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ABSTRACT

Current evaluation frameworks for foundation models rely heavily on static, manually
curated benchmarks, limiting their ability to capture the full breadth of model capabilities.
This paper introduces Active learning for Capability Evaluation (ACE), a novel framework
for scalable, automated, and fine-grained evaluation of foundation models. ACE leverages
the knowledge embedded in powerful frontier models to decompose a domain into semanti-
cally meaningful capabilities and generates diverse evaluation tasks, significantly reducing
human effort. In Mathematics, ACE generated 433 capabilities and 11,800 tasks, covering
94% of Wikipedia-defined skills in the domain while introducing novel, coherent ones.
To maximize efficiency, ACE fits a capability model in latent semantic space, allowing
reliable approximation of a subject model’s performance by evaluating only a subset of
capabilities via active learning. It reaches within 0.01 RMSE of exhaustive evaluation
by evaluating less than half of capabilities. Compared to static datasets, ACE provides
more balanced coverage and uncovers fine-grained differences that aggregate metrics fail
to capture. Our results demonstrate that ACE provides a more complete and informative
picture of model capabilities, which is essential for safe and well-informed deployment of
foundation models.

1 INTRODUCTION

As foundation models grow in scale, generality, and influence across various domains, the challenge of
understanding what they can and cannot do becomes increasingly urgent. Capability evaluations serve
multiple purposes: they help practitioners select the right model for a given task, guide developers in
improving model behavior, and most importantly ensure trustworthiness and safety, particularly in high-stakes
domains such as cybersecurity, healthcare, and social engineering. Yet the current evaluation practices are
dominated by static, human-curated benchmarks. While useful, these benchmarks quickly fall behind the
pace of model development, missing fine-grained skills and introducing costly blind spots (Chen et al., 2021;
Cobbe et al., 2021; Dua et al., 2019; Hendrycks et al., 2020; 2021b; Phan et al., 2025; Srivastava et al., 2022;
Zellers et al., 2019; AI Security Institute, UK, 2024).

We argue that capability evaluation must itself become adaptive. Instead of freezing tasks in advance, one
needs a process that can discover new capabilities as models evolve, generate meaningful and diverse tasks to
probe them, and adaptively focus on the most informative regions of the capability space Zhang et al. (2024a);
Prabhu et al. (2024). Recent advances in frontier and large language models (LLMs) make such adaptivity
possible. LLMs can decompose a domain into semantically meaningful capabilities and generate diverse
and contextually rich tasks for each capability. However, this power introduces a scalability problem: even a
single domain may yield thousands of candidate capabilities, each requiring extensive task sets for reliable
scoring. For commercial models (e.g., GPT-4, Claude, Gemini) with usage costs, exhaustive evaluation is
prohibitively expensive.
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We, therefore, propose to formulate capability evaluation as the problem of approximating a latent capability
function where the goal is to estimate a model’s competence across a large set of capabilities without
exhaustively evaluating every one. The central research question becomes how to approximate this function
effectively when both the number of potential capabilities and the size of task sets required for reliable
scoring are large. Motivated by this question, we present Active Learning for Capability Evaluation
(ACE), a framework for automated, scalable, and fine-grained evaluation of foundation models. ACE
operates in two stages: (1) it uses powerful frontier models to construct structured capability hierarchies and
generate tasks with reference solutions; (2) it actively evaluates a subject model by learning its capability
function in a latent space and selectively probing informative capabilities. The framework codebase is
available at https://anonymous.4open.science/r/ace-7EAF for reproducibility and creating
new evaluation benchmarks.

Our contributions are as follows:

• Reframing capability evaluation. We introduce ACE as the first framework that formulates
evaluation as approximating a latent capability function, rather than exhaustively scoring on fixed
benchmarks. We further show that the latent space, constructed via pretrained text encoders and
dimensionality reduction, reliably preserves semantic relationships between capabilities, making
principled generalization possible.

