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Abstract

We study the problem of designing adaptive multi-armed bandit algorithms that
perform optimally in both the stochastic setting and the adversarial setting simulta-
neously (often known as a best-of-both-world guarantee). A line of recent works
shows that when configured and analyzed properly, the Follow-the-Regularized-
Leader (FTRL) algorithm, originally designed for the adversarial setting, can in
fact optimally adapt to the stochastic setting as well. Such results, however, criti-
cally rely on an assumption that there exists one unique optimal arm. Recently, Ito
[2021] took the first step to remove such an undesirable uniqueness assumption
for one particular FTRL algorithm with the 1/2-Tsallis entropy regularizer. In this
work, we significantly improve and generalize this result, showing that uniqueness
is unnecessary for FTRL with a broad family of regularizers and a new learning
rate schedule. For some regularizers, our regret bounds also improve upon prior
results even when uniqueness holds. We further provide an application of our
results to the decoupled exploration and exploitation problem, demonstrating that
our techniques are broadly applicable.

1 Introduction

We study the problem of multi-armed bandits (MAB) where a learner sequentially interacts with an
environment for T rounds. In each round, the learner selects one of the K arms and observes its loss.
The goal of the learner is to minimize her regret, which measures the difference between her total loss
and that of the best fixed arm in hindsight. Depending on how the losses are generated, two settings
have been heavily studied in the literature: the stochastic setting, where the loss of each arm at each
round is an i.i.d. sample of a fixed and unknown distribution, and the adversarial setting, where
the losses can be arbitrarily decided by an adversary. In the stochastic setting, the UCB algorithm
[Lai and Robbins, 1985, Auer et al., 2002a] attains the instance-optimal regret O(

∑
i:∆i>0

log T
∆i

),
where the sub-optimality gap ∆i is the difference between the expected loss of arm i and that of the
optimal arm. On the other hand, in the adversarial setting, the minimax-optimal regret is known to be
of order Θ(

√
KT ) [Auer et al., 2002b, Audibert and Bubeck, 2009], achieved via the well-known

Follow-the-Regularized-Leader (FTRL) framework.

∗Equal contribution, in alphabetical order.
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Given the rather different algorithmic ideas in UCB and FTRL, it is natural to ask whether there
exists an adaptive algorithm that achieves the best of both worlds (BOBW), simultaneously enjoying
the instance-optimal (log T )-regret in the stochastic setting and minimax-optimal

√
T -regret in the

adversarial setting. This question was first answered affirmatively in [Bubeck and Slivkins, 2012],
followed by a sequence of improvements and extensions in the past decade. Among these works,
a somewhat surprising result by Wei and Luo [2018] shows that, when configured and analyzed
properly, FTRL, an algorithm originally designed for the adversarial setting to achieve

√
T -type

regret, in fact can also achieve (log T )-type regret in the stochastic setting automatically. This result
was latter significantly improved to optimal by Zimmert and Seldin [2019, 2021] using the 1/2-Tsallis
entropy regularizer and extended to many other problems. In fact, these algorithms not only achieve
BOBW, but also automatically adapt to intermediate settings with a regret bound that interpolates
smoothly between the two extremes.

A key drawback of such FTRL-based approaches, however, is that their analysis for the stochastic
setting critically relies on a uniqueness assumption, that is, there exists one unique optimal arm (with
∆i = 0). A recent work by Ito [2021] took the first step to address this issue and proposed a novel
analysis showing that the exact same Tsallis-INF algorithm of [Zimmert and Seldin, 2019] in fact
works even without this assumption. Unfortunately, his analysis is specific to the 1/2-Tsallis entropy
regularizer with an arm-independent learning rate, and it is highly unclear how to extend it to other
regularizers which often require an arm-dependent learning rate. For example, extending it to the
log-barrier regularizer was explicitly mentioned as an open problem in [Ito, 2021].

In this work, we significantly improve and generalize the analysis of [Ito, 2021], greatly deepening
our understanding on using FTRL to achieve BOBW. Our improved analysis allows us to obtain a
suite of new results, all achieved without the uniqueness assumption. Specifically, we consider a new
and unified arm-dependent learning rate schedule and the following regularizers (plus a small amount
of extra log-barrier); see also Table 1 for a summary.

• Log-barrier: with our new learning rate schedule, we show a regret bound of order O (G log T )

for the stochastic setting and O
(√
KT log T

)
for the adversarial setting. Here, G = |U |

∆MIN
+∑

i∈V
1
∆i

measures the difficulty of the instance, with U = {i : ∆i = 0} being the set of
optimal-arms, V being the set of all remaining sub-optimal arms, and ∆MIN = mini∈V ∆i being
the minimum non-zero sub-optimality gap. Our bound for the stochastic setting improves those
in [Wei and Luo, 2018, Ito, 2021], both of which require the uniqueness assumption.

• Shannon entropy: we show a regret bound of order O
(
G(log T )2

)
for the stochastic setting and

O(
√
KT log T ) for the adversarial setting. This improves [Ito et al., 2022] (when applying their

more general results to MAB) in two ways: first, their result requires the uniqueness assumption
while ours does not; second, their G is defined as K

∆MIN
, strictly larger than ours.

• β-Tsallis entropy: we also consider Tsallis entropy with a general parameter β ∈ (0, 1), and

show a regret bound of order O
(

G log T
β(1−β)

)
for the stochastic setting and O

(√
KT (log T )I{β ̸=1/2}

β(1−β)

)
for the adversarial setting. The only prior work that uses β-Tsallis entropy for BOBW in MAB
is [Zimmert and Seldin, 2021], but their algorithm is infeasible (unless β = 1/2) since the
learning rate is tuned in terms of the unknown sub-optimality gaps. We not only address this
issue with our new learning rate schedule, but also remove the uniqueness assumption. While
β = 1/2 leads to be best bounds in MAB, following [Rouyer and Seldin, 2020], we showcase the
importance of other values of β (specifically, β = 2/3) in the so-called Decoupled Exploration
and Exploitation (DEE-MAB) setting, and again significantly improve their results (see Table 2).

It is worth noting that, as it is common for FTRL-based approaches, our algorithms also automatically
adapt to more general corrupted settings (or the so-called adversarial regime with a self-bounding
constraint [Zimmert and Seldin, 2021]). The complete statements of our results can be found in
Section 3.

Techniques Inspired by [Ito, 2021], we decompose the regret into three parts: the regret related to
the sub-optimal arms, the regret related to the optimal arms, and the residual regret. Bounding each
of them requires new ideas, as discussed below (see Section 4 for details).
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Table 1: Overview of our BOBW results for MAB, all achieved via Algorithm 1 and a unified learning

rate γti = θ
√
1 +

∑
τ<t (max {pτi , 1/T})

1−2α for arm i in round t, with pτi being the probability of
picking arm i in round τ and the values of θ and α specified in the table. “Sto." and “Adv." denote
respectively the stochastic and the adversarial setting. G is defined as |U |

∆MIN
+
∑
i∈V

1
∆i

, where U is
the set of optimal-arms, V is the set of sub-optimal arms, and ∆MIN = mini∈V ∆i.

Regularizera α, θ Regret (w/o uniqueness) Comments

Log-barrier α = 0 Sto. O (G log T ) First to remove uniqueness
for log-barrier−

∑
i γ

t
i log pi θ =

√
1

log T Adv. O
(√
KT log T

)
β-Tsallis entropy α = β Sto. O

(
G log T
β(1−β)

)
First BOBW result
for β ̸= 1/2 (even
with uniqueness)− 1

1−β
∑
i γ

t
ip
β
i θ =

√
1−β
β Adv. O

(√
KT (log T )I{β ̸=1/2}

β(1−β)

)
Shannon entropy α = 1 Sto. O

(
G (log T )

2
)

Improve [Ito et al., 2022]
which defines G as K/∆MIN

and requires uniquenessb
∑
i γ

t
ipi log

(
pi
e

)
θ =

√
1

log T Adv. O
(√

KT log T
)

aTo be more precise, a small amount of extra log-barrier has been omitted in this table for simplicity.
bTo be clear, the setting in [Ito et al., 2022] is more general than MAB. Here, the comparison is solely based

on their results specified to MAB.

Table 2: Regret bounds of our algorithm using 2/3-Tsallis entropy for the Decoupled Exploration
and Exploitation MAB problem. V is the set of sub-optimal arms and ∆MIN = mini∈V ∆i.

Ours (w/o uniqueness) [Rouyer and Seldin, 2020] (w/ uniqueness)

Sto. O
(√∑

i∈V
K
∆2

i

)
Sto. O

(√∑
i∈V

K
∆i·∆MIN

)
Adv. O(

√
KT ) Adv. O(

√
KT )

To bound the regret related to the sub-optimal arms by a so-called self-bounding quantity (the key to
achieve BOBW using FTRL), we design a novel arm-dependent learning rate schedule (which is also
our key algorithmic contribution). For example, when using β-Tsallis entropy, this schedule balances
the corresponding stability term and penalty term of a sub-optimal arm i to O

(∑T
t=1

(pti)
1−β

/γt+1
i

)
,

which is then bounded by a self-bounding quantity. Apart from removing the uniqueness assumption,
as mentioned this learning rate schedule also enables us to achieve the first BOBW guarantees for
β-Tsallis entropy with any value of β, and also to improve the bound of Ito et al. [2022] for Shannon
entropy, which are notable results on their own.

Then, to bound the regret related to the optimal arms, we greatly extend the idea of [Ito, 2021] that
is highly specific to the simple form of 1/2-Tsallis entropy with an arm-independent learning rate.
Specifically, we develop a new analysis based on a key observation of a certain monotonicity of
Bregman divergences. Such monotonicity only requires two mild conditions on the regularizer that
are usually satisfied, allowing us to apply it to a broad spectrum of regularizers.

Our arm-dependent learning rate does make the residual regret much more complicated compared
to [Ito, 2021]. To handle it, we carefully consider two cases and show that in both cases it can be
related to some self-bounding quantities.

Finally, we note that various places of our analysis require the learner’s distribution over arms to
be stable in a multiplicative sense between two consecutive rounds. We achieve this by adding an
extra small amount of log-barrier, a technique first proposed in [Bubeck et al., 2018]. While we do
not know how to prove the same results without this extra tweak, we conjecture that it is indeed
unnecessary.
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Related work For early results solely for the stochastic setting or solely for the adversarial setting,
we refer the readers to the systematic survey in [Lattimore and Szepesvári, 2020]. The study of
BOBW for MAB starts from the pioneering work of Bubeck and Slivkins [2012], followed by many
improvements via different approaches [Seldin and Slivkins, 2014, Auer and Chiang, 2016, Seldin
and Lugosi, 2017, Wei and Luo, 2018, Lykouris et al., 2018, Gupta et al., 2019, Zimmert and Seldin,
2019, 2021] and many extensions from MAB to other problems such as semi-bandits [Zimmert
et al., 2019], linear bandits [Lee et al., 2021], MAB with feedback graphs [Ito et al., 2022, Erez and
Koren, 2021, Rouyer et al., 2022], MAB with switching cost [Rouyer et al., 2021, Amir et al., 2022],
model-selection [Pacchiano et al., 2022], partial monitoring [Tsuchiya et al., 2023], and Markov
Decision Process (MDP) [Lykouris et al., 2019, Jin and Luo, 2020, Jin et al., 2021, Chen et al., 2021].
Among these works, the FTRL-based approach is particularly appealing since it is simple in both
the algorithm design and the analysis, and also extends seamlessly to other more general settings
(such as the corrupted setting). The uniqueness assumption used to be critical for the analysis of this
approach, but plays no role in other methods such as [Auer and Chiang, 2016, Seldin and Lugosi,
2017]. Following the first step by [Ito, 2021], our work further demonstrates that this was merely due
to the lack of a better analysis (and sometimes a better learning rate schedule). We believe that our
techniques shed light on removing the uniqueness assumption for using FTRL in more complicated
problems such as semi-bandits and MDPs.

2 Preliminaries

In multi-armed bandits (MAB), a learner is given a fixed set of arms [K] = {1, 2, · · · ,K} and has to
interact with an environment for T ≥ K rounds. In each round t, the learner chooses an arm it ∈ [K]
while simultaneously the environment decides a loss vector ℓt ∈ [0, 1]K . The learner then suffers and
observes the loss ℓtit of the selected arm for this round. The goal of the learner is to minimize her
(pseudo) regret, which measures the difference between her expected cumulative loss and that of the
best arm in hindsight. Formally, the regret is defined as RegT = E

[∑T
t=1 ℓ

t
it −

∑T
t=1 ℓ

t
i⋆
]
, where

i⋆ ∈ argmini∈[K] E
[∑T

t=1 ℓ
t
i

]
is one of the best arms in hindsight, and E [·] denotes the expectation

with respect to the internal randomness of both the algorithm and the environment.

Adversarial setting versus stochastic setting We consider two different settings according to how
the loss vectors are decided by the environment. In the adversarial setting, the environment decides
the loss vectors in an arbitrary way with the knowledge of the learner’s algorithm. In this case, the
minimax optimal regret is known to be Θ(

√
KT ) [Audibert and Bubeck, 2009].

In the stochastic setting, following prior work such as [Zimmert and Seldin, 2021], we consider a
situation much more general than the vanilla i.i.d. case (sometimes called the adversarial regime with
a self-bounding constraint). Formally, we assume that the loss vectors satisfy the following condition:
there exists a gap vector ∆ ∈ [0, 1]K and a constant C ≥ 0 such that

RegT ≥ E

 T∑
t=1

∑
i∈[K]

Pr
[
it = i

]
∆i

− C, (1)

where Pr [it = i] denotes the learner’s probability of taking arm i in round t. This condition subsumes
the well-studied i.i.d. setting (discussed in Section 1) where the loss vectors are independently
sampled from a fixed but unknown distribution and thus Condition (1) holds with equality, C = 0,
and ∆i = E [ℓti − ℓti⋆ ] being the sub-optimality gap of arm i (independent of t). In this case, the
instance-optimal regret is O(

∑
i:∆i>0

log T
∆i

), achieved by the UCB algorithm [Auer et al., 2002a].
More generally, Condition (1) covers the corrupted i.i.d. setting where the loss vectors are first
sampled from a fixed distribution and then corrupted by an adversary in an arbitrary way as long
as the expected cumulative ℓ∞ distance between the corrupted loss vector and the original one is
bounded by C ∈ [0, T ]. While these two examples both involve iidness, note that Condition (1) itself
is much more general and does not necessarily require that.

Uniqueness assumption Prior work using FTRL to achieve BOBW crucially relies on a uniqueness
assumption when analyzing the regret under Condition (1). Specifically, it is assumed that there
exists one and only one arm i̊ with ∆̊i = 0. In the special i.i.d. case, this simply means that there
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Algorithm 1 FTRL for BOBW without Uniqueness
Input: coefficient θ, learning rate α, Tsallis entropy parameter β, log-barrier coefficient CLOG,
number of arms K, number of rounds T (not necessary if a doubling trick is applied; see [Ito, 2021,
Section 5.3])
for t = 1, 2, . . . , T do

Define regularizer ϕt(p) = −CLOG

∑
i∈[K]

log pi︸ ︷︷ ︸
extra log-barrier

+


−
∑
i∈[K] γ

t
i log pi, (log-barrier)

− 1
1−β

∑
i∈[K] γ

t
ip
β
i , (β-Tsallis entropy)∑

i∈[K] γ
t
ipi log(pi/e), (Shannon entropy)

with learning rate γti = θ
√
1 +

∑
τ<t (max {pτi , 1/T})

1−2α.

Compute pt = argminp∈ΩK

{〈
p,
∑
τ<t ℓ̂

τ
〉
+ ϕt(p)

}
where ΩK is the simplex.

Draw arm it ∼ pt, suffer and observe loss ℓtit .

Construct ℓ̂t as an unbiased estimator of ℓt with ℓ̂ti =
I{it=i}ℓti

pti
, ∀i ∈ [K].

exists a unique optimal arm (̊i = i⋆). Under this uniqueness assumption, the Tsallis-INF algorithm

of [Zimmert and Seldin, 2021] achieves RegT = O
(∑

i ̸=̊i
log T
∆i

+
√
C
∑
i ̸=̊i

log T
∆i

)
. The recent

work [Ito, 2021] takes the first step to remove such an assumption for the Tsallis-INF algorithm and

develops a refined analysis with regret bound O
(∑

i:∆i>0
log T
∆i

+
√
C
∑
i:∆i>0

log T
∆i

+D +K
)

,

whereD is such that E
[∑T

t=1 maxi:∆i=0 Et [ℓti − ℓti⋆ ]
]
≤ D, and Et[·] is the conditional expectation

with respect to the history before round t. Note that, in the i.i.d. setting, D is simply 0, while in the
corrupted setting, D is at most C. We significantly generalize and improve this result to a borad
family of algorithms, and all our results hold without the uniqueness assumption.

We denote by U = {i ∈ [K] : ∆i = 0} the set of arms with a zero gap, and V = [K]\U the set of
arms with a positive gap. In the i.i.d. setting, U is simply the set of optimal arms and V is the set of
sub-optimal arms. We also define ∆MIN = mini∈V ∆i to be the minimum nonzero gap.

3 Algorithms and Results

The pseudocode of our algorithm is presented in Algorithm 1. It is based on the general FTRL
framework, which finds pt, the distribution of selecting arms in around t, via solving the optimization
problem pt = argminp∈ΩK

〈
p,
∑
τ<t ℓ̂

τ
〉
+ ϕt(p). Here, ΩK is the set of all possible distributions

over K arms, ℓ̂τ is an loss estimator for ℓτ , and ϕt is a regularizer. The learner then samples arm
it from the distribution pt and observes the suffered loss ℓtit . With this feedback, the algorithm

constructs the standard unbiased importance-weighted loss estimator: ℓ̂ti =
I{it=i}ℓti

pti
, ∀i ∈ [K],

where I{·} denotes the indicator function.

We consider three different reuglarizers ϕt: log-barrier, β-Tsallis entropy, and Shannon entropy; see
Algorithm 1 for definitions. By now, they are standard reuglarizers used extensively in the MAB
literature, each with different useful properties, but there are some small tweaks in our definitions: 1)
a linear term (from pi log(pi/e) = pi log pi − pi) is added to the canonical form of Shannon entropy,
which is critical to ensure a certain type of monotonicity of Bregman divergences (see Section 4); 2)
for technical reasons, we also incorporate a small amount of extra log-barrier (with coefficient CLOG),
which ensures multiplicative stability of the algorithm.

More importantly, we propose the following unified arm-dependent learning rate:

γti = θ

√√√√1 +

t−1∑
τ=1

(max {pτi , 1/T})
1−2α

, ∀i ∈ [K], t ∈ [T ], (2)
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where α ∈ [0, 1] and θ ∈ R>0 are parameters (set differently for different regularizers). The clipping
of pτi to 1/T is because (pti)

1−2α itself could be unbounded for α ∈ (1/2, 1] when pti is too small.
This learning rate is not only conceptually simpler than those in [Ito, 2021, Ito et al., 2022] and
important for removing the uniqueness assumption, but also leads to better bounds in some cases as
we discuss below.

Main results We now present our main results. Our regret bounds in the stochastic setting are
expressed in terms of an instance complexity measure G = |U |

∆MIN
+
∑
i∈V

1
∆i

, which is of the same
order as the standard complexity measure

∑
i∈V

1
∆i

when |U | = O(1) (in particular, this is the case
when the uniqueness assumption holds). Similar to [Ito, 2021], our bounds are also in terms of the
constant D defined in Section 2. We start with the following result for the log-barrier regularizer.

Theorem 3.1. When using the log-barrier regularizer with CLOG = 162, α = 0, and θ =
√

1/log T ,
Algorithm 1 ensures RegT = O

(√
KT log T

)
always, and simultaneously the following regret bound

when Condition (1) holds: RegT = O
(
G log T +

√
CG log T + K2

√
log T

+K log T +D
)

.

Log-barrier was first used to achieve BOBW in [Wei and Luo, 2018] and later improved in [Ito,
2021], both of which require the uniqueness assumption. The O

(√
KT log T

)
bound for the

adversarial setting is almost minimax optimal except for the extra
√
log T factor (a common caveat

for log-barrier). On the other hand, the bound under Condition (1) matches that of [Ito, 2021] when
uniqueness holds and generalizes it otherwise.2 It is worth noting that this bound (and the same for
our other results) suffers an O(D) term, which unfortunately can be as large as C, making the bound
weaker than those always with only

√
C dependence under the uniqueness assumption. It is unclear

to us whether such O(D) dependence is necessary when we do not make the uniqueness assumption.

Next, we present our results for Shannon entropy.

Theorem 3.2. When using the Shannon entropy regularizer with CLOG = 162 logK, α = 1, and θ =√
1/log T , Algorithm 1 ensures RegT = O

(√
KT log T

)
always, and simultaneously the following

regret bound under Condition (1): RegT = O
(
G (log T )

2
+

√
CG (log T )

2
+K2 log

3/2 T +D
)
.

The recent work [Ito et al., 2022] is the first to discover that Shannon entropy, used in the very first
adversarial MAB algorithm EXP3 [Auer et al., 2002b], in fact also achieves BOBW when configured
and analyzed properly (assuming uniqueness). Their results are for the more general setting of MAB
with a feedback graph, and when specified to standard MAB, their regret bound under Condition (1)
is worse than ours with G defined as K/∆MIN. The key of our improvement comes from our very
different and arm-dependent learning rate schedule. Note that there are extra log T factors in the
regret for both the adversarial setting and the stochastic setting, which is also the case in [Ito et al.,
2022]. While this makes the bounds worse compared to other regularizers, in the more general setting
with a feedback graph, Shannon entropy is known to be critical for achieving the right dependence on
the independence number of the feedback graph, and we believe that our results shed light on how to
remove the uniqueness requirement in this more general setting using Shannon entropy.

Finally, we present our results for Tsallis entropy.

Theorem 3.3. For any β ∈ (0, 1), when using the β-Tsallis entropy regularizer with CLOG = 162β
1−β ,

α = β, and θ =
√

(1− β)/β, Algorithm 1 ensures RegT = O
(√

1
β(1−β)KT (log T )

I{β ̸= 1
2}
)

always, and simultaneously the following regret bound under Condition (1): RegT =

O
(

G log T
β(1−β) +

√
CG log T
β(1−β) +D + K2√β

(1−β)3/2
+ βK log T

1−β

)
.

When β = 1/2, our learning rate γti simply becomes
√
t (which is arm-independent), and our

algorithm exactly recovers Tsallis-INF [Zimmert and Seldin, 2021]. In this case, our result is
essentially the same as what the improved anlaysis of [Ito, 2021] shows, which does not require

2Ito [2021] also provides other data-dependent bounds in the adversarial setting, which we do not consider
here. Ignoring this part, his algorithm is also slightly different from ours, but we note in passing that our analysis
technique also applies if one sets νt

i = pti in his algorithm.
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uniqueness. For β ̸= 1/2, while such regularizers were also analyzed in [Zimmert and Seldin, 2021]
(under uniqueness), their algorithm is infeasible since the learning rates are tuned based on the
unknown ∆i’s. On the other hand, our algorithm not only uses a simple and feasible learning rate
schedule, but also works without uniqueness. The bound for the adversarial setting has an extra√
log T factor when β ̸= 1/2 though, which we conjecture can be removed (as it is the case when

using a fixed learning rate [Audibert and Bubeck, 2009, Abernethy et al., 2015]); see Remark C.2.2.
We find it surprising that our learning rate exhibits totally different behavior when β < 1/2 versus
when β > 1/2 (recall that α is set to β): in the former, γti increases in the previous pτi (τ < t), while
in the latter, it decreases in pτi .

