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Abstract

Seismic motion simulations enable high-precision predictions, but are computationally de-
manding. This study introduces a deep learning surrogate model using the MLP-Mixer
architecture to address this challenge. Traditional models using independent Multi-layer
Perceptrons (MLPs) fail to capture spatial correlations, while U-shaped Neural Operators
(U-NOs) require high computational costs for high-resolution inputs and outputs. Our
proposed model, the Multiple MLP-Mixer (Multi-MLP-Mixer), integrates global and local
spatial information through multiple MLP-Mixer blocks and dual patch-wise affine trans-
formations. We demonstrate the effectiveness of our method with simulation data from
anticipated megathrust earthquakes in the Nankai Trough, achieving performance compa-
rable to state-of-the-art models with significantly improved computational efficiency.

Keywords: surrogate model; MLP-Mixer; seismic ground motion

1. Introduction

The recent years have seen numerous signs of a megathrust earthquake in Japan. Such
earthquakes are likely to cause severe damage rapidly across a wide area of Japan. Simulat-
ing ground motion for anticipated rupture scenarios, predicting damages to buildings and
infrastructure, and creating appropriate hazard maps could substantially reduce potential
damage. For instance, ground-motion data for Nankai Trough megathrust earthquakes in
southwest Japan can be generated using numerical finite-difference computation based on
the theory of elastic wave propagation from spatially distributed point sources to the tar-
get surface. This considers various rupture scenarios such as source magnitude, asperity
patterns, and rupture initiation points (Maeda et al., 2016; Moschetti et al., 2017). Fig. 1
depicts an example of simulated 5% damped velocity response spectra [m/s] with a period
of 5 seconds for a megathrust earthquake occurring in the Nankai Trough, given spatially
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(a) ground-motion on target surface

(b) depth (c) strike (d) dip

(e) rake (f ) rupture time (g) moment

Figure 1: An example of simulated 5% damped velocity response spectra [m/s] with a pe-
riod of 5 seconds for Nankai Trough megathrust earthquake (a), given spatially
distributed point sources, each point of which includes depth (b), orientation:
strike (c), dip (d), and rake (e), rupture time (f), and moment (g) parameters.
The value of the response spectra is clipped at 8.0 for visualization purposes.

distributed point sources, including position (depth) and orientation (strike, dip, and rake),
rupture time, and moment parameters.

However, simulations require enormous time and computational cost, making it challeng-
ing to validate various scenarios quickly. In addition, implementing these simulations can
be complex, often requiring specialized knowledge and expertise in numerical modeling and
computational seismology. To address this issue, the construction of surrogate models using
deep models for ground motion simulations has been proposed in recent years (Lehmann
et al., 2023b,a; Yang et al., 2023; Lehmann et al., 2024).

More specifically, the study by Lehmann et al. (2023b) introduced a single multi-layer
perceptron (MLP) that individually predicts the ground motion value at each target point
based on a combination of source and target geometry parameters. Additionally, the work
by Lehmann et al. (2023a, 2024) employed a U-shaped Neural Operator (U-NO) which
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processes the Fourier convolution with downsampled feature maps to convert 3D subsurface
structures of target surface sites into time series of ground motion.

Existing surrogate methods for ground motion assume a single source point whose pa-
rameters are represented by a single feature vector. However, in large-scale spatiotemporal
ground-motion simulations, such as those for the Nankai Trough, an earthquake source
is modeled as the spatial and temporal evolution of rupture propagation on an earth-
quake fault. Therefore, hundreds of thousands of spatially distributed point sources are
required (Maeda et al., 2016; Moschetti et al., 2017). Fig. 1 (b)-(g) depict examples of
spatial point sources, each point of which includes position (depth), orientation (strike, dip,
and rake), rupture time, and moment, used to generate ground motion values (a). For
such high-resolution input and output, the UNO-based surrogate model (Lehmann et al.,
2023a, 2024) requires significantly higher computational costs, specifically for the Fourier
convolution in the shallow layers of encoder-decoder networks.

To handle high-resolution point sources in ground-motion surrogate models, in this
study, we propose introducing the MLP-Mixer (Tolstikhin et al., 2021), which performs
patch-embedding and alternates between a token (patch) mixer that integrates global spa-
tial information and a channel mixer that integrates local channel information, where an
MLP is shared at each mixer over tokens and channels. The proposed method transforms
point source parameters into ground motion on the target surface based on global and
local spatial correlation in high-resolution domains through flexible and computationally
efficient multiple MLP-Mixer blocks. Additionally, we propose dynamically mixing multi-
ple MLP-Mixers for integrating features of point source parameters with target geometry
parameters, e.g., 3D subsurface structures, through dual patch-wise affine transformation.
We demonstrate the effectiveness of the proposed method, called the Multiple MLP-Mixer
(Multi-MLP-Mixer) based surrogate model, using simulation data of anticipated megathrust
earthquakes in the Nankai Trough.

