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Abstract

World models have become indispensable tools for embodied intelligence, serving
as powerful simulators capable of generating realistic robotic videos while address-
ing critical data scarcity challenges. However, current embodied world models
exhibit limited physical awareness, particularly in modeling 3D geometry and
motion dynamics, resulting in unrealistic video generation for contact-rich robotic
scenarios. In this paper, we present RoboScape, a unified physics-informed world
model that jointly learns RGB video generation and physics knowledge within
an integrated framework. We introduce two key physics-informed joint training
tasks: temporal depth prediction that enhances 3D geometric consistency in video
rendering, and keypoint dynamics learning that implicitly encodes physical prop-
erties (e.g., object shape and material characteristics) while improving complex
motion modeling. Extensive experiments demonstrate that RoboScape generates
videos with superior visual fidelity and physical plausibility across diverse robotic
scenarios. We further validate its practical utility through downstream applications
including robotic policy training with generated data and policy evaluation. Our
work provides new insights for building efficient physics-informed world models
to advance embodied intelligence research. Our code and demos are available at:
https://github.com/tsinghua-fib-lab/RoboScapel

1 Introduction

The advancement of large language and vision models [1} 2] has demonstrated the critical role of
high-quality, large-scale training data for their superior performance. However, the robotic learning is
significantly hindered by the prohibitive cost of collecting real-world data [3} 4} |5, 6], which often
relies on human teleoperation to acquire high-quality demonstrations. This limitation poses a great
challenge for scaling robotic learning and deploying agents in complex, real-world environments.

World models [7, 8} 19} |10} [11], which simulate environmental dynamics by predicting future states
based on current observations and given actions, offer a promising solution to this data scarcity
problem. Such models hold significant promise for advancing embodied intelligence by generating
realistic robotic data [12]] and enabling scalable simulation environments [13]]. However, current
embodied world models [13} 14, [15]] predominantly focus on video generation, with training ob-
jectives centered on optimizing the RGB pixels. While capable of producing visually plausible
2D images, they often fail to maintain crucial physical properties, such as motion plausibility and
spatial consistency [16]. Particularly, in robotic manipulation tasks involving deformable objects
(e.g., cloth), the generated videos frequently contain artifacts such as unrealistic object morphing or
discontinuous motion. These limitations become particularly detrimental in interaction-rich robotic
scenarios, where even minor physical inconsistencies can dramatically compromise the effectiveness
of learned policies.
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The root cause lies in existing models’ overreliance on visual token fitting without awareness of
physical knowledge [17,[18,119]. To address this, we propose a physics-informed world model that
jointly learns depth information and temporal keypoint consistency to implicitly encode physical
constraints. Existing efforts of integrating physical knowledge into video generation fall into three
categories: physics-prior regularization, physics simulator-based knowledge distillation, and material
field modeling. Current regularization-based methods enforce constraints such as local rigidity [20]
or rotational similarity [21]] on Gaussian splatting (GS) features or 3D point clouds. However, these
methods are limited to narrow domains like human motion [22] or rigid-body dynamics [20], hindering
generalization to diverse robotic scenarios. Another line of work employs physics simulators to extract
motion signals or semantic maps as conditions to guide video generation models [23| 24, 25| [26].
Although this approach yields reliable physical priors, the resulting cascaded pipeline introduces
excessive computational complexity, hindering their practical deployment. There have been some
recent works trying to enhance the physical simulation via material field modeling [27, 28]]. However,
such methods are confined to object-level modeling and are hard to apply to scene-level generation.

To overcome these limitations, we propose RoboScape, a physics-informed world model based on
a multi-task learning auto-regressive framework to generate visually realistic and physics-adherent
robotic videos. Specifically, our approach incorporates physics knowledge through two auxiliary
physics-informed supervision tasks within the world model itself to alleviate heavy external model
cascading. First, to empower the model with 3D spatial physical understanding, we augment the RGB
prediction backbone with a temporal depth prediction branch and inject the learned depth features into
the RGB prediction to enhance spatial awareness. Such synergistic learning of temporal depth maps
enables the model to implicitly acquire 3D scene reconstruction priors rather than merely fitting 2D
RGB images. Second, we introduce an adaptive keypoint dynamics learning task to address unrealistic
object deformation and implausible motion issues. To achieve this, we first perform dynamic keypoint
sampling to automatically identify regions with significant motion (typically involving robots and
interacting objects), then encourage temporal token consistency for these keypoints across frames.
Through this, the model effectively captures the deformation properties and motion behaviors of
objects, implicitly encoding material properties (e.g., rigidity and softness) through self-supervised
keypoint consistency, eliminating the need for explicit material modeling. Although some recent
world models [29, 30]] also explore joint RGB-depth prediction, their learning remains constrained
at the image level, failing to capture the fine-grained motion dynamics and object deformation
details that are crucial for robotic manipulation scenarios. Furthermore, these approaches exhibit a
performance trade-off, where gains in 3D perception come at the cost of reduced RGB prediction
fidelity. Differently, our model captures global spatial knowledge through learning temporal depth
dynamics, while modeling local object deformation and motion characteristics via learning temporal
keypoint tracking.