It might not be clear at this point what the value is to consider β ̸= 1/2 — after all, our bounds are
minimized when β = 1/2. It turns out that, however, other values of β play important roles in other
problems, as for example demonstrated by Rouyer and Seldin [2020] in a decoupled exploration
and exploitation setting. Below, we generalize our results to this setting, showcasing the broad
applicability of our techniques.

Decoupled exploration and exploitation The Decoupled Exploration and Exploitation MAB
(DEE-MAB) problem, first considered in [Avner et al., 2012], is a variant of MAB where in each
round t, the learner picks an arm it to exploit and an arm jt to explore, and then suffers the loss
ℓtit while observing the feedback ℓtjt . The performance of the learner is still measured by the same
regret definition in terms of the exploitation arms i1, . . . , iT . The standard MAB can be seen as a
special case where it and jt must be the same. In DEE-MAB, it turns out that the adversarial setting
is as difficult as standard MAB with a lower bound Ω(

√
KT ), but one can do much better in the

stochastic setting with a T -independent regret bound. For example, [Rouyer and Seldin, 2020] uses
FTRL with 2/3-Tsallis entropy to achieve O(

√
KT ) in the adversarial setting and simultaneously

O
(√∑

i∈V
K

∆i·∆MIN

)
in the i.i.d. setting assuming a unique optimal arm.

Using our techniques, we not only remove the uniqueness requirement, but also improve their bounds.
Specifically, we consider the exact same algorithm as theirs, which can be described using the
framework of Algorithm 1: take CLOG = 0, θ = K1/6, α = 1/2, and β = 2/3 for the Tsallis entropy
regularizer; sample the exploitation arm it according to pt as before and the exploration arm jt

according to a different distribution gt with gti ∝ (pti)
2/3; finally, construct the importance-weighted

estimator using the exploration information: ℓ̂ti =
I{jt=i}ℓti

gti
. Our results are as follows.

Theorem 3.4. For the DEE-MAB problem, the algorithm described above ensures RegT =
O(

√
KT ) always, and simultaneously the following regret bound under Condition (1): RegT =

O
(√∑

i∈V
K
∆2

i
+
√
C ·
(∑

i∈V
K
∆2

i

)1/4

+K +D
)

.

Note that in the i.i.d. setting (whereC = D = 0), we improve their bound from O
(√∑

i∈V
K

∆i·∆MIN

)
to O

(√∑
i∈V

K
∆2

i

)
(in addition to removing the uniqueness assumption).

4 Analysis

In this section, we take β-Tsallis entropy as an example to illustrate the key ideas of our analysis in
proving the MAB results under Condition (1). As in all prior work, the analysis relies on a so-called
self-bounding technique. Specifically, our goal is to bound the regret as follows (ignoring all minor
terms, including the dependence on β):

RegT ≲ E

∑
i∈V

√√√√(log T )

T∑
t=1

pti +

√√√√|U | (log T )
∑
i∈V

T∑
t=1

pti

 , (3)

where the two terms above enjoy a self-bounding property since they can be related back to the regret
under Condition (1). To see this, we apply AM-GM inequality followed by Condition (1) to show the
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following for any z ≥ 0:

E

∑
i∈V

√√√√log T

T∑
t=1

pti

 ≤ E

[∑
i∈V

(
log T

4z∆i
+ z

T∑
t=1

pti∆i

)]
≤ z

(
RegT + C

)
+
∑
i∈V

log T

4z∆i
,

E


√√√√|U | log T

∑
i∈V

T∑
t=1

pti

 ≤ E

[
|U | log T
4z∆MIN

+ z
∑
i∈V

T∑
t=1

pti∆MIN

]
≤ z

(
RegT + C

)
+

|U | log T
4z∆MIN

.

Rearranging and picking the optimal z yields the regret bound under Condition (1) in Theorem 3.3.

The key is thus to prove Eq. (3), which is not that difficult under uniqueness (when |V | = K − 1)
but turns out to be much more complicated without uniqueness. To proceed, we start with some key
concepts and ideas from [Ito, 2021] which we follow. First, define the skewed Bregman divergence
for two time steps s, t ∈ N as

Ds,t(x, y) = ϕs(x)− ϕt(y)−
〈
∇ϕt(y), x− y

〉
, (4)

and its variant restricted to any subset I ⊆ [K] as Ds,t
I (x, y) = ϕsI(x)− ϕtI(y)− ⟨∇ϕtI(y), x− y⟩ ,

where ϕtI(x) = −CLOG

∑
i∈I log xi − 1

1−β
∑
i∈I γ

t
ix
β
i (that is, ϕt restricted to I). The standard

Bregman divergence associated with ϕt, which we denote by Dt(x, y), is then a shorthand for
Dt,t(x, y). One key idea of [Ito, 2021] is to carefully choose the right benchmark for the algorithm —
when there is a unique optimal arm, the benchmark basically has to be this unique optimal arm, but
when multiple optimal arms exist, the benchmark can now be any distribution over these arms, and it
can even be varying over time. Indeed, for round t, the following benchmark was used in [Ito, 2021]:

qt = argmin
p∈ΩU

{〈
p,
∑
τ<t

ℓ̂τ

〉
+ ϕt(p)

}
= argmin

p∈ΩU

Dt(p, pt), (5)

which follows the same definition of pt but is restricted to ΩU =
{
p ∈ ΩK :

∑
i∈U pi = 1

}
, the set

of distributions over the zero-gap arms. As the second equality shows, qt is also the projection of
pt onto ΩU w.r.t. the Bregman divergence Dt. With these time-varying benchmarks, Ito [Ito, 2021]
proves

RegT ≲ E

[
T∑
t=1

Dt,t+1(pt, pt+1)−Dt,t+1
U (qt, qt+1)

]
+D. (6)

The rest of the analysis is where we start to deviate from that of [Ito, 2021] (thought still largely
inspired by it), which is critical for our algorithms that use arm-dependent learning rates. First, we
introduce an important intermediate point p̄t+1 = p̄t+1

U + p̄t+1
V where p̄t+1

U and p̄t+1
V are defined as

p̄t+1
U = argmin

x∈RK
≥0,

∑
i∈V xi=0,∑

i∈U xi=
∑

i∈U p
t
i

〈
x,
∑
τ≤t

ℓ̂τ

〉
+ ϕt+1

U (x),

p̄t+1
V = argmin

x∈RK
≥0,

∑
i∈U xi=0,∑

i∈V xi=
∑

i∈V pti

〈
x,
∑
τ≤t

ℓ̂τ

〉
+ ϕt+1

V (x).

(7)

By definition, p̄t+1 is obtained from pt by redistributing the weights among arms in U and those in
V , in a way that minimizes an FTRL objective similar to that of pt+1. We note that Ito [2021] also
uses the same p̄t+1

U is his analysis, but we introduce p̄t+1
V (and thus p̄t+1) as well since it importantly

allows us to decompose each Bregman divergence difference term in Eq. (6) as follows.

Lemma 4.1. For any t, Dt,t+1(pt, pt+1)−Dt,t+1
U (qt, qt+1) is bounded by

Dt,t+1
V (pt, p̄t+1)︸ ︷︷ ︸

regret on sub-optimal arms

+Dt,t+1
U (pt, p̄t+1)−Dt,t+1

U (qt, qt+1)︸ ︷︷ ︸
regret on optimal arms

+Dt+1(p̄t+1, pt+1)︸ ︷︷ ︸
residual regret

.
(8)

In the rest of this section, we proceed to bound each of the three terms in Eq. (44) (see also Table 3
for a summary of bounds for each of these terms and each of the three regularizers).
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Regret on Sub-Optimal Arms The regret related to the sub-optimal arms (or more formally arms
in V ) is the most straightforward to deal with, since our objective is to arrive at the self-bounding
terms in Eq. (3) which are exactly only in terms of arms in V . Indeed, we can write this term as (with
ptV being the vector with the same value as pt for coordinates in V and 0 for coordinates in U )

Dt,t+1
V

(
pt, p̄t+1

)
=
〈
ptV − p̄t+1

V , ℓ̂t
〉
−Dt

V

(
p̄t+1, pt

)
︸ ︷︷ ︸

stability

+ϕtV (p̄
t+1)− ϕt+1

V (p̄t+1)︸ ︷︷ ︸
penalty

, (9)

and then apply standard arguments to show that the stability term is of order
∑
i∈V (pti)

1−β

/βγt+1
i

while the penalty term is of order
∑
i∈V (γt+1

i −γt
i)(p

t
i)

β

/1−β. In the Tsallis-INF algorithm, we have
β = 1/2 and γti =

√
t, and thus the stability term and the penalty term are of the same order. This

inspires us to design a learning rate for general β with the same objective. Indeed, it can be verified
that our particular learning rate schedule makes sure that the penalty term is of the same order as
the stability term, meaning Dt,t+1

V (pt, p̄t+1) = O
(∑

i∈V (pti)
1−β

/βγt+1
i

)
. Further plugging in the

learning rate and summing over t, we arrive at the following with zti = max {pti, 1/T}:
T∑
t=1

∑
i∈V

(pti)
1−β

βγt+1
i

≤

√
1

β(1− β)

∑
i∈V

T∑
t=1

(zti)
1−β√

1 +
∑t
k=1

(
zki
)1−2β

. (10)

Finally, applying the following technical lemma shows that the above is of the same order as the first
term in our objective Eq. (3). More details can be found in Section A.2.

Lemma 4.2. Let {xt}Tt=1 be a sequence with xt > 0 for all t. Then, for any α ∈ [0, 1], we have

T∑
t=1

x1−αt√
1 +

∑t
s=1 x

1−2α
s

≤ O


√√√√( T∑

t=1

xt

)
log

(
1 +

T∑
t=1

x1−2α
t

) . (11)

Regret on Optimal Arms Next, we show that the regret on optimal arms (or more formally arms
in U ), Dt,t+1

U (pt, p̄t+1)−Dt,t+1
U (qt, qt+1), is nonpositive, which corresponds to the intuition that

pulling optimal arms incur no regret. Ito [2021] proves something similar for 1/2-Tsallis entropy via
a certain monotonicity property of Bregman divergence, but his proof is highly specific to 1/2-Tsallis
entropy. Instead, we develop the following general monotonicity theorem which applies to a broad
spectrum of regularizers as long as they satisfy two mild conditions.
Theorem 4.3 (Monotonicity of Bregman divergence). For any t ∈ N, let f t : Ω → R be a
continuously-differentiable and strictly-convex function defined on Ω ⊆ R. Suppose that the following
two conditions hold for all z ∈ Ω: (i) (f t)′(z) is differentiable and concave; (ii) (f t+1)′(z) ≤
(f t)′(z). Then, for any x,m ∈ R with x ≤ m, and y, n ∈ R such that (f t+1)′(y) − (f t)′(x) =
(f t+1)′(n) − (f t)′(m) = ξ for a fixed scalar ξ, we have Dt,t+1(x, y) ≤ Dt,t+1(m,n), where
Dt,t+1(u, v) = f t(u)− f t+1(v)− (u− v) ·

(
f t+1

)′
(v) is the skewed Bregman divergence.

While we state the theorem for the one-dimensional case, it trivially extends to multi-dimensional
regularizers as long as they decompose over the coordinates (which is the case for all our regularizers).
Take Tsallis entropy as an example: we only need to apply the theorem with f t(z) = −γt

iz
β

1−β for
each i and then sum up the conclusions. The two conditions stated in the theorem also hold for
all regularizers we consider. In particular, Condition (ii) holds as long as the learning rate γti is
non-decreasing in t and the regularizer itself is non-increasing (thus with nonpositive first derivative).
This explains the additional linear term in our definition of Shannon entropy: this way it is strictly
decreasing. Note that Condition (ii) also trivially holds if f t is independent of t, in which case the
theorem states the monotonicity for the standard (non-skewed) Bregman divergence.

After verifying the conditions, we can now apply this theorem to show Dt,t+1
U (pt, p̄t+1) ≤

Dt,t+1
U (qt, qt+1). For each i ∈ U , we take x = pti and m = qti . Since by definition qt is obtained by

projecting pt onto ΩU , it can be shown via KKT conditions that pti ≤ qti indeed holds for all i ∈ U .
Then, we define an intermediate point z such that ∇ϕt+1

U (z)−∇ϕtU (pt) = ∇ϕt+1
U (qt+1)−∇ϕtU (qt)

and show Dt,t+1
U (pt, p̄t+1) ≤ Dt,t+1

U (pt, z). Finally, taking y = zi and n = qt+1
i and applying

Theorem 4.3 finishes the proof; see Section A.3 for details.
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Residual Regret Finally, bounding the residual regret Dt+1(p̄t+1, pt+1) by the self-bounding
terms in Eq. (3) that are only in terms of arms in V is another key challenge in our analysis, especially
given the arm-dependent learning rates. We start by developing a new analysis that leads to tighter
bounds compared to [Ito, 2021] on the Lagrangian multipliers associated with Eq. (7), which reveals
that the key to analyze Dt+1(p̄t+1, pt+1) is to bound the following term (or terms of a similar form)(∑

i∈V
(pti)

2−β

γt
i

)(∑
i∈U

(pti)
3−2β

(γt
i)

2

)
(∑

i∈[K]
(pti)

2−β

γt
i

)(∑
i∈U

(pti)
2−β

γt
i

) . (12)

Again, for the case of 1/2-Tsallis entropy with an arm-independent learning rate γti =
√
t, removing

all dependence on i ∈ U in Eq. (12) is relatively straightforward as shown by Ito [2021]. Indeed, in

this case, Eq. (12) simplifies to 1√
t

(∑
i∈V (p

t
i)

3/2
)(∑

i∈U(p
t
i)

2
)

(∑
i∈[K](pti)

3/2
)(∑

i∈U(pti)
3/2

) . By splitting
∑
i∈[K] (p

t
i)

3/2 into

two summations, one over i ∈ V and another over i ∈ U , and further applying x+ y ≥ x2/3y1/3 for

any x, y > 0, we have
∑
i∈[K] (p

t
i)

3/2 ≥
(∑

i∈V (pti)
3/2
)2/3 (∑

i∈U (pti)
3/2
)1/3

and thus Eq. (12) is
bounded by

1√
t

(∑
i∈V (pti)

3/2
)(∑

i∈U (pti)
2
)

(∑
i∈V (pti)

3/2
)2/3 (∑

i∈U (pti)
3/2
)4/3

≤ 1√
t

(∑
i∈V

(
pti
)3/2)1/3

≤
∑
i∈V

√
pti√

t
,

where importantly, in the second step we use the fact ∥x∥2 ≤ ∥x∥3/2 to drop all dependence on i ∈ U ,
eventually arriving at the self-bounding term of Eq. (3).

Unfortunately, with an arm-dependent learning rate, it is unclear to us how to analyze Eq. (12) in
a similar way. Instead, we propose a different analysis with the following rough idea: we propose
a condition under which Eq. (12) can be bounded by

∑
i∈V (pti)

2−β

/γt
i and then further related to a

self-bounding term similarly to the analysis of the regret on sub-optimal arms. If, on the other hand,
the condition does not hold, then we show that the probability pti of selecting an optimal arm i ∈ U
must be no more than the total probability of selecting sub-optimal arms

∑
j∈V p

t
j . Using this fact

again allows us to convert dependence on i ∈ U to i ∈ V . Since we apply this technique to all i ∈ U ,
it leads to the extra |U | factor in the second self-bounding term of Eq. (3), which eventually translates
to |U | log T

∆min
in our instance complexity G. All details can be found in Section A.4.

5 Conclusions

In this work, we improve and generalize the analysis of [Ito, 2021], showing that many FTRL
algorithms can achieve BOBW without the uniqueness assumption. Specifically, we propose a unified
arm-dependent learning rate schedule and novel analytical techniques to remove the uniqueness
assumption for a broad family of regularizers, including log-barrier, β-Tsallis entropy, and Shannon
entropy. With these new techniques, our regret bounds improve upon prior results even when
the uniqueness assumption holds. We further apply our results to the decoupled exploration and
exploitation setting, showing that our techniques are broadly applicable.

There are many natural future directions, including (1) removing the |U |
∆MIN

term in our regret bounds;
(2) improving the dependence on D (which as mentioned could be as large as the corruption level
C); (3) understanding whether the extra the log-barrier regularizer is necessary or not; (4) and finally
generalizing our results to other problems such as semi-bandits and Markov Decision Processes.
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A Proofs for MAB Results in Table 1

In this section, we provide details of our novel analysis framework and take a closer look at our
learning rate schedule. Importantly, our analysis framework is able to be applied to all configurations
of Algorithm 1 for different regularizers in a unified way. As mentioned, the key term in the
regret is

∑T
t=1D

t,t+1(pt, pt+1) −Dt,t+1
U (qt, qt+1) with qt defined in Eq. (5). We thus define the

preprocessing cost (PRECOST) as

PRECOST = E

[
RegT −

T∑
t=1

(
Dt,t+1(pt, pt+1)−Dt,t+1

U (qt, qt+1)
)]

, (13)

which we later show is small. Then, we use Lemma 4.1 to decompose the key term into the regret
related to the sub-optimal arms (REGSUB), the regret related to the optimal arms (REGOPT) and the
residual regret (RESREG):

E

[
T∑
t=1

Dt,t+1(pt, pt+1)−Dt,t+1
U (qt, qt+1)

]
= E

[
T∑
t=1

Dt,t+1
V (pt, p̄t+1)

]
︸ ︷︷ ︸

REGSUB

+ E

[
T∑
t=1

Dt,t+1
U (pt, p̄t+1)−Dt,t+1

U (qt, qt+1)

]
︸ ︷︷ ︸

REGOPT

+E

[
T∑
t=1

Dt+1(p̄t+1, pt+1)

]
︸ ︷︷ ︸

RESREG

.

Our goal is to bound all these four terms in terms of two self-bounding quantities for some x > 0
(plus other minor terms):

S1(x) = E


√√√√x ·

T∑
t=1

∑
i∈V

pti

 , S2(x) = E

∑
i∈V

√√√√x ·
T∑
t=1

pti

 . (14)

These two quantities enjoy a certain self-bounding property which is known to be critical to achieve
the gap-dependent bound in the stochastic setting. Specifically, as we illustrate at the beginning of
Section 4, under Condition (1), these self-bounding quantities can be related back to the regret itself
when the set V coincides with that of Condition (1).
Lemma A.1 (Self-Bounding Quantities). Under Condition (1), we have for any z > 0:

S1(x) ≤ z
(
RegT + C

)
+

1

z

(
x

4∆MIN

)
,

S2(x) ≤ z
(
RegT + C

)
+

1

z

(∑
i∈V

x

4∆i

)
.

Proof. For any z > 0, we have

S1 (x) = E


√√√√ x

2z∆MIN
·

(
2z∆MIN

T∑
t=1

∑
i∈V

pti

)
≤ E

[
z∆MIN

T∑
t=1

∑
i∈V

pti

]
+

x

4z∆MIN

≤ z
(
RegT + C

)
+

x

4z∆MIN
,

where the second step follows from the AM-GM inequality: 2
√
xy ≤ x+ y for any x, y > 0, and

the last step follows from Condition (1).

By similar arguments, we have S2(x) bounded for any z > 0 as:

E

∑
i∈V

√√√√ x

2z∆i
· 2z∆i

T∑
t=1

pti

 ≤
∑
i∈V

x

4z∆i
+ zE

[∑
i∈V

T∑
t=1

pti∆i

]
= z

(
RegT + C

)
+
∑
i∈V

x

4z∆i
.
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Table 3: Bounds of PRECOST, REGSUB, REGOPT, and RESREG for Algorithm 1 with different
regularizers. For simplicity, We omit the O (·) notation in these bounds.

Terms Shannon entropy β-Tsallis entropy log-barrier
(CLOG = 162 logK)

(
CLOG = 162β

1−β

)
(CLOG = 162)

PRECOST K(log T )(logK) +D K√
β(1−β)

+ βK log T
1−β +D S2(log T ) +K log T +D

(Section A.1) (Lemma A.1.4) (Lemma A.1.6) (Lemma A.1.5)

REGSUB S2
(
log2 T

)
S2
(

log T
β(1−β)

)
S2(log T )

(Section A.2) (Lemma A.2.4) (Lemma A.2.3) (Lemma A.2.2)

REGOPT 0 0 0
(Section A.3) (Lemma A.3.1) (Lemma A.3.1) (Lemma A.3.1)

RESREG S1
(
|U | log2 T

)
+ S2

(
log2 T

)
S1
(

|U | log T
β(1−β)

)
+ S2

(
log T
β(1−β)

)
S1 (|U | log T ) + S2 (log T )

+K2 log
3/2 T + K2√β

(1−β)3/2
+ K2

√
log T

(Section A.4) (Lemma A.4.5) (Lemma A.4.3) (Lemma A.4.4)

RegT S1
(
|U | log2 T

)
+ S2

(
log2 T

)
S1
(

|U | log T
β(1−β)

)
+ S2

(
log T
β(1−β)

)
S1 (|U | log T ) + S2 (log T )

+K2 log
3/2 T +D + K2√β

(1−β)3/2
+ βK log T

1−β +D + K2
√
log T

+K log T +D

(Lemma A.3) (Lemma A.2) (Lemma A.4)

In Table 3, we summarize the bounds of PRECOST, REGSUB, REGOPT and RESREG when using
Algorithm 1 with Shannon entropy, β-Tsallis entropy, and log-barrier, respectively, together with the
corresponding lemmas. Importantly, though the bounds are stated in separated lemmas for different
regularizers, the proof ideas and techniques are almost the same with only slight modifications to
adapt to the specific regularizer and the choice of parameters.

Using the bound on each of there four terms, we now show how to prove our main theorems, starting
with the case for β-Tsallis entropy. First, we simply sum up all the bounds to arrive at the following
adaptive regret bound.
Lemma A.2 (Regret Bound for β-Tsallis Entropy). For any β ∈ (0, 1), when using β-Tsallis entropy

with CLOG = 162β
1−β , α = β, and θ =

√
1−β
β , Algorithm 1 guarantees:

RegT = O

(
D +

K2
√
β

(1− β)
3/2

+
βK log T

1− β
+ S1

(
|U | log T
β (1− β)

)
+ S2

(
log T

β (1− β)

))
,

for any subset U ⊆ [K], V = [K]\U , and D = E
[∑T

t=1 maxi∈U Et [ℓti − ℓti⋆ ]
]
.

We emphasize that this bound holds for any subset U ⊆ [K], not just the U defined with respect to
Condition (1) (so a slight abuse of notations here). This is important for proving the regret bound in
the adversarial case, as shown in the following proof for Theorem 3.3.

