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Abstract

Safe deployment of machine learning (ML) models in safety-critical domains
such as medical imaging requires detecting inputs with characteristics not seen
during training, known as out-of-distribution (OOD) detection, to prevent unreliable
predictions. Effective OOD detection after deployment could benefit from access to
the training data, enabling direct comparison between test samples and the training
data distribution to identify differences. State-of-the-art OOD detection methods,
however, either discard the training data after deployment or assume that test
samples and training data are centrally stored together, an assumption that rarely
holds in real-world settings. This is because shipping the training data with the
deployed model is usually impossible due to the size of training databases, as well
as proprietary or privacy constraints. We introduce the Isolation Network, an OOD
detection framework that quantifies the difficulty of separating a target test sample
from the training data by solving a binary classification task. We then propose
Decentralized Isolation Networks (DIsoN), which enables the comparison of
training and test data when data-sharing is impossible, by exchanging only model
parameters between the remote computational nodes of training and deployment.
We further extend DIsoN with class-conditioning, comparing a target sample solely
with training data of its predicted class. We evaluate DIsoN on four medical
imaging datasets (dermatology, chest X-ray, breast ultrasound, histopathology)
across 12 OOD detection tasks. DIsoN performs favorably against existing methods
while respecting data-privacy. This decentralized OOD detection framework opens
the way for a new type of service that ML developers could provide along with
their models: providing remote, secure utilization of their training data for OOD
detection services. Code available at: https://github.com/FelixWag/DIsoN

1 Introduction

Consider the standard setting where an organization, such as a software company, develops and trains
a Machine Learning (ML) model to perform a task of interest, for example disease classification
in medical images, using a training database. The organization then provides the model to a user
(e.g., a client) and deploys it, for example in a hospital, to make predictions on new fest samples.
Because of heterogeneity in real-world data or user-error, a deployed model may receive inputs
unlike anything seen in the training data. Such inputs are called out-of-distribution (OOD) samples,
in contrast to the in-distribution (ID) samples that follow the distribution of the training data. For
example, OOD patterns in medical imaging can be artifacts from suboptimal acquisition or unknown
diseases. Performance of ML models often degrades unexpectedly on OOD data [43]]. Thus, to ensure
safe deployment in safety-critical applications such as healthcare, deployment frameworks should
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include mechanisms to detect OOD inputs, so that they can be flagged to human users and avoid
adverse effects of using potentially wrong model predictions in the downstream workflow.

Multiple OOD detection methods have been previously developed, which can be broadly catego-
rized into post-hoc and training-time regularization methods [42]. Post-hoc methods assume that
a “primary” model has been trained and deployed to perform a task of interest, such as disease
classification, and they aim to perform OOD detection without alterations to this primary model
(113} 22} 23] 27, [15]]. On the other hand, training-time regularization methods alter the embedding
space of the primary model during its training, to allow improved OOD detection during inference
[30% 29} 150114, 136, 28]].

Few OOD detection methods leverage direct comparison of test-samples against the training data
to identify differences between them for OOD detection, such as KNN-based [34] or density-based
methods [6]. These require, however, the training data to be available at the site of deployment, for
direct comparison with test-samples. Therefore they are impractical in many applications where
sharing and storing the training samples or their embeddings at each site of deployment is impossible
due to privacy, legal, or proprietary constraints. Because of this, most other methods do not compare
the test-samples against the training data [13| 21]] or make indirect comparisons using auxiliary
representations of training data, such as via summary statistics [22], prototypes [29}30] or synthetic
samples [7]. Such derived representations, however, do not faithfully capture all intricacies of the
original training data. Hypothesizing that direct comparison with the original training data would be
useful to infer whether a test sample is OOD, this paper addresses the following question:

Can we design an OOD detection algorithm that compares test samples against the original
training data, without requiring transfer of training data to the point of deployment?

This paper describes a novel OOD detection framework
(Fig. |1) with the following key aspects: (1) We introduce Model Provider _ Deploymentsite |
Isolation Networks for OOD detection. To infer whether |
a new test sample is OOD, a neural network is trained to
learn a binary classification boundary that separates (iso- |
lates) a test sample from the original ID training samples. |
The network’s convergence rate is then used as a measure of
whether the target sample is OOD or similar to the training |
data. The intuition is that test samples with OOD patterns |
will be easier to separate from the training samples than ID
test samples without OOD patterns. Isolation Networks draw }
inspiration from Isolation Forests [25]], which train decision ‘
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trees to isolate each training sample. To infer whether a test-
sample is OOD, the number of split nodes needed to isolate
it is used (c.f. Sec.[2). Isolation Networks instead train a
different network for each test sample, to separate it from
the training data, and measure convergence as OOD score.
(2) We then introduce Decentralized Isolation Networks
(DIsoN), a decentralized training framework that enables
training Isolation Networks in the practical setting when
the ID training data are held on a different computational Figure 1: (Top) Most OOD detection
node than the node of deployment, where the test samples  ethods do not use training data af-
are processed. (3) We extend DIsoN to class-conditional (e deployment because it cannot be
training, where the class of a test sample is first predicted  ghjpped with the model. (Bottom) DI-
and then used to compare it only against samples in the ID  ¢oN enables decentralised comparison
training database of the same class. This reduces variability f tegt samples with the training data
within the distribution of training samples that the model i3 model parameter exchange.

uses for comparison, making it harder to isolate ID sam-

ples that closely resemble their class than OOD samples,

improving OOD detection.
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We evaluate the capabilities of DIsoN and state-of-the-art OOD detection methods in identifying
OOD patterns that occur in real-world applications. For this, we experiment on 4 medical imaging
datasets, including dermatology, chest X-rays, breast ultrasound and histopathology, where we



evaluate 12 OOD detection tasks. Results show DIsoN outperforms current state-of-the-art methods,
demonstrating the effectiveness of remotely obtaining information from the training data during
inference to identify unexpected patterns in test samples, while adhering to data-sharing constraints.

2 Related Work

OOD Detection methods. Post-hoc methods for OOD detection assume a "primary" model pre-
trained for a task of interest, such as disease classification, and aim to perform OOD detection
without modifying it. A common baseline is using Maximum Softmax Probability (MSP) [13] as a
measure of whether a test sample is OOD. Another common approach is to represent the training
data via summary statistics, such as using class-conditional Gaussians in the model’s latent space,
and use Mahalanobis distance to detect OOD samples [13]]. In a similar fashion, other post-hoc
approaches use the logit space (energy score [27]), gradient space, (GradNorm [15]) and feature
space (fDBD [26]), or combine multiple representations (ViM [37]) to derive a measure for OOD
detection. Another group of methods use training-time regularization. Regularization modifies the
embedding space of the primary model during training to bolster OOD detection performance at
inference [14,15,139,[9]. A representative example of the state-of-the-art is CIDER [30]], which uses
a loss function to optimize the model’s feature space for intra-class compactness and inter-class
dispersion. Recently, PALM [29] this further by modeling each class with multiple prototypes.

Most OOD detection methods, such as the above, do not directly utilize the training data after the
model’s deployment. Thus they do not directly compare them with the test samples processed after
deployment, which could facilitate detecting patterns that differentiate them. There are few notable
exceptions, such methods based on KNN [34] and Local Outlier Factor [6]. These compare an input’s
embedding to the training data embeddings. They require, however, shipping and storing the training
data or their feature vectors to each deployment site, which in many practical applications can be
infeasible due to privacy constraints or the size of training databases.

Inspiration for this work was drawn from the seminal work on Isolation Forests (iForest [25])), which
has received multiple extensions such as Deep Isolation Forests [40]]. They train decision trees using
the original ID training data or their deep embeddings respectively, to learn partitions that isolate each
sample. To infer whether a test-sample is OOD, they count the number of split nodes applied by the
trained trees until it is isolated. OOD samples should need less splits than ID nodes. The algorithm
introduced herein trains a neural network classifier to isolate a single test-sample from the ID training
data, focusing on extracting patterns that distinguish the specific sample. We demonstrate the use of
convergence rate as scoring function to infer whether a test-sample is OOD. We also demonstrate the
use of decentralised training to enable such an isolation algorithm without data-sharing.

Federated Learning and OOD Detection. Training of DIsoN uses decentralised optimization
similar to Federated Learning (FL). Using FL for OOD detection is a recent area. The few related
works, such as [44}24], studied settings significantly different from ours: they assume the training
data is decentralized across multiple computational nodes, where each node’s data follow a different
distribution. Using FL, they train a model that measures distribution-shifts between nodes. After
training, the model is applied on test-samples for OOD detection. Our algorithm does not require
training data from multiple distributions or multiple nodes. It assumes one node holds all ID training
data and a second node holds a single test-sample, which we infer whether it is OOD via decentralised
training of a binary classifier. Thus the motivation, use-case and technical challenges are distinct.
Moreover, DIsoN may resemble FL with a few-shot client [33l38]]. Few-shot methods are designed
to regularize against overfitting the limited data of few-shot client(s), to train a model for a predictive
task (e.g. disease diagnosis) that generalizes to new samples. DIsoN does not train a model for
generalization. It optimizes for distinguishing data of the source node from a target sample, using
convergence speed to infer if the latter is OOD. Hence, few-shot methods are not directly applicable.