• Adaptive coverage and efficiency. By combining LLM-based capability decomposition with active
learning in latent semantic space, ACE simultaneously expands coverage (capturing overlooked
skills) and improves efficiency (minimizing evaluation cost). This resolves the long-standing
trade-off between breadth and scalability in evaluation.

• Large-scale empirical validation. In Mathematics, spanning 433 capabilities and 11,800 tasks,
ACE reveals capability- and area-level differences invisible to aggregate metrics. It recovers nearly
the entire Wikipedia capability space, showing that automated benchmarks can surpass static,
human-curated ones in coverage, granularity, and cost-effectiveness.

2 AUTOMATED CAPABILITY EVALUATION

2.1 PROBLEM STATEMENT

In our framework, we define a capability as an atomic skill or competence of the subject model (e.g., solving
linear equations, factoring polynomials, or summarizing a passage). Capabilities are probed through tasks,
each of which consists of a problem and a reference solution used for scoring. We formulate capability
evaluation as the problem of approximating a latent capability function that reflects how well a model
performs across a large space of candidate skills. Following Lu et al. (2025), the model under evaluation is
referred to as the subject model. To construct the capability hierarchy and generate tasks autonomously, our
framework relies on a set of frontier models with domain knowledge and reasoning ability. These models,
collectively referred to as the scientist models, are responsible for proposing candidate capabilities, producing
task instances, and supplying reference solutions for evaluation.

Let C = {ci}Ni=1 denote the set of candidate capabilities produced by the scientist models. For evaluating
a subject model, !, each capability ci can be probed using an evaluation module Evaluate(·;!) that
generates multiple tasks, computes their outcomes, and returns an aggregated score si → R+ for the subject
model. Collectively, these scores define the latent capability function,

f! : C ↑ R+, where, f!(ci) = E[Evaluate(ci;!)].

For simplicity, we omit ! from the notation when it is clear from context. Obtaining a subject model’s
capability score via Evaluate() is expensive as it requires designing, solving, and verifying tens of tasks.
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Therefore, the objective is to approximate f accurately while minimizing the number of calls to Evaluate().
This differs from static benchmarks, which predefine a fixed subset {ci}mi=1 ↓ C and estimate f by exhaustive
evaluation on all tasks. Instead, we treat evaluation as an active learning problem in which we reliably
estimate model performance across tasks while minimizing the number of capability evaluations by exploiting
semantic relationships across C.

Two challenges make this problem non-trivial:

• Coverage. The space of candidate capabilities is vast and open-ended; without principled generation,
important skills may be missed.

• Efficiency. Even when capabilities are well-defined, an exhaustive evaluation could be expensive.
A scalable framework must identify a small, informative subset that suffices to approximate the
capability function reliably.

ACE addresses these challenges through two components: structured capability discovery, which organizes C
into meaningful hierarchies, and latent modeling with active learning, which adaptively approximates f .

2.2 CAPABILITY HIERARCHY AND TASK DESIGN

Capability Hierarchy. Building on the definition of capabilities above, we next describe how they are
organized and operationalized. At the top level, a domain, e.g., Mathematics, is divided into broad areas
such as Algebra, Calculus, or Probability and Statistics; each area is then refined into specific capabilities,
for example, Probability and Statistics is further broken down into capabilities such as Bayesian Inference,
Markov Chain Probabilities, etc. This hierarchy is extensible and can support multiple levels of granularity
depending on evaluation needs (Figure 1).

Task Instantiation. For each capability, the scientist models generate a set of tasks, each consisting of a
problem and reference solution. Task formats are domain-dependent: in structured domains like Mathematics,
problems usually admit unique solutions that can be deterministically verified; in open-ended domains such as
summarization or scientific writing, multiple valid responses may exist, requiring more nuanced evaluation.

Scoring. The performance of a subject model on a task can be quantified either as a binary score, e.g., solved
(1) vs. not solved (0), in domains with well-defined solutions, or as a continuous value in [0, 1] to capture
partial correctness or graded quality in open-ended domains. To obtain reliable capability-level estimates,
the subject model is evaluated on a sufficiently large set of tasks through Evaluate(), which computes
and aggregates task-level scores. By default, the mean is used; when tasks vary in difficulty or importance,
weighted averages are applied, and in settings sensitive to outliers, the median is preferred.