Proof of Theorem 3.3. First, for the adversarial setting, we set U = {i⋆} so that D = 0 by its
definition. Therefore, we have the self-bounding quantity S1

(
|U | log T
β(1−β)

)
bounded as:

S1
(
|U | log T
β (1− β)

)
= E


√√√√ |U | log T
β (1− β)

·
T∑
t=1

∑
i∈V

pti

 = O

(√
T log T

β (1− β)

)
,
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where the second step follows from the fact |U | = 1 and
∑T
t=1

∑
i∈[K] p

t
i = T . Similarly, we bound

the other self-bounding quantity S2
(

log T
β(1−β)

)
as:

S2
(

log T

β (1− β)

)
= E

∑
i∈V

√√√√ log T

β (1− β)

T∑
t=1

pti

 ≤ E


√√√√ |V | log T
β (1− β)

∑
i∈V

T∑
t=1

pti

 = O

(√
KT log T

β (1− β)

)
,

where the second step uses the Cauchy-Schwarz inequality. Combining the bounds together concludes

that RegT = O
(√

KT log T
β(1−β)

)
in the adversarial setting.

Next, suppose that Condition (1) holds. We now set U = {i ∈ [K] : ∆i = 0} as in Section 2, which
makesD the same as that defined in Section 2 as well. We further denoteW = D+ K2√β

(1−β)3/2
+βK log T

1−β

to simplify notations. Then, we have RegT bounded for any z > 0 by

RegT ≤ κ ·W + κ · S1
(
|U | log T
β (1− β)

)
+ κ · S2

(
log T

β (1− β)

)
≤ z

(
RegT + C

)
+
κ2

z
· G log T

β (1− β)
+ κ ·W,

where κ > 0 is an absolute constant (based on Lemma A.2), and the second step applies Lemma A.1
(with the arbirary z there set to z

2κ ) together with our complexity measure G = |U |
∆MIN

+
∑
i∈V

1
∆i

.

For any z ∈ (0, 1), we can further rearrange and arrive at

RegT ≤ zC

1− z
+

1

z (1− z)
· κ

2G log T

β (1− β)
+

1

1− z
· κW

=
C

x
+

(x+ 1)
2

x
· κ

2G log T

β (1− β)
+
x+ 1

x
· κW

=
1

x
·
(
C +

κ2G log T

β (1− β)
+ κW

)
+ x · κ

2G log T

β (1− β)
+

(
2κ2G log T

β (1− β)
+ κW

)
,

where we define x = 1−z
z > 0 in the second step. Picking up the optimal x to minimize the right

hand side gives

RegT ≤ 2

√(
C +

κ2G log T

β (1− β)
+ κW

)
· κ

2G log T

β (1− β)
+

2κ2G log T

β (1− β)
+ κW

≤ 6

√
κ2 · CG log T

β (1− β)
+

8κ2G log T

β (1− β)
+ κW + 6

√
κW · κ

2G log T

β (1− β)

≤ 6

√
κ2 · CG log T

β (1− β)
+

11κ2G log T

β (1− β)
+ 4κW

= O

(√
CG log T

β (1− β)
+

G log T

β (1− β)
+W

)
,

where the second step follows from the fact that
√
x+ y + z ≤ 3

(√
x+

√
y +

√
z
)

for any x, y, z ≥
0, and the third step uses the AM-GM inequality 2

√
xy ≤ x+ y for any x, y ≥ 0.

For the Shannon entropy regularizer and the log-barrier regularizer, we again summarize the adaptive
regret bound in the following two lemmas. Theorem 3.2 and Theorem 3.1 then follow immediately.
Since the arguements are exactly the same as above, we omit them for simplicity.
Lemma A.3 (Regret Bound for Shannon Entropy). When using the Shannon entropy regularizer with
CLOG = 162 logK , α = 1, and θ =

√
1/log T , Algorithm 1 ensures

RegT = O
(
D +K2 log

3/2 T + S1
(
|U | log2 T

)
+ S2

(
log2 T

))
,

for any subset U ⊆ [K], V = [K]\U , and D = E
[∑T

t=1 maxi∈U Et [ℓti − ℓti⋆ ]
]
.
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Lemma A.4 (Regret Bound for Log-barrier). When using the log-barrier regularizer withCLOG = 162

, α = 0, and θ =
√

1/log T , Algorithm 1 ensures

RegT = O
(
D +

K2

√
log T

+K log T +
βK log T

1− β
+ S1 (|U | log T ) + S2 (log T )

)
,

for any subset U ⊆ [K], V = [K]\U , and D = E
[∑T

t=1 maxi∈U Et [ℓti − ℓti⋆ ]
]
.

In the following four subsections, we discuss how to bound PRECOST, REGSUB, REGOPT, and
RESREG respectively. We recall the following definitions discussed in Section 4: the skewed Bregman
divergence for two time steps s, t ∈ N is

Ds,t(x, y) = ϕs(x)− ϕt(y)−
〈
∇ϕt(y), x− y

〉
,

and its variant restricted to any subset I ⊆ [K] is

Ds,t
I (x, y) = ϕsI(x)− ϕtI(y)−

〈
∇ϕtI(y), x− y

〉
,

where ϕtI(x) = −CLOG

∑
i∈I log xi − 1

1−β
∑
i∈I γ

t
ix
β
i (that is, ϕt restricted to I). The standard

Bregman divergence associated with ϕt is denoted by Dt(x, y), a shorthand for Dt,t(x, y). For any
subset I ⊆ [K] and any vector x ∈ RK , we define xI ∈ RK such that its entries in I are the same
as x while those in [K]\I are 0. Finally, we use 1 ∈ RK to denote the all-one vector.

A.1 Preprocessing Cost

Due to the extra log-barrier added to stabilize the algorithm, we consider distribution q̃t defined as

q̃t = (1− ϵ) · qt + ϵ

|V |
· 1V , (15)

where 1V ∈ RK , according to our earlier notations, is the vector with all entries in V being 1 and the
remaining being 0. This specific distribution moves a small amount of weights of qt from U to V ,
which guarantees that our framework can also work for the log-barrier and log(1/q̃ti) is bounded for
∀i ∈ V with a proper ϵ.
Lemma A.1.1. For any ϵ ∈ (0, 1), any subset U ⊆ [K] and V = [K]\U , qt defined in Eq. (5), and
q̃t defined in Eq. (15), Algorithm 1 ensures

RegT ≤ E

[
T∑
t=1

〈
ℓ̂t, pt − q̃t

〉]
+D + ϵT,

where D = E
[∑T

t=1 maxi∈U Et [ℓti − ℓti⋆ ]
]
.

Proof. By the definition of q̃t in Eq. (15), one can show
T∑
t=1

E
[〈
ℓt, q̃t

〉
− ℓti⋆

]
=

T∑
t=1

E
[〈
ℓt, q̃tU

〉
− ℓti⋆

]
+

T∑
t=1

E
[〈
ℓt, q̃tV

〉]
=

T∑
t=1

E
[
Et
[〈
ℓt, q̃tU

〉
− ℓti⋆

]]
+

T∑
t=1

E
[
ϵ
∑
i∈V ℓ

t
i

|V |

]

≤
T∑
t=1

E
[
(1− ϵ)max

i∈U
Et
[
ℓti
]
− Et

[
ℓti⋆
]]

+ ϵT ≤ D + ϵT. (16)

Therefore, we have

RegT =

T∑
t=1

E
[
ℓtit −

〈
ℓt, q̃t

〉
+
〈
ℓt, q̃t

〉
− ℓti⋆

]
≤

T∑
t=1

E
[
ℓtit −

〈
ℓt, q̃t

〉]
+D + ϵT = E

[
T∑
t=1

〈
ℓ̂t, pt − q̃t

〉]
+D + ϵT,

where the second step uses Eq. (16), and the last step follows from the law of total expectation.
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According to Lemma A.1.1, our main goal here is to bound
〈
ℓ̂t, pt − q̃t

〉
. To this end, we present

the following decomposition lemma which is helpful for our further analysis.

Lemma A.1.2 (Lemma 16, Ito [2021]). For pt in Algorithm 1 and q̃t in Eq. (15), we have〈
ℓ̂t, pt − q̃t

〉
= Dt,t+1(pt, pt+1) +Dt(q̃t, pt)−Dt,t+1(q̃t, pt+1).

Armed with Lemma A.1.2, we are now ready to introduce our main result of the regret preprocessing.
It is worth noting that the following lemma does not rely on the specific form of regularizers, and
thus, we can use it for all the regularizers we consider.

Lemma A.1.3. Suppose that there exist B1, B2 ∈ R such that

E

[
T∑
t=1

ϕt+1
U (q̃t+1)− ϕtU (q̃

t)

]
≤ B1 + E

[
T∑
t=1

ϕt+1
U (qt+1)− ϕtU (q

t)

]
, (17)

E

[
T∑
t=1

ϕt+1
V (q̃t+1)− ϕtV (q̃

t)

]
≤ B2. (18)

Let B = B1 +B2, and we have

E

[
T∑
t=1

〈
ℓ̂t, pt − q̃t

〉]
≤E

[
D1(q̃1, p1) +

T∑
t=1

Dt,t+1(pt, pt+1)−Dt,t+1
U (qt, qt+1)

]
+O (ϵKT ) +B.

In other words, we have PRECOST bounded by E
[
D1(q̃1, p1) +O (ϵKT ) +B +D

]
.

Proof. Adding and subtracting Dt+1(q̃t+1, pt+1) from the bound in Lemma A.1.2 , we have〈
ℓ̂t, pt − q̃t

〉
= Dt,t+1(pt, pt+1) +Dt+1(q̃t+1, pt+1)−Dt,t+1(q̃t, pt+1)

+Dt(q̃t, pt)−Dt+1(q̃t+1, pt+1).

First, we consider the term Dt+1(q̃t+1, pt+1)−Dt,t+1(q̃t, pt+1) as follows:

Dt+1(q̃t+1, pt+1)−Dt,t+1(q̃t, pt+1)

= ϕt+1(q̃t+1)− ϕt(q̃t)−
〈
∇ϕt+1(pt+1), q̃t+1 − q̃t

〉
= ϕt+1(q̃t+1)− ϕt(q̃t)− (1− ϵ) ·

〈
∇ϕt+1(pt+1), qt+1 − qt

〉
= ϕt+1(q̃t+1)− ϕt(q̃t)− (1− ϵ) ·

〈
∇ϕt+1

U (pt+1), qt+1 − qt
〉

= ϕt+1(q̃t+1)− ϕt(q̃t)−
〈
∇ϕt+1

U (pt+1), qt+1 − qt
〉
+ ϵ
〈
∇ϕt+1

U (pt+1), qt+1 − qt
〉

= ϕt+1(q̃t+1)− ϕt(q̃t)−
〈
∇ϕt+1

U (qt+1), qt+1 − qt
〉
+ ϵ
〈
∇ϕt+1

U (pt+1), qt+1 − qt
〉

= ϕt+1(q̃t+1)− ϕt(q̃t)−
〈
∇ϕt+1

U (qt+1), qt+1 − qt
〉
+ ϵ
〈
L̂t+1
U , qt+1 − qt

〉
,

where the second step follows from the fact that q̃t+1 − q̃t = (1− ϵ)
(
qt+1 − qt

)
according to

Eq. (15); the fifth step follows from facts that ∇ϕt+1
U (qt+1) = ∇ϕt+1

U (pt+1) + c · 1U for a Lagrange
multiplier c ∈ R and

〈
c · 1K , qt+1 − qt

〉
= 0; the last step uses the fact that ∇ϕt+1(pt+1) =

L̂t+1 + c′ · 1K where L̂t ≜
∑
τ<t ℓ̂

τ is the cumulative loss vector prior to round t and c′ ∈ R is
another Lagrange multiplier.

By Eq. (17), Eq. (18), and the definition B = B1 +B2, we can further show

E

[
T∑
t=1

Dt+1(q̃t+1, pt+1)−Dt,t+1(q̃t, pt+1)

]

≤ B + E

[
T∑
t=1

ϕt+1
U (qt+1)− ϕtU (q

t)−
〈
∇ϕt+1

U (qt+1), qt+1 − qt
〉
+ ϵ
〈
L̂t+1
U , qt+1 − qt

〉]
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= B − E

[
T∑
t=1

Dt,t+1
U (qt, qt+1)

]
+ E

[
T∑
t=1

ϵ
〈
L̂t+1
U , qt+1 − qt

〉]
.

Then, we can show the following by reorganizing the summation:

E

[
ϵ

T∑
t=1

〈
L̂t+1
U , qt+1 − qt

〉]
= ϵ · E

[〈
L̂T+1
U , qT+1

〉
−
〈
L̂2
U , q

1
〉
+

T∑
t=2

〈
qt, L̂tU − L̂t+1

U

〉]
≤ ϵ · E

[〈
L̂T+1
U ,1U

〉]
≤ O (ϵKT ) ,

where the second step follows L̂tU − L̂t+1
U = −ℓ̂tU and the last step uses qti ≤ 1 for ∀t, i.

Finally, by telescoping, we have

E

[
T∑
t=1

Dt(q̃t, pt)−Dt+1(q̃t+1, pt+1)

]
= E

[
D1(q̃1, p1)−Dt+1(q̃T+1, pT+1)

]
≤ E

[
D1(q̃1, p1)

]
,

where the second step holds since the Bregman divergence is non-negative. Combining all the
inequalities above concludes the proof.

Lemma A.1.4 (PRECOST for Shannon Entropy). When using the Shannon entropy regularizer with
α = 0 and θ =

√
1/log T , Algorithm 1 ensures

• Eq. (17) with B1 = 4ϵT logK + 1;

• Eq. (18) with B2 = 0;

• D1(q̃1, p1) ≤ logK√
log T

+ CLOG |V | log
(

|V |
Kϵ

)
+ ϵCLOG|U |

1−ϵ .

Therefore, according to Lemma A.1.3, by picking ϵ = 1
T , our algorithm ensures

PRECOST = O (CLOGK log T +D) .

Proof. We first show Eq. (18). For the entries in V , we have

ϕt+1
V (q̃t+1)− ϕtV (q̃

t) =
∑
i∈V

(
γt+1
i q̃t+1

i log

(
q̃t+1
i

e

)
− γti q̃

t
i log

(
q̃ti
e

))
− CLOG ·

∑
i∈V

(
log q̃t+1

i − log q̃ti
)

=
∑
i∈V

(
γt+1
i − γti

)
· ϵ

|V |
log

(
ϵ

e|V |

)
≤ 0,

where the second step follows from the definition of q̃ in Eq. (15) which states q̃ti = ϵ
|V | for any

i ∈ V .

For the entries in U , by direct calculation, we have

ϕt+1
U (q̃t+1)− ϕtU (q̃

t)

=
∑
i∈U

(
γt+1
i q̃t+1

i log

(
q̃t+1
i

e

)
− γti q̃

t
i log

(
q̃ti
e

))
− CLOG

∑
i∈U

(
log q̃t+1

i − log q̃ti
)

= (1− ϵ)
∑
i∈U

(
γt+1
i qt+1

i log

(
q̃t+1
i

e

)
− γtiq

t
i log

(
q̃ti
e

))
− CLOG

∑
i∈U

(
log qt+1

i − log qti
)

= (1− ϵ)
∑
i∈U

(
γt+1
i qt+1

i log

(
qt+1
i

e

)
− γtiq

t
i log

(
qti
e

)
+ log (1− ϵ)

(
γt+1
i qt+1

i − γtiq
t
i

))
− CLOG

∑
i∈U

(
log qt+1

i − log qti
)
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= ϕt+1
U (qt+1)− ϕtU (q

t)

+ (1− ϵ) log (1− ϵ)
∑
i∈U

(
γt+1
i qt+1

i − γtiq
t
i

)
(19)

− ϵ
∑
i∈U

(
γt+1
i qt+1

i log

(
qt+1
i

e

)
− γtiq

t
i log

(
qti
e

))
. (20)

Note that, taking the summation of Eq. (19) over all rounds yields
T∑
t=1

(1− ϵ) log (1− ϵ)
∑
i∈U

(
γt+1
i qt+1

i − γtiq
t
i

)
= (1− ϵ) log (1− ϵ)

∑
i∈U

(
γT+1
i qT+1

i − γ1i q
1
i

)
≤ − (1− ϵ) log (1− ϵ)

∑
i∈U

γ1i q
1
i ≤

∑
i∈U

γ1i q
1
i ≤ 1,

where the second and third step follow from the fact −1 ≤ (1− ϵ) log (1− ϵ) ≤ 0, and the last step
uses the definition of the learning rates.

On the other hand, by summing Eq. (20) over all rounds, we have

− ϵ

T∑
t=1

∑
i∈U

(
γt+1
i qt+1

i

(
log
(
qt+1
i

)
− 1
)
− γtiq

t
i

(
log
(
qti
)
− 1
))

= −ϵ
∑
i∈U

(
γT+1
i qT+1

i

(
log
(
qT+1
i

)
− 1
)
− γ1i q

1
i

(
log
(
q1i
)
− 1
))

≤ ϵ
∑
i∈U

γT+1
i qT+1

i

(
log

(
1

qT+1
i

)
+ 1

)

≤ 2ϵT

(
1 +

∑
i∈U

qT+1
i log

(
1

qT+1
i

))
≤ 2ϵT (1 + log |U |) ,

where the second step uses the fact that x log x−x ≤ 0 for any x ∈ [0, 1]; the third step follows from
the definition of γti which ensures γT+1

i ≤
√
1 + T · T ≤ 2T ; the last step follows from Jensen’s

inequality.

Finally, we bound D1(q̃1, p1) as:

D1(q̃1, p1) =
∑
i∈[K]

γ1i
(
q̃1i log q̃

1
i − p1i log p

1
i

)
+
∑
i∈[K]

γ1i
(
p1i − q̃1i

)
− CLOG

∑
i∈[K]

(
log
(
q̃1i
)
− log

(
p1i
))

≤
∑
i∈[K]

γ1i
(
−p1i log p1i

)
+ CLOG |V | log

(
|V |
Kϵ

)
+ CLOG |U | log

(
1

1− ϵ

)

≤ logK√
log T

+ CLOG |V | log
(
|V |
Kϵ

)
+ CLOG |U | log

(
1

1− ϵ

)
≤ logK√

log T
+ CLOG |V | log

(
|V |
Kϵ

)
+
ϵCLOG |U |
1− ϵ

,

where the second step follows from the fact that x log x ≤ 0 for x ∈ [0, 1]; the third step follows
from the facts that p1i = 1

K and γ1i =
√

1/log T for any i ∈ [K]; the forth step uses the fact that

log
(

1
1−ϵ

)
= log

(
1 + ϵ

1−ϵ

)
≤ ϵ

1−ϵ for any ϵ ∈ (0, 1).

Lemma A.1.5 (PRECOST for Log-barrier). When using the log-barrier regularizer with α = 1 and
θ =

√
1/log T , Algorithm 1 ensures

• Eq. (17) with B1 = ϵ|U |T
1−ϵ ;
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• Eq. (18) with B2 = S2
(

log2( |V |
ϵ )

log T

)
;

• D1(q̃1, p1) ≤ |V |√
log T

log
(

|V |
Kϵ

)
+ |U |√

log T
log
(

|U |
(1−ϵ)K

)
+ CLOG|V | log

(
|V |
Kϵ

)
+ ϵCLOG|U |

1−ϵ .

Therefore, according to Lemma A.1.3, by picking ϵ = 1
T , our algorithm ensures

PRECOST = O (S2 (log T ) + CLOGK log T +D) .

Proof. We first show that Eq. (18) holds. For the entries in V , we have

ϕt+1
V (q̃t+1)− ϕtV (q̃

t) = −
∑
i∈V

(
γt+1
i log

(
q̃t+1
i

)
− γti log

(
q̃ti
))

− CLOG ·
∑
i∈V

(
log q̃t+1

i − log q̃ti
)

=
∑
i∈V

(
γt+1
i − γti

)
log

(
|V |
ϵ

)
,

where the second step follows from the definition of q̃t in Eq. (15) that q̃ti =
ϵ

|V | for all i ∈ V . Taking
the summation over all rounds, we have

T∑
t=1

∑
i∈V

(
γt+1
i − γti

)
log

(
|V |
ϵ

)
≤
∑
i∈V

γT+1
i log

(
|V |
ϵ

)
,

which could be bounded with S2(·) with our specific learning rate schedule as:

E

[∑
i∈V

γT+1
i log

(
|V |
ϵ

)]
= O

∑
i∈V

√√√√√ log2
(

|V |
ϵ

)
log T

·

(
T∑
t=1

pti

) = O

S2

 log2
(

|V |
ϵ

)
log T

 .

For the entries in U , we have

ϕt+1
U (q̃t+1)− ϕtU (q̃

t)

= −
∑
i∈U

(
γt+1
i log

(
q̃t+1
i

)
− γti log

(
q̃ti
))

− CLOG ·
∑
i∈U

(
log q̃t+1

i − log q̃ti
)

= −
∑
i∈U

(
γt+1
i log

(
qt+1
i

)
− γti log

(
qti
))

− CLOG ·
∑
i∈U

(
log qt+1

i − log qti
)

+ log

(
1

1− ϵ

)∑
i∈U

(
γt+1
i − γti

)
≤ ϕt+1

U (qt+1)− ϕtU (q
t) +

ϵ

1− ϵ

∑
i∈U

(
γt+1
i − γti

)
.

By summing over all rounds and direct calculation, we have

ϵ

1− ϵ

T∑
t=1

∑
i∈U

(
γt+1
i − γti

)
≤ ϵ

1− ϵ

∑
i∈U

γT+1
i ≤ ϵ

1− ϵ
|U |T.

Finally, we boundD1(q̃1, p1) = ϕ1(q̃1)−ϕ1(p1)−
〈
∇ϕ1(p1), q̃1 − p1

〉
= ϕ1(q̃1)−ϕ1(p1), because∑

i∈[K] q̃
1
i =

∑
i∈[K] p

1
i and p1 = 1

K · 1K which implies that all entries of ∇ϕ1(p1) are equal. Note
that p1 = 1

K · 1K , q̃1U = 1−ϵ
|U | · 1U , and q̃1V = ϵ

|V | · 1V . For ϕ1V (q̃
1)− ϕ1V (p

1), we have

ϕ1V (q̃
1)− ϕ1V (p

1) =
∑
i∈V

γ1i log

(
p1i
q̃1i

)
− CLOG

∑
i∈V

(
log
(
q̃1i
)
− log

(
p1i
))

=
∑
i∈V

γ1i log

(
1/K

ϵ/|V |

)
+ CLOG |V | log

(
|V |
Kϵ

)

21



≤ |V |√
log T

log

(
|V |
Kϵ

)
+ CLOG |V | log

(
|V |
Kϵ

)
,

where CLOG

∑
i∈V

(
log
(
q̃1i
)
− log

(
p1i
))

is bounded via a similar way used to bound the Shannon
entropy. Similarly, for ϕ1U (q̃

1)− ϕ1U (p
1), we have

ϕ1U (q̃
1)− ϕ1U (p

1) =
∑
i∈U

γ1i log

(
p1i
q̃1i

)
− CLOG

∑
i∈U

(
log
(
q̃1i
)
− log

(
p1i
))

≤
∑
i∈U

γ1i log

(
1/K

(1− ϵ)/|U |

)
+
ϵCLOG |U |
1− ϵ

≤ |U |√
log T

log

(
|U |

(1− ϵ)K

)
+
ϵCLOG |U |
1− ϵ

.

