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ABSTRACT
With the development of AI-Generated Content (AIGC), data is
becoming increasingly important, while the right of data to be for-
gotten, which is defined in the General Data Protection Regulation
(GDPR) and permits data owners to remove information from AIGC
models, is also arising. To protect this right in a distributed manner
corresponding to federated learning, federated unlearning is em-
ployed to eliminate history model updates and unlearn the global
model to mitigate data effects from the targeted clients intending to
withdraw from training tasks. To diminish centralization failures,
the hierarchical federated framework that is distributed and col-
laborative can be integrated into the unlearning process, wherein
each cluster can support multiple AIGC tasks. However, two issues
remain unexplored in current federated unlearning solutions: 1)
getting remaining clients, those not withdraw from the task, to
join the unlearning process, which demands additional resources
and notably has fewer benefits than federated learning, particularly
in achieving the original performance via alternative unlearning
processes and 2) exploring mechanisms for dynamic unlearning in
the selection of remaining clients possessing unbalanced data to
avoid starting the unlearning from scratch. We initially consider a
two-level incentive and unlearning mechanism to address the afore-
mentioned challenges. At the lower level, we utilize evolutionary
game theory to model the dynamic participation process, aiming to
attract remaining clients to participate in retraining tasks. At the up-
per level, we integrate deep reinforcement learning into federated
unlearning to dynamically select remaining clients to join the un-
learning process to mitigate the bias introduced by the unbalanced
data distribution among clients. Experimental results demonstrate
that the proposed mechanisms outperform comparative methods,
enhancing utilities and improving accuracy.

CCS CONCEPTS
• Networks→ Network privacy and anonymity.

KEYWORDS
federated unlearning, dynamic retraining, deep reinforcement learn-
ing

1 INTRODUCTION
The advent of ChatGPT, an Artificial Intelligence (AI)-powered
chatbot developed by OpenAI [1], has precipitated a surge in at-
tention towards AI-Generated Content (AIGC) from both industry
and academia. Substantial data, derived from the public internet or
personal information, is employed to train AIGCmodels, enhancing
user experience. Consequently, data is being considered as the oil
in the burgeoning AI era. To protect data ownership and the right
to be forgotten, defined in the General Data Protection Regulation
(GDPR), which has recently grasped significant attention, individ-
uals are permitted to remove their private data from well-trained
AIGC models. Machine unlearning [2] is proposed to eliminate data

influence from a trained model without necessitating retraining
from scratch, ensuring that the right to be forgotten is safeguarded.
Specifically, considering that there are targeted samples that tar-
geted clients intending to withdraw from training tasks require
to be removed from the well-trained model, the model should un-
dergo an unlearning process to ensure it performs as if it has never
encountered the target samples.

Federated unlearning is one scenario within machine unlearning
and represents a means of unlearning within Federated Learning
(FL). Unlike conventional methods that upload data directly to cen-
tral servers, FL requires clients to share model updates with central
servers to train a global model, thereby protecting the privacy of
raw data [3]. It is impractical to eliminate data samples from an FL-
trained model by training a new model from scratch using datasets
from remaining clients, which do not withdraw data effects from
the well-trained FL model. Therefore, federated unlearning should
also engage in the removal of targeted historical model updates to
eliminate the data effects of certain clients, a process distinct from
that of machine unlearning [4]. For instance, assuming there are
targeted clients that plan to eliminate data effects from a trained FL
model, the global model should first remove historical model up-
dates from those targeted clients and subsequently unlearn for a few
rounds with the remaining clients to mitigate the data effects. This
approach has been employed in FedEraser [4], RapidRetrain [5],
and FedRecovery [6].

However, current federated unlearning solutions have not ad-
dressed the following issues. First, the FL-trainedmodel necessitates
the participation of remaining clients in the unlearning process to
diminish the data effects of targeted clients. This unlearning pro-
cess imposes an additional burden by requiring the computational
and communication resources of the remaining clients. Second,
selecting remaining clients to participate in the unlearning process
presents a significant challenge due to the potential presence of
unbalanced non-independent and Identically Distributed (non-IID)
data among those attractive remaining clients, which may subse-
quently diminish the performance of the unlearning FL models.
Present solutions predominantly utilize a random selection method,
neglecting to data imbalances among remaining clients, which is
unsuitable for dynamic environments.

In this paper, we introduce a two-tiered incentive and unlearning
mechanism to address the aforementioned issues. At the lower
level, we design an incentive mechanism based on evolutionary
game theory to motivate the remaining clients to participate in
the unlearning process. At the upper level, we propose a method
that integrates deep reinforcement learning (DRL) with federated
unlearning, with the aim of selecting remaining clients possessing
unbalanced local data dynamically. The principal contributions of
this paper are articulated as follows:

• We propose a cluster-based joint incentive and unlearning
framework for federated unlearning. The cluster is utilized
to perform multiple types of federated unlearning tasks

1
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and reduce the impact on remaining clients. We discern a
correlation between the data distribution of local datasets
from the remaining clients and the performance of the
unlearning models.

• Wemodel incentive decisions of the remaining clients using
an evolutionary game, aiming to capture their dynamics
and rationality, and attract them to join the unlearning
process, which demands additional resources.

• To achieve dynamic federated unlearning, based on the evo-
lutionary game, we integrate DRL with federated unlearn-
ing to choose remaining clients and find dynamic strategies
to mitigate the effects of unbalanced local data.