3 Method

Preliminary: Out-of-Distribution Detection. Let X be the input data space and )V =
{1,2,...,C} the label space for a classification task with C' classes. We denote the source training
dataset as Ds = {(x;,y;) }},, assumed i.i.d. from the joint distribution Pyy. The marginal distribu-
tion over the input data space X’ is denoted as P4*. The goal of OOD detection is to determine, during
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Figure 2: Overview of DIsoN: When a new scan is obtained at the deployment site, DIsoN is trained
using parameter updates from both the deployment site and the model provider, who holds the ID
training data, to isolate the target sample from the training data. The deployment site trains on the
single target scan, while the model provider trains on the source data (optionally class-conditioned).
Only model parameters are exchanged. (Right) After convergence, the scan is classified as OOD if it
is isolated in few rounds, and as ID otherwise.

inference, whether a target sample x; € X originates from the source distribution P%?, or an unknown
OOD distribution P3**. This can be achieved by defining an OOD scoring function S : X — R, that
assigns high scores to ID samples and low scores to OOD samples. We label a sample x as OOD
when the scoring function S(x) < s*, and ID if S(x) > s*, with a chosen threshold s*.

3.1 Isolation Networks

The core idea of our approach is that the difficulty of training a binary classifier to separate a single
target sample x; from the source data D, gives an indication whether x; is ID or OOD. Intuitively, a
target sample that is ID will share characteristics with samples in Dg. As a result, it is harder for a
classifier to isolate (separate) the target sample and will require more update steps. On the other hand,
an OOD target sample has patterns that differ from D,, making it easier to isolate and requiring
fewer update steps during training. Fig. 2] gives a visual intuition of the idea.

Formally, we consider a neural network consisting of a feature extractor f : X — Z, parameterized
by 6/, and a binary classification head h : Z — [0, 1], with parameters §”. The full network is
parameterized by 6 = (0/,6"). We use m € {0, 1} for isolation labels and reserve y for class labels.
In an idealized centralized setting with full access to D, and the target sample x;, we can train the
network h o f for the following binary classification problem: Assign label m = 0 to all source
samples x; € D, and label m = 1 to the target sample x;. Typically, D, has a high number of
samples compared to the single target sample x;, |Ds| > 1. Therefore, directly training on this
highly imbalanced setup is suboptimal, as it can lead to a trivial classifier that always predicts the
majority class (m = 0), ignoring the minority class (m = 1). To ensure that the target sample has
an impact during training, we over-sample x; within each mini-batch. Specifically, we construct

mini-batches as B = By U {xgl), . ,XEN)}, where B is a set of source samples drawn from D,

and {xgl), e ,XEN)} are NN replicated copies of the same target sample x;. The empirical loss for
this optimization objective is:

1
Lols Boyxs N) = ey ( > LiBixem=0)+ N L(0;x,m = 1)) NG
s Xs€DBs

where L(6; x,m) denotes the binary cross-entropy loss. In Sec. we compare the gradient of the
centralized version g.(6; Bs,x¢, N) = Vo L.(0; Bs,x¢, N) to our proposed decentralized version.

Convergence Time as OOD Score. To quantify the “isolation difficulty”, we track the number
of training steps required by the binary classifier to separate x; from D,. Let (%) be the model
parameters after k£ optimization steps with a stochastic gradient-based optimizer (e.g. SGD or Adam
[20]) using the gradients from the loss of Eq[I] Formally, we define our convergence time K as:



Definition 3.1 (Convergence Time K). Let p*) (x) = h(f(z;0%))) be the sigmoid-score after k
updates. Fix a window Eg,p, € N and accuracy threshold T € (0, 1]. The convergence time K is the
smallest k > FEgi.p, such that

; (7)
min x¢) > 0.5 and
je[kambH,k]p (@) |Ds|

Z H{p(k)(ars) <05} >

rs€D;

Intuitively, the conditions ensure that the classifier correctly classifies x; for the last F,1, consecutive
updates (first condition), while achieving an accuracy of at least 7 on the source data (second
condition). We set Eg,;, = 5 and 7 = 0.85. Further details on these parameter choices are provided
in the Appendix D] We define our OOD scoring function as S(x;) = K, following the convention
where ID samples have higher scores. We emphasize that this setup corresponds to the centralized
version of the algorithm, where both D, and z; are accessible on the same node. In Sec. we
extend it to the decentralized case, where source data and the target sample reside on separate nodes.

3.2 Decentralized Isolation Networks (DIsoN)

Problem Setting: Decentralized OOD Detection. The Isolation Network described above assumes
direct access to both the source data D, and the target sample x;. However, as described in Sec/[I] this
assumption does not hold in many real-world settings. We therefore formalize a decentralized setting
involving two sites: the Source Node (SN) and the Target Node (TN). SN represents a model provider
that holds the source training dataset D, on which it has pre-trained a primary model M., for the
main task of interest, such as a C'-class classifier of disease. M. consists of a feature extractor
(parameterized by 8P"¢) and a C'-class classification head. TN holds target samples x; and represents
the site where M,,.. is deployed to process x;. Therefore, the aim of the OOD detection algorithm is
to infer whether a given x; on TN is ID or OOD, to support safe operation of M. To this end, TN
can exchange model parameters with SN, but not raw data or their embeddings due to privacy and
regulatory constraints.

DIsoN Method Overview. To approximate the training dynamics of an Isolation Network (Sec.
without data sharing and without requiring centralized access to both the source data and target
samples, we propose DIsoN. Fig[2] shows an overview of DIsoN. Inspired by the Federated Learning
framework, our algorithm trains parameters of an Isolation Network over multiple communications
rounds between SN and TN. We keep track of a global set of Isolation Network parameters. At the
start of each round r, they are transmitted to SN and TN. In each round r, both SN and TN update
them locally by performing £ > 1 local optimization steps. At the end of a round, the global set of
parameters is updated via a weighted aggregation of the local updates. In more detail:

1) Initialization. Let (") be the global model parameters of the Isolation Network at the start of
round 7. The feature extractor §/ of the initial global model (°) = (67 #") is initialized with the
pre-trained parameters 67" of primary model M., while the binary classification head is initialized
randomly. This initialization is done on SN, after which 6(©) is transmitted to TN.

2) Local Updates. Each site performs local training for E' steps using its own data: The Source

Node initializes its local model Hg

0 — 9" and performs E optimization steps on mini-batches

B ~ D, minimizing L(6;x,,0), resulting in Ogr’E). Similarly, the Target Node initializes its local

model H(TT 0 =9 and performs E optimization steps on the single target sample x;, minimizing
. 3 1 (T7E)

L(0;x¢,1), resulting in 6"

3) Model Aggregation. After local updates, TN sends H(Tr ") back to SN. The models are then

aggregated into an updated global model using weighted averaging:

00+ = o 05" + 505, @

where the aggregation weights are 5 = 1 — ov. The updated global model #("+1) is then sent to TN to
start the next local training round.

Before each local training round starts, we evaluate the current global model #(") using the con-
vergence criteria in Def. @] (TN evaluates on x;, SN on D;). If converged, we record R = r and
terminate. The OOD score for the target sample x; in the decentralized setting is based on the



number of communication rounds R required to converge, analogous to the number of steps K in the
centralized case: Spison(X:) = R. We can draw a connection between DIsoN and our centralized
version. We show that under specific conditions, the decentralized and the centralized versions result
in equivalent model parameters:

Proposition 3.1 (DIsoN and Centralized Isolation Network Equivalence for £ = 1). Let 0 ¢t
be the model parameters from our centralized algorithm and 0 4. be the parameters from DIsoN.
Let each site perform one local SGD step (E = 1) with learning rate n, and aggregate with

a=ETiN b= i BS]‘V e Then the decentralized update equals the centralized one:

05+ = 0 — n(ags(0) + Bgr(0T)) = 07) — 5 g.(07) = 05D,

where gg(6) = ﬁ > x.en, VoL(0;x5,0), gr(0) = VoL(0;x4,1) and N is the number of times
X; is oversampled in the centralized version.