Combining bounds for ϕ1V (q̃
1)− ϕ1V (p

1) and ϕ1U (q̃
1)− ϕ1U (p

1), we have D1(q̃1, p1) bounded by

|V |√
log T

log

(
|V |
Kϵ

)
+

|U |√
log T

log

(
|U |

(1− ϵ)K

)
+ CLOG|V | log

(
|V |
Kϵ

)
+
ϵCLOG |U |
1− ϵ

.

Lemma A.1.6 (PRECOST for β-Tsallis Entropy). For any β ∈ (0, 1), when using the β-Tsallis

entropy regularizer with α = β and θ =
√

1−β
β , Algorithm 1 ensures

• Eq. (17) with B1 = 2ϵKT√
β(1−β)

;

• Eq. (18) with B2 = 0;

• D1(q̃1, p1) ≤ K√
β(1−β)

+ CLOG|V | log
(

|V |
Kϵ

)
+ ϵCLOG|U |

1−ϵ .

Therefore, according to Lemma A.1.3, by picking ϵ = 1
T , our algorithm further ensures

PRECOST = O

(
K√

β (1− β)
+ CLOGK log T +D

)
.

Proof. Let us first show that Eq. (18) holds. For the entries in V , we have

ϕt+1
V (q̃t+1)− ϕtV (q̃

t) = − 1

1− β

∑
i∈V

(
γt+1
i

(
q̃t+1
i

)β − γti
(
q̃ti
)β)− CLOG ·

∑
i∈V

(
log q̃t+1

i − log q̃ti
)

= − 1

1− β

∑
i∈V

(
γt+1
i − γti

)
·
(

ϵ

|V |

)β
≤ 0,

where the second step follows from the definition of q̃t in Eq. (15) that q̃ti = ϵ
|V | for any i ∈ V .

Since ϕt+1
V (q̃t+1)− ϕtV (q̃

t) ≤ 0, we have
∑T
t=1 ϕ

t+1
V (q̃t+1)− ϕtV (q̃

t) ≤ 0, which gives B2 = 0 for
Eq. (18).

For the entries in U , we have

ϕt+1
U (q̃t+1)− ϕtU (q̃

t)

= − 1

1− β

∑
i∈U

(
γt+1
i

(
q̃t+1
i

)β − γti
(
q̃ti
)β)− CLOG ·

∑
i∈U

(
log q̃t+1

i − log q̃ti
)

= − (1− ϵ)
β

1− β

∑
i∈U

(
γt+1
i

(
qt+1
i

)β − γti
(
qti
)β)− CLOG ·

∑
i∈U

(
log (1− ϵ) + log qt+1

i − log (1− ϵ)− log qti
)

= − (1− ϵ)
β

1− β

∑
i∈U

(
γt+1
i

(
qt+1
i

)β − γti
(
qti
)β)− CLOG ·

∑
i∈U

(
log qt+1

i − log qti
)
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= ϕt+1
U (qt+1)− ϕtU (q

t) +
1− (1− ϵ)

β

1− β

∑
i∈U

(
γt+1
i

(
qt+1
i

)β − γti
(
qti
)β)

.

By summing over all rounds and direct calculation, we have

E

[
T∑
t=1

1− (1− ϵ)
β

1− β

∑
i∈U

(
γt+1
i

(
qt+1
i

)β − γti
(
qti
)β)]

= E

[
1− (1− ϵ)

β

1− β

∑
i∈U

(
γT+1
i

(
qT+1
i

)β − γ1i
(
q1i
)β)]

≤ E

[
1− (1− ϵ)

β

1− β

∑
i∈U

γT+1
i

]

≤ 1− (1− ϵ)
β

1− β
· 2KT

√
1− β

β

≤ 2ϵKT√
β (1− β)

,

where the third step uses the fact that (max {pti, 1/T})
1−2β ≤ (max {pti, 1/T})

−1 ≤ T ,

γT+1
i =

√
1− β

β
·

√√√√1 +

T∑
t=1

(max {pti, 1/T})
1−2β ≤

√
1− β

β
·

√√√√1 +

T∑
t=1

T ≤ 2T

√
1− β

β
,

and the last step uses the fact that (1− ϵ)
β ≥ 1− ϵ for any β ∈ (0, 1).

Finally, we have by direct calculation:

D1(q̃1, p1) = − 1

1− β

∑
i∈[K]

γ1i

((
q̃1i
)β −

(
p1i
)β)− CLOG

∑
i∈[K]

(
log
(
q̃1i
)
− log

(
p1i
))

≤ 1

1− β

∑
i∈[K]

γ1i + CLOG

∑
i∈[K]

log

(
1

Kq̃1i

)
+
ϵCLOG |U |
1− ϵ

≤ 1

1− β

∑
i∈[K]

γ1i + CLOG|V | log
(
|V |
Kϵ

)
+
ϵCLOG |U |
1− ϵ

=
K√

β (1− β)
+ CLOG|V | log

(
|V |
Kϵ

)
+
ϵCLOG |U |
1− ϵ

,

where the first step uses the fact that
〈
ϕ1(p1), q̃1 − p1

〉
= 0, since ∇ϕ1(p1) = c · 1K for some

constant c ∈ R and q̃1, p1 ∈ ΩK ; the third and forth steps follow the definitions that p1 = 1
K · 1K ,

q̃1i = ϵ
|V | for any i ∈ V , and γ1i =

√
1−β
β · 1K .

A.2 Regret on Sub-Optimal Arms

One important property of our learning rate schedule is that:

γt+1
i − γti = θ · (max {pti, 1/T})

1−2β√
1 +

∑t−1
k=1

(
max

{
pki , 1/T

})1−2β
+

√
1 +

∑t
k=1

(
max

{
pki , 1/T

})1−2β

≤ θ2 · (max {pti, 1/T})
1−2β

θ ·
√
1 +

∑t
k=1

(
max

{
pki , 1/T

})1−2β

= θ2 · (max {pti, 1/T})
1−2β

γt+1
i

, (21)
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holds for any arm i ∈ [K] and t ∈ [T ], which controls the increase of learning rates from round t to
t+ 1.

On the other hand, our algorithm is somehow stabilized by the extra log-barrier, i.e., it ensures the
following multiplicative relation between pt, p̄t+1, and pt+1:

1

2
pti ≤ p̄t+1

i ≤ 2pti,
1

2
pti ≤ pt+1

i ≤ 2pti, ∀t ∈ [T ],∀i ∈ [K], (22)

according to Lemma C.3.2, Lemma C.3.3, and Lemma C.3.4.

Then, we are ready to analyze the regret related to the sub-optimal arms (REGSUB). For the skewed
Bregman divergence Dt,t+1

V

(
pt, p̄t+1

)
, we can decompose it into the stability and penalty terms as

Dt,t+1
V

(
pt, p̄t+1

)
=
〈
ptV − p̄t+1

V ,∇ϕt+1
V (p̄t+1)−∇ϕtV (pt)

〉
−Dt+1,t

V

(
p̄t+1, pt

)
=
〈
ptV − p̄t+1

V , ℓ̂t
〉
−Dt

V

(
p̄t+1, pt

)
︸ ︷︷ ︸

stability

+ϕtV (p̄
t+1)− ϕt+1

V (p̄t+1)︸ ︷︷ ︸
penalty

, (23)

where the first step follows from Lemma C.5.1, and the second step follows from the definition of
skewed Bregman divergence.

Lemma A.2.1 (Bound on Stability). With CLOG ≥ 162, Algorithm 1 ensures〈
ptV − p̄t+1

V , ℓ̂t
〉
−Dt

V

(
p̄t+1, pt

)
≤ O

(∥∥∥ℓ̂t∥∥∥2
∇−2ϕt

V (pt)

)
,

where ∥x∥M ≜
√
x⊤Mx is the quadratic norm of x ∈ RK with respect to some positive semi-definite

matrix M ∈ RK×K , and ∇−2ϕtV (p
t) denotes the Moore–Penrose inverse of the Hessian ∇2ϕtV (·).

Specifically, the Hessian ∇2ϕtV (x) is a diagonal matrix:

∇2ϕtV (x) = diag

{
∂2ϕtV (x)

∂ (xi)
2 : ∀i ∈ [K]

}
,

where ∂2ϕt
V (x)

∂(xi)
2 is the second order derivative of ϕtV (x) with respect to the variable xi. According to

the definition of ϕtV (·),
∂2ϕt

V (x)

∂(xi)
2 = 0 for any arm i ∈ U . Therefore, the Moore–Penrose inverse of

∇2ϕtV (x) is also a diagonal matrix, and it holds that

(
∇−2ϕtV (x)

)
i,i

=

{(
∂2ϕt

V (x)

∂(xi)
2

)−1

, i ∈ V,

0, i ∈ U,

where
(
∇−2ϕtV (x)

)
i,i

denotes the i-th diagonal element of the matrix ∇−2ϕtV (x).

Proof. To prove this result, we introduce the minimizer z ∈ RK≥0 defined as:

z = argmin
xi=0,∀i∈U∑

i∈V xi=
∑

i∈V pti

〈∑
τ≤t

ℓ̂τV , x

〉
+ ϕtV (x). (24)

By Lemma C.3.5, the extra log-barrier also guarantees the multiplicative relation between pt and z,
that is, zi/2 ≤ pti ≤ 2zi holds for any arm i ∈ V .

According to Lemma C.5.2, we then have〈
ptV − p̄t+1

V , ℓ̂t
〉
−Dt

V

(
p̄t+1, pt

)
≤
〈
ptV − z, ℓ̂t

〉
−Dt

V

(
z, pt

)
= O

(∥∥∥ℓ̂tV ∥∥∥2∇−2ϕt
V (ξ)

)
,

where ξ is some intermediate point between z and pt, that is, ξ = ρz+ (1− ρ) pt for some ρ ∈ [0, 1].
With the multiplicative relation between z and pt, we have 1

2p
t
i ≤ ξi ≤ 2pti for any arm i ∈ V .
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Therefore, one can verify

1

4
· ∂

2ϕtV (p
t
i)

∂ (pti)
2 ≤ ∂2ϕtV (ξ)

∂ (ξi)
2 ≤ 4 · ∂

2ϕtV (p
t
i)

∂ (pti)
2 , ∀i ∈ V, (25)

for all the regularizers of Algorithm 1. Thus, we can further bound
∥∥∥ℓ̂tV ∥∥∥2∇−2ϕt

V (ξ)
as:

∥∥∥ℓ̂t∥∥∥2
∇−2ϕt

V (ξ)
=
∑
i∈V

(
ℓ̂ti

)2(∂2ϕtV (ξ)
∂ (ξi)

2

)−1

≤ 4
∑
i∈V

(
ℓ̂ti

)2(∂2ϕtV (pti)
∂ (pti)

2

)−1

= 4
∥∥∥ℓ̂tV ∥∥∥2∇−2ϕt

V (ptV )
,

where the first step follows from the definition of quadratic norm, and the second step follows from
Eq. (25).

Lemma A.2.2 (REGSUB for Log-barrier). When using the log-barrier regularizer with CLOG = 162,
α = 0, and θ =

√
1/log T , Algorithm 1 ensures REGSUB = O (S2 (log T )).

Proof. For the log-barrier regularizer, the multiplicative relation between pt, p̄t+1, and pt+1 in
Eq. (22) is guaranteed by Lemma C.3.2.

We first consider the stability term. By Lemma A.2.1, we have

Et
[〈
ptV − p̄t+1

V , ℓ̂t
〉
−Dt

V

(
p̄t+1, pt

)]
≤ O

Et

∑
i∈V

(pti)
2
(
ℓ̂ti

)2
γti


 = O

(∑
i∈V

pti
γti

)
,

where the first step follows from the facts that the Hessian ∇2ϕtV (p
t) is a diagonal matrix and its

diagonal element for arm i ∈ V is CLOG+γ
t
i

(pti)
2 .

On the other hand, we bound the penalty term ϕtV (p̄
t+1)− ϕt+1

V (p̄t+1
V ) as

ϕtV (p̄
t+1)− ϕt+1

V (p̄t+1) =
∑
i∈V

γti log

(
1

p̄t+1
i

)
−
∑
i∈V

γt+1
i log

(
1

p̄t+1
i

)
=
∑
i∈V

(
γti − γt+1

i

)
log

(
1

p̄t+1
i

)
≤ 0,

where the third step follows from the fact that γti ≤ γt+1
i for any arm i. Therefore, we have REGSUB

bounded as

REGSUB = E

[
T∑
t=1

〈
ptV − p̄t+1

V , ℓ̂t
〉
−Dt

V

(
p̄t+1, pt

)
+ ϕtV (p̄

t+1)− ϕt+1
V (p̄t+1)

]

≤ O

(
E

[
T∑
t=1

∑
i∈V

pti
γti

])
= O

(
E

[
T∑
t=1

∑
i∈V

pti
γt+1
i

])
,

where the last step follows from the multiplicative relation pt+1
i ≤ 2pti for any arm i.

By our learning rate schedule, we further have

E

[
T∑
t=1

∑
i∈V

pti
γt+1
i

]
≤ E

√log T

T∑
t=1

∑
i∈V

pti√
1 +

∑t
s=1 p

s
i


≤ E

[√
log T

∑
i∈V

T∑
t=1

∫ ∑t
s=1 p

s
i∑t−1

s=1 p
s
i

du√
1 + u

]

25



≤ 2E

√log T
∑
i∈V

√√√√1 +

T∑
t=1

pti


= O (S2 (log T )) ,

where the first step follows from the fact pti ≤ max {pti, 1/T}; the third step uses the Newton-Leibniz
formula

∫ b
a

du√
1+u

= 2
√
1 + u

∣∣b
a
.

Lemma A.2.3 (REGSUB for β-Tsallis Entropy). For any β ∈ (0, 1), when using the β-Tsallis

entropy regularizer with CLOG = 162β
1−β , α = β, and θ =

√
1−β
β , Algorithm 1 ensures

REGSUB = O
(
S2
(

log T

β (1− β)

))
.

Proof. First, the multiplicative relation between pt, p̄t+1, and pt+1 in Eq. (22) is ensured by
Lemma C.3.2. According to Lemma A.2.1, we have

Et
[〈
ptV − p̄t+1

V , ℓ̂t
〉
−Dt

V

(
p̄t+1, pt

)]
≤ O

E

∑
i∈V

(pti)
2−β

(
ℓ̂ti

)2
βγti


 = O

(∑
i∈V

(pti)
1−β

βγti

)
,

since the diagonal of ∇2ϕtV (p
t) is βγt

i

(pti)
2−β + CLOG

(pti)
2 for any arm i ∈ V .

Therefore, we have REGSUB bounded as

REGSUB = E

[
T∑
t=1

Et
[
(pti)

1−β

βγti
+ ϕtV (p̄

t+1)− ϕt+1
V (p̄t+1)

]]

≤ O

(
E

[
T∑
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∑
i∈V

(
(pti)

1−β

βγti
+

(
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i − γti

) (
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i

)β
1− β
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≤ O

(
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T∑
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∑
i∈V

(
(pti)

1−β

βγti
+

(
γt+1
i − γti

)
(pti)

β

1− β

)])
,

where the last step follows from the multiplicative relation between pt and p̄t+1 in Eq. (22).

Let p0i =
1
K for any arm i for notational convenience. For the stability term, we have

∑
i∈V

(pti)
1−β

βγti
≤
∑
i∈V

(
2pt−1
i

)1−β
βγti

≤ 2
∑
i∈V

max
{
pt−1
i , 1/T

}1−β
βγti

where the first step follows from the multiplicative relation between pt+1
i and pti. On the other hand,

we can bound the penalty term as:

∑
i∈V

(
γt+1
i − γti

)
(pti)

β

1− β
≤
∑
i∈V

(pti)
β

1− β
· 1− β

β
· (max {pti, 1/T})

1−2β

γt+1
i

=
∑
i∈V

(pti)
β
(max {pti, 1/T})

1−2β

βγt+1
i

≤
∑
i∈V

(max {pti, 1/T})
1−β

βγt+1
i

,

where the first step uses Eq. (21). This shows that the stability term and the penalty term are of the
same order, and the rest of the proof boils down to the following final calculation:

T∑
t=1

∑
i∈V

(max {pti, 1/T})
1−β

βγt+1
i

≤ 1

β
·

√
β

1− β

T∑
t=1

∑
i∈V

(max {pti, 1/T})
1−β√

1 +
∑t
k=1

(
max

{
pki , 1/T

})1−2β
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= O

√ 1

β (1− β)

∑
i∈V

√√√√log T

T∑
t=1

max {pti, 1/T}


= O

√ log T

β (1− β)

∑
i∈V

√√√√ T∑
t=1

pti

 ,

where the first step follows from the definition of γti ; the second step applies Lemma 4.2 ; the last
step follows from the fact that max {pti, 1/T} ≤ pti +

1
T .

Lemma A.2.4 (REGSUB for Shannon Entropy). When using the Shannon entropy regularizer with
CLOG = 162 logK, α = 1, and θ =

√
1/log T , Algorithm 1 ensures REGSUB = O

(
S2
(
log2 T

))
.

Proof. Similarly, we apply Lemma A.2.1 and have

Et
[〈
ptV − p̄t+1

V , ℓ̂t
〉
−Dt

V

(
p̄t+1, pt

)]
≤ O

Et
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)2
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(∑
i∈V

1

γti

)
,

since the diagonal of ∇2ϕtV (p
t) is γt

i

pti
+ CLOG

(pti)
2 for arm i.

For the penalty term, we have ϕtV (p̄
t+1)− ϕt+1

V (p̄t+1
V ) bounded by∑

i∈V

(
γti − γt+1

i

)
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i log

(
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i

e

)
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∑
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(
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(
e
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)
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}
log

(
e
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{
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i

log

(
e
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≤ O
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i∈V

1
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i

)
,

where the second step uses the fact that x log
(
e
x

)
is monotonically increasing for x ∈ [0, 1/T ]; the

third step follows from Eq. (21); the last step follows from the multiplicative relation between pt and
p̄t+1 so that max {pti, 1/T} ≥ 1

2 max
{
p̄t+1
i , 1/T

}
.

Therefore, we have REGSUB bounded as

REGSUB = E

[
T∑
t=1

Et
[〈
ptV − p̄t+1

V , ℓ̂t
〉
−Dt

V

(
p̄t+1, pt

)
+ ϕtV (p̄

t+1)− ϕt+1
V (p̄t+1)

]]

≤ O

(
E

[
T∑
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∑
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1

γti
+

1
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i

])
= O

(
E

[
T∑
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∑
i∈V

1
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i

])
,

by combining the bounds for the stability and penalty terms.

According to our learning rate schedule, we have

E

[
T∑
t=1

∑
i∈V

1

γt+1
i

]
= E

√log T
∑
i∈V

T∑
t=1

1√
1 +

∑t
k=1 max

{
pki , 1/T

}−1


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≤ O

E

√log T
∑
i∈V

√√√√log

(
1 +

T∑
t=1

1

max {pti, 1/T}

)
T∑
t=1

max {pti, 1/T}


≤ O

E

√log T
∑
i∈V

√√√√log (1 + T · T )

(
1 +

T∑
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pti

)
= O

(
S2
(
log2 T

))
,

where the second step applies Lemma 4.2; the third step uses the fact that max {pti, 1/T} ≥ 1/T .

A.3 Regret on Optimal Arms

We show that REGOPT ≤ 0 holds for all regularizers used in this paper with a specific technique.
Lemma A.3.1 (REGOPT for All Regularizers). For any of the three regularizers, Algorithm 1 ensures
REGOPT ≤ 0.

Proof. According to the KKT conditions of the optimization problem for qt, we have

∇ϕt+1
U (qt+1) = ∇ϕtU (qt)− ℓ̂tU + ξ′ · 1U ,

where ξ′ ∈ R is a Lagrange multiplier for qt+1. Let z ∈ RK>0 be a vector that satisfies

∇ϕt+1
U (z) = ∇ϕtU (pt)− ℓ̂tU + ξ′ · 1U .

By definition, we have

∇ϕt+1
U (z)−∇ϕtU (pt) = ∇ϕt+1

U (qt+1)−∇ϕtU (qt) = −ℓ̂tU + ξ′ · 1U . (26)

Also, by [Ito, 2021, Lemma 18], we have

Dt,t+1
U (pt, p̄t+1) = Dt,t+1

U (pt, z)−Dt+1
U (p̄t+1, z) ≤ Dt,t+1

U (pt, z),

where the last step uses the fact that the Bregman divergence is non-negative. Hence, to show
Dt,t+1
U (pt, p̄t+1) ≤ Dt,t+1

U (qt, qt+1), it suffices to show Dt,t+1
U (pt, z) ≤ Dt,t+1

U (qt, qt+1), which is
done below by applying x = pti, y = z, m = qti , n = qt+1

i , and ξ = −ℓ̂ti + ξ′ in Theorem 4.3.

First, we show that pti ≤ qti for any arm i ∈ U . By the KKT conditions for qt and pt, we know
that ∇ϕtU (qt) = ∇ϕtU (ptU ) + η · 1U for a Lagrange multiplier η ∈ R. Due to the facts that∑
i∈U q

t
i = 1 ≥

∑
i∈U p

t
i and ∇ϕt(·) is monotone-increasing, η is non-negative and qti ≥ pti holds

for any arm i ∈ U .

It is clear that all our regularizers can be written in the form of ϕt(p) =
∑
i∈[K] f

t(pi), and we will
apply Theorem 4.3 with such f t : [0, 1] → R. It suffices to check the two required conditions on f t.
First, all regularizers used in Algorithm 1 satisfy condition (i): (f t)′(z) is differentiable and concave.
Second, as mentioned in Section 4, we only need to show that the learning rate γti is non-decreasing
in t (which is true in our case) and the regularizer itself is non-increasing, the latter of which can be
verifed for all our regularizers as long as we have pt, z, qt, qt+1 ∈ (0, 1]K . As z ∈ RK>0, we still need
to check zi ≤ 1. Indeed, from Eq. (26), we have ∇ϕt+1(z) ≤ ∇ϕt+1(qt+1) (entry-wise inequality),
and since qt+1

i ≤ 1 for ∀i ∈ U and ∇ϕt+1(·) is monotone-increasing entry-wise, we have zi ≤ 1.
To sum up, Theorem 4.3 indeed implies

Dt,t+1
U (pt, z) ≤ Dt,t+1

U (qt, qt+1).

which further implies Dt,t+1
U (pt, p̄t+1) ≤ Dt,t+1

U (qt, qt+1). Taking the summation over all the
rounds concludes the proof.