We conduct comprehensive experiments to evaluate our world model from three aspects: video gener-
ation quality, robotic policy learning using synthetic data, and robotic policy evaluation. RoboScape
achieves state-of-the-art performance in both RGB and depth prediction accuracy, achieving a supe-
rior balance between these metrics compared to existing world model baselines. Additionally, we
validated that synthetic data from our world model consistently improves the performance of robotic
policy models within a simulated robotic environment including Diffusion Policy [31] and piO [32],
confirming the model’s practical utility for robotic learning. Finally, our model can also serve as
a reliable policy evaluator, with assessment results showing strong correlation with ground-truth
simulator outcomes, confirming our model’s capability to accurately model the physical world.

In summary, the main contributions of the paper are as follows:

* We propose RoboScape, a physics-informed embodied world model that unifies RGB video
generation, temporal depth prediction, and adaptive keypoint tracking in a joint learning framework,
achieving both high visual fidelity and physical plausibility.

* We design an automated robotic data processing pipeline with physical prior information labels.
Trained on the carefully curated large-scale, high-quality dataset, our model achieves SOTA
performance on visual quality, geometric accuracy, and action controllability.

* We demonstrate the practical utility of RoboScape on downstream applications including robotic
policy training and evaluation. Extensive experimental results demonstrate its effectiveness in
accurately modeling embodied environments, validating its potential for advancing real-world
robotic deployment.



Levell: pick, push, ...

RGB Sequence Depth Generation Action Difficulty Ranking
/\./.—' e n (o L |2 store ‘ room
Action Sequence i Ff. 4 i Y Tgon | { ¥
& - o)
o« ST “pick the bottle”  “close the door" office J sty J | )
State Sequence Keypoint Tracking Action Semantic Clipping Clip Quality Filtering Scenes Grouping
Data Collecting Physical Property Annotating Video Slicing Clip Filtering Clip Categorization

Figure 1: [lustration of the proposed robotic data processing pipeline with physical priors annotation.

2 Methodology

2.1 Problem Formulation

In this work, we focus on robot manipulation scenarios and learn an embodied world model fy as a
dynamics function that predicts the next visual observation o4 given past observations 0;.; and
robotic actions aj.;:

Ot41 ~~ f9(0t+1|01:taal:t)7 (nH

where o € R7*Wx3 5 a video frame and a € R” is a k-degree continuous action control vector.

2.2 Robotic Data Processing Pipeline with Physical Priors Annotation

Learning a physics-informed embodied world model requires high-quality dataset covering high-
resolution RGB and depth sequences, action sequences that control the robot, and state sequences that
the robot executes. In this section, we present our data processing pipeline to construct a multi-modal
embodied dataset with physical priors based on AGIBOT-World dataset [6]], as shown in Fig. [T}

Physical Property Annotating based on Depth Generation and Keypoint Tracking. Integrating
explicit physics constraints remains a significant challenge for current video generation-based world
models. To address this, our approach concentrates on two crucial, visually-expressible physics
constraints highly relevant to robotic manipulation: temporal depth consistency and keypoint mo-
tion trajectories. These features can be efficiently extracted using off-the-shelf pretrained models,
enabling enhanced generalization while maintaining practical feasibility. Specifically, we utilize
Video Depth Anything [33]] to generate the depth map sequence of the video. Furthermore, we apply
SpatialTracker [34] as the keypoint tracking model to sample the keypoint and track their trajectories.