Proof sketch. Insert 9(57«,1) =0 —ngs(8™), 9%’1) = 0" — ngr(6™M) into the weighted average;
factor out #("), use § = 1 — . Full derivation can be found in the Appendix. O

Prop. [3.1] shows that our decentralized training exactly replicates the centralized version when E = 1
and aggregation weights are chosen accordingly. This theoretical equivalence motivated our design
of DIsoN: it preserves the core idea of the Isolation Network, while meeting our decentralized data
sharing constraints. In practice, we allow £ > 1 to reduce communication overhead, which causes
the decentralized updates to deviate from the centralized version. However, as we show in Sec. 4}
DIsoN achieves promising results even with the approximation. We found DIsoN to be robust across
a broad range of « values, as shown in an ablation study in Sec. @

Practical Techniques: Augmentation and Normalization. One challenge in DIsoN is to avoid rapid
memorization and overfitting of superficial features in the target sample x;, making the isolation task
trivial regardless whether the sample is OOD. To prevent this, we apply stochastic data augmentations
(e.g. random crops, horizontal flips), which regularize the model to learn invariant features, so
that the separation is based on semantic characteristics. Furthermore, in DIsoN, we use Instance
Normalization (IN) [35] instead of the widely used Batch Normalization (BN) [[16]] layers for feature
normalization. BN relies on batch-level statistics, which are not suitable for our single-sample TN.
IN instead normalizes each feature map per sample and therefore fits better for our decentralized,
single target sample scenario.

3.3 Class-Conditional Decentralized Isolation Networks (CC-DIsoN)

To further improve DIsoN, we introduce its class-conditional variant, CC-DIsoN. The intuition is that
ID samples should be especially hard to isolate from source samples of the same class, as they are
likely to share similar visual features compared to samples from other classes. To use this idea, we
modify the source data sampling strategy during local training at SN. After the initialization phase, TN
uses the pre-trained model M, to predict the class of the target sample: § = arg max.|[Mpre(X¢)]e.
Afterwards, TN sends the predicted label ¢ to SN. During local training at SN, mini-batches are now
sampled only from source data from class §: Bs C {(Xs,ys) € Ds | ys = §}. The other steps of our
method remain the same. Our empirical results in Sec. |4.2| confirm that this improves OOD detection.

4 Experiments & Results

Datasets. We evaluate DIsoN on four publicly available medical imaging benchmark datasets
covering dermatology, breast ultrasound, chest X-ray, and histopathology. All datasets consist of real,
clinically acquired images and no synthetic data is used. The first three benchmarks use images with
naturally occurring non-diagnostic artifacts as OOD samples (e.g., rulers, pacemakers, annotations),
while histopathology focuses on semantic and covariate shifts across domains. Example images are
shown in Fig[3]

Dermatology & Breast Ultrasound: We adopt the benchmark setup from [3]], using images without
artifacts as the training and ID test data, and images with artifacts (rulers and annotations) as OOD
samples. For breast ultrasound (BreastMNIST [41]]), the artefacts are embedded text annotations, and



for dermatology (D7P [19]) the artefacts are black overlaid rulers. For breast ultrasound, the primary
model M), is trained for 3-class classification (normal/benign/malignant). The 228 annotated scans
with artifacts are used as OOD test samples, while the remaining artifact-free scans are split 90/10 into
training and ID test sets. For dermatology, the primary model M), is trained for binary classification
(nevus/non-nevus). The annotated 251 images with rulers are used as OOD samples and the remaining
1403 are split 90/10. Images are resized to 224 x 224.

Chest X-Ray: Following the benchmark from [2]], we use frontal-view X-ray scans (from CheXpert
[17]) containing no-support devices as the training and ID test data, and scans containing pacemakers
as OOD samples. The primary model M,,,.. was trained for the binary classification of cardiomegaly.
We use the 23,345 annotated scans without any support devices as our training data, and randomly
hold out 1000 ID samples for testing. The OOD test set includes 1000 randomly sampled scans with
pacemakers. All images are resized to 224 x 224.

Histopathology: We use the MIDOG benchmark from
OpenMIBOOD [11]. The MIDOG dataset [4] consists s Dermaioey

of 50 x 50 image patches extracted from Hematoxylin & £
Eosin-stained histological whole-slide images, grouped , ,

into different "domain" data sets corresponding to differ-

ent imaging hardware, staining protocols, or cancer types. R |

The primary model is trained for 3-class classification 7
(mitotic/imposter/other) on domain 1a. Following [4]] we Pq ‘

evaluate on two settings: (i) Near-OOD: Domains 2-7 are
treated as separate OOD detection task with only moder-
ate domain shifts. (ii) Far-OOD: Using CCAgT [1]] and Ultrasound _ Histopathology
FNAC 2019 [32]] dataset as the OOD task, which differ “
significantly due to being completely different medical
applications. We use the 251 test ID samples from domain
la and randomly sample 500 OOD samples from each of
the near- and far-OOD domains.

Near OOD Far OOD

.".

Training Details. We use a ResNet18 [[12] with Instance
Normalization (as per Sec[3.2) pre-trained on the dataset-
specific task as initialization for DIsoN. DIsoN is trained
with Adam (Ir=0.001 for dermatology and ultrasound;
0.003 for X-ray). For histopathology SGD with momen-
tum (Ir=0.01, momentum=0.9) is used (since [L1] suggests
pretraining with SGD). Local iterations per communica-
tion round are chosen to approximately match one epoch
on the training data. We use standard augmentations (e.g.
random cropping, rotation, color-jitter) and the aggrega-
tion weight is fixed to o = 0.8, since it performs consis-
tently well across all our experiments (see Sec. [4.2]for
effect of o). Experiments were run on an NVIDIA RTX
AS5000. More training details and hyperparameters are provided in the Appendix. OOD detection
performance is evaluated with two metrics: (i) area under the receiver operating characteristics curve
(AUROC, higher is better) (ii) the false positive rate at 95% true positive rate (FPR95, lower is better).
All results in Tables [I]and 2] are averaged over three runs with different seeds, and we report mean
and standard deviation. Standard deviations for Tab[2]are in Appendix [[|due to space limitations.

Figure 3: Examples of data. X-Ray:
ID X-ray vs. OOD scan with pacemaker.
Dermatology: ID lesion vs. OOD im-
age with ruler. Ultrasound: ID artifact-
free ultrasound vs. OOD scan contain-
ing annotations. Histopathology: 1D
mitotic-cell patch vs. near-OOD patch
with different cancer type and far-OOD
patch with different staining.

Baselines. We compare our method against state-of-the-art OOD detection methods from the two
main categories: post-hoc and training-time regularization methods. The post-hoc methods include:
MSP [13], MDS [22], fDBD [26], ViM [37]], Deep iForest [40]. For training-time regularization
methods, we evaluate the recent methods CIDER [30] and PALM [29] (both using contrastive
learning). We use MDS for OOD scoring on their learned feature representations. Several baselines
already use a form of class-conditioning based on the model’s predicted class: MDS, PALM, and
CIDER via Mahalanobis distances to class clusters; ViM uses the maximum logit of the predicted
class; MSP via softmax probability; and fDBD via distance to the decision boundary (all implicitly
or explicitly conditioned on the predicted class). Only iForest does not. CC-DIsoN similarly relies
solely on the predicted class from My, for class-conditional samplin gand uses no ground-truth
labels, providing no additional information beyond these methods.



Table 1: OOD detection performance evaluated on three OOD datasets: Chest X-Ray, Dermatology,
and Breast Ultrasound and reported as mean + standard deviation over three random seeds. | means
smaller is better and 1 means larger is better. Bold numbers highlight the best results, second best
results are underlined.

Method Chest X-Ray Dermatology Breast Ultrasound Average
AUROCT FPR95| AUROCt FPR95| AUROCT FPR95, AUROCT FPRY95|
MSP 60.44+42  100.00£00 65.39+39 100.00+00 58.85+45 100.00+00 61.56+20  100.00+0.0
MDS 53.82+15  90.47+10  69.36+55  76.06+155 61.02+17  74.40+10  61.40+25  80.31+55
fDBD 68.26+04  78.07+54  63.59+25  88.26x108  60.73+2.1 87.50+47  64.19+16  84.61+55
ViM 62.60+48  85.80+73  68.39+20  75.35+6.1 59.44+28 7321431 63.48+15  78.12+42
iForest 56.35+56  88.27+5.1 56.68+68  87.31+37  47.02+48  95.82+2.1 53.35+33  90.47+15
CIDER 7047+63  79.00+99  81.98+28  56.57+82  58.03+3.1 82.73+52  70.16+34  72.77+25
PALM 65.41+65  85.73+92  T77.25+10 6244108  59.3543.1 75.60+55  67.34+14  T4.59+19
CC-DIsoN  84.94+09 61.85:t12 89.54+15 42.49+44  65.62+12  73.21+47  80.00+07  59.20+3.1

Table 2: OOD detection performance across nine different OOD detection task of MIDOG, split into
near-OOD and far-OOD setting. Each cell shows AUROC1/FPR95, reported as mean over three

random seeds. Bold numbers highlight the best results, second best results are underlined.

Methods near-OOD far-OOD
2 3 4 5 6a 6b 7 Avg. CCAgT FNAC Avg.