Verification. Since the problem and reference solution for each task are generated automatically by the
scientist models, we introduce a verification step. First, verification models review reference solutions for
correctness. To further safeguard quality, we conduct targeted human inspection of outputs from both the
task generation and verification stages (Appendix D). This ensures that the ground truth used for evaluation
is reliable and reduces the risk of propagating errors during scoring. Second, subject model responses are
evaluated against these references through Evaluate(). For structured tasks with deterministic answers
(e.g., Mathematics), correctness is established through direct comparison. For close-ended solutions, exact
match will be considered for evaluation. For open-ended tasks, we employ a judge model that scores responses
against the task and reference solution on criteria such as accuracy, completeness, coherence, and relevance.

The judge model is provided with the task description, the reference solution, and the subject model’s
response. Judge prompts can be calibrated, and multiple judges can be ensembled to improve robustness. This
layered approach ensures that both the ground-truth references and the subject model’s outputs are evaluated
rigorously and consistently. An abstract overview of our pipeline is provided in Figure 1 (Right).
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Figure 1: An overview of ACE. Left: Example capability hierarchy in Mathematics. Right: The ACE
pipeline combining automated capability generation, task generation and verification, and active learning in
latent space for efficient model evaluation.

2.3 LATENT MODELING OF CAPABILITIES

Embedding. We assume that capabilities in a domain are specified in a discrete space T . For example, T
could be the text space, where each capability is described by a short natural language statement. Direct
function approximation in this space is challenging. We, therefore embed capabilities into a continuous latent
space Z ↓ Rd using a pretrained encoder E : T ↑ Z . Each capability ti → T is mapped to zi = E(ti),
yielding dense semantic representations that support generalization across related capabilities. We assume
the underlying capability function, f , is smooth in this space. This assumption is supported by empirical
observations that LLMs exhibit correlated performance across related skills (Wang et al., 2024; Siska et al.,
2024; Ilić & Gignac, 2024).

A key requirement of our approach is that semantically similar capabilities in T are mapped to nearby points
in Z . This property is essential for reliable generalization and uncertainty modeling. In Section 3.4, we
empirically demonstrate that modern encoders satisfy this condition. Given an initial set of capability-score
pairs {(ti, si)}Ni=1, with scores si obtained from the subject model, the learning task reduces to approximating
the capability function f from the set of embedded pairs {(zi, si)}Ni=1.

Function Approximation via Active Learning. Exhaustive evaluation of all capabilities in C could be very
expensive, as each call to Evaluate() involves generating, verifying, and scoring many tasks. To address
this, we employ active learning to adaptively select informative capabilities. At each iteration, we compute
the active learning acquisition scores1 across unevaluated capabilities, select the optimal candidate, invoke
Evaluate() on it, and add it to the training set for approximating the capability function. We then update
the regression model. For regression, we adopt Gaussian Processes (GP), which provide both predictive means
and uncertainty estimates, making it suitable for active learning (Malkomes, 2019; Gorissen et al., 2009;
Fu, 2022; Riis et al., 2021; Chabanet et al., 2021). In our implementation we adopt the variance-reduction
strategy of Cohn (1996), which selects the candidate capability that yields the largest expected reduction in
posterior variance over the domain of f . This choice offers strong sample efficiency when evaluation budget
is limited. Further details on GP regression and acquisition alternatives are provided in Appendix B.

1Acquisition function in active learning refers to the function used for selecting a candidate in each round.
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Dimensionality Reduction. Capability embeddings are often high-dimensional, which, due to curse of
dimensionality, can hinder GP regression. To address this, we apply dimensionality reduction ω : Rd ↑
Rd→

where d
→ ↔ d, using methods such as Principal Component Analysis (PCA) or t-SNE (Van der Maaten

& Hinton, 2008).

Bringing everything together, Algorithm 1 in Appendix A presents the full active learning procedure for
capability function approximation.

