ⊙ gτ , with
β2 ∈ [0, 1). With the stepsize αt we get

Qi ∝
1
γ

=

√
(1− β2)

∑t
τ=1 βt−τ

2 ∥gτ∥2
2 + δ

αt
≤ G + δ

αt
, (6)

where gτ is the gradient at time τ . If gτ is very small, then 1/γ will be quite small due to the variation
of αt in the training. This coincides with the convex regret theory for adaptive gradient methods
(Duchi et al., 2011; Kingma, 2014), which also holds for the various regularizers on high-dimensional
genomic data.

• Implications of condition (C− 4) for genomic prediction. Condition (C− 4) enforces that
the Hessian matrix is positive-definite. This ensures that the model does not get stuck into saddle
points or flat regions of F(θ), which is a significant issue for high-dimensional genomic datasets. This
doesn’t however apply to the L0 penalty function, which is notoriously difficult to approximate, even
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when the algorithm is allowed to “cheat” with regard to both the sparsity of the solution output
and the accuracy of the resulting linear combination (Foster et al., 2015).

• On mini-batch in Corollary 1 in (Yun et al., 2020). Under the same assumptions regarding
the sample size of mini-batches as in Theorem 1, the guarantee of convergence given by Corollary 1 is
crucial for applications to high-dimensional genomic data, where mini-batching allows the methods
to scale efficiently to large datasets while still maintaining convergence.

• Connection to second-order methods. The adaptive proximal gradient methods provide a flex-
ible ground, approximating second-order behavior through decay rates and proximal updates, but at
a decreased computational cost. These methods allow for efficient handling of complex, non-convex
loss functions for high-dimensional data. Their adaptive nature makes them more robust to noise
and the complexity of genomic data than pure first-order methods.

4 Implementation Details

4.1 Network Architectures

We adopt a highly flexible design following ResNets. Our network consists of basic block ResNets from 5
layers to 18 layers and of bottleneck block ResNets beyond 18 layers. Figure 2 shows the basic block and
the bottleneck block used in this work. A residual block can be formulated as

Xl+1 = Xl + E(Xl, θl), (7)

where Xl and Xl+1 are the input and the output of the l-th unit in the network, respectively, and E is a
sequence of 1D convolution, batch normalization and ReLU activation, followed by another 1D convolution
and batch normalization. As described in (He et al., 2016a), a ResNet consists of sequentially stacked residual
blocks. For the the basic block, it contains two consecutive 1× 1 convolutions with batch normalization and
ReLU proceeding convolution, where a stride of 2 is used for dimension reduction in the 1× 1 convolution.
For the bottleneck block, ResNet utilizes a 1 × 1 or a 3 × 3 convolution to adjust the number of channels,
where a stride of 1 is applied to the other convolutions to improve computational efficiency. In comparison
to previous architectures (Zagoruyko, 2016), the use of varying strides and residual blocks mitigates the loss
of information at each layer.

4.2 Implementation Details

We consider several important tasks for regularized training: (1) finding the optimal configurations of network
for different high-dimensional genomic data, (2) discovering the best regularizer over various real-world data,
and (3) comparing the performance of networks with the traditional sparse proximal methods. The code for
all the algorithms are available online at: https://github.com/angelYHF/Adaptive-gradient-methods.

Training ResNets. We consider training ResNets on three real genomic datasets using various regularizers.
Toward this, we use the objective function with convex and non-convex Lq regularization: F(θ) = L(θ) +
λ
∑p

j=1 |θj |q, where 0 ≤ q ≤ ∞. We train the parameters with the closed-form proximal mappings introduced
in Appendix A. Throughout the experiments, we consider ADAM as a representative of ProxGen with
β1 = 0.1 and β2 = 0.999 in Algorithm 1. For the adaptive proximal gradient methods with different
regularizers, a ResNet-15 model was initially employed, as it typically offers a balanced trade-off between
model complexity and the risk of overfitting. During the training, the validation mean squared error (MSE)
was monitored closely. If the model failed to adequately capture the data complexity, increasing the network
size was considered. Conversely, if overfitting persisted despite regularization efforts, a smaller network with
fewer layers was evaluated. Additionally, hyperparameter tuning was conducted to determine optimal values
for the learning rate, batch size and regularization parameters.

Training traditional sparse proximal models. For the purpose of comparison, we use a linear regression
model with various regularizers, where the penalty function varies from L0 to L∞. By using the closed-form
solutions for different regularizers, we use the proximal gradient method to find the best regularization factor
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Figure 2: Residual Functions E . Left panel: a basic block used in ResNets with 5 to 18 layers. Right panel:
a bottleneck block with three convolutional layers used in ResNets with 20 to 25 layers. Batch normalization
and ReLU activation precede each convolution (omitted for clarity).

and the test MSE based on Bayesian optimization (Frazier, 2018). Performance metrics and evaluation
frameworks were aligned with earlier work (Fan et al., 2024), enabling a thorough comparison of results.