Theorem A.3.2 (Restatement of Theorem 4.3). For any t ∈ N, let f t : Ω → R be a continuously-
differentiable and strictly-convex function defined on Ω ⊆ R. Suppose that the following two
conditions hold for all z ∈ Ω: (i) (f t)′(z) is differentiable and concave; (ii) (f t+1)′(z) ≤ (f t)′(z).
Then, for any x,m ∈ R with x ≤ m, and y, n ∈ R such that (f t+1)′(y)− (f t)′(x) = (f t+1)′(n)−
(f t)′(m) = ξ for a fixed scalar ξ, we have Dt,t+1(x, y) ≤ Dt,t+1(m,n), where Dt,t+1(u, v) =

f t(u)− f t+1(v)− (u− v) ·
(
f t+1

)′
(v) is the skewed Bregman divergence.
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Proof of Theorem 4.3. For shorthand, we denote F t(z) = (f t)′(z) and use (F t)′(z) to denote the
first-order derivative of F t with respect to z. Taking the derivative with respect to x on both sides of
(f t+1)′(y)− (f t)′(x) = ξ, we have

(F t)′(x) = (F t+1)′(y)
dy

dx
. (27)

We now see y as a function of x and Dt,t+1(x, y) = f t(x) − f t+1(y) − (x− y)F t+1(y) as a
function of x as well. Taking the derivative with respect to x, we have

(Dt,t+1)′(x, y)

= F t(x)− F t+1(y)
dy

dx
− F t+1(y)− x(F t+1)′(y)

dy

dx
+ F t+1(y)

dy

dx
+ y(F t+1)′(y)

dy

dx

= F t(x)− F t+1(y)− x(F t+1)′(y)
dy

dx
+ y(F t+1)′(y)

dy

dx

≥ F t(x)− F t(y)− x(F t+1)′(y)
dy

dx
+ y(F t+1)′(y)

dy

dx
(F t+1(y) ≤ F t(y))

= F t(x)− F t(y) + (y − x)(F t)′(x) (by Eq. (27))

≥ 0. (concavity of F t(·))

The implies Dt,t+1(x, y) ≤ Dt,t+1(m,n) given the condition x ≤ m.

A.4 Residual Regret

Throughout this section, we write all our regularizers in the form ϕt(x) = −CLOG

∑
i∈[K] log xi +∑

i∈[K] γ
t
iψ(xi) for a proper choice of ψ(·) (e.g., ψ(xi) = xi log

(
xi

e

)
for the Shannon entropy

regularizer). Also, we will present the Hessian ∇2ϕt(pt) as a diagonal matrix whose diagonal
element for arm i is denoted as wti , that is, ∇2ϕt(pt) = diag{wti : i ∈ [K]}. Clearly, it always holds
that wti =

CLOG

(pti)
2 + γtiψ

′′(pti).

With these notations, we are now ready to introduce our decomposition of Et
[
Dt+1(p̄t+1, pt+1)

]
into the term we discussed in Section 4 plus other terms.
Lemma A.4.1. Under Eq. (22), Algorithm 1 ensures that Et

[
Dt+1(p̄t+1, pt+1)

]
is bounded by

O


(∑

i∈V
1
wt

i

)(∑
i∈U

1

(wt
i)

2
pti

)
(∑

i∈[K]
1
wt

i

)(∑
i∈U

1
wt

i

) +
∑
i∈V

1

ptiw
t
i

+K
∑
i∈[K]

(
γti − γt+1

i

)2
(ψ′(pti))

2

wti

 .

Proof. By Lemma C.5.2, for any c ∈ R, we have Dt+1(p̄t+1, pt+1) bounded as〈
p̄t+1 − pt+1,∇ϕt+1(p̄t+1)−∇ϕt+1(pt+1)

〉
−Dt+1(pt+1, p̄t+1)

=
〈
p̄t+1 − pt+1,∇ϕt+1(p̄t+1)−∇ϕt+1(pt+1)− c · 1K

〉
−Dt+1(pt+1, p̄t+1)

= 2
∥∥∇ϕt+1(p̄t+1)−∇ϕt+1(pt+1)− c · 1K

∥∥
∇−2ϕt+1(ξ)

= O
(∥∥∇ϕt+1(p̄t+1)−∇ϕt+1(pt+1)− c · 1K

∥∥
∇−2ϕt(pt)

)
,

where the first step follows from the fact that p̄t+1, pt+1 ∈ ΩK , thus
〈
p̄t+1 − pt+1, c · 1K

〉
= 0

holds for any c ∈ R; the second step follows from Lemma C.5.2, where ξ is some intermediate point
between p̄t+1 and pt+1; the thirds step follows from the multiplicative relation between p̄t+1 and
pt+1, and the fact that γt+1

i ≥ γti for all t, i.

Then, we analyze the difference ∇ϕt+1(p̄t+1)−∇ϕt+1(pt+1). According to the KKT conditions of
the optimization problems in the FTRL framework, we have

∇ϕt+1
U (p̄t+1) = ∇ϕtU (pt)− ℓ̂tU + λU · 1U ,

∇ϕt+1
V (p̄t+1) = ∇ϕtV (pt)− ℓ̂tV + λV · 1V ,
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∇ϕt+1
U (pt+1) = ∇ϕtU (pt)− ℓ̂tU + λK · 1U ,

∇ϕt+1
V (pt+1) = ∇ϕtV (pt)− ℓ̂tV + λK · 1V ,

where λU , λV , λK are corresponding Lagrange multipliers for the p̄t+1 and pt+1.

To give a tighter bound of the Lagrange multipliers λU and λV , we greatly extend the approach of
Ito [2021] in Lemma C.4.3. Together with the multiplicative relation between pt,p̄t+1 and pt+1, we
obtain λU ’s upper and lower bounds:

λU ≤ O

(∑
i∈U

1

wti

)−1(∑
i∈U

ℓ̂ti
wti
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Similarly, we have the following upper and lower bounds of λV :

λV ≤ O

(∑
i∈V

1

wti

)−1(∑
i∈V

ℓ̂ti
wti

)
λV ≥ O

−

(∑
i∈V

1

wti

)−1(∑
i∈V

(
γti − γt+1

i

)
ψ′(pti)

wti

) .

With the help of these notations, for any c ∈ R, we have∥∥∇ϕt+1(p̄t+1)−∇ϕt+1(pt+1)− c · 1K
∥∥
∇−2ϕt(pt)
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,

where in the second step we define c′ = c+ λK . Picking c′ to minimize this term yields
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where the second step uses (x − y)2 ≤ 2(x2 + y2) for any x, y ∈ R. In Eq. (28), the first term is
only related to λU , and the second term depends on λV . By upper and lower bounds of λU and λV ,
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we have Eq. (28) bounded as
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(29)

Then, we further bound the first and the third term in Eq. (29). For the first term, we have
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where the first step uses the fact that ℓ̂ti · ℓ̂tj = 0 for i ̸= j, and the second step follows from the
definition of importance-weighted loss estimator. Similarly, we have the third term bounded as
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For the second term in Eq. (29), we have(∑
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where the first step follows from the Cauchy-Schwarz inequality. Similarly, we have the following
bound for the forth term(∑
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Plugging Eq. (30), Eq. (31), Eq. (32), and Eq. (33) into Eq. (29) finishes the proof.

As mentioned earlier in Section 4, the first term in Lemma A.4.1 is the leading term in the stochastic
setting which will yield a term of the order O

(
|U | log T

∆MIN

)
in the regret bound. In the following lemma,

we further decompose this term into two parts where the first part is related to S2 and the second part
is related to S1.
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Proof. We first rewrite the fraction on left hand side as:(∑
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To bound the right-hand side of Eq. (34), we introduce an indicator function for any t and any i ∈ U :
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Case 1. By direct calculation, we have
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Case 2. For arm i that Ati = 0, we have
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Therefore, we have
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where 1− Ati = I{Ati = 0} ≤ I
{
pti ≤

∑
j∈V p

t
j

}
holds due to the fact that I{A} ≤ I{B} for any

events A,B with A ⊆ B. Finally, combining bounds for these two cases finishes the proof.

Based on Lemma A.4.1 and the careful decomposition in Lemma A.4.2, we now bound RESREG by
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Then, we are ready to bound these three terms with different configurations of Algorithm 1 in
Lemma A.4.3, Lemma A.4.4, and Lemma A.4.5. The corresponding ψ′(x)’s are −βxβ−1

1−β for the
β-Tsallis entropy regularizer, − 1

x for the log-barrier regularizer, and log(x) for the Shannon entropy
regularizer.

Lemma A.4.3 (RESREG for β-Tsallis Entropy). For any β ∈ (0, 1), when using the β-Tsallis entropy

regularizer with CLOG = 162β
1−β , α = β, and θ =

√
1−β
β , Algorithm 1 ensures:
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which leads to the following bound of RESREG:
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)
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.

Proof. Clearly, the first inequality relates to that of the stability term since
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,

where the first step uses the fact that wti ≥
γt
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2−β , and the second step follows from the similar

argument of the analysis in Lemma A.2.

Next, by direct calculation, we have
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where the first step uses the fact that wti ≥
βγt

i

(pti)
2−β ; the second step follows from the multiplicative

relation between pti and pt−1
i (we set p0i = 1/K = p1i for ∀i ∈ [K] for convenience); the third step
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applies Lemma C.2.1, a weighted variant of Lemma 4.2, and again the multiplicative relation; the last
step follows from max {pti, 1/T}

1−2β ≤ T for β ∈ (0, 1) and max {pti, 1/T} ≤ pti + 1/T .

To further bound this term, we here have to use the Cauchy-Schwarz inequality which leads to the
extra |U |

∆MIN
dependency in the final regret bound:
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where the first step uses the property of indicator that ptiI
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expectation finishes the proof for the second inequality.

For the last inequality in the statement, for any round t, we have
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where the first step applies wti ≥
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Taking the summation over all the rounds, we have
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which finishes the proof.

Lemma A.4.4 (RESREG for Log-barrier). When using the log-barrier regularizer with CLOG = 162,
α = 0, and θ =

√
1/log T , Algorithm 1 ensures:

E

[
T∑
t=1

∑
i∈V

1

ptiw
t
i

]
= O (S2 (log T )) ,

34



E

 T∑
t=1

∑
i∈U

I
{
pti ≤

∑
j∈V p

t
j

}
ptiw

t
i

( 1
wt

i∑
i∈U

1
wt

i

) = O (S1 (|U | log T )) ,

K

T∑
t=1

∑
i∈[K]

(
γti − γt+1

i

)2 ( 1
pti

)2
wti

= O
(

K2

√
log T

)
,

which leads to the following bound of RESREG:
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Proof. By direct calculation, we have
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where the second step use the same arguments used in Lemma A.2.2.

Following the same idea used for the β-Tsallis entropy regularizer, we have
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where the second step follows from Lemma 4.2 and wti ≥ γt
i/(pti)

2; the second step uses the Cauchy-
Schwarz inequality; the last follows from the definition of the self-bounding quantity S1 in Eq. (14).

Finally, by direct calculation, for any round t, we have
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Taking the summation over all rounds yields that
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which finishes the proof.

Lemma A.4.5 (RESREG for Shannon Entropy). When using the Shannon entropy regularizer with
CLOG = 162 logK, α = 1, and θ =

√
1/log T , Algorithm 1 ensures:
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which leads to the following bound of RESREG:
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Proof. Similar to the analysis for β-Tsallis entropy, we also have the first inequality relates to the
bound of the stability term as:
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where the second step follows form similar analysis of the stability term in Lemma A.2.4.

By the same arguments in the proof of Lemma A.4.3, we have
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according to our learning rate schedule, where the extra
√
log T factor is casued by θ.

By direct calculation, for any round t, we have
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Finally, taking the summation over all rounds yields
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which finishes the proof.
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B Proof of Theorem 3.4: Decoupled-Tsallis-INF

For the Decoupled-Tsallis-INF algorithm [Rouyer and Seldin, 2020], the learning rate schedule is
γti = K1/6

√
t for all i ∈ [K] at round t (henceforth denoted by γt for conciseness), and the loss

estimator is

ℓ̂ti =
I{jt = i}ℓti

gti
, ∀i ∈ [K], where gti =

(pti)
2/3∑

j∈[K]

(
ptj
)2/3 and jt ∼ gt. (35)

Although our analysis of Decoupled-Tsallis-INF follows similar ideas as the case for MAB, we need a
finer decomposition of Dt,t+1(pt, pt+1) since we do not add an extra log-barrier regularizer to ensure
the multiplicative relation between pt+1 and pt (which is important to avoid any T -dependence). To
present this new decomposition, we first introduce some definitions. For p̄t+1, we maintain the same
definition of p̄t+1

U in Eq. (7), but slightly adjust the definition of p̄t+1
V as:

p̄t+1
V = argmin

x∈RK
≥0,

∑
i∈U xi=0,∑

i∈V xi=
∑

i∈V pti

〈
x,
∑
τ≤t

ℓ̂τ

〉
+ ϕtV (x). (36)

Compared to the definition in Eq. (7) used for the analysis of MAB, the new definition here changes
ϕt+1 to ϕt. Such a skewness of the regularizer eventually allows us to get

∑
i∈V (p

t)2/3 rather than∑
i∈V (p̄

t+1)2/3 in the regret bound, which is important since we cannot easily convert between these
two anymore as we did for the MAB analysis due to the aforementioned lack of multiplicative relation.
Furthermore, as ϕt+1 is used for U and ϕt is used for V , we introduce another intermediate point
p̃t+1 to bridge this skewness, which is defined as:

p̃t+1 = argmin
x∈ΩK

〈
x,
∑
τ≤t

ℓ̂τ

〉
+ ϕ̃t(x), (37)

where ϕ̃t(x) = ϕtV (x) + ϕt+1
U (x) can be regarded as a specific intermediate regularizer between

ϕtV and ϕt+1
U . To distinguish the Bregman divergence Dt(x, y) defined on regularizer ϕt, we define

Dt̃(x, y) on regularizer ϕ̃t as:

Dt̃(x, y) = ϕ̃t(x)− ϕ̃t(y)−
〈
∇ϕ̃t(y), x− y

〉
. (38)

Similarly, we define the following two notions of skewed Bregman divergence for s, t ∈ N:

Dt,s̃(x, y) = ϕt(x)− ϕ̃s(y)−
〈
∇ϕ̃s(y), x− y

〉
,

Dt̃,s(x, y) = ϕ̃t(y)− ϕs(x)− ⟨∇ϕs(y), x− y⟩ .

With the help of definitions above, our new decomposition for Dt,t+1(pt, pt+1)−Dt,t+1
U (qt, qt+1)

is as follows (see Lemma B.1.1)

Dt
V (p

t, p̄t+1) + ϕtV (p
t+1)− ϕt+1

V (pt+1)︸ ︷︷ ︸
regret on sub-optimal arms

+Dt,t+1
U (pt, p̄t+1)−Dt,t+1

U (qt, qt+1)︸ ︷︷ ︸
regret on optimal arms

+Dt̃(p̄t+1, p̃t+1)︸ ︷︷ ︸
residual regret

.
(39)

Now, we are ready to use this decomposition to analyze the regret bound for Decoupled-Tsallis-INF.
As we do not add an extra log-barrier, we just set ϵ = 0, i.e., qt = q̃t where q̃t is given in Eq. (15).
As a result, the only preprocessing cost for Decoupled-Tsallis-INF is D. To show Theorem 3.4, we
present the following theorem.

38



Theorem B.1. Decoupled-Tsallis-INF ensures

RegT ≤ O

(√
KT0 + E

[
T∑

t=T0+1

(
K1/6

√
t

∑
i∈V

(
pti
)2/3)]

+
√
K

)
+D,

for any T0 ≥ 16K, any subset U ⊆ [K], V = [K]\U , and D = E
[∑T

t=1 maxi∈U Et [ℓti − ℓti⋆ ]
]
.

Proof. With the decomposition in Lemma B.1.1, we have the following upper bound for RegT :

E

[
D1(q1, p1) +

T∑
t=1

Dt,t+1(pt, pt+1)−Dt,t+1
U (qt, qt+1)

]
+D

≤ E

[
T∑

t=T0+1

Dt
V (p

t, p̄t+1) + ϕtV (p
t+1)− ϕt+1

V (pt+1)

]
+ E

[
T∑

t=T0+1

Dt,t+1
U (pt, p̄t+1)−Dt,t+1

U (qt, qt+1)

]

+ E

[
T∑

t=T0+1

Dt̃(p̄t+1, p̃t+1)

]
+O

(√
KT0 +

√
K
)
+D,

where we bound the regret of the first T0 rounds by O
(√
KT0

)
via Lemma B.5.3, and D1(q1, p1) by

D1(q1, p1) = −3γ1
∑
i∈[K]

((
q1i
)2/3 − (p1i )2/3) ≤ 3K

1/6
∑
i∈[K]

(
p1i
)2/3

= 3
√
K.

First, we bound the regret on sub-optimal arms using Lemma B.2.1:

E

[
T∑

t=T0+1

Dt
V (p

t, p̄t+1) + ϕtV (p
t+1)− ϕt+1

V (pt+1)

]
≤ O

(
E

[
T∑

t=T0+1

∑
i∈V

K1/6 (pti)
2/3

√
t

])
.

(40)

The regret related to the optimal arms for any given t is again non-positive (see Appendix B.3):

Dt,t+1
U (pt, p̄t+1)−Dt,t+1

U (qt, qt+1) ≤ 0.

Finally, we turn to bound the residual regret (see Appendix B.4). By Lemma B.4.1, the residual regret
is bounded as

E

[
T∑

t=T0+1

Dt̃
(
p̄t+1, p̃t+1

)]
≤ O

(
E

[
T∑

t=T0+1

∑
i∈V

K1/6 (pti)
2/3

√
t

])
. (41)

Combining all the above, we complete the proof.

Armed with the result in Theorem B.1, we are now ready to prove Theorem 3.4.

Proof of Theorem 3.4. Theorem B.1 shows that there exists a constant z ∈ R>0 such that

RegT ≤ z

(√
KT0 + E

[
T∑

t=T0+1

K1/6

√
t

∑
i∈V

(
pti
)2/3]

+
√
K

)
+D

holds for any T0 ≥ 16K. For the adversarial setting, we simply pick T0 = T and V = [K]\{i⋆} (so
that D = 0), and then the claimed bound O(

√
KT ) follows.

For the stochastic setting, let V = {i : ∆i ̸= 0} as in Section 2 and define

G̃ =
∑
i∈V

1

∆2
i

, (42)
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as an instance complexity measure for DEE-MAB. We have the following bound of RegT for any
η > 0 and T0 ≥ 16K:

RegT = (1 + η)RegT − ηRegT

≤ (1 + η)

(
z
√
KT0 + E

[
T∑

t=T0+1

zK1/6

√
t

∑
i∈V

(
pti
)2/3]

+D + z
√
K

)

− η

(
E

[
T∑

t=T0+1

∑
i∈V

∆ip
t
i − C

])

= E

[
T∑

t=T0+1

∑
i∈V

(
(1 + η) zK1/6

√
t

(
pti
)2/3 − η∆ip

t
i

)]
+ (1 + η)

(
z
√
KT0 +D + z

√
K
)
+ ηC

≤
T∑

t=T0+1

∑
i∈V

(1 + η)
3
z3
√
K

η2∆2
i t

3/2
+ (1 + η)

(
z
√
KT0 +D + z

√
K
)
+ ηC

≤ 2z3 (1 + η)
3 G̃

η2

√
K

T0
+ (1 + η)

(
z
√
KT0 +D + z

√
K
)
+ ηC

= O

((
1 + η3

)
G̃

η2

√
K

T0
+ η

(
C +

√
KT0

)
+
√
KT0 + (1 + η)

(
D +

√
K
))

= O

(
G̃
η2

√
K

T0
+ η

(
G̃
√
K

T0
+ C +

√
KT0 +D

)
+
(√

KT0 +D
))

,

where the second step uses Condition (1); the forth step uses [Rouyer and Seldin, 2020, Lemma 8];
the fifth step follows from the fact

∑T
t=T0+1 t

−3/2 ≤
∫ T
T0+1

t−3/2dt ≤ 2√
T0+1

≤ 2√
T0

; the sixth step

uses (1 + η)3 ≤ 4(1 + η3) for any η > 0; the last step uses
√
K ≤

√
KT0 as T0 ≥ 16K.

Picking the optimal η yields

RegT ≤ O

(G̃√K

T0

)1/3(
G̃
√
K

T0
+ C +

√
KT0 +D

)2/3

+
√
KT0 +D


≤ O

(G̃√K

T0

)1/3(
G̃
√
K

T0

)2/3

+

(
G̃
√
K

T0

)1/3

C
2/3 +

(
G̃
√
K

T0

)1/3 (√
KT0

)2/3


+O

(G̃√K

T0

)1/3

D
2/3 +

√
KT0 +D


≤ O

(
G̃K1/2

T0
1/2

+
G̃1/3K1/6C2/3

T
1/6
0

+ G̃1/3K
1/2T

1/6
0 +K

1/2T
1/2
0 +D

)
, (43)

where the second step uses the fact (x+ y)
2/3 ≤ 3

(
x2/3 + y2/3

)
for any x, y ≥ 0, and the third step

follows from the fact x1/3y2/3 ≤ x+ y for any x, y ≥ 0.

For C ≤ G̃1/2K1/2, by picking T0 = max
{
G̃, 16K

}
, we have

RegT ≤ O

(
G̃K1/2

T0
1/2

+
G̃2/3K1/2

T
1/6
0

+ G̃1/3K
1/2T

1/6
0 +K

1/2T
1/2
0 +D

)

≤ O

(
G̃K1/2

G̃1/2
+

G̃2/3K1/2

G̃1/6
+K

1/2
(
G̃+K

)1/2

+D

)
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≤ O
(
G̃1/2K

1/2 +K +D
)
,

where the first step uses C ≤ G̃1/2K1/2; the second step follows from G̃ ≤ T0 ≤ G̃+ 16K; the last
step follows from the fact

√
x+ y ≤

√
x+

√
y for x, y ≥ 0.

For C ≥ G̃1/2K1/2, we set T0 = max
{

G̃1/2C
K1/2

, 16K
}

and have Eq. (43) further bounded by

O

(
G̃K1/2

T0
1/2

+
G̃1/3K1/6C2/3

T
1/6
0

+ G̃1/3K
1/2T

1/6
0 +K

1/2T
1/2
0 +D

)

≤ O

G̃K1/2

(
K1/2

G̃1/2C

)1/2

+ G̃1/3K
1/6C

2/3

(
K1/2

G̃1/2C

)1/6

+ G̃1/3K
1/2

(
G̃1/2C

K1/2

)1/6


+O

G̃1/3K
1/2 ·K1/6 +K

1/2

(
G̃1/2C

K1/2

)1/2

+K
1/2 ·K1/2 +D


= O

(
G̃3/4K

3/4C−1/2 + G̃1/4K
1/4C

1/2 + G̃5/12K
5/12C

1/6 + G̃1/4K
1/4C

1/2
)

+O
(
G̃1/2K

1/2 +K +D
)

≤ O
(
G̃1/4K

1/4C
1/2 + G̃1/2K

1/2 +K +D
)
,

where the first step uses G̃1/2C
K1/2

≤ T0 ≤ G̃1/2C
K1/2

+ 16K; the second step follows from the facts that

x1/3y2/3 ≤ x+ y for any x, y ≥ 0, and that G̃1/3K2/3 =
(
G̃1/2K1/2

)2/3

· (K)
1/3; the third step uses

C ≥ G̃1/2K1/2.