3 EXPERIMENTS

3.1 SETUP

To assess the ACE framework, we focus on the domain of mathematics, which offers a hierarchical structure
and well-defined problem formats, making it a natural testbed for capability-centric evaluation. In our
experiments, we employ two scientist models, OpenAI gpt-4o2 and Anthropic Claude 3.7 Sonnet

3.4
The capability hierarchy is generated by the gpt-4o model, while tasks were generated by both models.
To construct a diverse capability set, the scientist model is first prompted to propose broad and distinct
areas within Mathematics. For each area, it is further prompted to produce specific capabilities in the
modified METR5 format following Lu et al. (2025). Each capability includes a name, description, and a
corresponding Python class, which specifies exemplar tasks, task-solving instructions, and the scoring
method. Full prompts for area- and capability-level generation are provided in Appendix F.1 and F.2.

These capabilities serve as input to the task generation pipeline. The pipeline begins by generating multiple
diverse problems per capability. Each problem is then solved using the task-solving instructions specified in
the capability’s Python class to produce a solution. Together, the problem and solution form a complete
task. We verify each task using a separate LLM call to confirm the correctness of the solution and to filter out
incorrectly solved or unsolved tasks. Full task generation prompts are provided in Appendix F.3.

For evaluation, we use the Inspect framework (AI Security Institute, UK, 2024), which dynamically
generates evaluation scripts based on the task-solving instructions and scoring method defined in each
capability’s Python class. For Mathematics, we adopt a binary scoring scheme: the subject model
receives a score of 1 if its solution matches the reference solution, and 0 otherwise.

Following this procedure, we generate a benchmark of 433 distinct capabilities spanning 10 diverse mathe-
matical areas. Although ACE does not require pre-generated task sets, for the purposes of experimentation
and analysis we generated 11,800 tasks, with 27 tasks per capability on average. Experiments proceed
in four stages: (i) coverage and task validity, (ii) capability benchmarking, (iii) validation of latent-space
structure, and (iv) adaptive evaluation that approximates the capability function with active learning.

3.2 COVERAGE AND TASK VALIDITY

Our first question is whether ACE-generated benchmarks provide comprehensive coverage and valid, dis-
criminative tasks compared to established resources? We compare three capability sets: (i) 287 ground-truth
capabilities from Wikipedia (all sub-areas of mathematics from Wikipedia6), (ii) our ACE-generated synthetic
benchmark, and (iii) Static human-curated math datasets, including MATH (Hendrycks et al., 2021b) and
GSM8K (Cobbe et al., 2021).

2
https://platform.openai.com/docs/models/gpt-4o

3
https://www.anthropic.com/news/claude-3.7-sonnet

4At the time of this analysis these models were the frontier models of these companies.
5
https://metr.org/

6
https://en.wikipedia.org/wiki/Glossary_of_areas_of_mathematics
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(a) (b)

Figure 2: Coverage and validity of ACE-generated benchmarks. (a) Task distributions across mathematical
areas for ACE (orange), GSM8K dataset (blue) and MATH dataset (green). (b) Subject model performance
on MATH vs. ACE (synthetic) tasks. Stars indicate average score across all capabilities.

Wikipedia Coverage. To quantify the overlap and differences between Wikipedia and ACE capability
sets, we perform bidirectional matching analyses. Specifically, we use Qwen2.5-32B-Instruct with a
classification prompt to map each capability from a source set to the most relevant capability in the target set.
This constitutes a many-to-one matching problem: a given capability may map to a single best counterpart in
the target set, but multiple source capabilities may map to the same target. Since many-to-one mappings are
not symmetric, we conduct the analysis in both directions: Wikipedia ↑ ACE and ACE ↑ Wikipedia. Here,
A ↑ B indicates how many of capabilities in A are covered by B.