Tuning parameters. To achieve the best configurations, we utilized Bayesian optimization to find the
best network configurations. The proposed approach involved initially dividing the data randomly into 5-
fold cross-validation sets. To improve the computation efficiency, models were executed in parallel across
each fold, with the test MSE calculated independently. The BO process was terminated by monitoring the
improvement in model performance over the iterations. To ensure diverse exploration of the parameter space,
the Tree-structured Parzen Estimator (TPE) method was used within BO to leverage the model’s inherent
stochasticity while integrating new recommendations (Frazier, 2018). The BO was implemented using the
Hyperopt library (Bergstra et al., 2013).

Parallel computing. All models were implemented using the PyTorch framework, and experiments were
run on five NVIDIA GPUs to accelerate training. Parallelization across multiple folds was employed during
cross-validation to enhance computational efficiency. The final model configurations were determined by
running BO for a maximum of 100 iterations, with convergence considered achieved when the improvement
in validation MSE was less than 10−5 for five consecutive iterations.

5 Experimental Results

5.1 Material

Mice data: The first data of this study is the mice data. It is a part of the BGLR package in R (Pérez &
de Los Campos, 2014), but originally comes from the Wellcome Trust (http://gscan.well.ox.ac.uk) and has
been used for whole-genome regression in several earlier studies (Legarra et al., 2008; Okut et al., 2011). It
consists of genotypes and phenotypes of 1,814 mice. Each mouse was genotyped at 10,346 single nucleotide
polymorphisms (SNPs) that were coded as 0, 1 and 2. Here we use two continuous traits, body length (BL)
and body mass index (BMI).

Pig data: The largest tabular data set in our study is the pig data (Cleveland et al., 2012) which contains
3534 individuals with high-density genotypes and continuous phenotypes of five anonymized traits. After
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cleaning some missing data, we finally obtained 2314 samples, where each sample contains 52,843 SNPs. The
data was anonymised by randomising the map order and recording the SNP identities.

Wheat data: The wheat data set originates from CIMMYT’s Global Wheat Program and is a publicly avail-
able in the BGLR package (Pérez & de Los Campos, 2014). It comprises 599 wheat lines from the CIMMYT
Global Wheat Program evaluated in four international environments representing four basic agroclimatic re-
gions (mega-environments). The wheat lines were genotyped using 1,447 Diversity Array Technology (DArT)
markers. As a quality control, all the markers with a minor allele frequency below 0.05 were eliminated, and
any missing genotypes were imputed once using samples from the marginal distribution of marker genotypes.
Following these procedures, the dataset was reduced to 1,279 DArT markers.

5.2 Comparison of Adaptive Proximal Methods on Different Datasets

Mice data: In the mice data, we observed a consistent improvement in test MSE as the depth of the ResNet
increased up to 18. For instance, in the case of the L0 regularizer, the test MSE decreased consistently from
ResNet-5 (0.144 ± 0.003 for Trait 1 and 0.148 ± 0.003 for Trait 2) to ResNet-25 (0.136 ± 0.002 for Trait
1 and 0.139 ± 0.001 for Trait2). A similar trend was observed for most other regularizers, indicating that
deeper networks generally improve performance. However, this improvement would not continue beyond
ResNet-18, particularly for regularizers L2 and L3, where no significant performance gains were observed for
ResNet-18 and ResNet-25. This demonstrates that deeper networks can improve feature learning but may
not always result in better prediction after a specific depth.

We can also notice that different regularizers impact performance in varying degrees. For Trait 1, the best
performance was achieved with L 1

2
regularization on ResNet-18 (Trait 1: 0.130 ± 0.001, Trait 2: 0.131 ±

0.002). However, for Trait 2, the worst result was obtained with the SCAD on ResNet-18 (Trait 1: 0.138
± 0.002, Trait 2: 0.142 ± 0.002). The performance differences across regularizers are not too big, but
non-convex penalties like MCP and SCAD tend to perform slightly worse than L 1

2
and L2 for both traits

across all network depths. The choice of regularizer and network depth also has a significant impact on
the genomic prediction, with L 1

2
and L2 showing the most consistent results across different ResNet depths

for both traits. However, deeper networks, particularly those with more than 18 layers, may not provide
substantial improvements over shallower ones when appropriate regularization was applied.