MSP 54.1/94.8 47.4/93.4 55.7/89.4 59.0/93.5 54.8/947 45.6/95.5 56.1/92.4 53.3/93.4 78.4/52.2 82.7/63.6 80.6/57.9
MDS 67.4/80.0 67.2/79.8 65.7/81.9 61.2/87.4 60.6/87.4 55.5/80.5 51.0/91.6 61.2/85.4 87.1/43.6 86.6/39.6 86.8/41.6
fDBD 57.9/83.0 52.5/81.4 57.5/88.7 60.2/80.0 57.9/85.9 51.2/86.2 55.2/92.2 56.1/86.6 74.6/58.3 82.1/63.7 78.3/61.0
ViM 68.0/79.8 66.7/71.8 66.2/77.7 63.5/86.9 61.9/87.3 55.7/91.0 54.9/93.1 62.4/84.8 92.5/29.1 92.6/27.0 92.6/28.0
iForest 37.9/98.3 38.6/96.9 39.7/97.7 41.6/97.5 39.5/98.0 40.4/97.7 46.4/95.77 40.6/97.4 27.7/99.2 32.3/96.8 30.0/98.0
CIDER 71.4/84.6 65.6/89.0 55.5/91.5 64.2/89.8 57.4/92.2 47.7/96.5 64.1/88.2 60.9/90.2 82.5/77.2 95.4/18.3 89.0/47.8
PALM 73.5/78.1 59.2/90.3 66.3/77.7 64.3/93.6 62.1/90.8 41.8/97.6 61.6/93.6 61.2/88.8 97.0/21.8 99.6/1.5 98.3/11.6
CC-DIsoN 75.4/78.8 79.5/61.7 72.6/79.7 63.0/89.4 64.0/85.3 70.7/79.9 61.8/92.0 69.6/81.0 98.3/4.8 98.4/40 98.3/4.4

4.1 Evaluation on Medical OOD Benchmarks

Dermatology, Chest X-Ray and Breast Ultrasound. Tab.[I|compares CC-DIsoN with the base-
lines on our three medical OOD benchmarks where the OOD task is to detect artifacts. We can see
that the post-hoc methods struggle to detect these domain-specific artifacts: fDBD and ViM average
only between 63 — 64% AUROC while having a high FPR95 (84.6% and 78.1%, respectively).
Training-time regularization methods like CIDER do better (70.2% average AUROC), but still have a
high FPR95 of 72.8%. CC-DIsoN performs strongly compared to the baselines and shows consistent
improvement across all datasets. Compared to fDBD, it improves AUROC by 15.8% and reduces
FPRO5 by 25.4%. Against the best baseline (CIDER), it improves AUROC by 9.8% and lowers
FPR95 by 13.6%. This demonstrates that directly comparing test samples against the training data
during inference has a positive impact on OOD detection.

Effects of Class-Conditioning. Tab. 3 shows the benefits of class-conditioning (Sec. [3.3). On
average, CC-DIsoN improves AUROC by 1.7%. More notably, CC-DIsoN reduces FPR9S5 by 8.2%
across all three datasets. Class-conditioning consistently lowers FPR95, demonstrating that focusing
the isolation task on the predicted same-class samples improves OOD detection.

Table 3: (a) Comparison of DIsoN and CC-DIsoN on three medical datasets using AUROC (higher is
better) and FPR9S5 (lower is better). (b) Effect of incorrect predicted classes for class-conditional sam-
pling in CC-DIsoN (AUROC). “Best Baseline” is the strongest baseline from Tab. [T] (for reference);
“ID & OOD wrong”: all targets assigned incorrect classes; “ID wrong”: only ID targets assigned
incorrect classes; “OOD wrong”: only OOD targets assigned incorrect classes.

(a) (b)
AUROC 1 FPRY5 | Best Standard  ID & OOD ID 00D
Dataset  proN  CC-DIsoN DIsoN  CC-DIsoN Dataset Bascline CC-DIsoN  wrong  wrong  wrong
Ultrasound 67.0 65.6 78.6 73.2 Ultrasound 61.0 65.6 61.5 34.6 89.6
Dermatology 86.4 89.5 50.0 2.5 Dermatology 82.0 89.5 83.1 84.7 86.7
X-Ray 814 84.9 73.6 61.9 X-Ray 70.5 84.9 719 74.0 88.3
Average 78.3 80.0 67.4 59.2

Impact of Predicted Class Accuracy. Since CC-DIsoN conditions on the predicted class from the
pre-trained model M),.., we analyse how misclassification affect its performance. We simulate three



controlled scenarios by asssigning wrong predicted classes to: (i) all target samples (ID & OOD),
(i) only ID targets while OOD targets use their predicted classes, and (iii) only OOD targets while
ID targets use their predicted classes. Results in Tab[3p show that performance drops mainly when
ID targets are incorrect, as class-conditioning compares them to unrelated classes, making isolation
easier and reducing the separation in convergence rounds between ID and OOD samples. In contrast,
performance slightly increases when OOD targets are mislabeled, as comparing them to unrelated
classes makes convergence faster. Even under such extreme settings, CC-DIsoN remains competitive.
Further details are provided in the Appendix [E]

AUROC vs Aggregation Weight (a) Convergence Speed vs a (Combined) Global Trade-off: AUROC vs FPR
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Figure 4: (a) Effect of aggregation weight a. Left: AUROC vs. «. Higher o improves OOD
detection by emphasizing the source updates. Right: Mean number of communication rounds until
convergence (ID and OOD targets combined). Trade-off: Lower « values speed up convergence but
reduce OOD performance. (b) Network Size. Global AUROC vs. FPR95 plot for three backbones
(Slim ResNet18, ResNet18, ResNet34) across the same datasets. ResNet18 gives the balance between
AUROC and FPR95. Grey dashed lines link backbones per dataset.

Histopathology: MIDOG. While earlier benchmarks focused on detecting non-diagnostic artifacts as
00D task, MIDOG evaluates semantic and covariate shift as OOD task. Tab. 2] shows that CC-DIsoN
also performs strongly in this setting. In the most challenging near-OOD setting, CC-DIsoN achieves
an average AUROC of 69.6%, which is a 8.4% improvement compared to the best regularization-
based method PALM and a 7.2% gain compared to the best post-hoc method ViM. It also achieves
the lowest FPR95 in this setting, albeit with a smaller margin. In the less challenging far-OOD setting,
CC-DIsoN achieves an AUROC of 98.3% and a FPR95 of 4.4%, indicating almost perfect separation.
Out of all compared methods, only PALM achieves same AUROC performance in the far-OOD task,
although CC-DIsoN performs better in the near-OOD task. [Forests were originally developed for
tabular data, where they perform well. However, prior works [34}[10] shows poor performance on
high-dimensional imaging data, which explains the low AUROC in our experiments. Overall, these
results demonstrate that CC-DIsoN does not only perform well for OOD tasks with localised artifacts
but also effective in identifying semantic and covariate shifts across medical imaging tasks.

4.2 Further Analysis of DIsoN

Sensitivity Analysis of Hyperparameter . We analyze the effect of the aggregation weight a
(Eq.[2) on both the OOD detection performance and convergence rate across Dermatology, Ultrasound,
and X-Ray in Fig.[fa] We can see that lower « values, which give relatively more weight to the target
updates, reduce OOD detection performance, since the isolation task becomes dominated by the
target sample, and loses the comparison signal to the source data. Increasing o improves AUROC
consistently across datasets, with performance plateauing at o = 0.8. This shows that a stronger
emphasis on training data improves the isolation-based OOD performance. However, the number of
communication rounds required for convergence increases with cv. This aligns with Proposition 3.1}
where o controls the implicit oversampling ratio N: smaller « increases the target signal (larger N)
(faster isolation), while larger o slows convergence (more rounds needed to incorporate the target’s
signal). In practice, this creates a trade-off between convergence speed and detection performance.
The goal of this analysis is not to identify one “optimal” value of «, but to show that our method
remains robust across a wide range of values. Performance stays quiet stable for a between 0.5 and
0.95 (Fig. @), suggesting good generalization across tasks without extensive hyperparameter tuning.

Effect of Network Size. To quantify how capacity of the Isolation Network affects the OOD
scores, we compare three network sizes: a “Slim” ResNet18 (0.5x channel widths), the standard
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Figure 5: Effect of image augmentation. Left: Bar plots show that using random augmentation
(“Yes Aug”) during training improves AUROC and FPR95 for three datasets. Right: Density plots for
dermatology: without augmentation, ID and OOD curves overlap heavily, whereas with augmentation
OOD samples isolate fast and ID samples require more updates.