Video Slicing based on Camera Boundary Detection and Action Semantic. The original videos
have different attributes, such as lengths and resolution, with camera jumps or editing traces, and a
video may contain multiple action semantics. Thus, we slice the video into clips with normalized
attributes, consistent motion, no camera jumps, and single action semantics. Specifically, we use
TransNetV2 [35]) to perform camera boundary detection and use Intern-VL [36]] to generate the action
semantic of a specific clip.

Clip Filtering based on Key Frame and Clip Quality. The generated clips are highly heterogeneous
in terms of quality, semantics, and presentation form. To ensure the validity and adaptability of the
training data, we introduce a clip filtering mechanism including: (1) using FlowNet [37] to filter out
clips with indistinct motion and disordered movement patterns, and (2) using Intern-VL [36] to label
the key frame of the clip and filter out the frames without explicit relationship to the key frame.

Clip Categorization based on Action Difficulty and Scenes. In this stage, we categorize and
reorganize the dataset based on action difficulty and clip scenes to support the curriculum learning
strategy [38]], which trains the world model from easier to harder tasks.

2.3 RoboScape: A Physics-informed Embodied World Model

RoboScape is designed to achieve frame-level action-controllable robot video generation, enabling
interactive future frame prediction. At its core, we adopt an auto-regressive Transformer-based
framework that iteratively predicts the next frame based on historical frames and the current robot
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Figure 2: Overview of the physics-informed world model, where physical knowledge is integrated
through joint learning of temporal depth estimation and adaptively sampled keypoint dynamics.

action. To enhance the physical plausibility of generated videos, we introduce two physics-informed
auxiliary training tasks in addition to the normal RGB image prediction: (1) temporal depth prediction,
which encourages global geometric consistency across frames, and (2) adaptively sampled keypoint
dynamics learning, which captures the motion and deformation details of local dynamic objects. The
whole pipeline is illustrated in Figure 2] Joint training with these physics-aware regularizers provides
an efficient approach to embed physical priors into world models, significantly reducing the reality
gap between generated videos and real-world dynamics.

Video Tokenization. To enable efficient video generation, we leverage MAGVIT-2 to compress
raw RGB frames o;.7 € RT*H*XWX3 jnig discrete latent tokens si.7 € RTXHXW'XD \where
H' = H/a and W' = W/a denote the reduced spatial dimensions (« being the downsampling
factor), and D represents the latent channel dimension. Similarly, we tokenize temporal depth maps
dy.p € RTXHXWX1 into latent depth tokens z1.p € RT*H xW'xD,

Geometry Consistency Enhancement via Temporal Depth Prediction. While RGB-based video
generation has achieved remarkable progress, it often suffers from inconsistent 3D geometry due
to the lack of explicit spatial constraints. Considering that inter-frame depth variations encode
crucial 3D structure information, we propose to jointly learn temporal RGB and depth information,
leveraging depth features as geometric constraints to ensure spatially coherent video generation. For
uniform modeling, we also utilize MAGVIT-2 as the visual encoder for depth maps. We convert depth
maps to a three-channel RGB format to ensure compatibility with MAGVIT-2. For joint prediction
of both RGB and depth images, we propose a dual-branch co-autoregressive Transformer (DCT).
Each branch consists of a stack of 32 spatial-temporal Transformer (ST-Transformer) blocks, which
implement a causal attention mechanism in the temporal attention layers for generation causality, and
bidirectional attention in the spatial attention layers to enable full context modeling.

At timestep ¢, the model processes historical latent tokens through parallel branches Frgp and
Fepth» conditioned on learned action embeddings ¢y, € RED>X1X1xD . & (a;, 1) and position
embeddings e, € RUTDXH'XW'XD ywhere £, denotes the robot action encoder. The auto-
regressive prediction of each branch is formulated as:

St = FrGB(S1:—1 D C1:4—1 D €1:4-1),

Zt = Fpepth (Z1:4—1 B C1:4—1 D €1:4—1),
where @ denotes element-wise addition with broadcasting. Empirically, we find that simple additive
fusion provides effective action control while maintaining model efficiency.