Combining these two cases together yields the claimed bound:

RegT = O
(
G̃1/4K

1/4C
1/2 + G̃1/2K

1/2 +K +D
)

= O

√∑
i∈V

K

∆2
i

+
√
C ·

(∑
i∈V

K

∆2
i

)1/4

+K +D

 .

B.1 Regret Decomposition for Decouple-Tsallis-INF

In this subsection, we present the proposed regret decomposition using p̄t+1 (with the new definition)
and p̃t.

Lemma B.1.1. For any t, Dt,t+1(pt, pt+1)−Dt,t+1
U (qt, qt+1) is bounded by

Dt
V (p

t, p̄t+1) + ϕtV (p
t+1)− ϕt+1

V (pt+1)︸ ︷︷ ︸
regret on sub-optimal arms

+Dt,t+1
U (pt, p̄t+1)−Dt,t+1

U (qt, qt+1)︸ ︷︷ ︸
regret on optimal arms

+Dt̃(p̄t+1, p̃t+1)︸ ︷︷ ︸
residual regret

.

Proof. We proceed as follows:

Dt,t+1(pt, pt+1)

=
〈
pt − pt+1, ℓ̂t

〉
−Dt+1,t(pt+1, pt)

=
〈
pt − pt+1, ℓ̂t

〉
−
(
ϕ̃t(pt+1)− ϕt(pt)−

〈
∇ϕt(pt), pt+1 − pt

〉)
+ ϕ̃t(pt+1)− ϕt+1(pt+1)

=
〈
pt − pt+1, ℓ̂t

〉
−Dt̃,t(pt+1, pt) + ϕ̃t(pt+1)− ϕt+1(pt+1)

≤
〈
pt − p̃t+1, ℓ̂t

〉
−Dt̃,t(p̃t+1, pt) + ϕ̃t(pt+1)− ϕt+1(pt+1)
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= Dt,t̃(pt, p̃t+1) + ϕ̃t(pt+1)− ϕt+1(pt+1)

= Dt,t̃(pt, p̃t+1) + ϕtV (p
t+1)− ϕt+1

V (pt+1), (44)

where the first step follows from Lemma C.5.1 according to the definitions of pt; the second step
adds and subtracts ϕ̃t(pt+1); the third step follows from the definition of Dt̃,t; the forth step uses
Lemma C.5.2; the last step follows from the definition of ϕ̃t which implies ϕ̃tU (p

t+1) = ϕt+1
U (pt+1).

Then, with the help of p̄t+1, we can further decompose the term Dt,t̃(pt, p̃t+1) as:

Dt,t̃(pt, p̃t+1)

= ϕt(pt)− ϕ̃t(p̃t+1)−
〈
∇ϕ̃t(p̃t+1), pt − p̃t+1

〉
= ϕt(pt)− ϕ̃t(p̄t+1)−

〈
∇ϕ̃t(p̃t+1), pt − p̄t+1

〉
+ ϕ̃t(p̄t+1)− ϕ̃t(p̃t+1)−

〈
∇ϕ̃t(p̃t+1), p̄t+1 − p̃t+1

〉
= ϕtU (p

t)− ϕ̃tU (p̄
t+1)−

〈
∇ϕ̃tU (p̃t+1), ptU − p̄t+1

U

〉
(45)

+ ϕtV (p
t)− ϕ̃tV (p̄

t+1)−
〈
∇ϕ̃tV (p̃t+1), ptV − p̄t+1

V

〉
(46)

+Dt̃(p̄t+1, p̃t+1),

where the last term is the residual regret.

For the regret on optimal arms, we show that the term ϕtU (p
t)−ϕ̃tU (p̄t+1)−

〈
∇ϕ̃tU (p̃t+1), ptU − p̄t+1

U

〉
in Eq. (45) is exactly Dt,t+1

U (pt, p̄t+1):

ϕtU (p
t)− ϕ̃tU (p̄

t+1)−
〈
∇ϕ̃tU (p̃t+1), ptU − p̄t+1

U

〉
= ϕtU (p

t)− ϕ̃tU (p̄
t+1)−

〈
∇ϕt+1

U (p̄t+1) + c · 1U , ptU − p̄t+1
U

〉
= ϕtU (p

t)− ϕ̃tU (p̄
t+1)−

〈
∇ϕt+1

U (p̄t+1), ptU − p̄t+1
U

〉
= Dt,t+1

U (pt, p̄t+1),

(47)

where the first step uses the KKT conditions of p̄t+1 and p̃t+1, which indicate ∇ϕ̃tU (p̃t+1) =

∇ϕt+1
U (p̄t+1) + c · 1U for a constant c ∈ R; the second step follows from the fact

∑
i∈U p

t
i =∑

i∈U p̄
t+1
i , which guarantees

〈
c · 1U , ptU − p̄t+1

U

〉
= 0 for any c ∈ R; the third step follows from

the definition of ϕ̃t which implies ϕ̃tU (p̄
t+1) = ϕt+1

U (p̄t+1).

Following the same idea of handling Eq. (45), we have:

ϕtV (p
t)− ϕ̃tV (p̄

t+1)−
〈
∇ϕ̃tV (p̃t+1), ptV − p̄t+1

V

〉
= ϕtV (p

t)− ϕtV (p̄
t+1)−

〈
∇ϕtV (p̄t+1), ptV − p̄t+1

V

〉
= Dt

V (p
t, p̄t+1),

(48)

where the first step follows from the definition of ϕ̃t that ϕ̃tV (p̄
t+1) = ϕtV (p̄

t+1) and the KKT
conditions of p̄t+1 and p̃t+1, which indicate that ∇ϕ̃tV (p̃t+1) = ∇ϕtV (p̄t+1) + c′ · 1V for a constant
c′ ∈ R. Finally, combining these bounds together, we have

Dt,t+1(pt, pt+1)

≤ Dt,t̃(pt, p̃t+1) + ϕtV (p
t+1)− ϕt+1

V (pt+1) (By Eq. (44))

= ϕtV (p
t+1)− ϕt+1

V (pt+1) + ϕtV (p
t)− ϕ̃tV (p̄

t+1)−
〈
∇ϕ̃tV (p̃t+1), ptV − p̄t+1

V

〉
+ ϕtU (p

t)− ϕ̃tU (p̄
t+1)−

〈
∇ϕ̃tU (p̃t+1), ptU − p̄t+1

U

〉
+Dt̃(p̄t+1, p̃t+1)
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= Dt
V (p

t, p̄t+1) + ϕtV (p
t+1)− ϕt+1

V (pt+1) (By Eq. (48))

+Dt,t+1
U (pt, p̄t+1) +Dt̃(p̄t+1, p̃t+1) (By Eq. (47))

which concludes the proof.

B.2 Regret on Sub-Optimal Arms

Lemma B.2.1. For the Decoupled-Tsallis-INF algorithm, the following holds:

E

[
T∑

t=T0+1

Dt
V (p

t, p̄t+1) + ϕtV (p
t+1)− ϕt+1

V (pt+1)

]
≤ O

(
E

[
T∑

t=T0+1

∑
i∈V

K1/6 (pti)
2/3

√
t

])
.

for any T0 ≥ 16K and any subset V ⊆ [K].

Proof. The stability term Dt
V (p

t, p̄t+1), in conditional expectation, is bounded as:

Et
[
Dt
V

(
pt, p̄t+1

)]
= Et

[〈
ptV − p̄t+1

V , ℓ̂tV

〉
−Dt

V

(
p̄t+1, pt

)]
≤ O

(
1

γt

∑
i∈V

(pti)
4/3

gti

)

= O

 1

γt

(∑
i∈V

(
pti
)2/3)∑

i∈[K]

(
pti
)2/3 (49)

≤ O

(
K1/3

γt

(∑
i∈V

(
pti
)2/3))

= O

(
K1/6

√
t

∑
i∈V

(
pti
)2/3)

, (50)

where the first step applies Lemma C.5.3; the third step uses the definition of gti ; the forth step follows
from the fact

∑
i∈[K] (p

t
i)

2/3 ≤ K1/3; the last step uses the definition of γt = K1/6
√
t.

On the other hand, the penalty term can be bounded as

Et
[
ϕtV (p

t+1)− ϕt+1
V (pt+1)

]
=O

((
γt+1 − γt

)∑
i∈V

(
pt+1
i

)2/3) ≤ O

(
K1/6

√
t+ 1

∑
i∈V

(
pt+1
i

)2/3)
, (51)

where the second step uses γt+1 − γt ≤ K
1/6

√
t+1

. By summing up Eq. (50) and Eq. (51) over all t from
T0 + 1 to T , we arrive at the desired bound.

B.3 Regret on Optimal Arms

Since the standard 2/3-Tsallis entropy regularizer is twice differentiable and its partial derivatives
are concave (that is, (−x2/3)′ = −2/3 · x−1/3 is concave on R>0), the first condition of Theorem 4.3
holds. As the Decoupled-Tsallis-INF algorithm adopts γt = K1/6

√
t, one can easily verify that the

second condition of the theorem also holds. Hence, one can apply Theorem 4.3 to bound the regret
on optimal arms by zero, i.e., Dt,t+1

U (pt, p̄t+1)−Dt,t+1
U (qt, qt+1) ≤ 0 for ∀t.

B.4 Residual Regret

In this section, our goal is to prove the following lemma, which upper-bounds the residual regret by a
self-bounding term.
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Lemma B.4.1. For the Decoupled-Tsallis-INF algorithm, the following holds for any T0 ≥ 16K
and any subset V ⊆ [K]:

E

[
T∑

t=T0+1

Dt̃
(
p̄t+1, p̃t+1

)]
≤ O

(
E

[
T∑

t=T0+1

∑
i∈V

K1/6 (pti)
2/3

√
t

])
.

To show Lemma B.4.1, we start from a decomposition of the residual regret. Similar to the analysis of
the residual regret for MAB in Section A.4, here, bounding the residual regret requires us to carefully
analyze the following KKT conditions:

∇ϕt+1
U (p̄t+1) = ∇ϕtU (pt)− ℓ̂tU + λU · 1U ,

∇ϕtV (p̄t+1) = ∇ϕtV (pt)− ℓ̂tV + λV · 1V ,

∇ϕ̃tU (p̃t+1) = ∇ϕt+1
U (p̃t+1) = ∇ϕtU (pt)− ℓ̂tU + λK · 1U ,

∇ϕ̃tV (p̃t+1) = ∇ϕtV (p̃t+1) = ∇ϕtV (pt)− ℓ̂tV + λK · 1V ,

where λU , λV , λK are corresponding Lagrange multipliers for p̄t+1 and p̃t+1. Note that, according
to the definition of p̄t+1

V in Eq. (36) and the fact that ϕ̃t(x) = ϕtV (x) +ϕt+1
U (x) for any x, the second

and the forth conditions are slightly different from those in Section A.4.

We start from the following decomposition of Dt̃
(
p̄t+1, p̃t+1

)
. For any c ∈ R, we have

Dt̃
(
p̄t+1, p̃t+1

)
= ϕ̃t(p̄t+1)− ϕ̃t(p̃t+1)−

〈
∇ϕ̃t(p̃t+1), p̄t+1 − p̃t+1

〉
= ϕ̃t(p̄t+1)− ϕ̃t(p̃t+1)−

〈
∇ϕ̃t(p̃t+1) + c · 1K , p̄t+1 − p̃t+1

〉
= ϕ̃t(p̄t+1)− ϕ̃t(p̃t+1)−

〈
∇ϕ̃t(p̄t+1)− λV · 1V − λU · 1U + c · 1K , p̄t+1 − p̃t+1

〉
=
〈
λV · 1V − c · 1K , p̄t+1

V − pt+1
V

〉
+ ϕ̃tV (p̄

t+1)− ϕ̃tV (p̃
t+1)−

〈
∇ϕ̃tV (p̄t+1), p̄t+1

V − p̃t+1
V

〉
+
〈
λU · 1U − c · 1K , p̄t+1

U − p̃t+1
U

〉
+ ϕ̃tU (p̄

t+1)− ϕ̃tU (p̃
t+1)−

〈
∇ϕ̃tU (p̄t+1), p̄t+1

U − p̃t+1
U

〉
=
〈
λV · 1V − c · 1K , p̄t+1

V − pt+1
V

〉
+ ϕtV (p̄

t+1)− ϕtV (p̃
t+1)−

〈
∇ϕtV (p̄t+1), p̄t+1

V − p̃t+1
V

〉
+
〈
λU · 1U − c · 1K , p̄t+1

U − p̃t+1
U

〉
+ ϕt+1

U (p̄t+1)− ϕt+1
U (p̃t+1)−

〈
∇ϕt+1

U (p̄t+1), p̄t+1
U − p̃t+1

U

〉
=
〈
λV · 1V − c · 1K , p̄t+1

V − p̃t+1
V

〉
−Dt

V (p̃
t+1, p̄t+1)

+
〈
λU · 1U − c · 1K , p̄t+1

U − p̃t+1
U

〉
−Dt+1

U (p̃t+1, p̄t+1),

where the second step uses the fact
〈
c · 1K , p̄t+1 − p̃t+1

〉
= 0 for any c ∈ R; the third step follows

from the facts that ∇ϕ̃t+1
U (p̃t+1) = ∇ϕt+1

U (p̃t+1) = ∇ϕt+1
U (p̄t+1) − λU · 1U + λK · 1K and

similarly that ∇ϕ̃t+1
V (p̃t+1) = ∇ϕt+1

V (p̄t+1) − λV · 1V + λK · 1K , which are derived from the
KKT conditions above, and

〈
λK · 1K , p̄t+1 − p̃t+1

〉
= 0; the forth step follows from the fact that〈

λU · 1U , p̄t+1
V − p̄t+1

V

〉
=
〈
λV · 1V , p̄t+1

U − p̄t+1
U

〉
= 0; the fifth step uses the definition of ϕ̃t.

Now, we choose c as

c =
λU
∑
i∈U

(
p̄t+1
i

)4/3
+ λV

∑
i∈V

(
p̄t+1
i

)4/3∑
i∈[K]

(
p̄t+1
i

)4/3 , (52)

which minimizes a subsequent bound (Eq. (53)) below. With this choice of c, we apply Lemma C.5.3
(the condition required by the lemma is verified at the end of Appendix B.5) to get for any t ≥ T0+1,

Dt̃(p̄t+1, p̃t+1) ≤ O

(∑
i∈U

(
p̄t+1
i

)4/3
γt+1

(λU − c)
2
+
∑
i∈V

(
p̄t+1
i

)4/3
γt

(λV − c)
2

)

≤ O

(∑
i∈U

(
p̄t+1
i

)4/3
γt

(λU − c)
2
+
∑
i∈V

(
p̄t+1
i

)4/3
γt

(λV − c)
2

)
(53)
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= O


(∑

i∈V
(
p̄t+1
i

)4/3)(∑
i∈U

(
p̄t+1
i

)4/3)
γt
∑
i∈[K]

(
p̄t+1
i

)4/3 (λV − λU )
2


≤ O


(∑

i∈V
(
p̄t+1
i

)4/3)(∑
i∈U

(
p̄t+1
i

)4/3)
γt
∑
i∈[K]

(
p̄t+1
i

)4/3 (
λ2U + λ2V

) , (54)

where the third step applies the choice of c and the last step uses (x − y)2 ≤ 2(x2 + y2) for any
x, y ∈ R.

To further bound the regret in Eq. (54), we need to know the range of λU and λV . According to
Lemma C.4.2, we use Eq. (80) and Eq. (81) to obtain the upper and lower bounds of λU , and apply
Eq. (82) and Eq. (83) to get upper and lower bounds of λV , which are summarized as:

λU ≤
∑
i∈U (pti)

4/3
ℓ̂ti∑

i∈U (pti)
4/3

, λU ≥ −2
(
γt+1 − γt

) ∑
i∈U p̄

t+1
i∑

i∈U
(
p̄t+1
i

)4/3 ,
λV ≤

∑
i∈V (pti)

4/3
ℓ̂ti∑

i∈V (pti)
4/3

, λV ≥
∑
i∈V

(
p̄t+1
i

)4/3
ℓ̂ti∑

i∈V
(
p̄t+1
i

)4/3 ≥ 0,

where the last step of the lower bound λV ≥ 0 follows from p̄t+1
i ≥ 0 and ℓ̂ti ≥ 0 for any t, i.

In what follows, we continue to bound the λU -related part of Eq. (54) and the λV -related part
respectively. As our goal is to bound E[

∑T
t=T0+1D

t̃(p̄t+1, p̃t+1)], it suffices to bound these terms in
conditional expectation for every round t ≥ T0 + 1.

Bounding the λU -related term First, we consider the term in Eq. (54) related to λU and decompose
it as:

Et

(∑

i∈V
(
p̄t+1
i

)4/3)(∑
i∈U

(
p̄t+1
i

)4/3)
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∑
i∈[K]

(
p̄t+1
i

)4/3 λ2U


= Et


(∑

i∈V
(
p̄t+1
i

)4/3)(∑
i∈U

(
p̄t+1
i

)4/3)
γt
∑
i∈[K]

(
p̄t+1
i

)4/3 λ2U (I{λU ≥ 0}+ I{λU < 0})

 .
For the case of I{λU ≥ 0}, we use the upper bound of λU to show

Et

(∑

i∈V
(
p̄t+1
i

)4/3)(∑
i∈U

(
p̄t+1
i

)4/3)
γt
∑
i∈[K]

(
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i

)4/3 λ2U I{λU ≥ 0}


≤ O

Et

(∑

i∈V
(
p̄t+1
i

)4/3)(∑
i∈U

(
p̄t+1
i

)4/3)
γt
∑
i∈[K]

(
p̄t+1
i

)4/3
(∑

i∈U (pti)
4/3
ℓ̂ti∑

i∈U (pti)
4/3

)2
 . (55)

For the case of I{λU < 0}, we use the lower bound of λU to show

Et

(∑

i∈V
(
p̄t+1
i

)4/3)(∑
i∈U

(
p̄t+1
i

)4/3)
γt
∑
i∈[K]

(
p̄t+1
i

)4/3 λ2U I{λU < 0}


≤ O

Et
(γt+1 − γt

)2
γt

(∑
i∈V

(
p̄t+1
i

)4/3) (∑
i∈U p̄

t+1
i

)2(∑
i∈[K]

(
p̄t+1
i

)4/3)(∑
i∈U

(
p̄t+1
i

)4/3)
 . (56)

Now, our goal is to bound Eq. (55) and Eq. (56), which are shown below respectively.
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Bounding Eq. (55) For this part, we bound it as

Et

(∑

i∈V
(
p̄t+1
i

)4/3)(∑
i∈U

(
p̄t+1
i

)4/3)
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i∈[K]

(
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i∈U (pti)
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(
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i
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∑
i∈U

(
(pti)

4/3
ℓ̂ti

)2
(∑

i∈U (pti)
4/3
)2


≤ Et

(∑
i∈V

(
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i

)4/3)1/2(∑
i∈U

(
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i

)4/3)1/2 ∑
i∈U

(
(pti)

4/3
ℓ̂ti

)2
2γt

(∑
i∈U (pti)

4/3
)2


≤ Et

8(∑
i∈V

(
pti
)4/3)1/2(∑

i∈U

(
pti
)4/3)1/2 ∑

i∈U

(
(pti)

4/3
ℓ̂ti

)2
2γt

(∑
i∈U (pti)

4/3
)2


= 4

(∑
i∈V

(
pti
)4/3)1/2 Et

[∑
i∈U

(
(pti)

4/3
ℓ̂ti

)2]
γt
(∑

i∈U (pti)
4/3
)3/2

,

where the first step follows from the fact ℓ̂ti · ℓ̂tj = 0 for any i ̸= j and the definition of ℓ̂ti; the second
step uses∑
i∈[K]

(
p̄t+1
i

)4/3 =

(∑
i∈U

(
p̄t+1
i

)4/3
+
∑
i∈V

(
p̄t+1
i

)4/3) ≥ 2

(∑
i∈U

(
p̄t+1
i

)4/3)1/2(∑
i∈V

(
p̄t+1
i

)4/3)1/2

;

(57)
the third step applies Lemma B.5.1 and Corollary B.5.2 to obtain the multiplicative relation on U and
V , respectively; and the last step holds since pt is deterministic given the history.

Furthermore, by direct calculation, we have

(∑
i∈V

(
pti
)4/3)1/2 Et

[∑
i∈U

(
(pti)

4/3
ℓ̂ti

)2]
γt
(∑

i∈U (pti)
4/3
)3/2

≤

(∑
i∈V

(
pti
)4/3)1/2

(∑
i∈U (pti)

2
)(∑

i∈[K] (p
t
i)

2/3
)

γt
(∑

i∈U (pti)
4/3
) 3

2

(58)

≤ 1

γt

√∑
i∈V

(pti)
4/3

∑
i∈[K]

(
pti
)2/3 (59)

≤ 1

γt

(∑
i∈V

(
pti
)2/3)∑

i∈[K]

(
pti
)2/3 (60)

≤ K1/6

√
t

(∑
i∈V

(
pti
)2/3)

, (61)

where Eq. (58) follows from

Et
[∑
i∈U

((
pti
)4/3

ℓ̂ti

)2]
= Et

[∑
i∈U

((
pti
)4/3 I{jt = i}ℓti

gti

)2
]

(by Eq. (35))
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≤
∑
i∈U

(pti)
8/3

gti
(ℓti ≤ 1 and Et [I{jt = i}] = gti )

=

(∑
i∈U

(
pti
)2)∑

i∈[K]

(
pti
)2/3 ; (by Eq. (35))

Eq. (59) and Eq. (60) use the following, respectively:(∑
i∈U

(
pti
)4/3)3/2

≥

(∑
i∈U

(
pti
)2)

since ∥x∥2 ≤ ∥x∥ 4
3
, and

√∑
i∈V

(pti)
4/3 ≤

(∑
i∈V

(
pti
)2/3)

;

and Eq. (61) holds by the facts
∑
i∈[K] (p

t
i)

2/3 ≤ K1/3 and γt = K1/6
√
t. Thus, the cumulative regret

of the term in Eq. (55) from round T0 + 1 to round T can be bounded as:
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(62)

Bounding Eq. (56) For this term, we have
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where the first step follows from γt+1 − γt ≤ K
1/6

√
t

, γt = K1/6
√
t, and Eq. (57); the second step

applies Corollary B.5.2 to obtain the multiplicative relation; the third step applies
√∑

i∈V (pti)
4/3 ≤∑

i∈V (pti)
2/3; the last step divides
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=
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)4/3)3/2

for both the numerator
and the denominator. By using the bound above, we have
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≤ O
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where the second step uses
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(
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j∈U p
t
j

)4/3

≥ 1
|U |1/3 ≥ 1

K1/3
and the last step follows from

T0 ≥ K ≥
√
K. Thus, the cumulative regret of this part, starting from t = T0 + 1 to t = T , can be

bounded by

O
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√
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. (63)

Bounding the λV -related term We now consider the regret of Eq. (54) associated with λV . Note
that as λV ≥ 0 always holds, we do not need to consider two cases. Repeating the argument used to
bound Eq. (55), we have
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where the first step applies the upper bound of λV and uses the fact that ℓ̂ti · ℓ̂tj = 0

for any i ̸= j together with the definition of ℓ̂ti; the second step bounds the fraction∑
i∈U

(
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)4/3
/
∑
i∈[K]

(
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)4/3
by one; the last step applies Corollary B.5.2 to obtain the multi-

plicative relation. By a similar argument used for λU , we have
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where the last step uses
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i∈V (pti)
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and γt = K1/6
√
t. To conclude, the cumulative regret of the term related to λV is bounded as
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(65)

Finally, combining Eq. (62), Eq. (63), and Eq. (65) yields the result of Lemma B.4.1.