From the perspective of Wikipedia ↑ ACE, 269 of 287 Wikipedia capabilities (94%) were matched to ACE
capabilities, suggesting that ACE reliably captures nearly all widely recognized mathematical skills. From
the perspective of ACE ↑ Wikipedia, 405 of 433 ACE capabilities (93%) were covered by Wikipedia, while
the remaining 28 appear to represent novel and potentially meaningful capabilities not explicitly covered in
Wikipedia.

Dataset Coverage. To assess the coverage of static versus synthetic benchmarks, we categorize problems
from MATH and GSM8K datasets into the high-level mathematical areas defined in ACE (see Section F.4 for
details). The resulting distributions are shown in Figure 2(a). GSM8K exhibits a highly skewed distribution
with a large fraction of tasks falling into the Arithmetic and Number Theory area, while other important
areas (e.g., Differential Equations, Discrete Mathematics) are scarcely represented or entirely absent. The
MATH dataset is less skewed than GSM8K, yet it lacks coverage in areas like Differential Equations. In
contrast, ACE tasks are generated to achieve balanced coverage across all areas by design. This comparison
highlights a key limitation of static benchmarks such as GSM8K and MATH: their task distributions often
reflect dataset construction biases, leading to overrepresentation of certain skills and underrepresentation of
others. Synthetic benchmarks like ACE mitigate this issue by enabling systematic and uniform coverage
across the full capability space of the domain.

Discriminative Power of Synthetic Benchmarks. In this study we compare subject model scores on a
synthetic benchmark and the MATH dataset. To construct the synthetic benchmark for each of the seven areas
in MATH7, we generate tasks using the scientist model. For each area, we then evaluate the performance of a
subject model on synthetic tasks and the corresponding subset of MATH problems. We evaluate two subject

7Pre-algebra, Algebra, Number Theory, Counting and Probability, Geometry, Intermediate Algebra, and Pre-calculus
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(a) (b)

Figure 3: (a) Area-level benchmarking: subject model scores across mathematical areas. The reported score
for each area is the average score of all capabilities within that area. (b) Semantic structure in latent space:
Effect of input text and dimensionality reduction technique on capability function approximation.

models and show the results in Figure 2(b). For both subject models, comparing the distribution of scores
across the two benchmarks reveals greater variation in scores on the synthetic benchmark. This indicates
that tasks in the synthetic benchmark span a broader range of problem types and difficulties for each area.
Consequently, this benchmark provides a more nuanced and discriminative assessment of model strengths
and weaknesses.

3.3 FINE-GRAINED BENCHMARKING

Using ACE, we perform fine-grained evaluation of four subject models on all 433 capabilities of Mathematics.
Area-level scores are computed by averaging capability-level scores. Figure 3(a) shows the results. Among
these subject models Claude-3.5-Sonnet is the strongest and most consistent performer, maintaining
high accuracy across nearly all areas. o3-mini follows closely. o1-mini performs well in Differential
Equations and Dynamical Systems, but lags behind in several other areas. Finally, Gemini-2.0-Flash
exhibits relatively low performance in areas such as Differential Equations or Calculus. These results illustrate
the value of a structured fine-grained evaluation: even among generally strong models, there are differences
in performance that may not be apparent in aggregate performance metrics.

3.4 SEMANTIC STRUCTURE IN LATENT SPACE

Reliable approximation of the capability function, f , depends on whether the latent space Z preserves
semantic relationships between capabilities. In particular, capabilities within the same area should be
embedded close to each other in Z . Two components influence the structure of the latent space: the text
encoder, which maps natural language descriptions of capabilities to high-dimensional embeddings, and the
dimensionality reduction technique used to project these embeddings into a lower-dimensional space.

We first study the effect of the text encoder in isolation. We embed a subset of 20 capabilities sampled from 5
areas of Mathematics using the OpenAI text-embedding-3-small model8(512-dimensional output).

8
https://platform.openai.com/docs/guides/embeddings/
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Figure 4: Performance of approximating the capability function. (Left) RMSE, (Right) Uncertainty (average
standard deviation) over iterations of active learning. Shaded areas indicate 95% confidence intervals.