@



To inject depth predictions as physical priors into the RGB branch and enhance spatial structure
fidelity of rendered videos, we introduce cross-branch interaction pathways. Specifically, at each
ST-Transformer block [, we project the depth branch’s intermediate features hfjeplh and fuse them
additively with the corresponding RGB features:

hie = hige + Wl(héeplh)? 3

where W' is a learnable linear projection layer. This hierarchical feature fusion enables the RGB
branch to maintain precise geometric structure while generating photorealistic video frames. Both
RGB and depth branches are optimized using the cross-entropy loss of tokens:

T T
Lrgs = — Y _s10gp(81), Loepn = — Y z¢logp(2e). )

t=1 t=1

Implicit Material Understanding via Keypoint Dynamics Learning. Modeling physically plausible
object deformations and motions in robot manipulation scenarios remains challenging for RGB-based
world models, as material properties (e.g., rigidity, elasticity) cannot be effectively learned through
RGB pixel fitting alone. While physics engines provide accurate simulations, their computational
expense and scene-specific constraints limit practical applicability. To tackle this, we propose a
keypoint-induced material learning approach, with the insight that physical material understanding
can emerge from self-supervised tracking of contact-driven keypoint dynamics. For example, when a
robot places an apple into a plastic bag, accurately capturing the motion of keypoints on the deforming
bag implicitly captures the material properties. This method can be integrated naturally with video
generation frameworks while maintaining strong generalization capabilities.

Specifically, for each video V, we utilize SpatialTracker [34] to densely sample Ny keypoints in the
initial frame and track their temporal coordinate trajectories across 1" frames, yielding Tgense =
{(p}, ..., pT)}No,, where the element p! € R? represents its coordinates in the tokenized feature map
of frame ¢. Rather than relying on costly segmentation masks to identify contact regions and guide
keypoint sampling, we observe that the most informative keypoints are empirically characterized by
large motion magnitudes. Thus, we adaptively select the top-K most active keypoints based on their
motion magnitudes M; = ZTfl Hp?rl — p!|]2, Vi € 1, ..., Np, producing the sampled trajectory
set 7;a7erle = {(pzlv - Pj ) i=1"

To enhance the keypoint dynamic learning, we encourage temporal consistency between the visual
tokens of sampled keypoints by aligning all frames to the initial frame (¢ = 1) through the following
loss:

T
1
L:Keypoint = mzz | pﬁ -8 Pz)sz (5)

i=1 t=2
where 8, (p!) € RP denotes the i-th keypoint-located predicted token at frame .

Furthermore, we observe that these dynamically active keypoint regions often exhibit higher token
errors due to their complex motion patterns. To address this, we propose a keypoint-guided attention
mechanism that adaptively enhances token learning in regions intersected by keypoint trajectories.
Specifically, we compute a spatiotemporal attention map A € RT*H "*W' with each element defined
as:

(6)

A — Y lf (t7 x, y) S 7;ampleu
by 1 otherwise,

where v is a hyperparameter controlling the importance weight. The attention-augmented training

objective is formulated as:
T

Laenion = — »_ Ay @ s;logp(3). @)
t=1

Physics-informed Joint Training Objectives. By integrating the above designs, we train a unified
physics-aware world model through multi-task learning, with the final objective formulated as:

L = Lrce + M Lpepth + A2 LKeypoint + A3L Attentions 3

where A1, A2, A3 € R are are tunable coefficients balancing the loss terms.
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Figure 3: Qualitative results visualization of our model (only the subsequent 8 frames are shown).
More results can be found in the appendix.

3 Experiments

In this section, we begin by detailing our experimental protocol (Section 3.1), including the dataset
statistics, baseline information, and the implementation of our model. We then evaluate our model
from three aspects: video quality evaluation (Section 3.2), robot policy learning with synthetic data
(Section 3.3), and robotic policy evaluation (Section 3.4).

3.1 Experimental Settings

Dataset Statistics. In our experiment, we use 50,000 videos extracted from the AgiBotWorld-Beta
dataset [40]], covering 147 tasks and 72 skills. We concatenate the end position, end orientation, and
effector position of the embodiment as the action sequence. Our dataset comprises approximately
6.5M training clips and 1.2K test clips.

Baselines. We compare our model with four advanced baselines, including both embodied world mod-
els (IRASim [14] and 1VideoGPT [13])) and general world models (Genie [41] and CogVideoX [42]).
Due to unavailable training codes in some recent works [29} 30]], these methods are excluded from
direct comparison. Details of baselines are presented in the appendix.

Implementation Details. We preprocess videos by extracting 16-frame clips sampled at 2Hz, yielding
approximately 6.5 million training clips. The model is trained for 5 epochs using the following
hyperparameters: A\; = 1, Ao = 0.01, A3 = 1, and v = 5. Training completes in approximately 24
hours on a cluster of 32 NVIDIA A800-SXM4-80GB GPUs. During inference, we use the first frame
as a conditional input to autoregressively predict the subsequent 15 frames.