The main contributions of this paper are summarized as follows:

1. We propose a new deep surrogate model enabling fine-grained and computationally
efficient transformation from spatial source and target geometry parameters into seis-
mic ground motion through multiple MLP-Mixer blocks and dual patch-wise affine
transformation in high-resolution domains.

2. We conduct extensive comparative experiments on predicting ground motion in the
Nankai Trough, demonstrating that the proposed method provides performance com-
parable to state-of-the-art surrogate models with significantly more efficient training
and inference computation.

After this introductory section, the rest of this paper is organized as follows. Section 2
reviews related works, and section 3 details the proposed method. Section 4 describes the
experimental evaluation and discussion, and the conclusion is presented in Section 5.

2. Related works

2.1. Formulation

Let us consider training Dtr and test Dte data consisting of multiple tuples of target surface
values Y ∈ RHY×WY×CY

, point source parameters X ∈ RHX×WX×CX
, and target geometry
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parameters Z ∈ RHZ×WZ×CZ
as follows:

Dtr = {(Ye, Xe, Ze)}N
tr

e=1, Dte = {(Ye, Xe, Ze)}N
te

e=1, (1)

where H∗, W ∗, and C∗ are the height, width, and the number of channels in a tensor ∗.
N tr and N te are the number of training and test samples, respectively.

Then, let us consider a surrogate model fθ(·) to convert a point source parameter tensor
X to a target surface tensor Y given target geometry parameter tensor Z as Ŷe = fθ(Xe, Ze)
where θ is a parameter of the model to be tuned so as to minimize loss function L(·) with
training data Dtr as follows:

min
θ

[ 1

N tr

Ntr∑
e=1

L
(
fθ(Xe, Ze), Ye, S

)]
, (2)

where S ∈ RHY×WY×CY
is the target mask to exclude outer region, e.g., sea and lakes, from

the training. S is defined as follows:

S[h,w, c] =

{
0 if pixel (h,w, c) is in the outside of evaluation-region
1 otherwise.

(3)

Let Ȳ ∈ R(HȲ×W Ȳ)×d, X̄ ∈ R(HX̄×W X̄)×d, and Z̄ ∈ R(HZ̄×W Z̄)×d represent the tensors
of patches, where the tensors Y , X, and Z are split into small, non-overlapping patches in
the 2D spatial direction and embedding each patch into an d-dimensional vector.

2.2. Deep model-based surrogate model for predicting ground motion

Recent advances in deep models have significantly enhanced the application of surrogate
models for the simulation of ground motion. These models aim to replicate complex seismic
phenomena accurately while reducing computational effort.

Lehmann et al. (2023b) utilizes a single MLP to individually predict the ground motion
value at each target surface point in Y , such as peak ground acceleration, given a single
point source parameter X (e.g., depth, magnitude, and orientation) and a single target
geometry parameter Z (e.g., hypocentral distance and azimuth). The input and output of
the MLP are a concatenated vector of X and Z, and a scalar value, respectively. Although
employing a single and individual MLP provides efficient memory usage, it cannot directly
treat spatially distributed point sources X nor account for the correlation between target
surface values Y .

Lehmann et al. (2023a) utilize a Fourier Neural Operator (FNO) (Li et al., 2021) to
predict 3D seismic wave propagation Y on the target surface, given target 3D geological
parameters Z, i.e., subsurface structures. The convolution in the Fourier space performed
by the FNO corresponds to a global convolution in the feature space; therefore, it is effective
for handling 3D geological parameters Z that contain various frequency components and
global spatial correlations. In addition, a neural operator with a U-shaped encoder-decoder
structure (U-NO) is employed for treating high-resolution input and output with efficient
computation by processing the Fourier convolution with downsampled feature maps. Fur-
thermore, Lehmann et al. (2024) extend the U-NO to incorporate multiple inputs, not only
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3D geological parameters Z but also a variable point source parameter X, such as position
and orientation.