B.5 Auxiliary Lemmas for Analysis of Decoupled-Tsallis-INF

Since the regularizer of Decoupled-Tsallis-INF does not have an extra log-barrier, we cannot expect
an entry-wise multiplicative relation as used in our MAB analysis. Hence, we follow Lemma 22 and
Lemma 28 in [Ito, 2021] to show group multiplicative relation for 2/3-Tsallis entropy.
Lemma B.5.1. For any given t and index set I ⊆ [K], if x, y ∈ [0, 1]K satisfies

∑
i∈I xi =

∑
i∈I yi

and for 2/3-Tsallis entropy ϕ and c ∈ R, we have

ϕt+1
I (y) = ϕtI(x)− ℓ̂tI + c · 1I , (66)
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then, the following holds.∑
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Proof. From Eq. (66), we have
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Since the above holds for every i ∈ I, the desired claim is immediate. Now, we consider c ≥ 0. For
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√
t+ 1 (yi)

−1/3 ≤
√
t (xi)

−1/3, which gives (xi)
1/3

√
t

≤ (yi)
1/3

√
t+1

. Rearranging
it, we arrive at

yi

(t+ 1)
3/2

≥ xi

(t)
3/2
.

Let us define

zti =
xi∑
i∈I xi

, and zt+1
i =

(
t

t+ 1

)3/2
yi∑
i∈I yi

.

By zt+1
i ≥ zti for all i ∈ I\{it} and

∑
i∈I z

t+1
i ≤

∑
i∈I z

t
i = 1, we can show∑

i∈I (yi)
4/3∑

i∈I (xi)
4/3

=

(
t+ 1

t

)2 ∑
i∈I
(
zt+1
i

)4/3∑
i∈I (zti)

4/3
≤ 2

(
t+ 1

t

)2

,

where the last step uses Lemma 28 in [Ito, 2021] by replacing the power 3/2 by 4/3.

Recall that ∇ϕt+1
U (p̄t+1) = ∇ϕtU (pt)− ℓ̂tU + λU · 1U , which implies that Eq. (66) and

∑
i∈I xi =∑

i∈I yi in Lemma B.5.1 hold by applying I = U , y = p̄t+1, and x = pt. Hence, we have∑
i∈U

(
p̄t+1
i

)4/3 ≤ 8
∑
i∈U (pti)

4/3. By repeating the same reasoning in Lemma B.5.1 and changing
γt+1 to γt, the following corollary is immediate.

Corollary B.5.2. For any given t and index set I ⊆ [K], if x, y ∈ [0, 1]K satisfies
∑
i∈I xi =∑

i∈I yi and for 2/3-Tsallis entropy ϕ and c ∈ R, we have ϕtI(y) = ϕtI(x) − ℓ̂tI + c · 1I , then,∑
i∈I (yi)

4/3 ≤ 8
∑
i∈I (xi)

4/3.

Recall that as p̄t+1
V is computed via ϕt rather than ϕt+1 and ∇ϕtV (p̄t+1) = ∇ϕtV (pt)− ℓ̂tV +λV ·1V ,

Corollary B.5.2 implies the multiplicative relation:
∑
i∈V

(
p̄t+1
i

)4/3 ≤ 8
∑
i∈V (pti)

4/3.

Next, we present a lemma that is used to bound the regret for the first T0 rounds by simply O(
√
KT0).

Lemma B.5.3. For qt defined in Eq. (5), pt defined in Algorithm 1, and any t ∈ [T ], we have

E
[
Dt,t+1(pt, pt+1)−Dt,t+1

U (qt, qt+1)
]
≤ O

(√
K√
t

)
. (68)
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Proof. By similar arguments of [Ito, 2021, Lemma 24], we arrive at

Dt,t+1(pt, pt+1)−Dt,t+1
U (qt, qt+1) ≤ Dt,t+1(pt, zt+1),

where zt+1 ∈ RK is the unconstrained projection such that ∇ϕt+1(zt+1) = ∇ϕt(pt)− ℓ̂t (see more
details in [Ito, 2021]). Then, we have for any i ∈ [K] and any t,

K1/6
√
t+ 1(

zt+1
i

)1/3 =
K1/6

√
t

(pti)
1/3

+ ℓ̂ti ≥
K1/6

√
t

(pti)
1/3

,

which implies that for any i ∈ [K] and any t,(
zt+1
i

)2/3 ≤ (1

t
+ 1

)(
pti
)2/3 ≤ 2

(
pti
)2/3

. (69)

By using ∇ϕt+1(zt+1) = ∇ϕt(pt)− ℓ̂t, we add and subtract ϕt(zt+1) to show

Dt,t+1(pt, zt+1) = ϕt(pt)− ϕt+1(zt+1)−
〈
∇ϕt+1(zt+1), pt − zt+1

〉
+
(
ϕt(zt+1)− ϕt(zt+1)

)
= ϕt(pt)− ϕt(zt+1)−

〈
∇ϕt(pt)− ℓ̂t, pt − zt+1

〉
+ ϕt(zt+1)− ϕt+1(zt+1)

=
〈
pt − zt+1, ℓ̂t

〉
−Dt

(
zt+1, pt

)
+ ϕt(zt+1)− ϕt+1(zt+1).

One can bound the stability term in conditional expectation by

Et
[〈
pt − zt+1, ℓ̂t

〉
−Dt

(
zt+1, pt

)]
≤ 1

γt

∑
i∈[K]

(
pti
)2/32

≤ 1

γt

(
K

1/3
)2

=
K1/2

√
t
, (70)

where the first step applies Lemma C.5.3 and uses a similar approach of Eq. (49) (changing V to [K]);
the second step uses the fact that when pti = 1/K for all i ∈ [K], the square of sum is maximized.

The penalty term is bounded by

ϕt(zt+1)− ϕt+1(zt+1) ≤ O

K1/6

√
t

∑
i∈[K]

(
zt+1
i

)2/3 ≤ O

K1/6

√
t

∑
i∈[K]

(
pti
)2/3 ≤ O

(√
K√
t

)
,

(71)

where the first step uses a similar argument of Eq. (51); the second step applies Eq. (69); the last step
follows from the fact

∑
i∈[K] (p

t
i)

2/3 ≤ K1/3 since pti = 1/K maximizes the value of
∑
i∈[K] (p

t
i)

2/3.
Combining Eq. (70) and Eq. (71), we complete the proof.

Sanity check for the condition in Lemma C.5.3 Recall that we defer the sanity check for the

condition of Lemma C.5.3 in Appendix B.4. This condition requires us to check that (
p̄t+1
j )

1/3
(λV −c)

γt

for any j ∈ V and (p̄t+1
j )

1/3
(λU−c)

γt for any j ∈ U can be lower-bounded by a fixed negative constant

(that is, β
1−β

(
e

β−1
β − 1

)
= 2

(
e−

1
2 − 1

)
≈ −0.78693 when β = 2/3).

Because the lower bound of λV is zero, which is larger than that of λU , we will verify that
(p̄t+1

j )
1/3

(λU−c)
γt can be lower-bounded for any j ∈ U and t ≥ T0 + 1, and the other one can

be similarly bounded. For any j ∈ U , we first show that (
p̄t+1
j )

1/3
λU

γt is lower bounded as:(
p̄t+1
j

)1/3
λU

γt
≥ −

2
(
p̄t+1
j

)1/3
γt

(
γt+1 − γt

)∑
i∈U p̄

t+1
i∑

i∈U
(
p̄t+1
i

)4/3
≥ −

2
∑
i∈U

(
p̄t+1
j

)1/3 (
p̄t+1
i

)
t
∑
i∈U

(
p̄t+1
i

)4/3
50



≥ −
2|U |

(
p̄t+1
j

)4/3
+ 2

∑
i∈U

(
p̄t+1
i

)4/3
t
∑
i∈U

(
p̄t+1
i

)4/3
≥ −2 (|U |+ 1)

t
≥ −1

4
,

where the first step uses the lower bound of λU ; the second step follows from the definition of learning
rate γt; the third step follows from the fact that x1/3y ≤ x4/3 + y4/3 for any x, y ≥ 0; the last step
uses t ≥ T0 + 1 ≥ 16K + 1.

Then, we show that (
p̄t+1
j )

1/3
c

γt is upper-bounded as:(
p̄t+1
j

)1/3
c

γt
=

(
p̄t+1
j

)1/3
γt

λU
∑
i∈U

(
p̄t+1
i

)4/3
+ λV

∑
i∈V

(
p̄t+1
i

)4/3∑
i∈[K]

(
p̄t+1
i

)4/3
≤

(ptit)
1/3

γt
∑
i∈[K]

(
p̄t+1
i

)4/3 ≤
K1/3 (ptit)

1/3

γt
=
K1/6

√
t

≤ 1

4
,

where first step applies the choice of c (see Eq. (52)); the second step uses upper bounds of λU and
λV ; the third step bounds

∑
i∈[K]

(
p̄t+1
i

)4/3 ≥ K−1/3; the fourth step uses γt = K1/6
√
t and bounds

(ptit)
1/3 ≤ 1; the last step uses t ≥ T0 + 1 ≥ 16K + 1.

Finally, combining the bounds above, we have(
p̄t+1
j

)1/3
(λU − c)

γt
≥ −1

8
− 1

4
≥ −0.5 ≥ 2

(
e−

1
2 − 1

)
,

which satisfies the condition of Lemma C.5.3.
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C Supplementary Lemmas

C.1 Proof of Lemma 4.1

Proof. As Dt,t+1(pt, pt+1) = Dt,t+1
V (pt, pt+1) + Dt,t+1

U (pt, pt+1), we first decompose
Dt,t+1
V (pt, pt+1). By the definition of skewed Bregman divergence, we have

Dt,t+1
V (pt, pt+1)

= ϕtV (p
t)− ϕt+1

V (pt+1)−
〈
∇ϕt+1

V (pt+1), ptV − pt+1
V

〉
= ϕtV (p

t)− ϕt+1
V (pt+1)−

〈
∇ϕt+1

V (pt+1), ptV − p̄t+1
V

〉
−
〈
∇ϕt+1

V (pt+1), p̄t+1
V − pt+1

V

〉
= ϕtV (p

t)− ϕt+1
V (pt+1)−

〈
∇ϕt+1

V (p̄t+1), ptV − p̄t+1
V

〉
−
〈
∇ϕt+1

V (pt+1), p̄t+1
V − pt+1

V

〉
= ϕtV (p

t)− ϕt+1
V (p̄t+1)−

〈
∇ϕt+1

V (p̄t+1), ptV − p̄t+1
V

〉
+ ϕt+1

V (p̄t+1)− ϕt+1
V (pt+1)−

〈
∇ϕt+1

V (pt+1), p̄t+1
V − pt+1

V

〉
= Dt,t+1

V

(
pt, p̄t+1

)
+Dt+1

V

(
p̄t+1, pt+1

)
,

where the third step follows from the fact ∇ϕt+1
V (p̄t+1) − ∇ϕt+1

V (pt+1) = c · 1V for a Lagrange
multiplier c ∈ R and the fact

∑
i∈V p

t
i =

∑
i∈V p̄

t+1
i .

By similar arguments, we have

Dt,t+1
U (pt, pt+1) = Dt,t+1

U

(
pt, p̄t+1

)
+Dt+1

U

(
p̄t+1, pt+1

)
.

Combining these two parts together, we have

Dt,t+1(pt, pt+1) = Dt,t+1
V

(
pt, p̄t+1

)
+Dt,t+1

U

(
pt, p̄t+1

)
+Dt+1

(
p̄t+1, pt+1

)
.

Subtracting Dt,t+1
U (qt, qt+1) from both sides completes the proof.

C.2 Proof of Lemma 4.2

To prove Lemma 4.2, we first consider a more general version that takes a weight sequence {at}Tt=1
into consideration. Note that, by simply setting at = 1 for all t, one recovers Lemma 4.2.

Lemma C.2.1. Let {xt}Tt=1 and {at}Tt=1 be some sequences with that xt, at > 0 for all t. Then, for
any α ∈ [0, 1], we have

T∑
t=1

x1−αt at√
1 +

∑t
s=1 x

1−2α
s

≤ 2

√√√√( T∑
t=1

xta2t

)
log

(
1 +

T∑
t=1

x1−2α
t

)
.

Proof. For any η > 0, we have

T∑
t=1

x1−αt at√
1 +

∑t
s=1 x

1−2α
s

=

T∑
t=1

(
atx

1/2
t

)
· x1/2−α

t√
1 +

∑t
s=1 x

1−2α
s

≤
T∑
t=1

η · xta2t +
1

η
· x1−2α

t

1 +
∑t
s=1 x

1−2α
s

,

where the second step uses the AM-GM inequality.

Note that, we have
T∑
t=1

x1−2α
t

1 +
∑t
s=1 x

1−2α
s

≤
T∑
t=1

∫ 1+
∑t

s=1 x
1−2α
s

1+
∑t−1

s=1 x
1−2α
s

du

u
=

∫ 1+
∑T

s=1 x
1−2α
s

1

du

u
= log

(
1 +

T∑
s=1

x1−2α
s

)
,

where the first step bounds the fraction with the integral of 1
u from 1 +

∑t−1
s=1 x

1−2α
s to 1 +∑t

s=1 x
1−2α
s , and the last step follows from the Newton-Leibniz formula.

Therefore, the following bound holds for any η > 0
T∑
t=1

x1−αt at√
1 +

∑t
s=1 x

1−2α
s

≤ η

(
T∑
t=1

xta
2
t

)
+

1

η
log

(
1 +

T∑
s=1

x1−2α
s

)
.

Finally, picking the optimal η finishes the proof.
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Remark C.2.2. For any β ∈ (0, 1), when using the β-Tsallis entropy regularizer with CLOG ≥ 162β
1−β ,

α = β, and θ =
√

1−β
β , Algorithm 1 ensures (ignoring some lower-order terms)

RegT = O

√ 1

β (1− β)

∑
i∈[K]

T∑
t=1

(pti)
1−β√

1 +
∑
s≤tmax {psi , 1/T}

1−2β

 ,

in the adversarial setting. Note that, when β = 1
2 , our learning rate schedule becomes γti =

√
t

which is the same as that of the Tsallis-INF algorithm, and the regret bound above can be simplified
as

RegT = O

 T∑
t=1

∑
i∈[K]

√
pti
t+ 1

 ≤ O

(
T∑
t=1

√
K

t+ 1

)
= O

(√
KT

)
,

where the second step follows from the Cauchy-Schwarz inequality:
∑
i∈[K]

√
pti ≤√

K
∑
i∈[K] p

t
i =

√
K, and the last step uses the fact that

∑T
t=1

1√
t+1

= O
(√

T
)

. On the

other hand, for the extreme case where β = 0, we have∑
i∈[K]

T∑
t=1

pti√
1 +

∑
s≤tmax {psi , 1/T}

≤
∑
i∈[K]

T∑
t=1

∫ ∑t
s=1 p

s
i∑t−1

s=1 p
s
i

du√
1 + u

≤ 2
∑
i∈K

√√√√1 +

T∑
t=1

pti = O
(√

KT
)
,

where the first step bounds the fraction by the integral of 1√
1+u

from
∑t−1
s=1 p

s
i to

∑t
s=1 p

s
i ; the

second step follows from the Newton-Leibniz formula; the last step follows from the Cauchy-Schwarz
inequality.

These two bounds for β = 0 and β = 1/2 inspire us to conjecture the following: for any β ∈ (0, 1),
any sequence of distributions {pt}Tt=1, we have∑

i∈[K]

T∑
t=1

(pti)
1−β√

1 +
∑
s≤tmax {psi , 1/T}

1−2β
= O

(√
KT

)
. (72)

Clearly, if this conjecture holds, then, the extra
√
log T factor in the regret bounds for the adversarial

setting can be removed when β ̸= 1/2.

C.3 Multiplicative Relation

The added fixed amount log-barrier in the regularizer ensures multiplicative relation among p̄t+1, pt,
and pt+1. To show this, we start from the following general lemma.
Lemma C.3.1. Consider any constant CLOG > 0, any learning rate vectors γ, γ′ ∈ Rd>0 satisfying
γ′i ≥ γi for all i ∈ [d], any loss vectors L,L′ ∈ Rd>0, and any convex function ψ(x) which ensures
ψ′′(x)

4 ≤ ψ′′(z) ≤ 4ψ′′(x) for any x ∈ R>0 and any z ∈
[
x
2 , 2x

]
. Define ϕ(p) =

∑
i∈[d] γiψ(pi) as

the regularizer with learning rate γ, ϕ′(p) =
∑
i∈[d] γ

′
iψ(pi) as the regularizer with learning rate γ′,

ϕL(p) = −CLOG

∑
i∈[d] log pi as the log-barrier regularizer, F (p) = ⟨p, L⟩ + ϕ(p) + ϕL(p), and

F ′(p) = ⟨p, L′⟩ + ϕ′(p) + ϕL(p). Further define x, y ∈ Ω ⊆ Rd>0 as: x = argminp∈Ω F (p) and
y = argminp∈Ω F

′(p). If CLOG satisfies:

CLOG ≥ max

9, 32
∑
i∈[d]

(L′
i − Li)

2
x2i , 32

∑
i∈[d]

(γ′i − γi)
2
ψ′(xi)

2x2i

 , (73)

then, for any i ∈ [d], we have
1

2
xi ≤ yi ≤ 2xi. (74)
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Proof. For simplicity, we denote H as the Hessian ∇2F (x), and HL as the Hessian ∇2ϕL(x) which
is a diagonal matrix with CLOG

x2
i

on its diagonal for every entry i ∈ [d]. Our goal is to show that
∥y − x∥H ≤ 1, which is enough to guarantee Eq. (74) because 1 ≥ ∥y − x∥H ≥ ∥y − x∥HL

, and

∥y − x∥HL
≤ 1 ⇒ CLOG

∑
i∈[d]

(
yi − xi
xi

)2

≤ 1 ⇒
∣∣∣∣yi − xi

xi

∣∣∣∣ ≤ 1

3
, for ∀i ∈ [d],

where the last step follows from the condition CLOG ≥ 9.

To prove ∥y − x∥H ≤ 1, it suffices to show that for any z ∈ Ω that ensures ∥z − x∥H = 1, it holds
that F ′(z) ≥ F ′(x). To see this, note that the level set A = {p ∈ Ω : F ′(p) ≤ F ′(x)} is a convex
set that contains x and y. Clearly, any intermediate point between x and y belongs to A, and does
not belong to the boundary set ∂B = {p : ∥p− x∥H = 1} where B = {p : ∥p− x∥H < 1} also
contains x. Therefore, y belongs to the set B and guarantees that ∥y − x∥H ≤ 1.

To this end, we first bound F ′(z) for any z ∈ Ω with ∥z − x∥H = 1 as

F ′(z) = F ′(x) +∇F ′(x)⊤(z − x) +
1

2
∥z − x∥2∇2F ′(ξ)

= F ′(x) + (∇F ′(x)−∇F (x))⊤ (z − x) +∇F (x)⊤(z − x) +
1

2
∥z − x∥2∇2F ′(ξ)

≥ F ′(x) + (∇F ′(x)−∇F (x))⊤ (z − x) +
1

2
∥z − x∥2∇2F ′(ξ)

≥ F ′(x) + (∇F ′(x)−∇F (x))⊤ (z − x) +
1

2
∥z − x∥2∇2F (ξ)

≥ F ′(x) + (∇F ′(x)−∇F (x))⊤ (z − x) +
1

8
∥z − x∥2∇2F (x)

= F ′(x) + (∇F ′(x)−∇F (x))⊤ (z − x) +
1

8
∥z − x∥2H

= F ′(x) + (∇F ′(x)−∇F (x))⊤ (z − x) +
1

8
,

where the first step follows the Taylor expansion of F ′(z) at x with ξ being an intermediate point
between x and z; the third step holds due to the optimality condition of x, i.e., ∇F (x)⊤(z − x) ≥ 0;
the forth step uses the fact that ∇2F ′(ξ) ⪰ ∇2F (ξ); the fifth step applies the multiplicative relation
between ξ and x: 1

2xi ≤ ξi ≤ 2xi for any i ∈ [d], which indicates ψ′′(ξi) ≥ ψ′′(xi)
4 according to the

property of ψ; the last step uses the condition that ∥z − x∥H = 1.

To finish the proof, we only need to show that (∇F ′(x)−∇F (x))⊤ (z − x) ≥ − 1
8 . We bound

(∇F ′(x)−∇F (x))⊤ (z − x) as

(∇F ′(x)−∇F (x))⊤ (z − x)

= (L′ − L+∇ϕ′(x)−∇ϕ(x))⊤ (z − x)

≥ −∥L′ − L+∇ϕ′(x)−∇ϕ(x)∥H−1 ∥z − x∥H
= −∥L′ − L+∇ϕ′(x)−∇ϕ(x)∥2H−1

≥ −∥L′ − L+∇ϕ′(x)−∇ϕ(x)∥2H−1
L

= −
∑
i∈[d]

(L′
i − Li + (γ′i − γi)ψ

′(xi))
2 x2i
CLOG

, (75)

where the second step uses Hölder’s inequality, and the forth step follows from the fact that H−1 ⪯
H−1
L , which ensures ∥p∥H−1 ≤ ∥p∥H−1

L
for any p ∈ Rd.

Note that, we have ∑
i∈[d]

(L′
i − Li + (γ′i − γi)ψ

′(xi))
2 x2i
CLOG
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≤ 2

CLOG

∑
i∈[d]

(L′
i − Li)

2
x2i + (γ′i − γi)

2
ψ′(xi)

2x2i

≤ 2

32
+

2

32
=

1

8
,

where the second step follows from the fact that (x+ y)
2 ≤ 2

(
x2 + y2

)
for any x, y; the second

step uses Eq. (73). Plugging this inequality back to Eq. (75) finishes the proof.

In what follows, we show three applications of Lemma C.3.1 for the β-Tsallis entropy (Lemma C.3.2),
the Shannon entropy (Lemma C.3.3), and the log-barrier (Lemma C.3.4), respectively.

Lemma C.3.2 (Multiplicative Relation for β-Tsallis Entropy). For any β ∈ (0, 1), when using the

β-Tsallis entropy regularizer with CLOG ≥ 162β
1−β , α = β, and θ =

√
1−β
β , Algorithm 1 guarantees

1

2
pti ≤ p̄t+1

i ≤ 2pti,
1

2
pti ≤ pt+1

i ≤ 2pti,

for all t ∈ [T ] and arm i ∈ [K].