2 RELATEDWORK
Client Federated Unlearning. The application of machine unlearn-

ing to federated unlearning was first proposed in FedEraser [4],
wherein the authors leverage the central server’s storage to archive
historical model updates, employing them to unlearn the FL models
and thereby reduce unlearning time. The remaining clients and the
central server collaboratively utilize historical model updates to
execute a process of local calibrating, updating, aggregating, and
unlearning model updates, thereby calibrating the trained FL model
and eliminating the data influence of the target clients. [5] proposed
an Adahessian-based rapid retraining method to reduce compu-
tational costs. [6] employed differential privacy in the historical
model updates of federated unlearning to unlearn a global model
that is irrelevant to the data contributions of targeted clients. [7]
introduced a clustered aggregation-based asynchronous federated
unlearning approach to minimize affected clients and formulated
a lexicographic minimization problem to optimize client-cluster
assignment. [8] first highlighted the risks of inference informa-
tion leakage in federated unlearning and outlined potential defense
approaches to safeguard client privacy. [9] employed knowledge
distillation, using teacher and student networks, to extract knowl-
edge from the historical model updates of targeted clients and to
train the unlearned global model, thereby enhancing model perfor-
mance. [10] introduced a federated unlearning method, utilizing
projected gradient ascent to formulate the unlearning process as a
constrained maximization problem to maximize the loss of the local
model for unlearning while preserving the knowledge from the
remaining clients. However, existing client federated unlearning
methods select random or predefined remaining clients to unlearn
the global model, without considering the impact of unbalanced
local data on remaining clients and the adaptability for dynamic
environments.

Sample and Class Federated Unlearning. [9] integrated reverse
stochastic gradient ascent with elastic weight consolidation in fed-
erated unlearning to eliminate the influence of the targeted training
data. [11] introduced an FL-based unlearning framework, designed
for digital twin mobile networks, that incorporates memory evalua-
tion and erasemodules. This framework integrates key featuremaps
to obtain memory evaluation information and employs a multi-loss
training method to unlearn data while enhancing accuracy. [12]
introduced a Bayesian federated unlearning approach, employing a
parameter self-sharing method to navigate the trade-off between

forgetting data from the targeted client and maintaining the accu-
racy of the global model. [13] developed a data valuation method
based on shared Shapley values for model markets, designed to
evaluate data value following the unlearning of data by targeted
clients. [14] employed the Term Frequency-Inverse Document Fre-
quency (TF-IDF) method to assess the influence between channels
and classes in image classification, pruning the most pertinent
channel to unlearn the contribution of a specific class. Since the
aforementioned methods engage in the process of model updates,
the sample and class-federated unlearning methods can be incor-
porated into both the existing client-federated unlearning methods
and the proposed method to enhance model performance.

3 PRELIMINARIES
3.1 Federated Learning
Federated learning, initially introduced by [3], necessitates multiple
clients to share model updates, rather than raw data, with a central
server for training and aggregation, thereby safeguarding the data
privacy of the clients. GivenN = {1, . . . , 𝑛, . . . , 𝑁 } of 𝑁 clients and
a central server J = {1}, and defining the global loss function with
model updatesw𝑘 at the 𝑘th round as 𝐹 (w𝑘 ). As shown in Figure 1
(a), the collaborative workflow of federated learning is iteratively
repeated over 𝐾 training rounds as follows:

0) Model Distribution. Initially, the central server replays the
global model updatesw𝑘 to clients, ensuring that each participating
device starts the local training process with the most recent model
parameters.

1) Local Computation. Upon receiving w𝑘 , each client 𝑛 ∈
N proceeds to compute the local model updates w𝑘

𝑛 using their
respective local datasets 𝐷𝑛 , without sharing raw data with the
server or other clients.

2) Update Transmission. Each client 𝑛 transmits the updated
local model updates w𝑘

𝑛 to the central server for subsequent aggre-
gations.

3) Global Aggregation. Upon receiving the updated model
updates w𝑘

𝑛 from each client in N = {1, . . . , 𝑛, . . . , 𝑁 }, the cen-
tral server utilizes the FedAvg algorithm [3], denoted as w𝑘+1 =
1
𝑁

∑𝑁
𝑛=1 w

𝑘
𝑛 , to aggregate them, yielding the updated global model

w𝑘+1. Subsequently, it broadcasts w𝑘+1 to clients for the (𝑘 + 1)th
round.

To address issues related to centralization and communication
overheads, clustered FL has been widely adopted, wherein multiple
central servers serve as cluster heads, denoted asJ = {1, . . . , 𝑗, . . . , 𝐽 }.
Each client 𝑛 is associated with a cluster head 𝑗 to train FL models
collaboratively. The training process within each cluster adheres to
the aforementioned methodology.

3.2 Federated Unlearning
Federated unlearning was first introduced in [4], providing a mech-
anism that leverages the storage of model updates to enable the
global model to forget the data effects originating from the tar-
geted unlearning clients. Consider a scenario where a target client
𝑛𝑢 triggers an unlearning request to remove data effects from the
global model w𝑘 at 𝑘th training round. As shown in Figure 1 (b),
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Figure 1: Federated learning and unlearning

the workflow of federated unlearning is then iteratively repeated
over 𝑅 unlearning rounds, as follows:

0) Unlearning Request. Initially, upon receiving an unlearning
request from a target client 𝑛𝑢 ∈ N𝑢 , the central server extracts
and removes the historical model updates pertinent to client 𝑛𝑢 .
Subsequently, it broadcasts the most recent global model without
the updates from 𝑛𝑢 to the remaining clients, initiating the 𝑟 th
unlearning round.