However, even with U-NO, performing Fourier convolution with a relatively large kernel
window for high-resolution feature maps needs to be done in the shallow layers, i.e., in
the early encoder and late decoder layers. This results in a significantly larger number of
model parameters and higher computational costs compared to the MLP-based surrogate
model (Lehmann et al., 2023b), making the model more complex and resource-intensive.
In addition, these existing SOTA surrogate models (Lehmann et al., 2023b,a, 2024) assume
that the point source parameter X is fixed or set at a specific single point and, therefore,
is represented in a single feature vector. However, a large-scale spatiotemporal ground
motion simulation, such as the Nankai Trough (see Fig. 1), requires hundreds of thousands
of spatially distributed point sources (Maeda et al., 2016; Moschetti et al., 2017).

2.3. Spatial feature extraction from images

To address the challenges of extracting features that consider global spatial correlations,
recent methodologies have introduced advanced architectures such as Convolutional Vision
Transformer (ConViT) (d’Ascoli et al., 2021), Adaptive Fourier Neural Operator (AFNO) (Guibas
et al., 2022), and MLP-Mixer (Tolstikhin et al., 2021).

Vision Transformer (ViT) (Dosovitskiy et al., 2021), which applies self-attention to
patch embeddings, outperforms convolutional neural networks (CNNs) but suffers from a
low inductive bias, requiring pre-training on large external datasets. To overcome this
problem, ConViT (d’Ascoli et al., 2021) leverages local feature extraction by CNNs and
global spatial correlations by ViT through Gated Positional Self-Attention (GPSA) layers.
The GPSA layers use trainable embeddings and relative position encodings to initially
mimic the convolutional operation and incorporate gating parameters to balance attention
and pseudo-convolution. Consequently, ConViT achieves high accuracy with limited data
by enhancing ViT’s learning efficiency.

Traditional self-attention mechanisms in ViT scale quadratically with the number of
patches (tokens), creating challenges for high-resolution inputs. AFNO (Guibas et al., 2022)
addresses this by replacing token mixing with the Discrete Fourier Transform (DFT) applied
to each channel in the token direction, which corresponds to efficient global convolution, thus
significantly reducing the computational complexity of extracting global spatial correlations.
After channel mixing is performed using a shared MLP in the Fourier space, an inverse DFT
is applied to convert them back to the feature space. Additionally, AFNO incorporates
adaptive weight sharing in the channel mixing via a three-layer MLP and introduces sparsity
through soft-thresholding in the Fourier domain to retain significant frequency components
while discarding noise. These modifications result in quasi-linear complexity and linear
memory requirements relative to the number of tokens, enabling efficient handling of high-
resolution images.

MLP-Mixer (Tolstikhin et al., 2021) offers an alternative to CNN and ViT by using sep-
arate MLPs shared for token-wise mixing and channel-wise mixing of features. MLP-Mixer
captures global spatial correlations without the complexity of convolutional or attention
mechanisms by treating token and channel dimensions separately and iteratively mixing in-
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formation. This simplicity allows MLP-Mixer to handle high-resolution inputs, i.e., a large
number of tokens, with lower computational overhead compared to more complex models.

Given these advances, we propose developing a surrogate model utilizing the MLP-
Mixer architecture. This model aims to efficiently capture global spatial correlations in
both point source parameters X and target geometry parameters Z to predict large-scale
spatiotemporal ground motion Y , thus enhancing prediction accuracy while maintaining
computational efficiency.

2.4. Details of MLP-Mixer

The MLP-Mixer consists of a patch-embedding layer and multiple mixer layers. The patch-
embedding layer divides the input image X ∈ RHX×WX×CX

and embeds each patch into a

d-dimensional vector using Conv2D and reshapes to a matrix X̄ ∈ R(HX̄×W X̄)×d.

The mixer layer has two MLPs: token mixer and channel mixer. The token mixer applies
a shared three-layer MLP along the token direction with HX̄ ×W X̄-dimension as follows:

Ū = tokenMixer(X̄) = X̄ +
{
σ
(
LayerNorm(X̄)⊤W tkn1

)
W tkn2

}⊤
∈ R(HX̄×W X̄)×d, (4)

where W tkn1 ∈ R(HX̄×W X̄)×dh and W tkn2 ∈ Rdh×(HX̄×W X̄) are trainable weights, dh is the
dimension of the hidden layer, σ(·) is a activation function, e.g., GELU, and LayerNorm(·)
is a layer normalization.

Similarly, the channel mixer applies a shared three-layer MLP along the channel direc-
tion with d0dimension as follows:

X̄ ′ = channelMixer(Ū) = Ū + σ
(
LayerNorm(Ū)W chnl1

)
W chnl2 ∈ R(HX̄×W X̄)×d (5)

where W chnl1 ∈ Rd×dh
′
and W chnl2 ∈ Rdh

′×d are trainable weights, and dh
′
is the dimension

of the hidden layer.

