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Abstract

Real-time decision-making gets more attention in the big data era. Here, we con-
sider the problem of sample selection in the online setting, where one encounters a
possibly infinite sequence of individuals collected over time with covariate infor-
mation available. The goal is to select samples of interest that are characterized by
their unobserved responses until the user-specified stopping time. We derive a new
decision rule that enables us to find more preferable samples that meet practical
requirements by simultaneously controlling two types of general constraints: indi-
vidual and interactive constraints, which include the widely utilized False Selection
Rate (FSR), cost limitations, diversity of selected samples, etc. The key elements
of our approach involve quantifying the uncertainty of response predictions via
predictive inference and addressing individual and interactive constraints in a se-
quential manner. Theoretical and numerical results demonstrate the effectiveness
of the proposed method in controlling both individual and interactive constraints.

1 Introduction

In recent times, the field of real-time decision has flourished significantly, primarily driven by the
exponential growth of available data in both the tech industry and computer science. We consider
here a typical application of real-time decision, the problem of online sample selection [2, 5]. For
instance, online recruitment systems utilize machine learning algorithms to sequentially choose
qualified candidates rather than waiting for all (future) candidates’ information to be collected
[14]. Additionally, recommendation systems have now become commonplace in providing real-time
suggestions for content (e.g., news articles, short videos) with potential high click-through rates to
users [24]. Common situations also can be found in real-time precision marketing [43].

We describe the online sample selection problem as follows: samples (individuals) characterized by
covariates Xt ∈ Rd arrive sequentially while their responses Yt ∈ R remain unobserved throughout
the process. The data pairs (X, Y ) of each time are i.i.d. random vectors. At each time point, the
analyst is faced with the task of deciding whether to select the current observation based on certain
predetermined criteria related to Yt, and this selection process continues until a specific stopping rule
is triggered. For example, Yt is the score that measures how one candidate fits a given job position in
the recruitment system and the human resource agencies aim to prioritize candidates with higher Yt,
such as Yt ≥ b. Or Yt is a binary variable where Yt = 1/0 means accepting or rejecting the offer,
and the companies wish to find those individuals with Yt = 1 based on the Xt.
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Our Goal and Motivation. Our goal is to sequentially select samples whose unobserved responses
Yt’s are in the specified target region. A natural idea is to make decisions based on the prediction
value of Yt from models associated with (X, Y ) built on some historical data. However, neglecting
the uncertainty in predictions could result in numerous false decisions, i.e., selecting those samples
whose true responses are beyond the specified region. To measure the selection uncertainty, some
existing works reformulate sample selection as a hypothesis testing problem and focus on controlling
the online false discovery rate (FDR) [16, 33]; see more discussions and literature in Section 1.2.
However, in addition to quantifying statistical uncertainty, online selections often need to take into
account various constraints to find informative samples in practice, for example, cost limitations,
the impacts of some covariates or the diversity of candidates in the online recruitment [39]. Hence,
it’s necessary to explore the covariate space to satisfy these requirements. This motivates us to
investigate how to efficiently implement online sample selection with statistical guarantees under
various constraints.

To address this issue, we summarize common constraints into two types, i.e., individual constraints
and interactive constraints. The former one is relevant to the cost of selected samples, and one typical
example is the fundamental and crucial criterion, false selection rate (FSR), which quantifies the
proportion of falsely selected samples and is equivalent to the well-adopted FDR. The latter constraint
captures the interactive influence among selected samples and is regarded as some kind of quadratic
constraint on some pairwise functions, such as the similarity or diversity among selected samples.

While the individual constraint associated with online FDR control has gained some attentions
[16, 18], it alone fails to capture the nuanced pairwise relationships among different samples. To
bridge this gap, we introduce interactive constraints, which are pivotal within our framework. Building
upon individual constraints, the interactive criteria significantly expand the range of constraints our
method can control. Integrating two distinct types of constraints into a unified framework makes it
easier to create practical algorithms and ensures theoretical guarantees.

A motivating example: candidate screening. As an example, in recruitment, screening from the
resumes arriving sequentially to determine viable candidates who can get into interview processes is
an important problem in human resource management [13, 35]. In this case, one may be interested in:
(1) controlling the online FSR to enhance resource efficiency [21], and (2) maintaining a desired level
of candidate diversity during the screening process, thereby reducing bias [23, 44]. The individual
and interactive constraints and the novel real-time sample selection procedure we propose can solve
this problem precisely. See Section 4.2 for the details and more real data examples.

1.1 Our Contributions

In this paper, we design a novel and flexible online selection rule to effectively ensure the above two
types of constraints are under control at pre-specified levels simultaneously, named as “Individual
and Interactive Constrained Online Selection" (II-COS). The main idea stems from an oracle model
based on the local false discovery rate (lFDR) [12, 38], which is involved in offering valid evidence
on whether Yt is our interest at each time point. With some appropriately chosen evaluating functions,
the II-COS procedure entails validating whether the estimates of constraints are controlled. Simulated
and real-data examples clearly demonstrate the superiority of the II-COS in terms of both online
individual and interactive criteria control.

To the best of our knowledge, this is the first work to systematically bridge the predictive inference
and online selection procedure with various constraints. Our contributions are summarized as follows:

• Under a unified framework, the II-COS addresses how to implement online predictive
selection sufficiently in consideration of both individual and interactive constraints. It is
flexible to characterize the selective uncertainty and trade-off the sampling efficiency and
practical limitations in the covariate space.

• Under mild conditions, we establish the theoretical guarantee that the II-COS is able to
control both individual and interactive constraints simultaneously and asymptotically under
one given stopping rule.