3.2 Video Quality Evaluation

We evaluate video generation quality through three key dimensions: appearance fidelity, geometric
consistency and action controllability. The details of the six used metrics are as follows:

* PSNR: It measures pixel-level reconstruction accuracy between generated and ground-truth frames.
» LPIPS: It assesses perceptual quality using visual feature similarity.

* AbsRel: It computes relative depth estimation errors.

* §1/02: They evaluate depth prediction accuracy at different precision levels.
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Figure 4: Model scaling law of RoboScape.

Table 1: Quantitative comparison of our model and baselines with 5 independent runs.

Method Appearance Fidelity Geometric Consistency Action Controllability
LPIPS (1) PSNR (1) AbsRel ({) 01 (D) 02 (D) APSNR (1)
IRASim 0.663+0.005 11.382+0.122  0.641+0.030  0.508+0.014  0.701+0.026 0.160+0.122
iVideoGPT  0.501+0.003  16.234+0.038 0.749+0.018 0.364+0.012  0.586+0.010 0.148+0.067
Genie 0.165+0.002  19.875+0.064 0.446+0.014 0.545+0.011 0.778+0.016 1.868+0.090
CogVideoX  0.202+0.008 17.957+0.153  0.508+0.026 0.594+0.017 0.739+0.016 —
RoboScape  0.128+0.002 21.730+0.120 0.378+0.026  0.608+0.011  0.814+0.013 3.442+0.139

» APSNR: It quantifies output sensitivity to action condition, with higher values indicating better
action control ability.

We present some generation results in Figure [3] where we predict future frames conditioned on an
initial frame and robot action commands (we visualize 8 frames while the model supports long-
horizon rollouts). The visualizations demonstrate that our model effectively simulates realistic
robot manipulation scenarios, with generated sequences showing strong similarity to ground truth
observations. Notably, our approach successfully handles deformable object interactions, as evidenced
by the cloth-dragging sequence where the generated deformations accurately follow physical laws
and capture material properties.

As shown in Table [T} we conduct comprehensive comparisons with four advanced baselines: two
embodied world models (IRASim and iVideoGPT) and two general world models (Genie and
CogVideoX). Our model consistently outperforms all baselines across six evaluation metrics, demon-
strating its superior capability in video prediction for robotic scenarios. Detailed analysis reveals that
while CogVideoX can generate high-quality videos, its inability to follow action commands leads
to substantial deviations in future frames. The two embodied world models are not good at motion
learning when conducting long-term generation, thus receiving poor metrics. Our model’s novel
integration of keypoint dynamics learning effectively addresses these limitations, simultaneously
achieving high-fidelity visual generation and superior action controllability.

We further conduct ablation studies to demonstrate the complementary benefits of our two core
components: temporal depth learning and keypoint dynamics learning. The results are shown in
Table 2] The quantitative results reveal that both components contribute significantly to overall
performance; removing either one leads to measurable degradation across different metrics. The
depth learning primarily preserves geometric consistency of moving objects, and the keypoint learning
proves essential for maintaining both visual fidelity and action controllability. We provide a case
study in Figure[6] It can be seen that the missing of temporal depth learning will lead to geometric
distortions in moving objects, while the absence of key-point dynamics learning results in unreal
motion patterns. These findings collectively validate the necessity of our key designs.



Table 2: Ablation study of our key designs of physics prior injection with 5 independent runs.

Method LPIPS () PSNR (1) AbsRel (]) 5 (M 52 (1 APSNR (T)
whole model 0.12820.002 21.730£0.120 0.37820.026 0.60820.011 0.814%0.013 3.442+0.139
wlo depth 0.12620.001  21.885+0.046 0.408+0.010 0.560+0.012 0.789+0.022 3.514+0.023
w/o keypoint 0.128+0.001 21.63420.043 0.346+0.012 0.637+0.012 0.848+0.012 2.953+0.036

w/o depth & keypoint  0.130+0.001  21.477+0.029 0.371+0.012  0.598+0.018 0.800+0.009  1.945+0.054
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Figure 5: Data scaling law of RoboScape-S.