1) Local Calibrating. At the 𝑟 th unlearning round, each re-
maining client 𝑛𝑟 ∈ N\𝑛𝑢 actively engages in computing the local
model updates w̃𝑟

𝑛𝑟
using their respective local data 𝐷𝑛𝑟 for cali-

bration, aiming to refine and adjust the model in the absence of the
contributions from the targeted client 𝑛𝑢 . To mitigate the computa-
tional costs associated with local retraining, FedEraser [4] reduces
the number of local calibrating rounds compared with the original
training process.

2) Update Transmission. Each remaining client 𝑛𝑟 ∈ N\𝑛𝑢
communicates the calibrated local model updates w̃𝑟

𝑛𝑟
to the central

server for subsequent aggregations.
3) Unlearning Aggregation. The central server collects the

calibrated model updates w̃𝑟
𝑛𝑟

from each remaining client within
N\𝑛𝑢 . It utilizes w̃𝑟

𝑛𝑟
to calibrate historical model updates w𝑟

𝑛𝑟
via the step length and direction layer by layer, which can be de-
noted as ŵ𝑟

𝑛𝑟
= |w𝑟

𝑛𝑟
| w̃𝑟

𝑛𝑟

| |w̃𝑟
𝑛𝑟 | |

. The central server then aggregates

these parameter calibrations via w̃𝑟+1 = w̃𝑟+ 1
𝑁−1

∑𝑁
𝑛𝑟=1,𝑛𝑟≠𝑛𝑢 ŵ𝑟

𝑛𝑟
,

effectively unlearning contributions from the targeted client 𝑛𝑢 .
Subsequently, the aggregated calibration model updates w̃𝑟+1 are
broadcast to the remaining clientsN\𝑛𝑢 for the (𝑟 +1)th unlearning
round.

3.3 Challenges
Current federated unlearningmethods often overlook the impact on
remaining clients, who are required to collaboratively unlearn the
global model using additional computational and communication
resources. Furthermore, these methods conventionally assume a
random or predefined selection of remaining clients, neglecting the
potential impact of unbalanced local data among these participants.
Instead, as shown in Figure 2, we focus our study on a two-level

incentive and unlearningmechanism as follows: i) in the lower level,
we formulate an evolutionary game to attract remaining clients to
join the unlearning process and maximize the utilities, and ii) in
the upper level, we utilize DRL based client selection mechanism
to dynamically choose a subset of remaining clients to reduce data
bias.

4 LOWER-LEVEL EVOLUTIONARY GAME
4.1 Game Formulation
As illustrated in Figure 2, we formulate the participation of the
remaining clients in unlearning tasks as an evolutionary game,
which elucidates the dynamics of clients transitioning between
tasks to maximize their utilities.

Players. The remaining clients N𝑟 {1, . . . , 𝑛𝑟 , . . . , 𝑁𝑟 } = N\𝑁𝑢
serve as the 𝑁𝑟 players of the evolutionary game, each determining
different strategies for associating with central servers.

Populations. The clients are divided into a setP = {1, . . . , 𝑝, . . . , 𝑃}
consisting of 𝑃 populations based on data quantities 𝐷𝑝 where
∪𝑝∈P |𝑝 | = 𝑁𝑟 . Each remaining client 𝑛𝑟 within a population 𝑝
possesses identical data samples 𝑑𝑝 [15].

Strategy. Each client 𝑛𝑟 within a population 𝑝 selects a central
server 𝑗 to participate in the unlearning process with the aim of
obtaining rewards and maximizing their utilities. This decision-
making can be represented as S𝑝

𝑛𝑟 = {𝑎𝑝
𝑛𝑟 ,1, . . . , 𝑎

𝑝

𝑛𝑟 , 𝑗
, . . . , 𝑎

𝑝

𝑛𝑟 ,𝐽
},

where 𝑎𝑝
𝑛𝑟 , 𝑗

= 1 indicates the selection of server 𝑗 , and 𝑎𝑝
𝑛𝑟 , 𝑗

= 0
otherwise indicates non-selection. Let 𝑥𝑝

𝑗
(𝑡) be defined as the pop-

ulation share, which is the fraction of the population 𝑝 associating
with a central server 𝑗 during a discrete time interval 𝑡 , where∑𝐽

𝑗=1 𝑥
𝑝

𝑗
(𝑡) = 1. Therefore, the population state of the population

𝑝 is represented as x𝑝 (𝑡) = [𝑥𝑝1 (𝑡), . . . , 𝑥
𝑝

𝑗
(𝑡), . . . , 𝑥𝑝

𝐽
(𝑡)].

Utility. The utility conferred upon the remaining clients is for-
mulated as the differential between the rewards 𝑏𝑝

𝑗
(𝑡) obtained

from participation in the unlearning process and the concomitant
communication𝐶 𝑗

𝑐𝑚 (𝑡), computation𝐶𝑝
𝑐𝑝 , and storage𝐶

𝑝
𝑐𝑠 resource

costs incurred.
3
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4.2 Utility and Replicator Dynamics
Reward. Referring to [15, 16], the rewards, 𝑏𝑝

𝑗
(𝑡), conferred upon

clients from population 𝑝 associating a central server 𝑗 over 𝑅 un-

learning rounds are expressed as 𝑏𝑝
𝑗
(𝑡) = 𝜓 𝑗

𝑥
𝑝

𝑗
(𝑡 )𝐷𝑝∑𝑃

𝑝=1 𝑥
𝑝

𝑗
(𝑡 )𝐷𝑝

+ 𝐹𝑢
𝑗
+ 𝐹𝑐

𝑗
,

where 𝜓 𝑗 represents the rewards distributed by central server 𝑗
to incentivize remaining clients’ participation in the unlearning

process based on their data contribution
𝑥
𝑝

𝑗
(𝑡 )𝐷𝑝∑𝑃

𝑝=1 𝑥
𝑝

𝑗
(𝑡 )𝐷𝑝

. Addition-

ally, 𝐹𝑢
𝑗
is the incentives obtained by a subset of unlearning clients

from original FL tasks, while 𝐹𝑐
𝑗
denotes the penalty imposed upon

unlearning clients that breach the agreement and withdraw prema-
turely.