Pig data: The pig data is the largest among the three datasets used in this study, comprising of five traits.
Table 1 summarizes the test MSE (mean ± stddev) of ResNet-18 with various regularizers on this data. We
can clearly see that there was a significant improvement in performance across most regularizers for all five
traits when the depth of the ResNet increased from 5 to 18 layers. For instance, with the L 1

2
regularizer,

the test MSE decreased consistently from ResNet-5 (Trait 1: 0.140 ± 0.003, Trait 2: 0.143 ± 0.002, Trait 3:
0.140 ± 0.004, Trait 4: 0.138 ± 0.003, Trait 5: 0.147 ± 0.004) to ResNet-18 (Trait 1: 0.129 ± 0.005, Trait
2: 0.130 ± 0.004, Trait 3: 0.129 ± 0.004, Trait 4: 0.126 ± 0.001, Trait 5: 0.133 ± 0.002). Similar trends
were observed for the other regularizers, indicating that increasing the number of layers improves ResNet
performance by reducing test MSE. However, increasing the network depth from 18 to 25 layers showed only
marginal gains: Trait 5 with L1 regularizer improved slightly from 20 layers (test MSE: 0.143 ± 0.001) to
25 layers (test MSE: 0.142 ± 0.003), and Trait 4 with L 1

2
regularizer showed a small improvement from 18

layers (test MSE: 0.131 ± 0.004) to 25 layers (test MSE: 0.130 ± 0.001). Despite the larger size of the pig
dataset, deeper residual networks did not consistently lead to further performance gains beyond 18 layers.

For the different regularizers, L 1
2

achieved the best performance on ResNet-18 for all traits from the pig
data. After 15 layers, the performance differences among the regularizers narrow down, with regularizers
such as L 4

3
, L 3

2
, and SCAD yielding slightly higher test MSE values than L 1

2
. Nonetheless, deeper networks,

particularly beyond 18 layers, offered no substantial improvements over shallower models (e.g., 5 layers)
when effective regularization was applied.

Wheat data: The wheat dataset that consists of four traits, was analyzed using various regularizers applied
to ResNets of different depths. Table 2 shows the test MSE (mean ± stddev) of ResNet-15 with different
regularizers on wheat data. Among the ResNet architectures tested (ResNet-5, ResNet-10, ResNet-15,
ResNet-18, ResNet-20, and ResNet-25), ResNet-15 yielded the best overall performance for the wheat data.
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Table 1: Test MSE (mean ± stddev) of ResNet-18 with Different Regularizers on Pig Data. Bold values
indicate the phenotype predictions yielding the lowest test MSE.

Regularizer Trait 1 Trait 2 Trait 3 Trait 4 Trait 5
L0 0.136 ± 0.003 0.137 ± 0.001 0.136 ± 0.002 0.132 ± 0.004 0.144 ± 0.003
L 1

2
0.129 ± 0.005 0.130 ± 0.004 0.129 ± 0.004 0.126 ± 0.001 0.133 ± 0.002

L 2
3

0.131 ± 0.002 0.132 ± 0.005 0.131 ± 0.003 0.127 ± 0.003 0.135 ± 0.001
MCP 0.137 ± 0.004 0.138 ± 0.003 0.137 ± 0.004 0.134 ± 0.001 0.144 ± 0.003
SCAD 0.138 ± 0.002 0.139 ± 0.004 0.138 ± 0.002 0.134 ± 0.005 0.145 ± 0.003

L1 0.135 ± 0.001 0.136 ± 0.002 0.135 ± 0.003 0.132 ± 0.002 0.143 ± 0.001
L 4

3
0.135 ± 0.002 0.136 ± 0.004 0.135 ± 0.005 0.132 ± 0.002 0.143 ± 0.001

L 3
2

0.136 ± 0.002 0.137 ± 0.002 0.136 ± 0.002 0.132 ± 0.003 0.144 ± 0.002
L2 0.133 ± 0.003 0.134 ± 0.003 0.133 ± 0.004 0.130 ± 0.001 0.140 ± 0.005
L3 0.132 ± 0.003 0.133 ± 0.002 0.132 ± 0.003 0.128 ± 0.001 0.136 ± 0.003
L4 0.131 ± 0.002 0.132 ± 0.003 0.132 ± 0.004 0.127 ± 0.003 0.136 ± 0.001
L∞ 0.134 ± 0.002 0.135 ± 0.001 0.134 ± 0.002 0.131 ± 0.003 0.142 ± 0.001

The test MSE results reveal that the L 1
2

regularizer consistently outperformed others, achieving the lowest
MSE across all four traits (Trait 1: 0.132 ± 0.002, Trait 2: 0.131 ± 0.002, Trait 3: 0.130 ± 0.003, Trait
4: 0.130 ± 0.002). This suggests that L 1

2
regularization provides effective model generalization and is

particularly suited for ResNet-15 on this dataset. In comparison, other regularizers like SCAD and MCP
resulted in higher test MSE values, indicating less effective performance.