ResNet18, and a deeper ResNet34. Fig. [4b[shows each backbone’s AUROC vs. FPR95 trade-off on
Breast Ultrasound (circles), Dermatology (squares), and Chest X-Ray (triangles). Neither the Slim-
ResNet18 nor the ResNet34 outperforms the standard ResNet18: the slim model might lack sufficient
representational capacity to detect the subtle visual difference, while the deeper network does not
yield consistent OOD gains and roughly doubling the required compute. This is likely because a
binary isolation task does not require this excessive parameter capacity. Therefore, ResNet18 gives
the best balance between good ID/OOD separation and computational efficiency.

Effect of Image Augmentations. Fig. [5|shows the effects of applying image augmentations during
DIsoN training on Ultrasound, Dermatology, and X-Ray. Augmentations consistently improves
AUROC: +4.43% on Ultrasound, +13.69% on Dermatology, and +2.76 % on X-ray. FPR95 also
decreases, most notably on Dermatology -30.99 % . The density plot of dermatology dataset shows
that without augmentation, ID and OOD samples converge in similar number of few rounds, resulting
in poor separation. With augmentations, OOD target samples isolate quickly, but ID target samples
require many more rounds. This demonstrates the regularization effect of augmentations: they prevent
the model from quickly memorizing a single target sample, regardless of whether it is ID or OOD.

Runtime Analysis and Practical Considerations. We extend the runtime analysis in Fig. 4p by
reporting detailed statistics, including quantiles and results across different « values, in Appendix [G|
Since wall-clock time depends on hardware and network conditions, we primarily measure runtime in
communication rounds, offering a hardware-independent estimate. Although DIsoN introduces extra
computation, as each target sample requires an isolation task, this design trades speed for improved
OOD detection performance. In practice, real-time inference is rarely required in healthcare, where
scans are often reviewed hours or days later [31] (except in emergencies), and diagnostic accuracy
is typically prioritised over speed. Further runtime comparisons with baselines, as well as notes on
parallelisation and more detailed practical considerations, are provided in Appendix

5 Conclusion

In this paper, we propose Decentralized Isolation Networks (DIsoN), a novel OOD detection frame-
work that, unlike most existing methods, actively leverages training data at inference, without
requiring data sharing. DIsoN trains a binary classification task to measures the difficulty of isolating
a test sample by comparing it to the training data through model parameter exchange between the
source and deployment site. Our class-conditional variant, CC-DIsoN, further improves performance
and achieves consistent gains in AUROC and FPR95 across four medical imaging datasets and
12 OOD detection tasks, compared to state-of-the-art methods. One limitation of DIsoN is, that
it requires additional compute during inference for target samples. In practice, DIsoN requires
roughly 40s to 4 min per sample (depending on the dataset), thus it is practical for applications where
inference delay of this magnitude is not an issue. We show that this overhead can be controlled via the
aggregation weight « (convergence speed) and backbone size, enabling a trade-off between efficiency
and detection performance. In future work, we aim to extend DIsoN to handle multiple target samples
simultaneously to improve efficiency. Overall, our results demonstrate that leveraging training data
during inference can improve OOD detection in privacy-sensitive deployment scenarios.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Yes. Our main contributions are detailed in Sec. [l See Sec[3|for our method
description and Sec 4] for experimental evidence.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Yes. Please see Sec[5] where we discuss limitations and future research plans.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: Yes. Sec[3.2]includes a Proposition with its proof sketch. The full proof can be
found in the Appendix.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.

The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Yes. Sec[3]includes a detailed description of our method. SecH]includes a
description of the hyperparameters. we also use publicly available datasets. A more detailed
hyperparameter description is included in the Appendix. We also upload the code.

Guidelines:

The answer NA means that the paper does not include experiments.

If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We use publicly available datasets as described in Sec[d] We also upload the
code and once the review process is finished, we will open source the code and instructions.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Yes. Sec/]describes the training details, including hyperparameters, type of
optimizer and dataset splits. A more detailed description about the training and test details
is provided in the Appendix.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We now report mean and standard deviation over three random seeds for our
main experiments (added after rebuttal). In Table || we show mean and standard deviation.
For the larger Histopathology table (Table[2)) we show means in the main text and include
the corresponding standard deviations in Appendix [[| (Tables [13]and[T4). Additionally, our
method is evaluated across multiple diverse medical datasets and tasks (Sec. ).

Guidelines:

* The answer NA means that the paper does not include experiments.
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8.

10.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Sec. ] describes the type of GPU that was used for our experiments. With this
GPU type, all of our experiments can be executed.

Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: Yes. Our research conforms with the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
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Justification: Our research is intended to have a potential positive societal impact in medical
imaging as discussed in the paper. The paper mentions possible negative impacts if OOD
methods do not work.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: We do not expect a high risk of misuse of this work.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: Yes, we credited them properly.
Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.
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14.

15.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: Our work does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: Our paper does not involve crowdsourcing and human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: Our paper does not involve crowdsourcing and human subjects.

Guidelines:
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* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: LLMs were not and important, original, or non-standard component of our
research.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A DIsoN and CC-DIsoN: Algorithm

In this section, we present pseudocode for our DIsoN method and its class-conditional variant,
CC-DIsoN. Algorithm [T|describes the code that is executed on the Source Node, while Algorithm 2]
runs on the Target Node. Lines specific to CC-DIsoN are highlighted in blue. The initialization step
occurs in lines 4-5 of Algorithm|[I]and line 5 of Algorithm[2] The local updates step is performed on
lines 7—12 (Source) and 7-8 (Target), followed by the aggregation step on line 14 on the Source
Node. If the convergence criteria (Def. 3.1) are not met, another communication round starts.

The algorithms demonstrate that implementing CC-DIsoN requires only minor changes compared to
DIsoN: before initialization, the Target Node predicts the target sample’s class using the pre-trained
model and sends it to the Source Node (lines 2—4 of Algorithm 2)). The Source Node then filters its
training data to sample batches from the predicted class only (line 9 of Algorithm|T)).

Algorithm 1 Source Node: DIsoN / CC-DIsoN

1: function SOURCENODE(D,, 6P®)
2: if CC-DIsoN :

3: receive ¢ from target

4: 07 < gPre; 9" < rand; 00 «— (97, 0") > initialize global model
5: send 0(?) to Target; 05 « 0©)

6: forr =1to R do > communication rounds
7: fore =1to F do >local updates on Source
8: if CC-DIsoN :

9: By ~ {(xs,9ys) €Ds | ys = 9} >filter B, on predicted x; class
10: else

11: sample Bs ~ D

12: Os + 05 —nVy, [ﬁ ZXSGBS L(@s;XS,O)]

13: receive 0 from Target

14: aggregation: 0) «— afs + (1 —a)fr >Eq. 2
15: SourceConverged < converged ("), D) > Test criteria 2 (Def. 3.1)
16: send 6(") and SourceConverged to Target

17: s « 6 >update Source model for next comm. round

Algorithm 2 Target Node: DIsoN / CC-DIsoN

1: function TARGETNODE(z;, My, R)
2: if CC-DIsoN :

3: § + argmax, [Mpre(x¢)]c

4: send 7 to source

5. receive (O from Source; 7 < #() > init. Target model with global model
6: forr =1to R do > communication rounds
7: fore =1to E do >local updates on Target
8: Or + O *UVGTL(QT;Xtal)

9: send O to Source

10: receive updated (") and SourceConverged from Source

11: if converged(("), x;) and SourceConverged: > Test crit. 1 & 2 (Def. 3.1)
12: break

13: Op « 0 >update Target model for next comm. round
14: return Sprson (x¢) =7

B Connection between DIsoN and Isolation Network: Proof Proposition 3.1

This section provides the full proof of Proposition 3.1, which states that if we set £ = 1 and the
aggregation weights in Eq. 2 accordingly, DIsoN becomes equivalent to the centralized Isolation
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Network. This result also demonstrates how the aggregation weight « implicitly controls the number
of times the target sample is oversampled (/V) in Eq. 1 for the Isolation Network.
‘We begin by restating Proposition 3.1:

Proposition 3.1 (DIsoN and Centralized Isolation Network Equivalence for £ = 1). Lef 0 ¢t
be the model parameters from our centralized algorithm and 04.. be the parameters from DIsoN.
Let each site perform one local SGD step (E = 1) with learning rate n, and aggregate with

| Bs| 8= | B:\V - Then the decentralized update equals the centralized one:

00 =00 —p(ags(0T) + Bgr(0T)) =07 — g (07) = 055D,

where gg(0) = ﬁ Y x.en, VoL(0;xs,0), gr(0) = VoL(0;%4,1) and N is the number of times
X is oversampled in the centralized version.