Cost. The communication costs𝐶 𝑗
𝑐𝑚 (𝑡), following [17], incurred

by clients in the process of sharing model updates with a central
server 𝑗 within a time period 𝑡 are mathematically expressed as
𝐶
𝑗
𝑐𝑚 (𝑡) = 𝜁 𝑗

1−𝜙 (∑𝑃
𝑝=1 𝑥

𝑝

𝑗
(𝑡))2, where 𝜁 𝑗 represents the congestion

coefficient, determined by the communication resources of the cen-
tral server 𝑗 . The term 1 − 𝜙 accounts for losses incurred during

transmission, while the quadratic expression
(∑𝑃

𝑝=1 𝑥
𝑝

𝑗
(𝑡)

)2
delin-

eates the usage profile aggregated across populations for a central
server [17].

The computational costs 𝐶𝑝
𝑐𝑝 associated with client calibration

across 𝑅 unlearning rounds, referring to [18], can be represented
as 𝐶𝑝

𝑐𝑝 =
𝜏𝑝
2 𝛼𝑝𝜂𝑓

2
𝑝 𝑑𝑝 , where 𝜏𝑝 signifies the number of local cal-

ibrating rounds during the 𝑟 th unlearning round. The term 𝛼𝑝

2
denotes the effective capacitance parameter associated with the

computing chipset. Additionally, 𝜂 represents the unit cost of en-
ergy consumption, 𝑓 2

𝑝 characterizes the computational capability,
determined by the central processing unit, and 𝑑𝑝 indicates the
quantity of calibrating data samples.

The costs associated with storage, designated𝐶𝑝
𝑐𝑠 , which pertain

to the preservation of historical updates to facilitate unlearning, are
expressed as 𝐶𝑝

𝑐𝑠 = 𝜏𝑠
𝑆𝑝

1−𝜙 𝑐𝑠 , where 𝜏𝑠 represents the unlearning
rounds for which model updates are stored, 𝑆𝑝 denotes the sizes of
historical updates, 1−𝜙 accounts for storage loss, and 𝑐𝑠 is the unit
cost of storage.

Utility. Define the utility, denoted as 𝑢𝑝
𝑗
(𝑡), for clients within

population 𝑝 associating with central server 𝑗 with the aim of
maximizing unlearning benefits as 𝑢𝑝

𝑗
(𝑡) = U(𝑏𝑝

𝑗
(𝑡) − 𝐶 𝑗

𝑐𝑚 (𝑡) −
𝐶
𝑝
𝑐𝑝 −𝐶𝑝

𝑐𝑠 ). Here, U encapsulates the linear utility function, while
𝑏
𝑝

𝑗
, 𝐶 𝑗

𝑐𝑚 (𝑡), 𝐶𝑝
𝑐𝑝 , and 𝐶

𝑝
𝑐𝑠 respectively denote the rewards and the

communication, computation, and storage costs incurred. Further,
let the average utility for remaining clients, distributed across 𝐽
central servers, be expressed as 𝑢𝑝 (𝑡) = ∑𝐽

𝑗=1 𝑥
𝑝

𝑗
(𝑡)𝑢𝑝

𝑗
.

Replicator Dynamics: Given the constrained rewards and the
potential for remaining clients to associate with alternative central
servers to maximize utilities, we employ replicator dynamics [19]
to formulate the dynamic process, which is expressed as ¤𝑥𝑝

𝑗
(𝑡) =

𝛿𝑥
𝑝

𝑗
(𝑡) (𝑢𝑝

𝑗
(𝑡) − 𝑢𝑝 (𝑡)), where 𝛿 denotes the learning rate, serving

to govern the strategic adjustments of the clients.
4
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4.3 Evolutionary Equilibrium
Attaining an equilibrium regardless of initial conditions, such that
¤𝑥𝑝
𝑗
(𝑡) = 0 for all time periods after realizing the initial equilibrium,

is imperative in the evolutionary game. The forthcoming analysis
delineates the proof pertaining to the existence, uniqueness, and
stability of this evolutionary equilibrium.

Existence. For all 𝑣 ∈ J , consider the first-order derivative

of 𝑑 ¤𝑥𝑝
𝑗
(𝑡) as

d ¤𝑥𝑝
𝑗
(𝑡 )

d𝑥𝑣 = 𝛿 [
d𝑥𝑝

𝑗
(𝑡 )

d𝑥𝑣 (𝑢𝑝
𝑗
(𝑡) − 𝑢𝑝 (𝑡)) + 𝑥𝑝

𝑗
(𝑡) (

d𝑢𝑝

𝑗
(𝑡 )

d𝑥𝑣 −
d𝑢𝑝 (𝑡 )

d𝑥𝑣 )], where d𝑢𝑝 (𝑡 )
d𝑥𝑣 ) = ∑𝐽

𝑗=1 (
d𝑥𝑝

𝑗
(𝑡 )

d𝑥𝑣 𝑢
𝑝

𝑗
(𝑡) + 𝑥𝑝

𝑗
(𝑡)

d𝑢𝑝

𝑗
(𝑡 )