Proof. We first apply Lemma C.3.1 to show 1
2p
t
i ≤ pt+1

i ≤ 2pti. In particular, we set Ω as a
probability simplex, L =

∑
τ<t ℓ

τ
i , L′ =

∑
τ≤t ℓ

τ
i , γ = γt, and γ′ = γt+1 where the loss estimators

and learning rates are defined in Algorithm 1. These choices naturally give x = pt and y = pt+1.
Then, we only need to check that choosing CLOG = 162β

1−β can guarantee that Eq. (73) holds. Clearly,

we have CLOG ≥ 9. From the definition of ℓ̂ti, one can show

32
∑
i∈[K]

(
ℓ̂ti

)2 (
pti
)2 ≤ 32

∑
i∈[K]

I{it = i}
(pti)

2

(
pti
)2

= 32
∑
i∈[K]

I
{
it = i

}
= 32.

Finally, by Eq. (21), we have

32
∑
i∈[K]

(
γt+1
i − γti

)2 (
pti
)2 (

ψ′(pti)
)2

= 32
∑
i∈[K]

(
γt+1
i − γti

)2 (
pti
)2(β (pti)β−1

1− β

)2

≤ 32
∑
i∈[K]

β2

(1− β)
2 · (1− β)

β
· (max {pti, 1/T})

2−4β

1 +
∑t
k=1

(
max

{
pki , 1/T

})1−2β

(
pti
)2β

≤ 32
∑
i∈[K]

β

(1− β)

(
max

{
pti, 1/T

})1−2β (
max

{
pti, 1/T

})2β
≤ 32

∑
i∈[K]

β

(1− β)

(
pti +

1

T

)

≤ 32 · β

1− β

∑
i∈[K]

pti +
K

T

 ≤ 64 · β

1− β
,

where the third step uses the inequality that max {pti, 1/T} ≤ pti +
1
T .

To prove 1
2p
t
i ≤ p̄t+1

i ≤ 2pti for all arms i ∈ [K], we show 1
2p
t
i ≤ p̄t+1

i ≤ 2pti for all arms i ∈ U
and all arms i ∈ V , respectively. Since the proof ideas of both are the same, we only show the one
related to set U . We set Ω = {x ∈ RK≥0 :

∑
i∈U xi =

∑
i∈U p

t
i,
∑
i∈V xi = 0} and maintain all

settings the same as the above. Note that, Eq. (73) only depends on loss estimators and learning rate
schedules, and thus, it holds for new decision space Ω. Repeating a similar argument, we can obtain
the multiplicative relation related to arms in V .
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Lemma C.3.3 (Multiplicative Relation for Shannon Entropy). When using the Shannon entropy
regularizer with CLOG ≥ 162 logK, α = 1, and θ =

√
1

log T , Algorithm 1 guarantees

1

2
pti ≤ p̄t+1

i ≤ 2pti,
1

2
pti ≤ pt+1

i ≤ 2pti,

for all t ∈ [T ] and arm i ∈ [K].

Proof. We consider applying Lemma C.3.1 to prove the multiplicative relation between pt and pt+1

with similar setups in the proof Lemma C.3.2. For the Shannon entropy regularizer in Algorithm 1,
we have ψ(x) = x log

(
x
e

)
and ψ′(x) = log(x).

By the same argument, we know that 162 logK ≥ 32 ≥ 32
∑
i∈[K]

(
ℓ̂ti

)2
(pti)

2 and 162 logK ≥ 9.

Then, we only need to verify that 162 logK ≥ 32
∑
i∈[K]

(
γt+1
i − γti

)2
ψ′(pti)

2 (pti)
2 as:

32
∑
i∈[K]

(
γt+1
i − γti

)2 (
pti log p

t
i

)2
≤ 32

∑
i∈[K]

1

log T

(max {pti, 1/T})
−2

1 +
∑t
k=1

(
max

{
pki , 1/T

})−1

(
pti log p

t
i

)2
≤ 32

∑
i∈[K]

1

log T

(
max

{
pti, 1/T

})−1 (
max

{
pti, 1/T

}
log
(
max

{
pti, 1/T

}))2
≤ 32

∑
i∈[K]

1

log T
max

{
pti, 1/T

} (
log
(
max

{
pti, 1/T

}))2
≤ 32

∑
i∈[K]

−
(
max

{
pti, 1/T

})
log
(
max

{
pti, 1/T

})
≤ 32K ·

(
−
∑
i∈[K] max {pti, 1/T}

K
log

(∑
i∈[K] max {pti, 1/T}

K

))
≤ 64 logK,

where the first step follows from Eq. (21) that γt+1
i − γti ≤ 1

log T

max{pti,1/T}−1

γt+1
i

; the second step

follwos from the fact that 0 ≥ pti log (p
t
i) ≥ max {pti, 1/T} log (max {pti, 1/T}) as x log x is mono-

tonically decreasing in [0, 1/T ]; the forth step follows from the fact that 0 ≤ − log (max {pti, 1/T}) ≤
log T ; the fifth step utilizes the concavity of −x log x.

Finally, following the same steps in Lemma C.3.2 finishes the proof of the multiplicative relation
between p̄t+1 and pt.

Lemma C.3.4 (Multiplicative Relation for Log-barrier). When using the log-barrier regularizer with
CLOG ≥ 162, α = 0 and θ =

√
1

log T , Algorithm 1 guarantees

1

2
pti ≤ p̄t+1

i ≤ 2pti,
1

2
pti ≤ pt+1

i ≤ 2pti,

for all t ∈ [T ] and arm i ∈ [K].

Proof. Similarly, we only need to verify that 162 logK ≥ 32
∑
i∈[K]

(
γt+1
i − γti

)2
ψ′(pti)

2(pti)
2 as:

32
∑
i∈[K]

(
γt+1
i − γti

)2 (
pti
)2
ψ′(pti)

2

= 32
∑
i∈[K]

(
γt+1
i − γti

)2 (
pti
)2( 1

pti

)2
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≤ 32
∑
i∈[K]

1

(log T )

(max {pti, 1/T})
1 +

∑t
k=1

(
max

{
pki , 1/T

})
≤ 32

log T

∑
i∈[K]

(
max

{
pti, 1/T

})

≤ 32

log T

∑
i∈[K]

pti +
K

T

 ≤ 64,

where the first step follows from the definition of the log-barrier regularizer that ψ′(pti) = − 1
pti

; the
second step applies Eq. (21).

Lemma C.3.5. With CLOG ≥ 162, Algorithm 1 guarantees 1
2p
t
i ≤ zi ≤ 2pti for any arm i ∈ [K] and

round t ∈ [T ] where z ∈ RK≥0 is defined as

z = argmin
xi=0,∀i∈U
xi≥0,∀i∈V∑

i∈V xi=
∑

i∈V pti

〈∑
τ≤t

ℓ̂τV , x

〉
+ ϕtV (x).

Proof. Clearly, ptV is the solution of the following optimization problem:

ptV = argmin
xi=0,∀i∈U
xi≥0,∀i∈V∑

i∈V xi=
∑

i∈V pti

〈∑
τ<t

ℓ̂τV , x

〉
+ ϕtV (x),

since ptV satisfies all the KKT conditions.

Therefore, we are able to apply Lemma C.3.1 by setting L =
∑
τ<t ℓ̂

τ
V , L′ =

∑
τ≤t ℓ̂

τ
V , Ω being the

corresponding simplex, γ = γ′ = γt where the loss estimators and learning rates are defined in Algo-

rithm 1. As γ′ = γ and CLOG = 162 > 9, we only need to verify that CLOG ≥ 32
∑
i∈V

(
ℓ̂ti

)2
(pti)

2.

By the definition of the importance weighted loss estimator ℓ̂t, we have

32
∑
i∈V

(
ℓ̂ti

)2 (
pti
)2 ≤ 32

∑
i∈V

I
{
it = i

}
≤ 32 ≤ 162,

which finishes the proof.

C.4 Generalization of [Ito, 2021, Lemma 21]

In this section, we greatly generalize [Ito, 2021, Lemma 21] which is critical to analyze the residual
regret. The approach of Ito [2021] requires a closed form solution of the optimization problem from
the FTRL framework, which is not always guaranteed. Our approach removes this constraint, and
thus, it can be applied to β-Tsallis entropy regularizers when β ̸= 1/2, and even more complicated
regularizers such as those hybrid ones.
Lemma C.4.1. Given Ω ⊆ R and twice-differentiable functions f, g : Ω → R, if their corresponding
first-order derivatives f ′, g′ are invertible and the inverse functions (f ′)−1, (g′)−1 are differentiable
and convex, then, for any p, q ∈ Ω and z ∈ R satisfying g′(q) = f ′(p)− z, we have

q ≥ p+
1

g′′(p)
· (f ′(p)− g′(p)− z) , (76)

q ≤ p+
1

g′′(q)
· (f ′(p)− g′(p)− z) , (77)

q ≥ p+
1

f ′′(p)
· (f ′(q)− g′(q)− z) , (78)

q ≤ p+
1

f ′′(q)
· (f ′(q)− g′(q)− z) . (79)
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Proof. We first show Eq. (76):

q = (g′)
−1

(f ′(p)− z)

= (g′)
−1

(g′(p) + (f ′(p)− g′(p))− z)

≥ p+

[(
(g′)

−1
)′

(x)

]∣∣∣∣
x=g′(p)

· (f ′(p)− g′(p)− z)

= p+
1

g′′(p)
· (f ′(p)− g′(p)− z) ,

where the third step follows from the convexity of (g′)−1, which ensures (g′)−1
(u) ≥ (g′)

−1
(v) +(

(g′)
−1
)′

(v) · (u− v) for any u, v in the domain of (g′)−1; the last step uses the inverse function
theorem.

On the other hand, we have

p = (g′)
−1

(g′(p))

= (g′)
−1

(g′(q) + g′(p)− g′(q))

= (g′)
−1

(g′(q) + g′(p)− f ′(p) + f ′(p)− g′(q))

= (g′)
−1

(g′(q)− (f ′(p)− g′(p)− z))

≥ q −
[(

(g′)
−1
)′

(x)

]∣∣∣∣
x=g′(q)

· (f ′(p)− g′(p)− z)

= q − 1

g′′(q)
· (f ′(p)− g′(p)− z) ,

where the forth step uses g′(q) = f ′(p)− z; the fifth step follows from the convexity of (g′)−1; the
last step uses the inverse function theorem. Rearranging this inequality yields Eq. (77).

By swapping p with q, f with g, and flipping z to −z, repeating the steps above yields that

p ≥ q +
1

f ′′(q)
· (g′(q)− f ′(q) + z) ,

p ≤ q +
1

f ′′(p)
· (g′(q)− f ′(q) + z) .

Rearranging these inequalities finishes the proof of Eq. (79) and Eq. (78), respectively.

In the following, we show an application of Lemma C.4.1 in the FTRL framework.

Lemma C.4.2. Let I ⊆ [K] be an index set. Suppose ∇ϕt+1
I (q) = ∇ϕtI(p)− ℓ̂tI + c · 1I where ϕt

is the regularizer with ϕt(x) =
∑
i∈S γ

t
iψ(xi), ψ : Ω → R for Ω ⊆ R is a strictly convex function

such that γtiψ satisfies all conditions in Lemma C.4.1 for all t, i, ℓ̂tI is the loss estimator, and c ∈ R.
If p, q satisfy

∑
i∈I pi =

∑
i∈I qi, then we have:

c ≤

(∑
i∈I

1

γt+1
i ψ′′(pi)

)−1(∑
i∈I

(
γt+1
i − γti

)
ψ′(pi) + ℓ̂ti

γt+1
i ψ′′(pi)

)
, (80)

c ≥

(∑
i∈I

1

γtiψ
′′(qi)

)−1(∑
i∈I

(
γt+1
i − γti

)
ψ′(qi) + ℓ̂ti

γtiψ
′′(qi)

)
. (81)

Consequently, for ∇ϕtI(q) = ∇ϕtI(p)− ℓ̂tI + c · 1I where all definitions remain the same as above,
we have

c ≤

(∑
i∈I

1

γtiψ
′′(pi)

)−1(∑
i∈I

ℓ̂ti
γtiψ

′′(pi)

)
, (82)
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c ≥

(∑
i∈I

1

γtiψ
′′(qi)

)−1(∑
i∈I

ℓ̂ti
γtiψ

′′(qi)

)
. (83)

Proof. By directly applying Eq. (76) in Lemma C.4.1 with f(·) = γtiψ(·), g(·) = γt+1
i ψ(·), p = pi,

q = qi, and z = ℓ̂ti − c, we have

qi − pi ≥
(
γti − γt+1

i

)
ψ′(pi)− ℓ̂ti + c

γt+1
i ψ′′(pi)

. (84)

Since
∑
i∈I pi =

∑
i∈I qi, we sum Eq. (84) over all i ∈ I and then rearrange to get Eq. (80). On

the other hand, by applying Eq. (79) in Lemma C.4.1 with the same choices, we have

qi − pi ≤
(
γt+1
i − γti

)
ψ′(qi)− ℓ̂ti + c

γtiψ
′′(qi)

. (85)

We again sum Eq. (85) over all i ∈ I and then rearrange to get Eq. (81).

Lemma C.4.2 is applicable to the analysis of the Decoupled-Tsallis-INF algorithm. For the analysis
of the MAB algorithms, since we add some extra log-barrier to the regularizers, we will need the
following similar results.

Lemma C.4.3. Under the same setup of Lemma C.4.2 and let θ ∈ R>0 be given, if the regularizer
is ϕt(x) =

∑
i∈S γ

t
iψ(xi) + θr(xi) where ψ (·) , r (·) are strictly convex and twice differentiable,

γtiψ (·) + θr (·) satisfies all conditions in Lemma C.4.1 for all t, i, we have

c ≤

(∑
i∈I

1

γt+1
i ψ′′(pi) + θr′′(pi)

)−1(∑
i∈I

(
γt+1 − γt

)
ψ′(pi) + ℓ̂ti

γt+1
i ψ′′(pi) + θr′′(pi)

)
,

c ≥

(∑
i∈I

1

γtiψ
′′(qi) + θr′′(qi)

)−1(∑
i∈I

(
γt+1
i − γti

)
ψ′(qi) + ℓ̂ti

γtiψ
′′(qi) + θr′′(qi)

)
,

c ≤

(∑
i∈I

1

γtiψ
′′(pi) + θr′′(pi)

)−1(∑
i∈I

(
γt+1 − γt

)
ψ′(qi) + ℓ̂ti

γtiψ
′′(pi) + θr′′(pi)

)
,

c ≥

(∑
i∈I

1

γt+1
i ψ′′(qi) + θr′′(qi)

)−1(∑
i∈I

(
γt+1
i − γti

)
ψ′(pi) + ℓ̂ti

γt+1
i ψ′′(qi) + θr′′(qi)

)
.

Proof. For any i ∈ I, applying Eq. (76) in Lemma C.4.1 with f = γt+1
i ψ(·) + θr(·), g = γtiψ(·) +

θr(·), p = pi, q = qi, and z = ℓ̂ti − c yields that

qi − pi ≥
γtiψ

′(pi) + θr′(pi)− γt+1
i ψ′(pi)− θr′(pi)− ℓ̂ti + c

γt+1
i ψ′′(pi) + θr′′(pi)

=

(
γti − γt+1

i

)
ψ′(pi)− ℓ̂ti + c

γt+1
i ψ′′(pi) + θr′′(pi)

.

By the condition that
∑
i∈I pi =

∑
i∈I qi, taking the summation on both sides gives us:

0 ≥
∑
i∈I

(
γti − γt+1

i

)
ψ′(pi)− ℓ̂ti + c

γt+1
i ψ′′(pi) + θr′′(pi)

Rearranging
======⇒ c ·

∑
i∈I

1

γt+1
i ψ′′(pi) + θr′′(pi)

≤
∑
i∈I

(
γt+1
i − γti

)
ψ′(pi) + ℓ̂ti

γt+1
i ψ′′(pi) + θr′′(pi)

,

which proves the first inequality. Similarly, the other inequalities in the statement can be obtained by
applying Eq. (77), Eq. (78), and Eq. (79) in Lemma C.4.1.
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C.5 Analysis of FTRL Framework and Bregman Divergence

Lemma C.5.1 (Lemma 17 in Ito [2021]). For any regularizers ϕ, ϕ′, and L,L′ ∈ RK , denote z, z′
as

z = argmin
x∈Ω

⟨L, x⟩+ ϕ(x), z′ = argmin
x∈Ω

⟨L′, x⟩+ ϕ′(x),

where Ω = {x ∈ D | Ax = b} for some convex set D and A ∈ RK×K , b ∈ RK . Define the
divergences F 1 and F 2 as:

F 1(x, y) = ϕ(x)− ϕ′(y)− ⟨∇ϕ′(y), x− y⟩ , F 2(y, x) = ϕ′(y)− ϕ(x)− ⟨∇ϕ(x), y − x⟩ .

We then have F 1(z, z′) + F 2(z′, z) = −⟨L′ − L, z′ − z⟩.

Since the following lemma only uses standard Bregman divergence and the analysis is for a given
round t, we drop t for Dt(x, y) and use D(x, y).
Lemma C.5.2. For any L, ℓ ∈ RK and a Legendre regularizer ϕ, let p, q be the vectors such that

p = argmin
x∈ΩK

⟨x, L⟩+ ϕ(x), and q = argmin
x∈ΩK

⟨x, L+ ℓ⟩+ ϕ(x).

We then have

⟨p− z, ℓ⟩ −D(z, p) ≤ ⟨p− q, ℓ⟩ −D(q, p),∀z ∈ ΩK .

Moreover, there exists an intermediate point ξ = η · p+ (1− η) · q for some η ∈ [0, 1], such that

⟨p− q, ℓ⟩ −D(q, p) ≤ 2 ∥ℓ∥2∇−2ϕ(ξ) .

Proof. Since ϕ is Legendre, we have ∇ϕ(p) = −L+ c · 1K for some c ∈ R. Thus, it holds for any
z ∈ ΩK that

⟨p− z, ℓ⟩ −D(z, p)

= ⟨p− z, ℓ⟩ − ϕ(z) + ϕ(p) + ⟨∇ϕ(p), z − p⟩
= ⟨p− z, ℓ⟩ − ϕ(z) + ϕ(p) + ⟨−L, z − p⟩
= ⟨p, L+ ℓ⟩+ ϕ(p)− ⟨z, L+ ℓ⟩ − ϕ(z)

= ⟨p, L⟩+ ϕ(p) + ⟨p, ℓ⟩ − ⟨z, L+ ℓ⟩ − ϕ(z).

Since q maximizes the last two terms, we have for any z ∈ ΩK ,

⟨p− z, ℓ⟩ −D(z, p) ≤ ⟨p− q, ℓ⟩ −D(q, p).

Let F (x) = ⟨x, L⟩+ ϕ(x) and G(x) = ⟨x, L+ ℓ⟩+ ϕ(x) so that p is the minimizer of F (x) and q
is the minimizer of G(x). By ∇ϕ(p) = −L+ c · 1K and direct calculation, we have

⟨p− q, ℓ⟩ −D(q, p) = F (p) + ⟨p, ℓ⟩ −G(q) = G(p)−G(q)

= ⟨p− q,∇G(q)⟩+ 1

2
∥p− q∥2∇2G(ξ)

≥ 1

2
∥p− q∥2∇2ϕ(ξ) ,

where we apply Taylor’s expansion with ξ = η · p + (1 − η) · q for some η ∈ [0, 1] being an
intermediate point between p and q, followed by the first-order optimality condition. On the other
hand, we have

⟨p− q, ℓ⟩ −D(q, p) = ⟨p− q, ℓ⟩+ F (p)− F (q)

≤ ⟨p− q, ℓ⟩
≤ ∥ℓ∥∇−2ϕ(ξ) ∥p− q∥∇−2ϕ(ξ) ,

where the second step follows from the optimality of p, and the last step applies Hölder’s inequality.
Combining these two inequalities gives us that

⟨p− q, ℓ⟩ −D(q, p) ≤ 2 ∥ℓ∥2∇−2ϕ(ξ) ,

for some η ∈ [0, 1] such that ξ = η · p+ (1− η) · q.
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Lemma C.5.3. Consider the following regularizer for any β ∈ (0, 1) and learning rate γi > 0:

ϕ(x) = − 1

1− β

∑
i∈[K]

γix
β
i .

For any q, x ∈ RK≥0 and ℓ ∈ RK satisfying (qi)
1−βℓi
γi

≥ β
1−β

(
e

β−1
β − 1

)
for all arm i, we have

⟨q − x, ℓ⟩ −D(x, q) ≤
∑
i∈[K]

(qi)
2−β

βγi
(ℓi)

2
.

Proof. Let w = argminx∈RK
>0

⟨q − x, ℓ⟩−D(x, q) be the maximizer. By setting the gradient to zero,
we have −ℓ−∇ϕ(w) +∇ϕ(q) = 0, which equivalently implies that for any arm i ∈ [K],

1

(wi)
1−β =

1

(qi)
1−β +

1− β

γiβ
ℓi. (86)

By direct calculation, we have
⟨q − w, ℓ⟩ −D(w, q)

= ϕ(q)− ϕ(w)− ⟨∇ϕ(w), q − w⟩

=
1

1− β

∑
i∈[K]

γi

(
(wi)

β − (qi)
β
+ β (wi)

β−1
(qi − wi)

)
=

1

1− β

∑
i∈[K]

γi

(
(1− β) (wi)

β − (1− β) (qi)
β
+ β

(
(wi)

β−1 − (qi)
β−1
)
qi

)
=

1

1− β

∑
i∈[K]

γi

(
(1− β) (wi)

β − (1− β) (qi)
β
+

1− β

γi
ℓiqi

)

=
∑
i∈[K]

γi

(
(wi)

β − (qi)
β
+
ℓiqi
γi

)
, (87)

where the first step uses −ℓ−∇ϕ(w) +∇ϕ(q) = 0, and the fifth step uses Eq. (86).

Moreover, we have for any arm i

(wi)
β
= (qi)

β

(
(qi)

1−β

(wi)
1−β

) β
β−1

= (qi)
β

(
1 +

1− β

γiβ
(qi)

1−β
ℓi

) β
β−1

≤ (qi)
β

(
1− 1

γi
(qi)

1−β
ℓi +

1

β (γi)
2 (qi)

2−2β
(ℓi)

2

)

= (qi)
β − 1

γi
qiℓi +

1

β (γi)
2 (qi)

2−β
(ℓi)

2
, (88)

where the second step uses Eq. (86), and the third step follows from the fact that (1 + z)α <

1+αz+α (α− 1) z2 for α < 0 and z ≥ exp
(
1
α

)
− 1 with α = β

β−1 = 1− 1
1−β < 0 for β ∈ (0, 1)

and z = 1−β
γiβ

(qi)
1−β

ℓi ≥ e
β−1
β − 1 = exp

(
1
α

)
− 1.

Plugging Eq. (88) into Eq. (87) yields

⟨q − w, ℓ⟩ −D(w, q) ≤
∑
i∈[K]

γi

(
ℓiqi
γi

− 1

γi
qiℓi +

1

β (γi)
2 (qi)

2−β
(ℓi)

2

)
=
∑
i∈[K]

(qi)
2−β

βγi
(ℓi)

2
,

which concludes the proof.
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