By alternatively mixing features across two directions, the MLP-Mixer captures global
and local spatial correlations over images, achieving high accuracy in image classification
tasks with lower computational costs.

3. Proposed method

In this study, we propose a new deep surrogate model based on multiple MLP-Mixer streams,
enabling to integrate spatiallydistributed point source parameters X and 3D target geom-
etry parameters Z, to dynamically predict target surface values Y as depicted in Fig. 2.

3.1. Up-sampling and patch-embedding

To match the number of patches between X̄ and Z̄, and to increase the number of patches
to mitigate discontinuities between patches, the resolution of X and Z increases through
the up-sampling layer such as bilinear interpolation. Then, the patch-embedding layer
divides the high-resolution images, embeds each patch into an d-dimensional vector using
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Figure 2: Architecture of the proposed surrogate model, Multi-MLP-Mixer, consisting of
patch-embedding, up-sampling, three MLP-Mixer blocks, patch-wise affine trans-
form mixer, patch-expansion, and down-sampling to predict target surface values
Ŷ by converting point source parameters X and target geometry parameter Z.

2D convolution and reshapes to matrices as follows:

X̄ = reshape
(
patchEmbedαX̄

(
upsample(X)

))
∈ R(HX̄×W X̄)×d, (6)

Z̄ = reshape
(
patchEmbedαZ̄

(
upsample(Z)

))
∈ R(HX̄×W X̄)×d, (7)

where α is a parameter in the 2D convolution.

3.2. Patch-wise affine-transform mixer of two-stream MLP-Mixers

Inspired by Feature-wise Linear Modulation (FiLM) (Perez et al., 2018), a general-purpose
conditioning method for neural networks, we propose fusing two streams of MLP-Mixers
through dual patch-wise affine transformations. Specifically, we apply affine transformations
to X̄ conditioned on Z̄ and to Z̄ conditioned on X̄. More concretely, using scale function
γ(·) and shift function β(·), X̄ and Z̄ are fused as follows:

Ȳ =
1

2

{
γ(Z̄)⊙ X̄ + γ(X̄)⊙ Z̄ + β(Z̄) + β(X̄)

}
,

γ(Z̄) = Z̄W γ
Z + bγZ , γ(X̄) = X̄W γ

X + bγX , β(Z̄) = Z̄W β
Z + bβZ , β(X̄) = X̄W β

X + bβX (8)

where W γ ∈ Rd×d, W β ∈ Rd×d, bγ ∈ R1×d, and bβ ∈ R1×d are trainable weights and biases
for scale and shift values, respectively.

3.3. Patch expansion and down-sampling

In the patch-expansion layer, after reshaping the patch tensor Ȳ from (HX̄ ×W X̄) × d to
HX̄ ×W X̄ × d, Ȳ is converted into a high-resolution image through transposed convolution
operations. Then, to smooth out the discontinuities between patches, down-sampling is
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performed using methods such as bilinear interpolation to obtain the predicted target surface
values Ŷ as follows:

Ŷ = downsample
(
patchExpansionβ

(
reshape(Ȳ ′)

))
∈ RHY×WY×CY

, (9)

where β is a parameter in 2D convolution in patch-embedding functions.

3.4. Entire architecture and training

The architecture of the proposed method, called Multi-MLP-Mixer, is illustrated in Fig. 2,
consisting of up-sampling, patch-encoding (in Sec. 3.1), three MLP-Mixer blocks each of
which consists of N∗

L-layer MLP-Mixers (in Sec. 2.4), patch-wise affine transformation mixer
(in Sec. 3.2), patch-expansion, and down-sampling (in Sec. 3.3).

Thus, the surrogate function f(·) in the architecture is represented by a composite func-
tion of tokenMixer(·) (Eq. 4), channelMixer(·) (Eq. 5), patchEmbed(·) (Eq. 7), γ(·), β(·)
(Eq. 8), and patchExpansion(·) (Eq. 9), etc. Regarding the implementation, based on the of-
ficial codes of MLP-Mixer (https://github.com/google-research/vision_transformer),
we extended it with three MLP-Mixer blocks, a patch-wise affine transformation mixer,
and replaced the head network for the classification task with patch-expansion and down-
sampling (in Sec. 3.3), as depicted in Fig. 2.