d𝑥𝑣 ), and
d𝑢𝑝

𝑗
(𝑡 )

d𝑥𝑣 = 𝜓 𝑗 [
d𝑥𝑝

𝑗
(𝑡 )

d𝑥𝑣
𝐷𝑝∑𝑃

𝑝=1 𝑥
𝑝

𝑗
(𝑡 )𝐷𝑝

−
𝑥
𝑝

𝑗
(𝑡 )𝐷2

𝑝

(∑𝑃
𝑝=1 𝑥

𝑝

𝑗
(𝑡 )𝐷𝑝 )2 ] −

2𝜁 𝑗
1−𝜙 ×

(∑𝑃
𝑝=1 𝑥

𝑝

𝑗
(𝑡))

d𝑥𝑝
𝑗
(𝑡 )

d𝑥𝑣 . Given that | d𝑢
𝑝 (𝑡 )

d𝑥𝑣 ) | is bounded, it follows

that both |
d𝑢𝑝

𝑗
(𝑡 )

d𝑥𝑣 | and |
d ¤𝑥𝑝

𝑗
(𝑡 )

d𝑥𝑣 | are likewise bounded.

Uniqueness. Given that |
d ¤𝑥𝑝

𝑗
(𝑡 )

d𝑥𝑣 | is bounded, there exists a
constant 𝑥𝑝

𝑗
situated between 𝑥𝑝

𝑗1
(𝑡) ∈ x𝑝 (𝑡) and 𝑥𝑝

𝑗2
(𝑡) ∈ x𝑝 (𝑡),

for which |
¤𝑥𝑝
𝑗1 (𝑡 )− ¤𝑥𝑝

𝑗2 (𝑡 ) |
𝑥
𝑝

𝑗1
(𝑡 )−𝑥𝑝

𝑗2
(𝑡 ) =

d𝑥𝑝
𝑗
(𝑡 )

d𝑥𝑣 , can be expressed as | ¤𝑥𝑝
𝑗1 (𝑡) −

¤𝑥𝑝
𝑗2 (𝑡) | ≤ max{|

d𝑥𝑝
𝑗
(𝑡 )

d𝑥𝑣 |}|𝑥𝑝
𝑗1
(𝑡)−𝑥𝑝

𝑗2
(𝑡) |,∀𝑥𝑝

𝑗1
(𝑡), 𝑥𝑝

𝑗2
(𝑡) ∈ x𝑝 (𝑡),∀𝑝 ∈

P,∀𝑡 . This thereby suggests that the replicator dynamics possess a
unique solution regardless of the initial conditions.

Stability. The Lyapunov function assists in determining whether
an equilibrium point of a dynamic system is stable [15]. When the
system state is at an equilibrium, the change or derivative of the Lya-
punov function with respect to time should be non-positive. Let us
consider the Lyapunov function L(x𝑝 (𝑡)) = (∑𝐽

𝑗=1
∑𝑃
𝑝=1 𝑥

𝑝

𝑗
(𝑡))2.

The first-order derivative of L(x𝑝 (𝑡)) with respect to 𝑡 can be
formulated as L(dx𝑝 (𝑡 ) )

d𝑡 = 2(∑𝐽
𝑗=1

∑𝑃
𝑝=1 𝑥

𝑝

𝑗
(𝑡)) (∑𝐽

𝑗=1
∑𝑃
𝑝=1 ¤𝑥𝑝

𝑗
(𝑡)),

where
∑𝐽

𝑗=1
∑𝑃
𝑝=1 𝑥

𝑝

𝑗
(𝑡) = 𝑃 . Thus, for stability, per the Lyapunov

conditions, it is requisite that
∑𝐽

𝑗=1
∑𝑃
𝑝=1 ¤𝑥𝑝

𝑗
(𝑡) = 0,∀𝑡 .

5 UPPER-LEVEL DYNAMIC UNLEARNING
Although the above method can incentivize the remaining clients
to participate in the unlearning process, the heterogeneity among
them results in suboptimal performance of the FL unlearning mod-
els. Existing solutions such as FedEraser [4] and RapidRetrain [5]
opt for randomly selecting a subset of remaining clients to engage
in the unlearning process. However, these approaches exhibit di-
minished performance due to the non-IID nature of local data on
the remaining clients.

An experiment was conducted to evaluate unlearning accuracy
and F1 scores of Membership Inference Attacks (MIAs) [20] on non-
IID data utilizing the MNIST, FashionMNIST, and CIFAR-10 datasets
over 40 unlearning rounds, comparing the efficacy of FedAvg, Fed-
Eraser, and K-Center methods, as depicted in Figure 3. Initially,
FedAvg executes the FL process to derive the global model, denoted
as w̃0, which serves as the starting point for the unlearning process.
FedEraser randomly selects 10 clients 𝑛𝑙1 ∈ N\𝑛𝑢 , 𝑙 ∈ {1, . . . , 10}
from the set of |N\𝑛𝑢 | remaining clients to engage in the unlearn-
ing of the global model across three datasets. K-Center necessi-
tates the remaining clients N\𝑛𝑢 to download the global model
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Figure 3: Unlearning on non-IID data

w̃0 followed by conducting one unlearning epoch of Stochastic
Gradient Descent (SGD) based on local data, yielding model up-
dates {w̃1

1, . . . , w̃
1
|N\𝑛𝑢 | }. Thereafter, K-center clusters the remain-

ing clients N\𝑛𝑢 into 10 groups according to {w̃1
1, . . . , w̃

1
|N\𝑛𝑢 | },

subsequently selecting one client randomly from each group to
participate in the unlearning process. MIAs are employed to ascer-
tain whether specific test data was utilized during an FL model’s
training, thereby serving as a metric to gauge the residual informa-
tion retained in the global model. The experimental configurations,
including the FL model structure, datasets, and non-IID settings,
are thoroughly delineated in Section 6.