Proof. Recall that By is a mini-batch of | B,| source samples and let the target sample x; be oversam-
pled N times in the Isolation Network. The local gradient on the source node ggs and on the target
node g are defined as:

1
95(6‘) = ﬁ Z VGL(H;XS7O)7 gT(e) = V@L(Q;Xt,1)7

xs€B
and the centralized mini-batch gradient of the Isolation Network is defined as:
1
09:7( L(0:x5,0) + N - V4 L(0; ,1). Al
9c(0) |Bs|+Nxz€:V9(X)+ VoL(0;%,1) (A.1)

Step 1. Local parameter updates on the Source Node and Target Node. After one SGD step
(E = 1) with learning rate 1 we have,

05 =00 —pgs(6™), 6T =00 —ngp(e®). (A.2)
B;
Step 2. Weighted aggregation. Using the aggregation Eq. 2 with a = |;+|N’ 8 =
N S
—, B =1—«agives
AR g
) = a4 gl

= a0 —ngs) +B(07) —ngr) (by (A2))

= (a+B)0") —n(ags + Bgr)

= 0" —n(ags + Bor). (A.3)
Step 3. Centralized gradient of the Isolation Network.

|Bs| ( 1 1
= T 1 . T | L 6. S )Zi LG; S 7
@95 = B TE N |Bs‘x;B VoL(6;x,,0) ‘BS|+NX§:B Vo L(0;xs,0)

69T = VOL(Q;Xt, 1).

N
|Bs| + N
Adding the two terms reproduces (A.1):

1
ags+ Bgr = m( Z VgL(@;xS,O) + NVGL(QQXhl)) = gc(0)~ (A4)

Step 4. Equality of parameter updates. Substituting (A.4) into (A.3) results in
0(T+1) —p(r _ ngc(e(r)) _ 9(T+1) (A.S)

dec cent
which is exactly the centralized Isolation Network SGD update. This shows that the decentralized

and centralized updates are equivalent when £ = 1 and the aggregation weights are chosen as
| Bs| — N
[B,[+N° p= [B.[+N

o =

O
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Table 4: Class-wise dataset splits used in our experiments, showing the total number of ID images per
class, splits into pre-training and ID test sets, OOD detection task, number of OOD test samples, and
image resolution. For Histopathology, we report near-OOD (domains 2—7) and far-OOD (CCAgT,
FNAC 2019) tasks separately.

Dataset Class Total: # ID Images Pre-train: # Images # ID Test OOD Task #0O0D Test Img. Size
Nevus 832 745 87 .

Dermatology Not Nevus 571 516 55 black ruler 251 224x224
Normal 126 114 12

Ultrasound Benign 269 245 24 text annotations 228 224x224
Malignant 157 137 20

<t X_Rs Cardiomegaly 1788 1711 77 -

Chest X-Ray No Cardiomegaly 21557 20634 93 pacemaker 1000 224x224

Mitotic 421 375 46 .
. ar-OOD: domains 2-7 500

Histopathology ~ Imposter 663 581 82 near N . 50x50

Neither 1063 940 123 far-OOD: CCAgT & FNAC  per domain

C Dataset Details.

We evaluate DIsoN on four medical imaging datasets with two main OOD settings: (i) artifact
detection (Dermatology, Breast Ultrasound, Chest X-ray) and (ii) semantic/covariate shift detection
(Histopathology). In this section, we provide more detailed dataset information with class-wise splits
used in our experiments. Table ] reports the total number of images per class, splits into pre-training
and ID test samples, the number of OOD test samples, the OOD task and the image size.

For Dermatology (1403 artifact-free ID images) and Breast Ultrasound (552 artifact-free ID images),
we follow the benchmark setup from [3]], using manually annotated artifact-free images for pre-
training and ID testing, and ruler/text annotation artifacts as OOD. The Chest X-ray dataset uses
23,345 frontal-view scans without support devices as ID data, following the setup from [2], with scans
with pacemakers as OOD artifacts. In all three datasets, the ID data is split 90/10 into pre-training for
the main task of interest and ID test sets.

For Histopathology, we follow the recently published OpenMIBOOQOD [11] benchmark, which uses a
similar setup to the well-known OpenOOD benchmark [42], but is specialized on medical images.
OpenMIBOOD demonstrates that many state-of-the-art OOD detection methods fail to generalize
to medical data. The dataset is split into multiple domains. The dataset consists of Hematoxylin &
Eosin—stained histology patches grouped into multiple domains. Following the protocol in [L1], we
use the training split of domain 1la (1,896 ID images) for pre-training and its test split (251 images)
as the ID evaluation set.

Domains 2-7 are treated as near-OOD and include seven distinct cancer types (breast carcinoma,
lung carcinoma, lymphosarcoma, cutaneous mast cell tumor, neuroendocrine tumor, soft tissue
sarcoma, and melanoma), from both human and canine. These domains introduce semantic shifts
in cell types as well as covariate shifts due to different staining protocols and imaging hardware.
For far-OOD, two external datasets are used, that introduce a strong semantic shift: CCAgT [1],
which uses AgNOR staining, and FNAC 2019 [32]], which uses Pap staining, both differ significantly
from the Hematoxylin & Eosin staining used for ID data and are also used for different medical
applications.

D Training Details & Hyperparameters

In addition to the training details provided in Section 4, this section presents further training details
and hyperparameters.

Table 5: Pre-training hyperparameters. These settings are used to train the main classification task
before initializing DIsoN. LR: learning rate; BS: batch size.

Dataset Main Task Arch. Optim. Epochs LR BS
Dermatology Nevus vs. Non-Nevus ResNet18 Adam 750 1x107% 32
Breast Ultrasound Normal / Benign / Malignant ResNetl8  Adam 1000 1x1073 32
Chest X-Ray Cardiomegaly vs. No Cardiomegaly ResNetl8 Adam 500 1x107% 32
Histopathology Mitotic / Imposter / Neither ResNet18  SGD (0.9 momentum) 300 5x107* 128
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Table 6: Training hyperparameters used for DIsoN experiments. Overview of architecture,
optimizer, learning rate (LR), and batch size (BS) used to train DIsoN for each dataset.

Dataset Arch. Optim. LR BS
Dermatology ResNetl8 Adam 1x1073 16
Breast Ultrasound ResNetl8 Adam 1x1073 8
Chest X-Ray ResNetl8 Adam 3 x 1073 16

Histopathology ResNetl8 Adam 1x1072 16

D.1 Pre-Training for the Main Task of Interest

We pre-train a ResNet18 on each dataset’s main classification task. DIsoN models use Instance
Normalization, as described in Section 3. For baseline methods, we use Batch Normalization (BN)
to ensure a fair comparison, since they assume BN in their original setups. Table [5| summarizes the
training settings, using the dataset split in the “Pre-train” column of Table[d For the Histopathology
dataset, we follow the protocol from [[11], initializing with ImageNet-1k [8] pre-trained weights to
reduce training time, and use SGD with momentum. All other models are trained from scratch using
Adam.

D.2 Training DIsoN

This subsection provides a more detailed description of the DIsoN training setup introduced in Section
4. Table [6] summarizes the training hyperparameters. The Source Node uses the pre-training split
from Table [Z_f] as its training data. As described earlier, we set the number of local iterations per
communication round such that it approximately matches one epoch over the training data. To limit
runtime, we also use a maximum number of communication rounds for each dataset. If convergence
is not reached within this limit, we assign the maximum round Ry,,x as the OOD score. We use
Riax = 300 for Dermatology and Ultrasound, and Rp,,x = 100 for the longer-running Chest X-ray
and Histopathology datasets.

Image Augmentations. As described in Section 3, we apply standard stochastic image augmenta-
tions across all datasets. The augmentations for each dataset are mostly identical, with only minor
dataset-specific adjustments. For Histopathology, due to the smaller image size, we reduce the
rotation range and leave out random cropping. For Breast Ultrasound, we replace random cropping
with color jitter. The full set of augmentations are listed below:

* Random rotation: £15° (use +5° for Histopathology)
* Random crop: 224 x 224 with padding=25 (applied to Chest X-Ray & Dermatology)
* Color jitter: brightness=0.1, contrast=0.1 (applied to Breast Ultrasound)

Convergence Parameter Choices for F;,;, and 7. The parameters F,}, and 7 were chosen to
capture the convergence behavior of the isolation process. Specifically, Fgap acts as a patience
parameter, conceptually similar to early-stopping criteria in learning-rate schedulers, requiring correct
classification of x; for several consecutive rounds to ensure stable convergence. We set Fgiap = 5, a
commonly used value in schedulers that effectively captures convergence. The confidence threshold
7 = 0.85 ensures that the model learned to separate the target sample with sufficient confidence. This
value follows standard practice in uncertainty-based literature [18]. In preliminary experiments, these
values consistently produced stable and reliable results, so they were kept fixed across all datasets to
avoid dataset-specific tuning or overfitting.