Parameters θ = (α, {W tkn1}, {W tkn2}, {W chnl1}, {W chnl2}, {W γ}, {W β}, {bγ}, {bβ},β)
are tuned so as to minimize the loss function (in Eq. 2), defined as L

(
Ŷe, Ye, S

)
= LSSIM(Ŷe, Ye, S)

where LSSIM is a masked version of Structural Similarity (SSIM) loss (Bergmann et al., 2018;
Wang et al., 2004).

The SSIM is a metric used to evaluate the similarity between images by considering
structural information, luminance, and contrast. The masked SSIM index between two
patches P and Q with mask M is calculated using masked means µ∗, variance σ∗∗, and
covariance σPQ where ∗ ∈ {P,Q} as follows:

SSIM(P,Q,M) =
(2µPµQ + C1)(2σPQ + C2)

(µP
2 + µQ

2 + C1)(σPP + σQQ + C2)
, (10)

µ∗ =

{
sum(∗⊙M)
sum(M) if sum(M) > 0

0 otherwise,
σPQ =

{
sum

(
(P−µP )(Q−µQ)⊙M

)
sum(M) if sum(M) > 0

0 otherwise,
(11)

where sum(∗) is the sum of all elements in a matrix ∗, C1 = 0.012 and C2 = 0.032 are
constants to avoid the zero division. Then, the masked SSIM loss is obtained by the average
of masked SSIM indices of corresponding patches of original Y and reconstructed Ŷ images
as follows:

LSSIM(Y, Ŷ ) =
1

∥P∥
∑
p∈P

{
1− SSIM(Yp, Ŷp, Sp)

}
, (12)

where Yp, Ŷp, and Sp represent p-th patch in each corresponding image Y , Ŷ , and S, split by
sliding windows with a stride of 1 and window size of 11, and P is the set of patch indices.

https://github.com/google-research/vision_transformer
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（a）earthquake source area and magnitude

（c）rupture initiation points

（b）asperity pattern
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pattern B

No. 1 No. 2 No. 3

No. 4 No. 5 No. 6

No. 7 No. 8 No. 9

No. 10 No. 11 No. 12

No. 13 No. 14 No. 15

(b) earthquake rupture parameter

Figure 3: (a) Mask for excluding sea area defined in Eq. 3. (b) Variability of the possible
earthquake rupture parameters for the anticipated megathrust earthquakes in the
Nankai Trough (Maeda et al., 2016). (b-a) 15 patterns of the earthquake source
area, denoted by red lines, and the magnitude of the earthquake labeled Mw.
(b-b) Spatial patterns of the location of the asperities. (b-c) 10 patterns of the
location of the rupture initiation points, denoted by stars.

Table 1: List of S-wave velocities vs [km/s]
Layer 1 2 3 4 5 6 7 8 9 10 11 12 13

S-wave velocity 0.5 0.6 0.7 0.8 0.9 1.0 1.3 1.5 1.7 2.0 2.4 2.9 3.2

4. Experimental evaluation

To demonstrate the effectiveness of the proposed method, Multi-MLP-Mixer, we compared
the performance of the prediction of ground-motion Y with SOTAs of global spatial feature
extraction methods applied to surrogate models, such as ConViT (d’Ascoli et al., 2021)
and AFNO (Guibas et al., 2022), and the SOTAs of surrogate models for ground motion,
based on a single MLP (Lehmann et al., 2023b) and U-NO (Lehmann et al., 2023a) using
large-scale ground-motion simulation data,

4.1. Nankai Trough simulated ground-motion data

As a large-scale spatiotemporal ground-motion simulation, we used Nankai Trough simula-
tion dataset, provided by Hachiya et al. (2023); Maeda et al. (2016). The dataset consists
of tuples of ground motion values Y on the target surface, spatially distributed point source
parameters X, and 3D subsurface structure (target geometry parameters) Z with 360 rup-
ture scenarios for the anticipated megathrust earthquakes in the Nankai Trough, combining
possible rupture parameters; (a) the source area and magnitude, (b) the spatial pattern of
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Figure 4: Examples of 3D subsurface structure Z consisting of the top surface depth of
layers with S-wave velocities vs: 0.6 (very soft), 1.0 (soft), 1.7 (hard), and 3.2
(very hard) [km/s].

Table 2: Data specifications for Nankai Trough ground motion simulation
content of each channel mesh shape geographic coordinate

target surface Y
The ground motion represented by 5% damped velocity response
spectra [m/s] with a period of 5 seconds. The range is clipped to
[0, 8] and normalized to [0, 1] for experimental evaluation.