As observed from the Figure 3, K-center surpasses FedEraser
in performance on non-IID MNIST and non-IID FashionMNIST,
and especially on non-IID CIFAR-10. Furthermore, the F1 scores
pertaining to MIAs on three datasets, when utilizing both FedEraser
and K-center, exhibit an approximate equivalency, showcasing a
reduction of at least 45% compared to those obtained via FedAvg.
Consequently, enhancing the performance of federated unlearning
on non-IID data is feasible by carefully selecting remaining clients
to participate in the unlearning process.

5.1 System Model
As depicted on the right side of Figure 2, we introduce a DRL-
based mechanism for the selection of remaining clients, aimed
at facilitating a dynamic unlearning process, drawing inspiration
from [21]. Given that there are N𝑟 = N\𝑛𝑢 remaining clients, the
proposed mechanism employs a double Deep Q-network (DQN) to
dynamically select 𝐿 remaining clients 𝑛𝑙𝑟 , 𝑙 ∈ {1, . . . |N𝑟 |} within
each unlearning round to compute local calibration.

State. The state of the DQN is described by the cosine similar-
ities between the model updates of the remaining clients 𝑛𝑙𝑟 , 𝑙 ∈
{1, . . . , |N𝑟 |} and the latest unlearning global model w̃𝑟 . In the
𝑟 th unlearning round, prior to the unlearning process, each client
𝑛𝑙𝑟 is obliged to conduct local calibration to compute the model

5
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updates w̃𝑟

𝑛𝑙𝑟
and transmit w̃𝑟

𝑛𝑙𝑟
to the central server, which are

utilized to construct the initial state. Subsequently, the cosine sim-

ilarity can be computed as cos_sim(w̃𝑟

𝑛𝑙𝑟
, w̃𝑟 ) =

w̃𝑟

𝑛𝑙𝑟

·w̃𝑟

∥w̃𝑟

𝑛𝑙𝑟

∥ ∥w̃𝑟 ∥ =∑𝑑
𝑖=1 w̃

𝑟

𝑛𝑙𝑟 ,𝑖
w̃𝑟
𝑖√︂∑𝑑

𝑖=1 (w̃𝑟

𝑛𝑙𝑟 ,𝑖
)2
√︃∑𝑑

𝑖=1 (w̃𝑟
𝑖
)2
. Consequently, the state is represented

as s𝑟 = {cos_sim(w̃𝑟

𝑛1
𝑟

, w̃𝑟 ), . . . , cos_sim(w̃𝑟

𝑛
|N𝑟 |
𝑟

, w̃𝑟 )}, which is a

vector of cosine similarities.

Action. At the 𝑟 th unlearning round, given the current state
from the remaining clients and the latest global model, the central
server selects a subset of 𝐿 remaining clients from the total |N𝑟 |
remaining clients to initiate the unlearning process. The action can
be expressed as the selection, or lack thereof, of |N𝑟 | remaining
clients, formalized as a𝑟 = {𝑎𝑟

𝑖
} |N𝑟 |
𝑖=1 , where 𝑎𝑟

𝑖
∈ {0, 1} indicates

whether client 𝑖 is selected (1) or not (0) at the 𝑟 th round. However,
the complexity of this selection becomes exorbitant, equal to𝐶𝐿

|N𝑟 | ,
particularly as the number of remaining clients enlarges. We discuss
the solution in Section 5.3.

Reward. Given that the central server can gather states from 𝐿 se-
lected clients, the accuracy, assessed via data hosted on the central
server, can be utilized as a reward component to enhance perfor-
mance. This is mathematically represented as r𝑡 = 𝜉cur_acc−tar_acc−
1, where the reward r𝑡 is correlated with both the current accuracy
(cur_acc) and the target accuracy (tar_acc), and 𝜉 is a positive con-
stant to control the sensitivity of the reward with respect to the
discrepancy. Specially, 𝜉 is strategically chosen to ensure that the
rewards are scaled appropriately to facilitate efficient unlearning
during the training of the DQN.

5.2 Workflow
The workflow of DQN-based dynamic selection of remaining clients
includes the following steps.

0) Construction of the Environment. All remaining clients
retrieve the most recent unlearning model w̃1 from the central
server, subsequently executing a single unlearning round to acquire
the model updates w̃1

𝑛𝑙1
. Following this, the updates are transmitted

to the central server. The central server aggregates model updates
w̃1
𝑛𝑙1

from all remaining clients, subsequently computing the cosine

similarity between w̃1
𝑛𝑙1

and w̃1. Consequently, it derives the initial

state, s1, utilizing the cosine similarity, cos_sim(w̃𝑟

𝑛𝑙𝑟
, w̃𝑟 ), where

𝑙 ∈ {1, . . . , |N𝑟 |}.
1) Dynamic Selection. In the 𝑟 th unlearning round, the central

server decides the selection of 𝐿 participants from the remain-
ing clients and receives model updates from the selected clients
w̃𝑟

𝑛𝑙
′
𝑟

, 𝑙 ′ ∈ {1, . . . , 𝐿} for aggregation and distribution. The client
selection in the 𝑟 th unlearning round involves computing the value
function 𝑄𝑝 (s𝑡 , 𝑎;w𝑑 ), where 𝑎 is the client selection and w𝑑 are
the parameters of the policy network. There are two networks in
the DQN: the policy and target networks, which share the same
architecture. The central server employs an 𝜖-greedy strategy to
select actions from the action space. Specifically, it computes the

value function 𝑄𝑝 (s𝑡 , 𝑎;w𝑑 ) and selects the top-𝐿 values’ corre-
sponding indices as the newly selected clients in a probability 1− 𝜖 ,
performing local calibration and transmission subsequently. The
central server utilizes the next states from the selected clients to
replace the subset of corresponding previous states.