We also investigate the scaling behavior of RoboScape in terms of both model and data scales. As
shown in Figure {i] we evaluate three model variants—RoboScape-S (34M), RoboScape-M (131M),
and RoboScape-L (544M)—and observe a clear scaling law: all six evaluation metrics improve
significantly as model capacity increases. In addition, we study the impact of data scale by training
RoboScape-S on 1,000K, 3,000K, and 6,000K clips (Figure[5). While increasing data size consistently
enhances visual quality and action controllability, geometric accuracy exhibits marginal improvement
or even slight degradation. We find that this is because smaller datasets encourage overfitting to
the final frame of conditional inputs, artificially inflating geometric metrics without generating
meaningful temporal dynamics. Despite this, the overall trend confirms that more training data leads
to better model performance.

3.3 Robotic Policy Learning with Synthetic Data

We validate our world model’s utility by generating synthetic robotic video data for downstream
policy learning based on Diffusion Policy (DP) [31] and 70 [32]. The actions and initial observations
for our synthetic data are directly drawn from the raw RoboMimic and LIBERO datasets. Through
controlled experiments with progressively adding synthetic data, we systematically measure the
impact of generated data on policy learning performance. The results are shown in Table[3] "Real
data" mentioned consists of original videos with their corresponding action annotations from the raw
dataset. For "Synthetic Data", we use our world model to generate the videos based on actions and
initial observations.

In the experiments on the Robomimic Lift task [43]], DP trained for 10k steps with only generated
data achieved nearly the same performance as DP trained with real data. Notably, the policy
success rate exhibited consistent improvement with increasing synthetic training data, highlighting
the effectiveness of our model. We further validated our approach using the my [32] model on
the challenging LIBERO [44] task suite. These tasks present three key challenges beyond the
Robomimic Lift environment: (1) complex multi-object manipulation requirements, (2) cluttered
scene configurations, and (3) extended action sequence horizons. Therefore, we employ a small
amount of real data (200 trajectories) as a training warm-up. Remarkably, when training 7 policies
with increasing generated data, the model performance achieves gradual improvement. These results



Table 3: Results of policy learning with DP on Robomimic task and 70 on LIBERO tasks.

DP on Robomimic tasks 70 on LIBERO tasks
# Synthetic Data  Success Rate #Synthetic Data  Spatial Object  Goal 10 Average
50 40% 200 77.6% 81.8% 7T1.0% 36.0%  66.6%
100 77% 400 794% 852% T4.6% 462%  71.4%
150 84% 600 81.6% 86.0% 78.0% 51.8%  74.4%
200 91% 800 84.6% 89.0% 82.8% 60.0% 79.1%
Real (200) 92% Real (200) 772% 798% 688% 348% 652%
Time t=0 (condition) t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=8
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Figure 6: Effect of the physics knowledge learning. Omission of temporal depth learning leads to
geometric distortions in moving objects, while the absence of key-point dynamics learning results in
unreal motion patterns.

demonstrate our model’s capability to generate physically plausible trajectories even for demanding,
long-horizon manipulation scenarios.

3.4 Robotic Policy Evaluation

In this section, we investigate whether our world model can act as a policy evaluator for different
robotic policies. In policy evaluation, the world model acts as an environment that receives policy-
generated action sequences and predicts subsequent observations in a rollout manner. Policy quality
is then assessed by checking success rates in the predicted videos. Here we compare IRASim,
1VideoGPT, and our model as the policy evaluator and use Diffusion Policy as the policy model.
Specifically, we train the policy on the Robomimic Lift task [43] using 200 trajectories and save
the policy every 250 epochs until it is fully converged. Then we post-train the world model and
evaluate the policy in both the ground-truth simulator and the world model by 100 runs. The success
signal of each run can be directly given by the simulator, while it requires manual judgment when
the policy interacts with the world model. The generated videos from all models were presented
to participants in a randomized, blind order, with no model identifiers displayed. Participants were
instructed to judge whether the task depicted in each video was successfully completed. This setup
ensures objectivity and impartiality. Afterwards, we calculate the Pearson correlation and R? between
different world models and the ground-truth simulator. The results in Figure[7]show that the Pearson
correlation of our model is 0.953, while the correlation of other models is rather low, indicating that
our world model can be utilized as a better policy evaluator.