While the differences between the regularizers were not very large, several observations can still be made:
(1) The regularizers L0, L 2

3
, and L 4

3
performed similarly across the traits, but slightly worse than L 1

2
. This

pattern was consistent with the performance seen in other traits, highlighting the robustness of L 1
2
. (2)

The regularizers SCAD and MCP demonstrated higher test MSEs, particularly for Trait 1 (SCAD: 0.144 ±
0.005, MCP: 0.143 ± 0.005). These findings suggest the importance of selecting an appropriate regularization
method for the wheat data. While deeper networks generally provided more capacity, for the wheat data,
ResNet-15 found the right balance between model complexity and performance. Deeper models such as
ResNet-18 and ResNet-25 offered no significant improvement over ResNet-15, demonstrating the importance
of model architecture selection alongside regularization.

Table 2: Test MSE (mean ± stddev) of ResNet-15 with Different Regularizers on Wheat Data. Bold values
indicate the phenotype predictions yielding the lowest test MSE.

Regularizer Trait 1 Trait 2 Trait 3 Trait 4
L0 0.142 ± 0.001 0.137 ± 0.003 0.134 ± 0.005 0.135 ± 0.002
L 1

2
0.132 ± 0.002 0.131 ± 0.002 0.130 ± 0.003 0.130 ± 0.002

L 2
3

0.135 ± 0.001 0.132 ± 0.005 0.132 ± 0.003 0.132 ± 0.002
MCP 0.143 ± 0.005 0.137 ± 0.003 0.135 ± 0.002 0.136 ± 0.002
SCAD 0.144 ± 0.005 0.138 ± 0.004 0.136 ± 0.001 0.137 ± 0.002

L1 0.140 ± 0.003 0.136 ± 0.001 0.134 ± 0.001 0.134 ± 0.003
L 4

3
0.142 ± 0.002 0.136 ± 0.003 0.134 ± 0.004 0.134 ± 0.001

L 3
2

0.142 ± 0.001 0.137 ± 0.001 0.134 ± 0.002 0.135 ± 0.003
L2 0.139 ± 0.004 0.135 ± 0.003 0.133 ± 0.002 0.134 ± 0.001
L3 0.136 ± 0.002 0.133 ± 0.003 0.133 ± 0.002 0.134 ± 0.001
L4 0.135 ± 0.005 0.132 ± 0.001 0.133 ± 0.002 0.133 ± 0.002
L∞ 0.140 ± 0.002 0.135 ± 0.001 0.133 ± 0.003 0.134 ± 0.003
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5.3 Adaptive Proximal Methods vs. Traditional Sparse Proximal Methods

5.3.1 Performance Comparison

For the comparison purpose, we conducted the traditional sparse proximal method with different forms of
regularization from L0 to L∞ on the same datasets. The evaluation of adaptive proximal gradient methods
utilizing ResNets with various regularizers against traditional sparse proximal methods across the mice, pig,
and wheat datasets reveals their significant performance distinctions. On the mice dataset, the adaptive
proximal methods employing ResNet architectures, particularly ResNet-18 with the L 1

2
regularizer, achieved

the lowest test MSE values (Trait 1: 0.130 ± 0.001, Trait 2: 0.131 ± 0.002). In contrast, the traditional sparse
proximal method with the same L 1

2
regularizer yielded higher test MSE (Trait 1: 0.162 ± 0.001, Trait 2:

0.173 ± 0.003). This substantial reduction in MSE highlights the superior model generalization capabilities
of adaptive proximal methods facilitated by deeper ResNet architectures. Similarly, on the larger pig dataset
encompassing five traits, adaptive proximal methods with ResNet-18 and L 1

2
regularization demonstrated

superior performance (Trait 1: 0.129 ± 0.005 to Trait 5: 0.133 ± 0.002) compared to traditional sparse
proximal methods (Trait 1: 0.161 ± 0.002 to Trait 5: 0.166 ± 0.002). The adaptive proximal methods not
only achieved lower MSEs but also exhibited better consistency across multiple traits, whereas traditional
methods showed more variable MSEs across traits. On the wheat data, which includes four traits, ResNet-15
with the L 1

2
regularizer achieved the best performance (Trait 1: 0.132 ± 0.002 to Trait 4: 0.130 ± 0.002).

In contrast, the traditional sparse proximal linear method with the same regularizer showed higher MSEs
(Trait 1: 0.155 ± 0.004 to Trait 4: 0.151 ± 0.001). These results demonstrate the advantage of adaptive
proximal methods in handling high-dimensional genomic data. The adaptive proximal methods leveraging
ResNets significantly enhanced performance beyond what traditional methods could achieve with the same
regularization.

5.3.2 Model Depth and Complexity

Model depth: For the adaptive proximal methods with ResNets, increasing network depth helps capture
more complex relationships between features, as seen with ResNet-18 often yielding the best results on the
mice and pig data and with ResNet-15 obtaining the smallest MSE on the wheat data. This depth enables
the model to learn more intricate patterns in the data that traditional methods might miss. Regularizers
like L 1

2
are able to adapt to the depth of the network, resulting in improved performance with increasing

depth. The improvement in MSE as ResNet depth increases is observed across most regularizers, suggesting
that deeper networks enhance performance. In contrast, traditional sparse proximal methods, which rely
on linear models, lack the capacity to learn hierarchical or complex interactions between features. These
methods do not benefit from additional depth, as they operate with simple penalty terms that limits their
capacity to capture more complex feature interactions.