Each embedding is generated by concatenating the area name, capability name, and capability
description. Pairwise cosine similarity analysis reveals clear intra-area clustering (Appendix C.2),
indicating that embeddings capture meaningful semantic relations.

Next, we assess the combined effect of the text encoder and dimensionality reduction. We embed all 433
capabilities using the same encoder and project the resulting representations into a 2D latent space using
t-SNE or PCA. Figure 5 in the Appendix shows the distribution of capabilities in the latent space. Both
techniques preserve semantic relationships to varying degrees, but t-SNE produces more distinct clusters for
capabilities within each area.

Finally, we assess how the encoder input choice and dimensionality reduction affect approximation of the
capability function. Options for encoding a capability include (1) capability name, (2) capability name and
description, and (3) capability name, description, and area name. Dimensionality reduction techniques consist
of t-SNE and PCA. A Gaussian Process model is trained on 80% of the capability set, and Root Mean Square
Error (RMSE) is reported on the test set. Figure 3(b) summarizes the results. We find that including richer
input text (capability name, description, area name) and t-SNE yields the best performance.

3.5 ADAPTIVE EVALUATION FOR EFFICIENT APPROXIMATION

We conduct an ablation study of active learning in ACE to investigate the trade-off between efficiency and
accuracy in function approximation. In practical model evaluation, the candidate pool for active learning
would consist of all capabilities. For this experiment, however, we allocate 80% of the capabilities to the
candidate pool and reserve the remaining 20% as a held-out test set for measuring generalization error. A
GP model is initialized with two randomly selected capabilities from the training set and iteratively updated
through active learning. At each iteration, the capability chosen is the one that yields the largest expected
reduction in posterior variance over the domain of f (Cohn, 1996) (see Appendix B). We use the scores
of the o3-mini subject model for this study. Figure 4 presents RMSE (left), and predictive uncertainty
(right) on the test set across active learning iterations. These results indicate that by evaluating the subject
model on fewer than 50% of the capabilities (150 out of 346), the GP model achieves an RMSE within
0.01 of the target generalization error. Moreover, we observe a steady reduction in predictive uncertainty
throughout the process.9 These findings demonstrate that incorporating active learning in ACE provides
effective generalization while substantially reducing evaluation cost.

9Additionally, Figure 7 in the Appendix shows area-level scores of the subject model when the capability function is
fit on a fraction of capability scores. Note that these are reported scores only on the test set.
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4 RELATED WORK

Traditional Evaluation. Early evaluation efforts relied on static, manually curated benchmarks such as
MMLU (Hendrycks et al., 2021a), BIG-bench (Srivastava et al., 2022), and HELM (Liang et al., 2022), which
aimed for broad coverage of general knowledge and reasoning. Other datasets target specific weaknesses,
e.g., TruthfulQA (Lin et al., 2022) for factual reliability and ARC (Clark et al., 2018) for scientific reasoning.
While influential, these benchmarks are inherently static, susceptible to contamination (Deng et al., 2024),
and uneven across domains. Mathematics, for example, is relatively well served (e.g., GSM8K (Cobbe et al.,
2021), MATH (Hendrycks et al., 2021b), but many applied and professional areas lack dedicated benchmarks.
This motivates the need for adaptive frameworks that go beyond frozen datasets.

Automated Evaluation. Recent work leverages LLMs to generate, adapt, or score test cases, aiming to
scale evaluation beyond fixed datasets. Model-assisted methods such as Dynabench (Kiela et al., 2021) and
Adaptive Testing (Ribeiro & Lundberg, 2022) iteratively harden test sets. Structured approaches build task
hierarchies (DARG (Zhang et al., 2024b), EvalTree (Zeng et al., 2025), TaskBench (Shen et al., 2024)), while
autonomous systems such as AutoBencher (Li et al., 2025) and Automated Capability Discovery (Lu et al.,
2025) aim for fully generative benchmarks. Other approaches optimize for particular objectives such as
difficulty (Li et al., 2024), ethical reasoning (Jiang et al., 2025; Brown et al., 2025), or adversarial robustness
(HarmBench (Mazeika et al., 2024)). These methods reveal important gaps overlooked by static resources but
often remain constrained by predefined evaluation goals or reliance on existing benchmarks.