4 Related Work

4.1 World Model

World models learn representations of environmental states through neural networks, enabling the
prediction of future states based on current observations and actions [43]). Recent advances in world
models primarily leverage video generation techniques, with applications spanning three key domains
including autonomous driving [46] 147, 48], 49 [50, 51}, 52]], embodied intelligence (33l [14}, [13]], and
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Figure 7: Correlation between the success rate of different world models and the ground-truth
simulator. Each point represents a policy, and the trained epochs are shown above the point.

gaming [54} 55,156} 48]]. The dominant modeling approaches fall into two main categories: diffusion
models and autoregressive models. Diffusion models, such as DiT [57], generate sequences through a
gradual denoising process and are well-suited for producing diverse and short-term consistent visual
content. Autoregressive models, such as Genie[41]], reconstruct sequences via masking mechanisms
and demonstrate superior efficiency and controllability. Compared to diffusion-based approaches,
autoregressive methods offer advantages in inference speed and training stability. Our work utilizes
masked autoregressive models with physical information injection, aiming to build efficient and
interactive world models for embodied intelligence.

4.2 Physics-aware Generative Model

Recent advances in video generation have increasingly focused on improving the modeling of physical
properties [[17]. Current methods in this area can be roughly divided into explicit and implicit physical
modeling. Explicit methods incorporate physical information by learning explicit textures and
material representations [28}30]]. In contrast, implicit methods mainly embed physical knowledge
into models via training loss terms [20], or by using generative models to jointly generate RGB videos
and other physical representations [29,58]. These approaches aim to enhance physical understanding
through data-driven approaches rather than predefined physical rules. Currently, there’s much room
for existing embodied world models to enhance the integration of physical knowledge into video
generation. To advance this field, we introduce a physics-informed embodied world model that jointly
learns RGB video generation, temporal depth prediction, and keypoint dynamics within a unified
framework, achieving both high visual fidelity and physical plausibility.

5 Conclusion and Future Work

In this work, we propose RoboScape, a physics-informed embodied world model that efficiently
integrates physical knowledge into video generation through a physics-inspired multi-task joint
training framework, eliminating the need for cascaded external models such as physics engines. By
incorporating temporal depth prediction, our model learns the 3D geometric structure of scenes,
while dynamic keypoint learning enables implicit modeling of object deformation and motion
patterns. Extensive evaluations demonstrate that our approach outperforms baseline methods in video
generation quality, synthetic data utility for downstream robotic manipulation policy training, and
effectiveness as a policy evaluator. In the future, we plan to combine the generative world model with
real-world robots to test performance further.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The paper proposes a physics-informed embodied world model, which is
reflected in the methodology and experiment validation part.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: See the appendix.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: This work does not invlove theoretical results.
Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

e Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: We provide implementation details in the experiment part.
Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: We provide an anonymous code repository in the abstract.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.
* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

¢ The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: See the “implementation details” section in the main paper.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: We provide independent repeated experimental results in the paper.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.
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It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CIL, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: See the “implementation details” section.
Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: Our video generation experiment, in every respect, follows the NeurIPS Code
of Ethics.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: See the appendix.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: No risk for misuse.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have added citations and footnotes to note the source of used codes and
datasets.

Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: The core method development in this research does not involve LLM usage.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Broader Impacts

Our physics-informed world model offers positive impacts by advancing robotic learning: it generates
high-fidelity synthetic data with inherent physical plausibility, which drastically reduces reliance
on costly real-world data collection and improves sim-to-real transfer for applications in healthcare,
disaster response, and industry. While this computational efficiency lowers research barriers, the
high fidelity necessitates ethical consideration. Specifically, the generated content could be misused
to create deepfakes or misrepresent safe procedures. To mitigate these risks, future work should
focus on training fake detection models to identify synthetic content and incorporating anomaly
detection mechanisms to flag or prevent the generation of videos depicting unsafe or non-standard
robot behaviors, ensuring responsible deployment in safety-critical domains.

B Limitations

While our physics-informed world model achieves significant gains in physical consistency, we ac-
knowledge the following shortcomings and inherent assumptions: (1) Our current physical constraints
focus primarily on geometric (depth) and kinematic (keypoint dynamics) properties. This leaves out
broader critical information such as dynamic force interactions. Furthermore, our model relies on
the empirical assumption that keypoint dynamics implicitly capture material properties, which lacks
a theoretical guarantee. (2) Our model’s inference is currently limited to a 48-frame rollout. This
computational constraint makes it challenging to simulate and evaluate very long-horizon tasks (e.g.,
complete cloth folding), where we have observed that cuamulative error can lead to physically implau-
sible outcomes. (3) Generalization to more diverse embodiments, such as quadrupeds or humanoids,
is currently limited by the lack of readily available, high-quality, multi-domain datasets. Our current
validation is primarily confined to single- and dual-arm manipulation settings. Future work will be
dedicated to overcoming these limitations by incorporating richer physical laws, exploring more
efficient hybrid architectures, and expanding our training to more diverse embodiment data.