The update of the value function typically follows the temporal-
difference (TD) error rule. The formula for updating the Q-values in
DQN is often given by𝑄𝑡 (s𝑡 , 𝑎) = reward+𝛾 max𝑎′ 𝑄𝑝 (s𝑡+1, 𝑎′;w𝑡 ),
where 𝑄𝑡 is the target Q-value, which the policy network aims to
approach. 𝛾 is the discount factor, determining the present value of
future rewards. max𝑎′ 𝑄𝑝 (s𝑡+1, 𝑎′;w𝑡 ) is the maximum estimated
future reward when transitioning to the next state s𝑡+1. w𝑡 are
the parameters of the target network. The loss 𝐿 for updating the
policy network parameters w𝑑 can then be computed using mean
squared error between the Q-target and the current Q-value approx-
imation as 𝐿(w𝑑 ) = E

[ (
𝑄𝑡 (s𝑡 , 𝑎) −𝑄𝑝 (s𝑡 , 𝑎;w𝑑 )

)2] , which is then
used to perform a gradient descent update on the policy network
parameters.

2) Local Calibration and Transmission. During the 𝑟 th un-
learning round, the selected clients retrieve the latest unlearning
model w̃𝑟 , calculate the local model updates w̃𝑟

𝑛𝑙
′
𝑟

utilizing their
respective local data 𝐷

𝑛𝑙
′
𝑟
, and subsequently transmit the results to

the central server for aggregation.
3) Unlearning Aggregation. The central server collects local

model updates w̃𝑟

𝑛𝑙
′
𝑟

, and utilizes them for calibration via the step
length and direction, assessed layer by layer, as elaborated in Sec-
tion 3.2. Subsequently, the new global unlearning model w̃𝑟+1 is
aggregated and distributed to the selected clients for the subsequent
(𝑟 + 1)th unlearning round.

The aforementioned steps 1-3 will be iteratively executed for 𝑅
unlearning rounds to systematically mitigate the data influences
from specific clients.

5.3 Discussion
Given that the action spaces enlarge substantially as the number of
remaining clients increase, various methodologies, notably Princi-
pal Component Analysis (PCA) [21], hierarchical frameworks [15],
and sharding [22], which have found extensive application in FL,
can also be judiciously deployed in the federated unlearning process
to mitigate complexity and curtail dimensional size.

6 EXPERIMENTAL RESULTS
6.1 Lower-Level Evolutionary Game
In our experimental setup, we engage 90 remaining clients, each
possessing varying data quantities. The clients are partitioned into
three distinct populations, wherein each population encompasses
30 clients, and they are categorized based on their respective data
quantities for unlearning, ranging between [80,120] data samples
per client. The computation cost, 𝐶𝑝

𝑐𝑝 , and the storage cost, 𝐶𝑝
𝑐𝑠 ,

are set at 0.1. The learning rate, denoted as 𝛿 , is established at
0.001. Rewards,𝜓 𝑗 , distributed by each central server 𝑗 are variably
set between [100,300]. The congestion coefficient, 𝜁 𝑗 , is situated
between [10,20]. Meanwhile, the transmission loss, 𝜙 , is designated
at 0.5. Incentives 𝐹𝑢

𝑗
and 𝐹𝑐

𝑗
emanating from remaining clients are
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respectively fixed between [80,120] and [30,40]. Initially, one-third
of the clients from each population are assigned evenly across three
central servers. The aforementioned parameters and configurations
are inspired and adjusted based on previous works [15, 16]. Except
where explicitly stated, the simulation parameters adhere to the
aforementioned configurations.

Figure 4 illustrates the evolution of population utilities. The
method proposed in this study is compared with random, round-
robin, and greedy strategies. Specifically, under the random policy,
the remaining clients are assigned without any strategic considera-
tion. Conversely, the round-robin policy assigns clients in a cyclical
order, while the greedy policy allocates clients based on the avail-
able rewards. These policies are examined and adapted following
the methodologies discussed in [23].

Figure 4 (a) illustrates the total utilities over 300 time periods,
contrasting our proposed method with random, round-robin, and
greedy strategies. All methodologies attain a stable equilibrium
within 100 time periods, thereby substantiating the stability out-
lined in Section 4.3. Remarkably, our evolutionary game-based
strategy emerges superior, achieving at the best total utility com-
pared with random, round-robin, and greedy strategies. This can
be attributed to its capability to adeptly navigate the dynamics of
rewards and costs across central servers, thereby facilitating remain-
ing clients from various populations in identifying and associating
with a central server for retraining tasks, all while maximizing
utility.

Figure 4 (b) illustrates the total utilities over four distinct learning
rates, juxtaposing our proposed method with random, round-robin,
and greedy strategies, focusing on the time periods at 50 to ex-
amine the evolutionary equilibrium under diverse conditions. It is
discernible from the figure that the trends of the four strategies
uniformly display a decrease in total utilities with increasing learn-
ing rates. This indicates that a lower learning rate necessitates a
more extended period to achieve the evolutionary equilibrium. This
phenomenon is attributable to the learning rates modulating the
speed of the replicator dynamics. Specifically, a lower learning rate
results in a decelerated pace of the replicator dynamics, demanding
more time to diminish to zero and thereby achieve equilibrium.