Effect of partial Fine-Tuning We also examined whether freezing parts of the network could
be beneficial for the isolation task by simplifying optimization. Freezing the backbone, however,
assumes that the pre-trained feature extractor already provides sufficiently expressive embeddings to
distinguish ID from OOD samples. We found this assumption too restrictive: in early experiments,
partial fine-tuning of the network (e.g., only the head or last block) led to worse OOD detection
performance than fine-tuning the entire model.
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E Additional Details: Ablation Study for Impact of Predicted Class
Accuracies for Class-Conditional Sampling

CC-DIsoN uses predictions of a primary model M., deployed for a task of interest (e.g., car-
diomegaly classification in X-rays; see Sec. ), for class-conditional sampling. This enables compar-
ing a target sample to the most relevant subset of training data (its predicted class) rather than to all
training samples. Our ablations on the effects of class-conditioning (Tab. 3h) demonstrated that class-
conditional sampling improves OOD detection performance, while DIsoN without class-conditioning
still performs well (see comparison between Tabs. [3p and|[I)).

To further analyze the influence of class-conditioning and how misclassifications affect the results,
we provide here a more detailed analysis of the ablation study on predicted class accuracy introduced
in Section@ We first measure the classification accuracy of My, on ID, OOD, and combined target
samples, along with the corresponding CC-DIsoN AUROC scores (Tab. [7). Typically, especially in
safety-critical domains such as healthcare, high ID accuracy is a requirement for deployment. It is
also expected that classification accuracy decreases on OOD samples due to domain shift. Comparing
these accuracies with OOD detection performance shows no clear correlation, for example, the
Dermatology dataset achieves the highest AUROC (89.5) despite the lowest classification accuracy
(63.0%). This indicates that CC-DIsoN’s OOD detection performance does not depend on perfectly
accurate predicted classes but rather on the data characteristics.

Table 7: Classification accuracy of the primary models on ID, OOD, and combined target samples,
together with CC-DIsoN OOD detection performance (AUROC from Tab. T).

Dataset ID Acc. (%) OOD Acc. (%) ID&OOD Acc. (%) CC-DIsoN AUROC
Dermatology 77.6 54.0 63.0 89.5
Chest X-Ray 93.0 70.8 82.2 84.9
Ultrasound 78.6 61.4 64.8 65.6
MIDOG (near+far) 77.3 68.6 69.2 76.0

In Section@.T]and Tab. 3p, we further investigate the effect of incorrect predicted classes on class-
conditioning in controlled settings. Here, we describe these settings in more detail. We designed three
experiment variants for Dermatology, Breast Ultrasound, and Chest X-ray by manually assigning
wrong predicted classes from the primary model to specific target samples:

1. All targets mislabeled (ID + OOD wrong): All target samples, regardless of whether they
are ID or OOD, are assigned a random incorrect class. This represents the extreme case
of a completely inaccurate primary model (0% Accuracy), which would not be realistic in
deployment but an interesting setting to obtain insights.

2. Only ID targets mislabeled: All target ID samples are assigned incorrect classes (0%
Accuracy on ID), while OOD targets use their predicted classes. Again, this represents an
impractical scenario for deployment, since a model with 0% ID accuracy would not be used
in real-world, but useful to study misclassification behavior. Central motivation for class-
conditioned sampling was to make the isolation task more difficult for ID target samples,
as they should be harder to isolate from source (training ID) samples of the same class, as
they share common visual features. This should lead to slower convergence and increase the
difference than when separating OOD samples from source (training ID) samples, even of
the same class, which is faster due to domain-shift. If we instead compare ID target samples
to source (training) samples from the wrong class, the isolation will be easier, resulting in
worse OOD detection.

3. Only OOD targets mislabeled: All OOD target samples are assigned incorrect classes (0%
Accuracy on OOD), while ID targets use their predicted classes. This mimics a situation
where domain shift causes the primary model to misclassify OOD samples, and gives us
insights what would happen in the most extreme cases of domain shift. Since OOD data
already differ visually from the source distribution, assigning and comparing them with
unrelated classes can make their isolation even easier, and we expect an improvment in
detection.
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The results in Tab. Bp confirm these expectations. Performance decreases when ID targets are misla-
beled, where class-conditioning is most important, while slightly increasing when OOD targets are
mislabeled. Even in the extreme “all wrong” case, CC-DIsoN remains competitive and outperforms
the strongest baseline (Tab. Bb) in all but one dataset. This shows that CC-DIsoN’s improvement
does not rely on perfectly accurate class predictions and that the method remains robust to moderate
number of misclassification errors. Overall, comparison with visually similar source samples is
beneficial for DIsoN and provides stable OOD detection performance even when predicted classes
are not perfect.

F Ablation Study: Further Investigation of Image Augmentations

In Section 4.2, we showed that applying image augmentations during DIsoN training improves OOD
detection across Dermatology, Chest X-ray, and Breast Ultrasound. Here, we extend this ablation
study by comparing four augmentation settings: no augmentation, augmentations only on the Source
Node data, only on the target sample, and on both nodes. Fig. [6|reports AUROC and FPR95 for
all settings. Applying augmentations on both nodes consistently performs best. Interestingly, for
Dermatology, applying augmentations only on the target sample gives best AUROC overall. We
can also see that target-only augmentation outperforms source-only augmentations in most cases.
One exception is Ultrasound FPR9S5, where source-only yields better results. These findings further
strengthen our finding of the importance of regularization on especially the target sample to prevent
fast memorization of superficial image-specific features, and encourage learning more meaningful
features for differentiation of ID and OOD data, as discussed in Section 4.2.
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Figure 6: Effect of applying augmentations on different nodes for DIsoN. AUROC (left) and
FPRO5 (right) across three medical datasets under four augmentation settings: no augmentation, aug-
mentations only on the source node, only on the target sample, and on both. Applying augmentations
on both nodes performs best overall. Target-only augmentation outperforms source-only in most
settings, highlighting the importance of regularizing the target sample during isolation.

G Runtime Statistics

Figure[] (a) in the main paper reports the average number of rounds required for the isolation task
to converge. To provide a more detailed view of runtime variability, we report additional statistics
in Table [8] including the 25th percentile, median, and 75th percentile of convergence rounds for
both ID and OOD target samples using our default « = 0.8. Reporting these quantiles helps
practitioners assess expected runtime under different ID/OOD ratios. Since wall-clock runtime
depends on hardware, we report the number of rounds as a hardware-independent measure. OOD
samples generally converge in fewer rounds than ID samples, consistent with their easier separability
from the source distribution.

We further analyze how the runtime distribution changes with «.. Tables P}{IT] show that decreasing
« consistently reduces the number of rounds required for convergence. Importantly, OOD samples
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Table 8: Quantiles (25th, median, 75th percentile) of convergence rounds for ID and OOD samples
across datasets. OOD samples converge in fewer rounds and show lower variability, while ID samples
display higher variability due to within-distribution complexity.

Dataset Sample Type 25th Perc. Median  75th Perc.
Dermatology 1D 68.0 126.5 184.0
OOD 22.0 28.0 40.0
Ultrasound 1D 20.0 29.0 100.0
OOD 16.0 20.5 32.0
Chest X-Ray ID 28.0 41.0 92.0
OOD 16.0 20.0 26.0
Histopathology (near OOD) ID 443 59.5 74.0
OOD 34.0 44.0 57.0

converge faster across all o, while ID samples exhibit broader variability due to within-distribution
complexity. Note that, as described above, we set the maximum number of rounds Ry,,x as the OOD
score when convergence was not reached. For these additional runtime experiments, we set a lower
maximum number of rounds for the Dermatology dataset from (Ry,x = 300) to (Rmax = 150) in
order to reduce computational cost. For o = 0.90 and o = 0.95, the majority of ID samples did not
converge before reaching this limit. Therefore, the 25th percentile equals Ry, in those cases.

Table 9: Distribution of convergence rounds (25th, median, 75th percentile) for Breast Ultrasound
across « values. Lower « accelerates convergence, while OOD samples consistently require fewer
rounds than ID samples.

« Sample Type  25th Perc. Median  75th Perc.

0.95 1D 39.8 50.0 300.0
OOD 33.0 42.0 59.0
0.90 ID 25.0 39.5 297.0
OOD 22.0 27.0 42.0
0.50 ID 13.8 17.0 26.3
OOD 13.0 15.0 19.0
0.40 ID 11.0 13.0 17.0
OOD 11.0 14.0 17.0

Table 10: Distribution of convergence rounds (25th, median, 75th percentile) for Chest X-Ray across
« values. Lower « reduces the number of rounds required for convergence, with OOD samples
converging faster and more consistently than ID samples.

@ Sample Type 25th Perc. Median  75th Perc.

