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Abstract

Although integral-field spectroscopy enables spatially resolved spectral studies
of galaxies, bridging particle-based simulations to observations remains slow and
non-differentiable. We present RUBIX, a JAX-based pipeline that models mock
integral-field unit (IFU) cubes for galaxies end-to-end and calculates gradients
with respect to particle inputs. Our implementation is purely functional, sharded,
and differentiable throughout. We validate the gradients against central finite
differences and demonstrate gradient-based parameter estimation on controlled
setups. While current experiments are limited to basic test cases, they demonstrate
the feasibility of differentiable forward modelling of IFU data. This paves the way
for future work scaling up to realistic galaxy cubes and enabling machine learning
workflows for IFU-based inference. The source code for the RUBIX software is
publicly available under https://github.com/AstroAI-Lab/rubixl

1 Motivation

An IFU cube is a three-dimensional dataset obtained using an integral field unit spectrograph. Two
dimensions record the spatial distribution of light in the sky, while the third dimension captures the
spectrum at each position. Modern IFUs such as MUSE [1] and MaNGA [16] provide spatially
resolved spectra across thousands of galaxies, offering unparalleled insight into stellar populations
and dynamics. To compare these data with theoretical models, researchers typically forward model
cosmological simulations into synthetic IFU cubes. Although existing software (e.g., SimSpin
[12, [11], MaNGA data utilities [14} [17] or GalCraft [20]) can perform this mapping, it is often
CPU-bound and does not expose derivatives. This restricts their application in contemporary machine
learning pipelines, where gradients are vital for optimisation, gradient-assisted simulation-based
inference [13}22] and uncertainty quantification.

Differentiable programming offers a paradigm to close this gap: models are represented as computa-
tional graphs and paired with automatic differentiation to expose gradients end-to-end [4]. Frame-
works like JAX [5] enable scientists to build such pipelines efficiently. In astrophysics, however, a
practical, end-to-end differentiable simulator for IFU cubes has so far been missing.

RUBIX [6] addresses this by constructing IFU cubes of simulated galaxies within a single differentiable
JAX pipeline. Every stage is functional, vectorized, and designed to scale across devices. In this
work we focus on two showcase examples to establish a foundation for future developments towards
gradient-assisted galaxy modelling. Crucially, it demonstrates that end-to-end gradients can be
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obtained in IFU forward modelling, creating a starting point for subsequent integration with machine
learning inference frameworks.

2 The RUBIX software

RUBIX is designed as a modular, purely functional pipeline that calculates IFU cubes from particle-
level inputs. Its GPU accelerated capabilities were introduced in [6]. The overall flow is illustrated
in Figure[T]as a clear sequence of stages and shows the individual physics processes to produce a
realistic modelled IFU cube observation.

All components are implemented in JAX, partially vectorized via

vmap, and parallelized across devices using shard_map. This en-

sures end-to-end differentiability and GPU acceleration as shown

in [6], while the modular structure allows individual blocks to be

[ galaxy rotation ] modified and to be selectively chosen during forward modelling via
the yaml input file.

[ spaxel assignment ] Although tailored for astrophysical applications, RUBIX’ modular
structure with end-to-end gradient support enables direct integration
[ spectra lookup ] with variational inference frameworks, the embedding of neural net-
works inside the solver, solver in-the-loop setups [[19] and efficient
] coupling to simulation-based inference pipelines [8]].

[ config + input data ]

[ mass scaling

[ doppler shift ] 3 Results

[Wavelength resampling] We present two illustrative examples that demonstrate that RUBIX’
differentiability and its application to gradient-based parameter opti-
misation. Our model takes as input the positions and velocities of star
particles with specified ages and chemical compositions (metallic-
ities), and computes their stellar spectra using the spectral synthesis
[ line spread function ] library FSPS [[7]] while consistently incorporating stellar dynamics.

[ point spread function ]

( noise ) 31 Gradient
' validation and the physical interpretation of the gradients

( IFU cube )

) ) We validate the differentiability of RUBIX by comparing JAX autod-
Figure 1: ~D1.fferent Steps  iff gradients with central finite differences on the spaxel spectra of
that happen inside the RUBIX 4 ope-particle system with one spaxell} A spaxel is a pixel with the
pipeline. We start with a con-  ¢pectral dimension. Figure P]illustrates both the predicted spectrum
fig file and input data, get a  apq jts parameter sensitivities. The top panel shows the luminosity
mock IFU cube and in be- geperated by our model at 10 Gyrs and a metallicity of 1.4 x 1073,
tween there are pure JAX func- - prominent absorption features are clearly visible, reflecting the un-
tions. derlying stellar template FSPS [[7]. The middle panel compares
gradients of the luminosity with respect to stellar particle age, computed via automatic differentiation
(solid blue) and finite differences (dashed orange). The maximum difference in a wavelength bin
between finite difference and autodiff is 4.4 x 10~ for the age and 3.9 x 10~ for the metallicity. The
two approaches show excellent agreement, validating the correctness of our autodiff implementation.
Negative gradients for the age dominate across most wavelengths, indicating that increasing age
systematically reduces flux, particularly in the blue region where younger stellar populations con-
tribute most strongly. The bottom panel shows the corresponding gradients with respect to metallicity.
Again, the autodiff and finite-difference methods are consistent and we find negative values across
much of the optical wavelength range in agreement with physical expectations where increasing
metallicity reduces flux in the blue part of the spectrum.