Figure 4 (c) displays the average utilities associated with our
proposed method, compared to random, round-robin, and greedy
strategies, given a time period of 50 and a learning rate of 0.001,
across a range of remaining client quantities from 10 to 70. Notably,
the figure reveals a consistent decreasing trend in average utilities
across all four methods as the number of clients escalates. This
decrease in average utilities, despite the efforts of strategies to
guide clients towards optimal central servers for retraining tasks,
can be attributed to the dilution of reward pools; as the client count
augments, the rewards must be disseminated among a larger pool
of participants, thus diminishing the average utility per client.

Figures 4 (d), (e), and (f) elucidates the accuracy resultant from 40
unlearning rounds, which are inherently associated with population
shares generated by the evolutionary game under four distinct pop-
ulations [0.1, 0.4, 0.5], [0.4, 0.4, 0.2], [0.8, 0.1, 0.1], and [0.0, 0.4, 0.6].
The figure compares our proposed method with random, round-
robin, and greedy strategies, upon a non-iid dataset comprising
MNIST [24], Fashion-MNIST [25], and CIFAR-10 (CIFAR) [26]. The
architecture of FL models, trained on MNIST, Fashion-MNIST, and
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Figure 4: Evolution of population utilities and accuracy

CIFAR-10 refers to FedEraser [4]. Observations derived from the
figures demonstrate a notable consistency in the accuracy achieved
by the four comparative methods across 40 unlearning rounds. Al-
though the proposed method can attract a greater share of the
population to participate in the unlearning process, the calibration
accuracy during the unlearning process is perceptibly influenced
by the heterogeneity of the remaining clients’ local data. Conse-
quently, it necessitates the development of a methodology adept at
mitigating such heterogeneity, thereby enhancing accuracy.

6.2 Upper-Level Dynamic Retraining
The upper-level dynamic retraining process is executed on Ubuntu
16.04.7 LTS, equippedwith 8 cores, 64GB ofmemory, and anNVIDIA
RTX 3090 GPU. A total of 100 clients are engaged in the experiment,
and a subset of these, excluding unlearning clients, are selected in
the unlearning process to reduce waiting time for model aggrega-
tion [3]. The local data for unlearning on each client is a non-IID
setting, in which each client retained total_samples

total_clients samples follow-
ing [21]. Within this data subset of each client, 80% originated from
a dominant class, with the remaining 20% pertaining to alternative
classes. During each unlearning round, 10 of the remaining clients
are selected to participate in federated unlearning. The local un-
learning round was set to 5 compared with the local training round
10, the global unlearning round to 40, with a local batch size of
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Figure 5: Unlearning on non-IID data with three datasets

64, a local learning rate of 0.005, and the utilization of Stochastic
Gradient Descent (SGD) as the optimization algorithm. Our Deep
Q-Network (DQN) model, implemented using PyTorch, comprises a
straightforward three-layer architecture, designed to process states
and actions related to 99 remaining clients. It features an input layer,
two hidden layers with 8 and 256 neurons respectively, both featur-
ing ReLU activations, and an output layer projecting 256 neurons
to 99 Q-values without additional activation. The model leverages
a replay buffer for experience replay during training, storing up to
1,000 tuples of experiences and sampling in batches of 8 to stabilize
learning. Utilizing the mean squared error loss as its loss function
and Adam optimizer with a learning rate of 0.001, the DQN balances
swift and stable learning. Moreover, an 𝜖-greedy strategy (𝜖 = 0.1) is
employed to facilitate exploration during training. Unless otherwise
specified, the parameters are established in accordance with the
methodologies outlined in the aforementioned studies [4, 21].

As illustrated in Figure 5, the proposed method is compared with
FedAvg, FedEraser, and K-Center across MNIST, FashionMNIST,
and CIFAR-10 datasets to ascertain accuracy across 20 unlearning
rounds. In this comparison, FedAvg serves as the baseline, derived
from the FL training process. Conversely, FedEraser employs a strat-
egy of randomly selecting participants from the pool of remaining
clients to engage in the unlearning process. Meanwhile, K-Center
organizes the remaining clients into 10 clusters, randomly selecting
a single client from each group to participate in the unlearning
process. As depicted in Figures 5 (a), (b), and (c), our methodology
surpasses both FedEraser and K-Center in terms of performance
on the MNIST and FashionMNIST datasets, while exhibiting dimin-
ished performance on CIFAR-10. Nonetheless, all three methods
yield a uniformly low accuracy, approximately 30%, when applied
to the CIFAR-10 dataset. Furthermore, it is observable from Figure 5
(d) that the F1 score of the three methodologies can diminish to
approximately 0.3, illustratively contrasting the unlearning per-
formance relative to FedAvg. The performance across the three
methods demonstrates a near uniformity.

7 CONCLUSION
We propose a two-level incentive and unlearning mechanism, de-
signed to encourage the participation of remaining clients in the
unlearning process and to dynamically select the number of re-
maining clients with unbalanced local data, thus optimizing the
equilibrium and performance efficacy. Compared to benchmark
strategies, the proposed mechanisms can maximize utility within
the low level and achieve dynamic remaining client selection with-
out retraining from scratch. We envision this work as an initiative
to integrate networking into federated unlearning, achieving an
effective interplay. In future work, we will explore methods to erase
historical data effects from both participating clients and servers,
examine decentralized unlearning algorithms, and integrate differ-
ential privacy, employing Gaussian noises to mitigate data effects.
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