0.95 ID 51.0 58.0 75.0
OOD 44.0 48.0 53.0
0.90 1D 26.0 35.0 100.0
OOD 19.0 23.0 27.0
0.50 1D 20.0 27.0 51.5
OOD 14.0 16.0 20.0
0.40 1D 15.0 17.0 23.0
OOD 11.0 13.0 15.0

H Practical Deployment Considerations And Runtime Comparisons

In many medical imaging workflows, real-time inference is not required. Diagnostic scans are often
reviewed hours or days after acquisition due to limited clinical staff availability, and in some cases,
turnaround times can extend to several weeks [31]. Within such workflows, Al models can operate
asynchronously, processing scans during this waiting period. Therefore, inference times of several
minutes per sample are acceptable when they provide more reliable detection of OOD samples, and
similar latency is acceptable in many other non-real-time workflows outside of healthcare. DIsoN was
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Table 11: Distribution of convergence rounds (25th, median, 75th percentile) for Dermatology across
« values. Convergence becomes substantially faster as « decreases, and OOD samples consistently
require fewer rounds than ID samples.

«o Sample Type  25th Perc. Median  75th Perc.

0.95 1D 150.0 150.0 150.0
OOD 72.0 87.0 122.0
0.90 1D 150.0 150.0 150.0
OOD 37.0 44.0 66.0
0.50 ID 16.0 17.0 21.0
OOD 13.0 15.0 16.0
0.40 ID 5.0 11.0 15.0
OOD 5.0 5.0 11.0

specifically developed for such workflows, where reliability and privacy are prioritised over speed,
and these latencies remain practically acceptable. To provide a complete view of computational cost,
we report both communication rounds (Appendix [G) and wall-clock runtimes for comparison with
other methods. Together, these results help practitioners assess whether DIsoN is suitable for their
deployment setting.

DIsoN introduces additional computation at inference time (approximately 40 s—4 min per sample in
our experiments on an NVIDIA RTX A5000), as each target sample requires iterative isolation training
until convergence. In contrast, most compared baselines complete inference within milliseconds,
since they rely on a single forward pass of a CNN backbone followed by lightweight post-processing
to compute an OOD score (e.g., distance computation, linear projection, or tree traversal). Note that
iForest, conceptually the closest to DIsoN, cannot be trained jointly on source and target data due
to privacy constraints, unlike DIsoN. Following the original iForest formulation [25]], we pre-train
it only on the source (ID) data and then apply it with a single forward pass per target sample to
determine whether it is ID or OOD, which explains its much lower runtime.

While this makes the baselines faster, DIsoN’s iterative optimisation results in more reliable separation
between ID and OOD samples, as demonstrated in our results. Average per-sample runtimes for
representative baselines on the Ultrasound dataset are reported in Table

Table 12: Average inference time per target sample (seconds, NVIDIA RTX A5000). Baseline
methods compute OOD scores after a single forward pass of the pre-trained network followed by
lightweight post-processing, whereas CC-DIsoN performs iterative optimisation until convergence,
which increases latency but yields more reliable OOD detection performance.

Method Avg. Runtime (s)
MDS 0.006
ViM 0.005
iForest 0.015
CIDER 0.007
PALM 0.007
CC-DIsoN (ID samples) 155.2
CC-DIsoN (OOD samples) 90.9

Single-Sample vs. Batch Processing. DIsoN is designed to process one target sample at a time,
as it learns a decision boundary that separates a single target sample from the training distribution
using convergence behaviour as the OOD score. This design aligns with many real-world scenarios,
especially in healthcare, where each patient scan is acquired and analysed individually rather than in
large batches. If batch processing is feasible, multiple DIsoN instances can be executed in parallel
to use available hardware efficiently. In our experiments, up to eight DIsoN runs could be executed
concurrently on a single NVIDIA RTX A5000 (24 GB VRAM). Although not a traditional deep
learning batch-tensor setup, this parallel execution allows scaling for pre-collected datasets.

Network Conditions and Communication Latency. DIsoN involves a single target client communi-
cating with a source node, making it simpler and more robust than large-scale multi-client federated
systems. Network delays or volatility only affect wall-clock time, not the number of communication
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rounds or the quality of convergence. In practice, network disconnections can be handled through
standard retry or timeout mechanisms used in distributed systems.

Overall, these experiments and considerations demonstrate that while DIsoN trades inference speed
for reliability, its runtime remains predictable and manageable across deployment conditions, making
it suitable for safety-critical settings where performance is prioritised and real-time inference is not
required.

I Additional Multi-Seed Results for Histopathology

Due to space limitations, Table [2] reports means over three seeds only, the standard deviations are
omitted. In this section, we provide the complete tables including standard deviations. Tables 13|
(AUROC 1) and [14](FPR95 |) list the mean =+ std over three random seeds for the Histopathology
dataset. For the Avg. columns, the & values are computed as the sample standard deviation across
seeds of the per-seed macro averages.

Table 13: Complete AUROC (1) results for the Histopathology dataset (MIDOG). Each cell shows
mean =+ standard deviation over three random seeds. This extends the means reported in Table 2] with
standard deviation.

M near-OOD far-OOD
ethods
2 3 4 5 6a 6b 7 Avg. CCAgT FNAC Avg.

MSP 54.1+58 47.4+130 55.7+25 59.1+12 54.8+06 45.6+93 56.1+53 53.3+35  T84+14  82.7+43  80.6+16
MDS 67.4+30 67.2+06 65.7+x03 61.2+45 60.6+£1.6 55.6+£59 51.0+7.1 61.2+18 87.1+99  86.6+119 86.8+105
fDBD 579482  52.6+84 57.5+43 60.2+24 579+16 S1.2+61  553+45 56.1+38 74.6+138 82.1+06  78.3£7.1
ViM 68.0+36 66.7+26 66.2+12 63.5t14 61.9+09 55770 549455 62.4+15 925434 92.6+52 92.6440
iForest 379458  38.7+48 39.7+19 41.6+65 39.5+19 40.4+43 464494 40.6+£19 27.7+164 3234243  30.0+202
CIDER 714433  65.6+£81 55.5+65 64.2+25 57.4+20 47.7+100 64.1+30 60.9+22 82.5+44 954434  89.0+25
PALM 735423 5924110 663455 64.3+11  62.1+39 41.8+45 61.6+25 61.3+34  97.0440  99.6+06  98.3+23

CC-DIsoN  75.4+13  79.5+16 72.6+06 63.0£17 64.0+23 70.7+28 61.8+20 69.6+07 983+01  98.4+01  98.3+0.1

Table 14: Complete FPR9S5 (|) results for the Histopathology dataset (MIDOG). Each cell shows
mean =+ standard deviation over three random seeds. This extends the means reported in Table 2] with
standard deviation.

near-OOD far-OOD
Methods
2 3 4 5 6a 6b 7 Avg. CCAgT  FNAC Avg.
MSP 94.8+42 93.4+70 894454 93.5+06 94.7+14 955444 924435 93.4+19 5224100 63.6+£84  57.9+54
MDS 80.0+30 79.8+16 819450 87.4+34 87.4+28 89.5+24 91.6+29 854427 43.6+206 39.6+266 41.6+23.1
fDBD 83.0+72 81.4+88 88.7+26 89.0+27 859+79 86.2+98 922413 86.6+48 58.3+108 63.7+29  61.0+68
ViM 79.8473  77.8+43 T77.7+18 869431 87.3+07 91.0+34 93.1+28 84.8+26 29.1+98 27.0+162 28.0+126

iForest 98.3+20 96.9+24 97.7+18 97.5+12 98.0+£17 97.7+29 95.7+12 97.4+14 992404  96.8+41  98.0+2.1
CIDER 84.6+47 89.0+38 91.5+19 89.8+22 922430 96.5+05 88.2+51 90.2+24 7724165 18.3+133  47.8+62
PALM 781451 90.3+18  77.7+74  93.6+04 90.8+12 97.6+14 93.6+3.1 88.8+08 21.84357  1.5+25 11.6+19.1
CC-DIsoN = 78.8+40 61.7+36 79.7+27 89.4424 85.3+52 799+50 92.0+00 81.0+12  4.8+18 4.0+14 44416

J Qualitative Visualization of DIsoN Isolation Process

In this section, we provide qualitative visualizations of the DIsoN isolation process over commu-
nication rounds. Figure [/| shows PCA projections of a target sample and the source data after
communication rounds 0, 15, and 25. Each row corresponds to a target image from the Dermatology
dataset. In the OOD example (top row), the target sample (orange star) rapidly drifts away from the
source distribution (blue points), achieving clear separation already after communication round 15. In
contrast, the ID target (bottom row) remains closely clustered with the source data, showing that it is
harder to isolate. This side-by-side comparison shows DIsoN’s core idea/motivation: OOD samples
isolate quickly, while ID samples require more rounds.
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Figure 7: Isolation Process over Communication Rounds. PCA projections of source samples
(blue) and a target sample (orange star) after communication rounds 0, 15, 25 of DIsoN training.
The top row shows a target sample that is OOD, the bottom row shows a target sample that is ID
(from the Dermatology dataset). The OOD sample becomes separated already after round 15 and is
clearly isolated by round 25. In contrast, the ID sample remains entangled with the source distribution
throughout, demonstrating that it is harder to isolate.
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