Complexity: The computational complexity for traditional sparse proximal methods is O(n · p + p) per
iteration, where n represents the number of samples and p the number of features. In comparison, adaptive
proximal gradient methods utilizing ResNets have a higher computational complexity due to the deeper
network architecture and additional complexity introduced by the proximal operator for regularization. The
complexity of adaptive gradient methods using ResNets is influenced by several factors, such as network
depth, width, and the specific nature of the applied regularization. Each forward pass in a ResNet is compu-
tationally intensive, particularly for deeper networks, and the proximal gradient step further adds complexity
based on the number of features and the nature of the proximal operator. The overall computational com-
plexity of adaptive proximal gradient methods is O(L ·n ·d2 +n ·p+p), where L is the number of layers, K is
the number of residual blocks per layer, and d is the number of blocks per layer. It is obvious that adaptive
proximal methods have much higher computational complexity than traditional sparse proximal methods.

6 Conclusion

In this study, we examined the influence of network size and regularization function on ResNets with an
application to high-dimensional genomic data. Extensive experimental results indicate that increasing the
depth of ResNets generally enhances prediction accuracy, as deeper networks are more capable of modeling
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the complex, hierarchical structures within genomic data. Specifically, ResNet-18 consistently outperformed
shallower networks on mice and pig data. While ResNet-15 achieved the best prediction accuracy than
other architectures on the wheat data. These illustrate the benefits of deeper architectures in handling
high-dimensional feature interactions, which are critical for genomic prediction tasks. Furthermore, regu-
larization function choice emerged as a significant factor in the ResNets’ performance. Particularly the L 1

2
regularizer demonstrated robust performance improvements for deep architectures. Additional comparison
with traditional sparse proximal methods also demonstrates the advantages of adaptive proximal methods
with ResNets for high-dimensional genomic data.
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Appendix

A Proximal Mappings of The Regularization Functions

Here we present the proximal operators for the regularizers L0 to L∞ and how they are combined with the
ADAM preconditioners presented in Section 3. We also consider the cases of MCP and SCAD regularization.
Recall that the minimization problem for Lq regularizers is

arg min
θ
{1

2

∥∥∥θ − θ̂t

∥∥∥2

Ct+δI
+ λ

p∑
j=1
|θj |q}, (8)

for which a solution is obtained by iterating
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θ̂t = θt − αt(Ct + δI)−1mt,

θt+1 = proxCt+δI
αtλR(·)(θ̂t).

(9)

By denoting the i-th coordinate of θt as θt,i and the i-th diagonal entry of the preconditioner [Ct]ii as Ct,i,
the formulation (9) is coordinate-wise decomposable and the preconditioner matrix Ct is diagonal, so we get

θt+1,i = arg min
θi

{1
2(Ct,i + δI)(θi − θ̂t,i)2 + αtλ |θi|q}

= arg min
θi

{(θi − θ̂t,i)2 + 2αtλ

Ct,i + δI
|θi|q},

(10)

where
θ̂t,i = θt,i − αt

mt,i

Ct,i + δI
. (11)

A.1 L0 Regularization

When q = 0 in Equation (5), the regularization corresponds to the L0 penalty function, which penalizes the
number of non-zero entries of the parameter vector. The L0 penalty is non-convex and promotes unbiased
sparsity in the estimated parameters θ̂. In this case, the closed-form proximal operator can be obtained via
hard-thresholding given by

proxλR(·)(θ) =


{0} , |θ| <

√
2λ,

{0, θ} , |θ| =
√

2λ,

{θ} , |θ| >
√

2λ.

(12)

The closed-form proximal mappings given above for L0 regularization can be combined with the precondi-
tioner Ct,i which leads to the following update rule (Yun et al., 2020):

θt+1,i =


θ̂t,i, if

∣∣∣θ̂t,i

∣∣∣ >
√

2αtλ
Ct,i+δI ,

0, if
∣∣∣θ̂t,i

∣∣∣ <
√

2αtλ
Ct,i+δI ,{

0, θ̂t,i

}
, if

∣∣∣θ̂t,i

∣∣∣ =
√

2αtλ
Ct,i+δI .