C Baseline Details

We provide details of the compared baselines as follows:

* IRASim: A DiT-based robotic video generation model, capable of generating videos conditioned
on robot actions and trajectories.

* iVideoGPT: An auto-regressive interactive world model that takes the current video frame observa-
tion and action as input to predict the next frame while simultaneously estimating the reward signal
for robotic operations.

* Genie: A foundation world model trained through unsupervised learning on massive video data.
We implement it with a reproduced open-source repository [

* CogVideoX: An advanced DiT-based text-to-video generation framework, with superior perfor-
mance in prompt-driven video generation.

D Supplemented Evaluation toward Physics Correctness

In this section, we provide a comparison regarding the physical correctness of our model and baselines.
While existing physics benchmarks for video generation are primarily designed for general text-to-
video models and aren’t directly applicable to our embodied world model (which is driven by robotic
actions), we’ve identified that key metrics from these benchmarks can be utilized for our evaluation.
Specifically, we utilize four metrics from the Physics-IQ benchmark [59] that are particularly effective
in assessing the physical realism of motion plausibility and object deformation, detailed as follows:

* Spatial IoU: Measures "Whether the location where an action happens is correct".

» Spatiotemporal IoU: Measures "Where does action happen and whether it occurs at the right
time".

“https://github.com/1x-technologies/1xgpt
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Table 4: Comparison of world models on physics correctness.
Model Spatial IoU (1) Spatiotemporal IoU () Weighted Spatial IoU (1) MSE (])

IRASim 0.2431 0.1255 0.2081 0.0655
Genie 0.6429 0.3420 0.6082 0.0397
CogVideoX 0.6523 0.2058 0.4675 0.0943
RoboScape 0.7573 0.4454 0.7023 0.0184

Table 5: Policy success rate using generated data from different world models on LIBERO benchmark.
Model LIBERO-Spatial LIBERO-Object LIBERO-Goal LIBERO-10 Average

Only real data 77.2% 79.8% 68.8% 34.8% 65.2%
IRASIm 72.8% 77.4% 75.2% 34.0% 64.8%
CogVideoX 81.0% 79.6% 74.4% 44.2% 69.8%
RoboScape 84.6% 89.0% 82.8% 60.0% 79.1%

* Weighted Spatial IoU: Measures "Where and how much action happens".

* MSE: Measures "How objects look and interact" at pixel-level.

The results shown in Table ] demonstrate our model’s superior performance in terms of physical
correctness.

E Supplemented Results of Policy Learning

We compare training the pi0 model using data synthesized by baseline world models and our model.
For fair comparisons, both CogVideoX and IraSim were fine-tuned on the LIBERO dataset, with
each model generating 800 synthetic data points. Table [5] presents the experimental results across
various task subsets in the LIBERO environment, indicating the superiority of our model in generating
synthetic data for VLA training compared to baselines.

F More Visualization Results
F.1 Video Generation Results

We provide more visualization results of generated videos using our model, as illustrated in Figure|[§]

F.2 Roboetic Policy Learning

We provide some visualization results of generated data on Robomimic and LIBERO using our model,
which are shown in Figure[9]and Figure [I0]

F.3 Robotic Policy Evaluation (add visualization results of our model and baselines

In this part, we provide visualization results of RoboScape and other baselines in policy evaluation.
The failure cases are presented in Figure[TT| while the successful cases are shown in Figure[12]
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Figure 8: Supplemented visualization results from our model (only the subsequent 8 frames are
shown).

Time t=0 (condition) t=5 t=10 t=15 t=20 t=30 t=35 t=40

Figure 9: Supplemented visualization results on Robomimic (displaying every 5th frame; 8 frames
shown from t=0 to t=40).
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Prediction
GT
Prediction

GT

Figure 10: Supplemented visualization results on LIBERO (displaying every 10th frame; 8 frames
shown from t=0 to t=80).
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Figure 11: Supplemented visualization results of failure cases in policy evaluation.
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Figure 12: Supplemented visualization results of successful cases in policy evaluation.
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