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Abstract

Multimodal image registration is a very challenging problem for deep learning approaches.
Most current work focuses on either supervised learning that requires labelled training scans
and may yield models that bias towards annotated structures or unsupervised approaches
that are based on hand-crafted similarity metrics and may therefore not outperform their
classical non-trained counterparts. We believe that unsupervised domain adaptation can
be beneficial in overcoming the current limitations for multimodal registration, where good
metrics are hard to define. Domain adaptation has so far been mainly limited to classifi-
cation problems. We propose the first use of unsupervised domain adaptation for discrete
multimodal registration. Based on a source domain for which quantised displacement labels
are available as supervision, we transfer the output distribution of the network to better re-
semble the target domain (other modality) using classifier discrepancies. To improve upon
the sliced Wasserstein metric for 2D histograms, we present a novel approximation that
projects predictions into 1D and computes the L1 distance of their cumulative sums. Our
proof-of-concept demonstrates the applicability of domain transfer from mono- to multi-
modal (multi-contrast) 2D registration of canine MRI scans and improves the registration
accuracy from 33% (using sliced Wasserstein) to 44%.
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1. Introduction

Gathering labelled training data for learning-based multimodal registration is very time-
consuming and expensive. To train supervise methods either a large number of correspond-
ing landmarks (cf. (Xiao et al., 2019)) or detailed anatomical multi-label segmentations are
required (cf. (Hu et al., 2018)), which often cause bias or under-coverage. To circumvent
the need for corresponding labels in multimodal / multi-domain images, unsupervised do-
main adaptation based on classifier discrepancies has been popularised in computer vision
for classification and segmentation tasks e.g. in (Lee et al., 2019). Variants of discrepancy
measures include e.g. the Earth Mover’s distance (EMD) (Werman et al., 1985) for 1D
cases and specialised solutions for 2D histograms in (Ling and Okada, 2006), but they are
in general computationally expensive, approximative or based on sensitive hyperparameters.

Contribution: We are the first to propose domain adaptation for medical registration
and adapt the task to a discrete displacement labelling. Using the maximum classifier
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Figure 1: Our method comprises a shared feature network and two classifiers for maximum
discrepancy domain adaption. The results demonstrate the superiority of our new
p-EMD metric (44% vs 33% accuracy) compared to sliced Wasserstein (SWD).

discrepancy approach (Saito et al., 2018) together with a novel 2D histogram Earth Movers
distance, we substantially improve over the sliced Wasserstein metric (Lee et al., 2019).

Related Work: Recent methods for supervised learning of multimodal registration
include (Simonovsky et al., 2016), who use a twin CNN architecture to learn the similarity
of patches using aligned multi-modal training data. (Hu et al., 2018) and (Hering et al.,
2019), both use anatomical segmentations to train a U-net like registration network, while
the latter add a normalised gradient metric. The use of discrete displacements in deep
learning based registration was proposed in (Heinrich, 2019) to capture large deformations.
Unpaired unsupervised learning for multi-modal medical images has so far been restricted to
modality synthesis using e.g. Cycle-GANs in (Wolterink et al., 2017). Very recent methods
have shown promise for unsupervised domain adaptation and knowledge distillation for
medical image classification and multimodal segmentation (Dou et al., 2020).

2. Methods and Material:

Unsupervised domain adaption has so far mainly shown success for classification tasks. We
hence adapt the task of multimodal image registration to a discrete labelling problem, simi-
lar as done in (Heinrich, 2019). Here, we restrict ourselves to 2D patch based registration to
demonstrate a proof-of-concept. For training, we extract large patches with a random offset
within a grid of 5x5 discrete displacements to pose registration as a 25-class classification
problem. We add 3D affine augmentations to avoid trivial overlap within two patches.