(13)

A.2 L 1
2

Regularization

For q = 1
2 , the penalty corresponds to the L 1

2
quasinorm which encourages sparsity similarly to the L0

penalty, but with smoother behavior near zero. This form of non-convex regularization applies shrinkage
on the regression coefficients, but yields more sparse solutions than the L1 regularizer. According to (Cao
et al., 2013), the proximal mapping is as follows:

proxλR(·)(θ) =


2
3 |θ|

(
1 + cos

( 2
3 π − 2

3 φλ (θ)
))

, if θ > p (λ) ,
0, if |θ| ≤ p (λ)

− 2
3 |θ|

(
1 + cos

( 2
3 π − 2

3 φλ (θ)
))

, if θ < p (λ)
(14)

where φλ(θ) = arccos
(

λ
4
(

θ
3
)− 3

2
)

and p(λ) =
3√54
4 (λ)

2
3 . Combined with the preconditioner, the i-th coordi-

nate update becomes:

θt+1,i =


2
3

∣∣∣θ̂t,i

∣∣∣ (1 + cos( 2
3 π − 2

3 φλ(θ̂t,i))), if θ̂t,i > p(λ)

0, if
∣∣∣θ̂t,i

∣∣∣ ≤ p(λ)

− 2
3

∣∣∣θ̂t,i

∣∣∣ (1 + cos( 2
3 π − 2

3 φλ(θ̂t,i))), if θ̂t,i < −p(λ)

(15)

where

φλ(θ̂t,i) = arccos

 αtλ

4(Ct,i + δI)

(∣∣θ̂t,i

∣∣
3

)− 3
2
 , p(λ) =

3√54
4

(
2αtλ

Ct,i + δI

) 2
3

. (16)
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A.3 L 2
3

Regularization

When q = 2
3 , the non-convex penalty includes a fractional function that encourages sparsity while being

smoother than the L0 penalty. By leveraging the properties of fractional quasinorms to balance sparsity and
shrinkage, the proximal operator in this case is (Cao et al., 2013)

proxλR(·)(θ) =



 |A|+
√

2|θ|
|A| −|A|2

2

3

, if θ > 2
3

4
√

3λ3

0, if |θ| ≤ 2
3

4
√

3λ3

−

 |A|+
√

2|θ|
|A| −|A|2

2

3

, if θ < − 2
3

4
√

3λ3

(17)

where

|A| = 2√
3

λ
1
4

(
cosh

(
ϕ

3

)) 1
2

, ϕ = arccosh
(

27θ2

16 λ− 3
2

)
. (18)

As in the L 1
2

regularization case above, this regularizer is coordinate-wise separable and it is sufficient to
update the sub-problems for each coordinate as:

θt+1,i =



 |A|+

√
2|θ̂t,i|

|A| −|A|2

2

3

, if θ̂t,i > 2
3

4√3λ3

0, if
∣∣θ̂t,i

∣∣ ≤ 2
3

4√3λ3

−

 |A|+

√
2|θ̂t,i|

|A| −|A|2

2

3

, if θ̂t,i < − 2
3

4√3λ3

(19)

where

|A| =
2

√
3

(
2αtλ

Ct,i + δI

) 1
4 (

cosh
(

ϕ

3

)) 1
2

, ϕ = arccosh

(
27θ̂2

t,i

16

(
2αtλ

Ct,i + δI

)− 3
2
)

. (20)

A.4 MCP Regularization

When use MCP in Equation (5), it offers a penalty that encourages sparsity while avoiding the bias intro-
duced by the traditional L1 penalty. Unlike L1 regularization, MCP adaptively applies less shrinkage to
larger coefficients, providing a balance between low prediction error and unbiased estimation. The proximal
mapping of the MCP penalty has a closed-form following (Hu et al., 2024):

proxλR(·)(θ) =


0, |θ| ≤ λ

sign(θ)(|θ|−λ)
1− 1

a

, λ < |θ| ≤ aλ

θ, |θ| > aλ

(21)

where a > 0 is the parameter, which helps the unbias estimation by reducing the penalty applied to larger
coefficients. For the genomic data, we set a = 2 for the robust models. Integrated with the preconditioner
defined, the i-th coordinate update method is as follows:

θt+1,i = sign(θ̂t,i)min

a max
{∣∣∣θ̂t,i

∣∣∣− αtλ
Ct,i+δI , 0

}
a− 1 ,

∣∣∣θ̂t,i

∣∣∣
 . (22)
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A.5 SCAD Regularization

When utilizing the SCAD penalty in Equation (5), it introduces a piecewise linear form, encouraging smaller
coefficients to shrink towards zero, while applying less penalty on larger coefficients, thus preserving impor-
tant features. This adaptive property helps to reduce bias in parameter estimates and avoids over-penalizing
significant variables. According to (Hu et al., 2024), the proximal mapping of the SCAD penalty has the
closed-form:

proxλR(·)(θ) =


sign(θ)max{|θ − λ| , 0}, if |θ| ≤ 2λ

(a−1)θ−sign(θ)aλ
a−2 , if 2λ < |θ| ≤ aλ

θ, if |θ| > aλ,

(23)

where a > 2 is the parameter, which controls the shape of the penalty and influences the rate at which the
penalty decreases for large coeffients. We set a = 3.7 in our cases, which has shown reliable performance
for genomic prediction. Based on the above proximal operator and the defined preconditioner, the i-th
coordinate update rule is:

θt+1,i =


sign(θ̂t,i)max

{∣∣∣θ̂t,i

∣∣∣− λ̂i, 0
}

, if
∣∣∣θ̂t,i

∣∣∣ ≤ 2λ̂i

(a−1)θ̂t,i−sign(θ̂t,i)aλ̂i

a−2 , if 2λ̂i <
∣∣∣θ̂t,i

∣∣∣ ≤ aλ̂i

θ̂t,i, if
∣∣∣θ̂t,i

∣∣∣ > aλ̂i

(24)

where λ̂i = αtλ
Ct,i+δI , which explicitly includes the dependence on λ.

A.6 L1 Regularization

For q = 1, the regularization corresponds to the L1 norm, which is based on the sum of absolute values that
encourages sparsity by driving small coefficients towards zero while also applying some shrinkage to large
coefficient. Unlike the L0 penalty function, which directly counts non-zero elements, L1 provides a convex
relaxation that allows for efficient optimization while still promoting sparsity. The proximal mapping of L1
regularization can be given as (Parikh & Boyd, 2014):

proxλR(·)(θ) = sign(θ)max(|θ| − λ, 0)
= sign(θ)(|θ| − λ)+,

(25)

where (·)+ denotes the positive part. Combining it with the preconditioner, the i-th coordinate update
scheme is:

θt+1,i = sign(θ̂t,i)
(∣∣∣θ̂t,i

∣∣∣− αtλ

Ct,i + δ

)
. (26)

A.7 L 4
3

Regularization

When q = 4
3 , the regularization is a norm. It is softer than the L1 norm, but it will not promote the sparsity.

The proximal mapping of L 4
3

is presented in (Polson et al., 2015) as

proxλR(·) = θ + 4λκ

32 1
3

(
(χ− θ)

1
3 − (χ + θ)

1
3
)

, (27)

where χ =
√

θ2 + 256κ3/729 and κ = 1 is a scaling factor that adjusts the strength of the L 4
3

norm’s impact.
Combined with the preconditioner, the i-th coordinate update rule is

θt+1,i = θ̂t,i + 8καtλ

32 1
3 (Ct,i + δI)

((χ− θ̂t,i)
1
3 − (χ + θ̂t,i)

1
3 ), (28)

where χ =
√

θ̂2
t,i + 256κ3/729.
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A.8 L 3
2

Regularization

For q = 3
2 , the penalty corresponds to the L 3

2
norm which places more emphasis on shrinkage compared to

L1 norm. This regularization avoids over-penalization of large coefficients, offering a more refined control
over model complexity. According to (Polson et al., 2015), the proximal mapping is given as

proxλR(·) = θ + 9κ2sgn (θ)
(

1−
√

1 + 16λ |θ| / (9κ2)
)

/8, (29)

where κ = 1 is the parameter which controls the degree of shrinkage applied to the coefficients. Combined
with preconditioner defined, the i-th coordinate update rule is as

θt+1,i = θ̂t,i + 9κ2sgn(θ̂t,i)

1−

√√√√1 +
32
∣∣∣θ̂t,i

∣∣∣αtλ

9κ2(Ct,i + δI)

 /8. (30)

A.9 L2 Regularization

When q = 2, the penalty corresponds to the L2 norm which applies a quadratic penalty on the parameters
and encourages smoothness by shrinking the coefficients towards zero in a continuous manner. Unlike the
penalties from L0 to L1, the L2 norm does not promote sparsity but rather emphasizes minimizing the
magnitude of the coefficients. According to (Parikh & Boyd, 2014), the proximal mapping of the L2 norm
is

proxλR(·) = (1− λ

∥θ∥2
)+θ, (31)

where (θ)+ = max{0, θ}. Then the i-th coordinate update with preconditioner is as follows:

θt+1,i = (1− 2αtλ

(Ct,i + δI)
∥∥∥θ̂t,i

∥∥∥
2

)+θ̂t,i. (32)

A.10 L3 Regularization

When q = 3, the penalty corresponds to the L3 norm. It is a higher-order norm that encourages more
shrinkage on larger coefficients. This form of convex regularization reduce the risk of overfitting by dampening
high-variance components more effectively, resulting in a model that is more resistant to noise. The proximal
mapping of L3 regularization is defined following (Polson et al., 2015) as

proxλR(·) = sgn(θ)(
√

1 + 12λκ |θ| − 1)/(6κ), (33)

where κ = 1, which helps adjust the level of shrinkage applied to the larger weights. With the preconditioner,
the i-th coordinate update becomes

θt+1,i = sgn(θ̂t,i)

√
1 + 24καtλ|θ̂t,i|

Ct,i+δI − 1

6κ
. (34)

A.11 L4 Regularization

When q = 4, the penalty is the L4 norm, which provides a smoother penalty function, encouraging a more
gradual reduction in the coefficients of less important features. The proximal mapping of L4 regularization,
given by (Polson et al., 2015), is

proxλR(·) =
(

χ + λθ

8κ

) 1
3

−
(

χ− λθ

8κ

) 1
3

, (35)
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where κ = 1 impacts the strength of the regularization applied to the coefficients, and χ =
√

θ2 + 1
27κ .