Efficiency and Benchmark Optimization. Benchmark generation is costly, and recent work explores active
learning to target the most informative samples. Hassan et al. (Hassan et al., 2024) use clustering to expose
rare, safety-critical cases, while Li et al. (Li et al., 2024) introduce RL-based subset selection for efficient
evaluation. Despite these advances, many approaches remain tied to fixed datasets or optimize for narrow
objectives, leaving open the broader challenge of discovering new capabilities and efficiently approximating
performance across large and evolving skill spaces.

5 CONCLUSION

We introduced ACE, a framework for scalable, structured, and efficient evaluation of foundation models.
ACE leverages frontier models to construct semantically meaningful capability hierarchies and associated
evaluation tasks for a target domain. It further employs active learning in a latent semantic space to efficiently
estimate a model’s capability function and uncover strengths and weaknesses with minimal evaluation cost.

A limitation of the ACE framework is its reliance on frontier (scientist) models to generate, verify, and score
tasks. While practical and scalable, this design raises valid questions about model hallucination, biases,
and data contamination; however, employing several scientist models mitigate such risks to some extent.
Designing a multi-agent framework where agents debate and critic each other’s work could reduce some
of these risks (Du et al., 2023; Liang et al., 2023). In addition, to estimate the true label (e.g., correctness
of a generated solution), we can adopt statistical models such as the Dawid–Skene model (Dawid & Skene,
1979) or frameworks based on Item Response Theory (Baker, 2001), both of which are designed to aggregate
noisy or uncertain judgments from multiple models. Adopting these techniques in the context of LLM-based
evaluation is a promising direction for future work.

We believe ACE is a step toward scalable and adaptive evaluation of foundation models. As these models
are increasingly deployed in high-stakes domains, the demand for fine-grained and cost-effective evaluation
grows. By integrating frontier models with active learning, ACE lays the groundwork for rigorous and reliable
evaluation.

9
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6 ETHICS STATEMENT

ACE reduces human labor and improves scalability in capability evaluation, but it also relies on frontier
“scientist models” to generate, verify, and score tasks. This design introduces risks of hallucination, bias
in generated content, and potential data contamination from pretraining corpora. We mitigate these risks
through multi-pass verification, targeted human inspection, and transparent reporting of limitations. Future
extensions of ACE could incorporate multi-agent debate mechanisms or statistical aggregation methods (e.g.,
Dawid–Skene, Item Response Theory) to further improve robustness.

Our experiments are restricted to mathematics, where problems and solutions can be deterministically verified,
minimizing risks of direct harm. While the framework could be extended to sensitive domains such as
healthcare or law, such applications should proceed only with domain-specific oversight, ethical safeguards,
and regulatory compliance (e.g., IRB approval, privacy protections).

By providing fine-grained, cost-efficient, and extensible evaluation, ACE can improve transparency and
reliability in assessing foundation models, uncovering strengths and weaknesses that aggregate metrics
overlook. However, uncritical adoption carries risks: benchmarks generated by ACE may inherit biases or
errors from underlying models, and use in socially sensitive contexts without safeguards could exacerbate
inequities. We emphasize that ACE should be applied responsibly, with human oversight and alignment to
community standards on fairness, accountability, and transparency.

7 REPRODUCIBILITY STATEMENT

We have taken several steps to ensure the reproducibility of our work. The ACE framework source code,
along with experimental configurations, training/test splits, acquisition functions, and analysis scripts, is
open-sourced in our GitHub repository (https://anonymous.4open.science/r/ace-7EAF). A
complete description of generated capabilities, tasks, evaluation procedures, and prompts is provided in
the appendix and supplementary materials. In addition, we release JSON files containing all capabilities,
areas, and scores produced by the scientist models, along with subject model scores and predictions from
active learning. These resources make it possible for researchers to reproduce our benchmark construction
end-to-end or to reuse any component of the framework independently.
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