(HY,WY, CY)
= (512, 512, 1)

latitude 30.3◦ ∼ 38.8◦

longitude 128.9◦ ∼ 141.6◦

with intervals of 2km

source params X
The values of depth, strike, dip, rake, rupture time, and moment at
each point.

(HX,WX, CX)
= (994, 1184, 6)

latitude 30.3◦ ∼ 38.8◦

longitude 128.9◦ ∼ 141.6◦

with intervals of 0.25km

target geometry Z
The subsurface structure represented by top surface depth [m] of 13
layers in Table 1 at each target point. The value is normalized to
[0, 1] for experimental evaluation.

(HZ,WZ, CZ)
= (512, 512, 13)

latitude 30.3◦ ∼ 38.8◦

longitude 128.9◦ ∼ 141.6◦

with intervals of 2km

mask S
The mask assigns 1 to land and 0 to sea as defined in Eq. 3 and
described in Fig. 3(a).

(HY,WY, CY)
latitude 30.3◦ ∼ 38.8◦

longitude 128.9◦ ∼ 141.6◦

with intervals of 2km

the asperity locations, and (c) the location of the rupture initiation point, as depicted in
Fig. 3(b).

Fig. 1 depicts an example of ground-motion Y which is simulated 5% damped velocity
response spectra [m/s] with 5 seconds, given 6 different types of spatially distributed source
parameters X where the earthquake rupture parameters (a), (b), and (c) in Fig. 3(b) are
set to No. 6, the combination of pattern-3 and pattern-A, and h01.

Meanwhile, the 3D subsurface structure Z is represented by the top surface depth of
layers with different S-wave velocities, ranging from 0.5 to 3.2 km/s—the higher S-wave
velocities indicate a stiffer ground. Table 1 lists the S-wave velocities for each layer, assuming
that the underground at each point consists of 13 layers. Furthermore, Fig. 4 presents top
surface depth maps for layers with S-wave velocities of 0.6 (very soft), 1.0 (soft), 1.7 (hard)
and 3.2 (very hard) km/s. Note that the subsurface structure is fixed for all 360 scenarios.
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Table 2, lists the detailed information of ground-motion Y , source parameters X, sub-
surface structure Z, and mask S.

4.2. Settings

We performed L = 10-fold cross-validation where Dtr were split into L-group {Dl}Ll=1 and
a model was trained using {Dl}l ̸=l′ and its performance was evaluated using Dl′ for each
l′ = 1, 2, . . . , L. Thus, in total, all data were used for the evaluation with L different models.

For the quantified evaluation, we used masked PSNR (Peak Signal-to-Noise Ratio) and
SSIM. The masked PSNR is computed over test data Dte across 10-fold CVs, as follows:

PSNR = 10 log10
MAX2

MAE
, MAE ≡ 1

N tesum(S)
sum

(
S ⊙

(
Ye − Ŷe

)
⊙
(
Ye − Ŷe

))
. (13)

where N te and MAX are the number of test data Dte over 10 folds and the maximum
possible error, respectively. Meanwhile, for masked SSIM, from each test data fold Dte,
averaged masked SSIM (in Eq. 11) was calculated and averaged over 10 folds.

We compared the performance with SOTAs of global spatial feature extraction meth-
ods applied for surrogate models, such as ConViT (d’Ascoli et al., 2021) and AFNO (Guibas
et al., 2022), and SOTAs of surrogate models for ground-motion, based on a single MLP (Lehmann
et al., 2023b) and U-NO (Lehmann et al., 2023a) as follows:

• single MLP (Lehmann et al., 2023b) (in Sec.2.2): https://github.com/rauler95/

gmacc. An MLP with eight hidden layers, each with 64 or 128 dimensions, was used to
individually predict the value of the ground motion at each target surface point in Y .
Following the paper (Lehmann et al., 2023b), a point source parameter X ∈ R1×6 was
designed to include depth, strike, dip, rake, rupture time, and moment, and a target
geometry Z ∈ R1×2 to include azimuth and hypocentral distance. The input and
output of the MLP are a concatenated vector concat(X,Z) ∈ R1×8 and a scalar value,
respectively. We randomly selected points to train the model so that the number of
points in Y < 0.1 and Y ≥ 0.1 were equal.