Together with the preconditioner, the i-th coordinate update rule is

θt+1,i =

χ + 2θ̂t,iαtλ
Ct,i+δI

8κ


1
3

−

χ− 2θ̂t,iαtλ
Ct,i+δI

8κ


1
3

, (36)

where χ =
√

θ̂2
t,i + 1

27κ .

A.12 L∞ Regularization

For the infinity norm, the solution is constrained by the maximum absolute value of the coefficients. As
detailed in (Beck, 2017), the projection onto the L1 ball encourages a broader range of solutions, allowing
for greater flexibility in modeling complex data (Quirin et al., 2015). Following (Parikh & Boyd, 2014),
the proximal mapping is given as

proxλR(·)(θ) = θ − λP∆(|θ| /λ) ∗ sign(θ), (37)

where P∆ is the projection inside the unit simplex, ∗ is the element-wise product, and sign(θ) is the sign
function. Then the proximal operator of the infinity norm can be calculated by a projection on the simplex.
With the preconditioner defined earlier, the i-th coordinate update is

θt+1,i =


θ̂t,i − 2αtλ

Ct,i+δI , θ̂t,i > 2αtλ
Ct,i+δ ,

θ̂t,i + 2αtλ
Ct,i+δ , θ̂t,i < 2αtλ

Ct,i+δ ,

0, otherwise.
(38)

B Analysis of Convergence Guarantee

B.1 Convex Regularizers

For the optimization problem (2), the function L(θ) is often assumed to be convex and differentiable. When
R(θ) is a convex regularization function, the condition for stationary point θ∗ in (8) is given by:

0 ∈ ∇L(θ∗) + λ∂R(θ∗), (39)

where ∂R(θ∗) is the subdifferential of R. According to (8), if L is L-smooth, then∥∥∥∇L(θ)−∇L(θ
′
)
∥∥∥ ≤ L

∥∥∥θ − θ
′
∥∥∥ . (40)

Then
E [F(θt)−F(θ∗)] ≤ L

2αt
∥θ0 − θ∗∥2

. (41)

This illustrates that the convergence is linear under appropriate conditions. If the gradient and Lipschitz
continuity are bounded:

F(θt+1) ≤ F(θt)−
αt

2 ∥∇F(θt)∥2 +R(θt+1)−R(θt). (42)

Based on the theory of proximal gradient method for the parameters update in (Boyd & Vandenberghe,
2004), the above equation will lead to a conclusion that F(θt) convergences to the minimum.
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B.2 Non-Convex Regularizers

For the non-convex regularizers, the goal for the convergence guarantee is to find an ϵ-stationary point in
(8), where ϵ is the required precision. To guarantee the convergence, the Fréchet subdifferential of φ at θ̂

with
∣∣∣φ(θ̂)

∣∣∣ <∞ can be defined as (Yun et al., 2020)

∂̂φ(θ̂) def=

θ∗ ∈ Ω

∣∣∣∣∣∣ lim inf
θ→θ̂

φ(θ)− φ(θ̂)− ⟨θ∗, θ − θ̂⟩∥∥∥θ − θ̂
∥∥∥ ≥ 0

 , (43)

where φ is a real-valued function. For the non-convex cases, because they are not differentiable everywhere
(especially near zero), the limiting subdifferentials of φ at θ̂ are defined as

∂φ(θ̂) def= {u ∈ Rd : ∃θk
φ→ θ̂, uk ∈ ∂̂φ(θk), uk → u}, (44)

where θk
φ→ θ̂ means that θk → θ̂ when φ(θk) → φ(θ̂). At the stationary point, the following condition

should be satisfied:
0 ∈ ∇F(θ) = ∇L(θ) + ∂φλR(θ). (45)

Let θa denote an iterate chosen uniformly randomly from {θ1, θ2, · · · , θT }. The convergence criterion for Lq

penalty functions, as with ProxGEN (Yun et al., 2020), is given as

Ea[dist(0, ∂̂φF(θa))2] ≤ ϵ, (46)

where ∂̂φF(θa) is the limiting subdifferential. The distance measure dist(0, ·) ensures that at stationary
points, the gradient of the loss function and the subdifferential of the regularizer are close to zero. Based on
Theorem 1 and Corollary 1 in (Yun et al., 2020), with the sample size n and constant minibatch size bt, a
good convergence can be ensured.
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