'The code to reproduce these results can be found at https://github.com/AstroAl-Lab/rubix/blob/
eurips-anonymous/notebooks/gradient_age_metallicity_spectrum.ipynb,
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Figure 2: First row shows the spectrum of a single spaxel calculated by RUBIX, which contains one
stellar particles with age of 10 Gyrs and metallicity of (1.4 x 10~3). We calculate the gradient with
respect to the stellar age in the second row and show the results for autograd (jax.jacfwd) and
central finite difference. In the third row we show the gradient via autodiff and the finite difference
with respect to the metallicity of the stellar particles.

3.2 Parameter estimation via gradient-based optimization

To demonstrate the utility of RUBIX for inferenceﬂ we constructed with RUBIX a synthetic cube con-
sisting of a single spaxel generated from one stellar particle with fixed stellar age (a = 3.16 Gyr) and
metallicity (m = 1.4 x 1072). This target cube (yellow star in Figure is compared against cubes
forward-modelled with RUBIX from arbitrary initial age and metallicity values (white circles in Figure
[). The discrepancy between target and model cube was quantified with a scalar loss ¢ per spaxel,

La,m) = cosine_distance(IFUtarget, TFUmogel (@, m)) , using the optax.cosine_distance im-

plementation [9]. We adopted cosine distance because it provided faster convergence and less
oscillation than alternative metrics tested.

Since RUBIX is implemented as a pure JAX pipeline, the gradient of the loss with respect to age a and
metallicity m can be computed directly. These gradients are then used to update the input parameters
with the Adam optimizer [13] (learning rate 5 x 1073, tolerance 10~1%). All experiments were run
on an Apple M3 CPU. The optimization converged within ~ 50 iterations (right panel of Figure[3),
yielding spectra that agree closely with the target, with residuals two orders of magnitude smaller
than the flux values.

Figure | summarizes the process. The left panel shows the log loss landscape in age-metallicity space.
Optimization trajectories from different initializations rapidly descend into the L-shaped minimum
region, sometimes overshooting metallicity before settling near the true parameters. The right panel
shows loss histories for three runs, all decreasing steeply before flattening at low values. Oscillations
around the optimum can be reduced by lowering the learning rate, at the cost of more iterations.

4 Discussion and limitations

The experiments presented here highlight both the opportunities and current boundaries of RUBIX. Our
validation focused on controlled single-spaxel, one-particle setups, where both target and model come
from the same forward model. These controlled setups are deliberately minimal: they provide clean

’The code to reproduce these results can be found at https://github. com/AstroAI-Lab/rubix/blob/
main/notebooks/gradient_age_metallicity_adamoptimizer_multi .ipynb.
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Figure 3: Left: loss landscape and optimization trajectories. The true parameters are marked by the
yellow star; initializations are shown as white circles. Right: loss history across iterations for three
runs, showing rapid convergence.

benchmarks for testing differentiability and optimization, but they do not yet capture the complexity
of realistic IFU cubes containing hundreds of spaxels. Extending RUBIX to full-galaxy simulations
is technically feasible but introduces significant challenges related to memory consumption, non
smooth loss landscapes and stable gradient propagation across devices.

Ill-posed inverse problems: The loss landscape often contains extended valleys or L-shaped
minima, which explains overshooting and oscillations in the recovered parameters. Although RUBIX
provides accurate gradients for the synthetic example, these alone are insufficient to resolve intrinsic
degeneracies. Addressing them will require more advanced optimization strategies, additional
physical constraints (e.g. deep inverse priors [21} [18]), or regularization across many spaxels.

Future applications: Looking ahead, the differentiable design of RUBIX suggests multiple di-
rections for expansion. Because gradients can be propagated through the full pipeline, one can in
principle begin from observational data and optimize an underlying particle or distribution-function
model that reproduces the observed cube. This goes beyond classical approaches based solely on
forward simulations, since gradients naturally capture nonlinear relationships between model pa-
rameters and observables. Extending the current examples to realistic galaxies and testing them
against survey data such as GECKOS [10] is a natural next step. Importantly, RUBIX is not limited
to particle-level inference. It can be coupled with differentiable distribution function models [3} 2],
where optimization targets a smaller set of global parameters describing stellar distributions, kinemat-
ics, or structural properties. This reduces the dimensionality of the inference problem and provides a
more interpretable connection between model parameters and astrophysical quantities of interest.

Uncertainty quantification via variational inference: Beyond point estimation, the differentiable
structure of RUBIX naturally enables uncertainty quantification. Integration with modern machine
learning inference frameworks, such as simulation-based inference or variational inference, would
allow posterior distributions to be approximated rather than single best-fit values.

5 Conclusion

RUBIX demonstrates that differentiable programming can be successfully applied to challenging
astrophysical forward modelling. By expressing the entire IFU modelling pipeline in JAX, we
obtain end-to-end gradients and GPU-accelerated execution. Our results show that gradients are
numerically consistent with finite differences and can be exploited for gradient-based parameter
estimation. The present experiments establish a very promising proof of concept for differentiable
IFU cube simulation. The framework is designed with scalability in mind, and future work will
address realistic galaxies and multi-spaxel cubes.

Overall, RUBIX provides a foundation for combining astrophysical modelling with modern machine
learning methodology. Its differentiable structure opens the path toward variational inference, solver
in-the-loop setups and simulation-based inference, ultimately enabling new ML workflows for IFU
data analysis.
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