• Multi-MLP-Mixer (proposed method) (in Sec. 3): The implementation is described
in Sec. 3.4. In the up-sampling layers, the resolution of Z increases to 994 × 1184,
which is the same as X (see Table 2). In the patch-embedding layers, X and Z
are divided into 62 × 74 patches, and each patch is embedded into a d-dimensional
vector—Z̄, X̄ ∈ R(62×84)×d (in Sec. 3.1). As for the MLP-Mixer blocks, the numbers
of MLP-Mixer layers in each block are (NX

L , NZ
L , NY

L ) = (4, 2, 4); the dimensions of
the hidden layers in the token and channel mixers are (dh, dh

′
) = (256, 1024); and the

dimension of the embedding vector is d ∈ {64, 128}. In addition, batch size, learning
rate, and dropout rate were set as 4, 0.001, and 0.1.

• MLP-Mixer (proposed method) (Tolstikhin et al., 2021): 8 MLP-Mixer layers with
(dh, dh

′
) = (256, 1024) were used to convert the source parameter X to the ground

motion Ŷ . This corresponds to the configuration of the proposed method (in Fig. 2) in
which the stream for the target geometry Z and the patch-wise affine transformation
mixer were removed. The dimension of the embedding vector is d ∈ {64, 128}.

https://github.com/rauler95/gmacc
https://github.com/rauler95/gmacc
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Table 3: Performance and scale comparison in ground-motion prediction using metric
masked PSNR, masked SSIM (in Sec. 4.2), parameter counts, training time, and
inference time. The training and inference times are measured using an NVIDIA
RTX6000 Ada. The best performance and smallest scale in each metric are indi-
cated in bold in each group.

metric dim
Spatial feature extraction Surrogate model

AFNO ConViT
MLP-Mixer
(proposed)

Multi-MLP-Mixer
(proposed)

single MLP U-NO

PSNR
64 31.82 27.46 32.92 33.46 22.33 33.51
128 32.58 27.48 33.33 33.52 - 33.37

SSIM
64 94.80 89.47 96.44 96.77 69.34 96.80
128 95.39 88.65 96.64 96.64 - 96.69

parameter cnt. [M]
64 1.23 4.79 20.01 22.71 0.03 40.27
128 2.54 15.87 21.17 24.25 - 161.08

training time [s]
64 2,055 2,191 679 659 119 1,456
128 2,118 2966 796 611 - 1,989

inference time [ms]
64 1.63 26.59 0.45 0.84 3.77 4.78
128 2.22 28.07 0.48 0.85 - 10.45

• AFNO (Guibas et al., 2022) (in Sec. 2.3): https://github.com/NVlabs/AFNO-transformer
8 AFNO layers with dh

′
= 1024 were used to convert the source parameter X to the

ground motion Ŷ . Similarly to the proposed method, in the patch-embedding layer,
X is embedded into X̄ ∈ R(62×74)×d, where the dimension of the embedding vector is
d ∈ {64, 128}. The head network for classification was replaced with patch-expansion
and down-sampling layers to produce the predicted ground-motion image Ŷ .

• ConViT (d’Ascoli et al., 2021)(in Sec.2.3): https://github.com/facebookresearch/
convit. 4 GPSA layers and 1 SA layer with 4 heads were used to convert the source
parameter X to ground motion Ŷ . Similarly to the proposed method, in the patch-
embedding layer, X is embedded into X̄ ∈ R(62×74)×d, and the embedding vector was
set to d ∈ {64, 128}. The head network for classification was replaced with patch-
expansion and down-sampling layers to produce the predicted image Ŷ .

• U-NO (Lehmann et al., 2023a) (in Sec. 2.2): https://github.com/ashiq24/uno. 8
U-NO layers (4 for the encoder and 4 for the decoder) with three skip connections
were used to convert the source parameter X to the ground motion Ŷ—note that
the subsurface structure is fixed in this dataset and the method (Lehmann et al.,
2023a) does not support two spatial inputs. The number of channels of the source
parameters X increased from 6 to d ∈ {64, 128} by a nonlinear lifting operation, while
its resolution was reduced from HX ×WX = 994× 1184 to HY ×WY = 512× 512 by
bicubic interpolation. In the encoder, the resolution of the feature map was reduced
to HY/16×WY/16×d/16, and then in the decoder, it was expanded to HY×WY×d.
Lastly, using an MLP, it was converted to the image of the predicted Ŷ .

https://github.com/NVlabs/AFNO-transformer
https://github.com/facebookresearch/convit
https://github.com/facebookresearch/convit
https://github.com/ashiq24/uno
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4.3. Quantitative evaluation

Table 3 presents a comparison of performance and scale using masked PSNR, masked SSIM
(as described in Sec. 4.2), parameter counts, training time, and inference time. The training
time for each fold was averaged over 10 folds, and the inference time for each test instance
was averaged over all test data across 10 folds, using an NVIDIA RTX6000 Ada.