During training we have access to a labelled source domain dataset (in this case MRI
T1 patches) with known displacements and an unlabelled target domain dataset (MRI
T2 patches). For feature extraction, we use a feed-forward net comprising four blocks of
Conv2d, InstanceNorm and PReLU (13k weights) within a twin architecture that shares
weights across both patches. This feature network produces a 18x18 map with 16 channels.
Subsequently, we concatenate both patches and feed them into a three block classification
network (70k weights) that predicts a 25D classification vector (encoding the displacements).
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We employ the maximum discrepancy of classifiers approach of (Saito et al., 2018), which
uses two similar classifiers (with different random initialisation). The training alternates
between the following three steps (see also Figure 1): 1) optimise features and classifier
on labelled source data, 2) maximise discrepancy measure of both classifiers on target
domain while freezing the feature weights and minimising the classification loss on the
labelled source data, 3) minimise the discrepancy measure of classifiers while updating only
the feature weights. This process helps to identify target samples outside the classifier’s
support region in step 2 and brings the target feature distributions closer to the source
ones during step 3. Step 3 is repeated twice as proposed in (Saito et al., 2018). We make
two modifications that greatly improve stability: 1) we only update the first classifier in
step 1 to avoid overfitting (too similar decision boundaries) on the source domain before
the domain adaptation begins to improve, 2) we use the cross entropy loss for classifiers,
but scale the predictions by 0.1 before computing the softmax output for the discrepancy
measures to reduce overly confident predictions as motivated by (Kuleshov et al., 2018).

Fast projected Earth Mover’s distance (p-EMD) for multidimensional his-
tograms: A disadvantage of the sliced Wasserstein distance (Lee et al., 2019) for our
application is its invariance to permutations of histogram bins / classes. This may be ben-
eficial when no natural measure of class proximity exists. Yet, in our case the prediction
can be converted into a 2D spatial probability map for x- and y-displacements. We there-
fore propose a new approximate metric for higher-order histograms (p-EMD) that takes
these specificities into account. It is faster and easier to differentiate than conventional
algorithms. Given that the distributions are close to monomodal Gaussians and based on
the fact that exact algorithms for computing EMD for normalised 1D histograms in lin-
ear complexity exist (Werman et al., 1985), we approximate the optimal transport cost by
projecting the (softmax) normalised 2D histograms onto a number of rotated lines (we use
either 2 or 16 projections with angles between 0 and 90 degrees and use bilinear interpo-
lation). We then employ the L1 distance of their cumulative sums to compute the p-EMD
and average the values across projections (see Figure 1), this correlates nearly perfectly
with exhaustive EMD computations and is much more stable in our experiments than the
2D diffusion distance of (Ling and Okada, 2006).

3. Results and Discussion

We created a multimodal dataset for patch registration based on 9 3D T1 and T2 MRI
scans of canine legs as provided by the 2013 MICCAI SATA challenge (Asman et al., 2013)
with 5120 patch pairs in each modality. T1to T2 MRI is a simpler domain adaptation task,
we thus increase the complexity by applying slightly different normalisations to the patches
(global mean and variance for T1, and patch-wise for T2). The range of displacements was
{−38,−19, 0,+19,+38}2 pixels (posing a very challenging large motion problem) and each
patch comprises a region of 77x77 voxels downsampled to half resolution. The supervised
training was restricted to monomodal data (T1→T1), while the multi-modal tests were
performed on T2→T1, T1→T2 and T2→T2. The average accuracy (prediction of 1 of the
25 classes) across 5 runs is shown in Fig. 1 (right), yielding only a modest improvement
from 31.9% (no adaptation) for sliced Wasserstein (SWD) to 33.2%. Both of our variants
p-EMD (2 or 16 projections) reach accuracies over 40%, adding the losses of p-EMD (#16)
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and SWD is best with 44.1% (see also Table 1). Future work will focus on more elaborate
experiments and evaluation, e.g. integrating the patch-wise displacement estimation into
global transformation models (e.g. using the instance optimisation proposed in (Heinrich,
2019)), extending it to 3D and comparison to classical multimodal metrics.
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Table 1: Overview of label accuracy results for multi-modal MRI registrations
method registration label accuracy

no registration (guessing) 4.0%

no adaptation (training on T1) 31.9%

sliced Wasserstein (SWD) 33.2%

p-EMD (#16) and SWD (ours) 44.1%
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