The table indicates that the single MLP (Lehmann et al., 2023b), which individually
predicts each target value and therefore does not capture the spatial correlation between
the target surface points, produces the lowest performance. In contrast, the state-of-the-art
(SOTA) surrogate model, U-NO (Lehmann et al., 2023a), achieves the best performance
utilizing Fourier convolution to capture various frequency components and global spatial
correlations. However, the scale of the model is significantly larger than that of other
methods. Although U-NO enhances computational efficiency by reducing resolution and
the number of channels in the lower layers (late encoder and early decoder), it requires
processing high-resolution and multi-channel features with FNO in the later stages of the
decoder, resulting in a substantial increase in the number of trainable parameters.

Meanwhile, SOTA spatial feature extraction methods, such as AFNO (Guibas et al.,
2022) and ConViT (d’Ascoli et al., 2021) provide performance comparable to U-NO. Specif-
ically, AFNO achieves a significant reduction in parameter and inference time by discretiz-
ing the spatial domain, replacing the token mixer with a parameter-free DFT, and using a
shared MLP in the frequency domain as a channel mixer. However, the Fourier transform
extracts the global spatial correlation with sine and cosine waves along fixed periods and
directions, which could introduce an inductive bias and lead to suboptimal performance.
Although ConViT also achieves a significant parameter reduction, its training and inference
time is the largest because self-attention requires quadratic computational complexity with
respect to the number of tokens, i.e., (62× 74)2.

Conversely, the proposed MLP-Mixer-based methods, by sharing a single MLP per layer
in both spatial (token) and channel directions, apply transformations with low inductive bias
in both spatial and channel directions. Although slightly higher in parameter count com-
pared to AFNO, the proposed methods outperform in performance. Furthermore, the Multi-
MLP-Mixer model, which integrates information extracted from two MLP-Mixer streams for
source parameters X̄ and subsurface structure Z̄ using a patch-wise affine transformation
mixer, further improves performance, making it well comparable to the SOTA surrogate
model U-NO, while significantly enhancing computational efficiency in both training and
inference. Furthermore, with d = 128, the proposed method improved performance without
a significant reduction in computational efficiency.

4.4. Qualitative evaluation

Figs. 5 and 1 (in supplementary document) represent examples of the true image Y and
the predicted image Ŷ , and Figs. 6 and 2 (in supplementary document) represent true
vs. predicted values. The figures show that given source parameters X (in Fig. 1) and
subsurface structure Z (in Fig. 4), our proposed method, Multi-MLP-Mixer (c), can produce
fine-grained predicted images Ŷ that look similar to the true ones Y (a) and have well
comparable PSNR score with the SOTA surrogate model, U-NO.
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In general, these experimental results indicate that the proposed MLP-Mixer-based
methods could be effective solutions for the surrogate model of ground motion, considering
spatially distributed point sources X and 3D subsurface structure Z. They provide a
balanced combination of high performance and computational efficiency.

5. Conclusion

To overcome the computational challenges of seismic motion simulations, this study intro-
duces the Multiple MLP-Mixer (Multi-MLP-Mixer) surrogate model. Traditional models,
such as single MLP and U-NO, either fail to capture spatial correlations or require high
computational costs for high-resolution inputs and outputs. Our proposed method lever-
ages the MLP-Mixer architecture to efficiently integrate global and local spatial information
through multiple MLP-Mixer blocks and dual patch-wise affine transformations.

We validated the effectiveness of our model using simulation data from anticipated
megathrust earthquakes in the Nankai Trough. The results demonstrated that the Multi-
MLP-Mixer achieved performance comparable to that of state-of-the-art surrogate models
while significantly improving computational efficiency in both training and inference.

Overall, the Multi-MLP-Mixer offers a promising solution for seismic ground motion
prediction, balancing high performance with computational efficiency.
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Figure 5: Examples of true Y (a), and predicted Ŷ (b)-(f) ground-motion images given
source parameters X in Fig 1 and subsurface structure Z in Fig. 4. The value
in parentheses () indicates the PSNR score. Note that all images are masked by
target-mask S for the visualization purpose.

(a) true Y (b) MLP-Mixer Ŷ (c) proposed Ŷ

(d) AFNO Ŷ (e) ConViT Ŷ (f ) U-NO Ŷ

Figure 6: True vs. predicted values for Fig. 5.
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