• The II-COS is model-agnostic in the sense that its implementation is applicable to any
(appropriate) learning algorithms. Extensive numerical experiments indicate that the II-COS
can significantly outperform existing ones while yielding effective constraints control.
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1.2 Related Works

Our proposed method is built upon two fundamental pillars: (1) quantifying the uncertainty of
response predictions using predictive inference; and (2) systematically addressing individual and
interactive constraints in a sequential manner. Our work is intricately connected to the fields of
predictive inference and online multiple testing. Here we briefly review literature on these two topics.

Predictive Inference. One key ingredient of our proposed method is predictive/conformal inference.
Conformal inference [42, 34] provides a powerful and flexible tool to achieve algorithm-agnostic
uncertainty quantification of predictions. Conventionally, conformal inference aims to build the pre-
diction intervals and enjoys valid and distribution-free properties by leveraging data exchangeability
[25, 3]. Taking a different but related perspective from multiple-testing, Bates et al. [7] pioneered a
method to construct conformal p-values to detect outliers with finite-sample FDR control. Building
upon this, recent advancements have improved detection power by involving more information or
performing model selection [50, 26, 27, 51, 46]. The most related works are Jin and Candès [21] and
Wu et al. [45], which considered a similar scenario that one would like to select some individuals of
interest by controlling FDR or maximizing the diversity of selected samples in an off-line setting.
Their methods are based on the conformal p-values or lFDR constructed with the predicted response
values, respectively. Besides the fundamental difference between online and offline paradigms, our
framework for characterizing various constraints poses additional challenges in how to select samples
sequentially since we have multiple goals to achieve.

Online Multiple Testing. When only considering individual constraint as FSR control, the online
sample selection can be reformulated as online multiple testing problem. Methods for online multiple
testing have received much recent attention and were pioneered by Foster and Stine [16] who proposed
the so-called α-investing strategy, which was later built upon and generalized [1, 29, 30, 18, 19]. The
key idea in α-investing and its generalizations is to compare p-values with dynamic thresholds and
gain some extra α-wealth for each rejection. We refer to Robertson et al. [33] for a thorough overview.
Those rules suffer from the “alpha-death" issue to some extent [29], which means a permanent end to
decision-making when the decision threshold is too small, i.e., the online procedure stops early. This
phenomenon occurs in many existing online multiple testing algorithms, as discussed in [29]. Along
a different direction, Gang et al. [17] developed a new class of structure-adaptive sequential testing
(SAST) rules built on the lFDR to avoid the alpha-death issue. The SAST serves as a building block
for developing our II-COS procedure and can be essentially seen as a special case of ours. Later
on, Ao et al. [4] reformulated online multiple testing procedure into an online knapsack problem,
providing novel policies with near-optimal regret guarantees. Additionally, Xu and Ramdas [48]
proposed to use e-values [41] for online multiple testing to address the dependence. However, those
existing works do not take predictive inference into account and are concerned only with online error
rate control without exploration of the covariate space, which may greatly hamper their applicability.

2 Individual and Interactive Constrained Online Selection Procedure

2.1 Problem Formulation

Assume there exists a historical labeled dataset as D = {X̃i, Ỹi}ni=1, where (X̃i, Ỹi)’s are independent
and identically distributed (i.i.d.) from (X, Y ). A sequence of unlabeled data X1,X2, · · · ∼ X =
(X1, · · · , Xd)

⊤ arrives in a stream with unknown responses Y1, Y2, · · · . At each time t, one must
make a real-time decision about whether or not to select the t-th individual, which is determined by
some pre-specified requirement on Yt. Denote A as the target region of Yt, which differs depending
on users’ specifications. For example, in a regression setting, the requirement could be of the form
Yt ∈ [a, b], (−∞, a) or Yt ≥ b.

Let θt = I{Yt ∈ A} describe the true state of Yt. Denote a decision rule as δt ∈ {0, 1}, where δt = 1
indicates that the Xt is selected and δt = 0 otherwise. A false selection is made if δt = 1 but θt = 0.
Denote δt = {δi : i ≤ t} as the decision rule and T as the time that the procedure stops. Our goal
is to build a decision rule δt to select samples with {Yt ∈ A} up to stopping time T such that the
following two general types of constraints hold simultaneously.

Individual Constraint. In practice, one main concern is to control the cost of selecting samples of
interest. For example, in online recruitment, companies need to control the proportion of selected
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unqualified candidates or the average loss when hiring someone who rejects the offer. In such cases,
we can assign each selected sample a cost associated with some pre-specified function of the covariate
X and control the expected cost associated with time T at the target level. We refer to this requirement
as individual constraint and write it as:

C1(δ
t) = E

[∑
i≤t{(1− θi)G0(Xi) + θiG1(Xi)}δi

(
∑

i≤t δi) ∨ 1

]
, (1)

where a∨b = max{a, b} and G0(X) ≥ 0 and G1(X) ≥ 0 with G0 ̸= G1 are the costs corresponding
to θ = 0 and θ = 1, respectively. Here, we take expectation due to the randomness of θ1, · · · , θt.
For example, when we simply choose G0(X) = 1 and G1(X) = 0, the individual constraint is the
popular false selection rate (FSR), i.e.

C1(δ
t) = FSR(δt) = E

[∑
i≤t(1− θi)δi

(
∑

i≤t δi) ∨ 1

]
. (2)

The FSR is essentially equivalent to the well-adopted FDR in multiple testing literature, which is
a useful tool to maintain the ability to reliably select samples of interest without excessively false
selections [9]. Some works on online FDR control have been well studied. [16, 1].

The individual constraints alone cannot capture the pairwise relationship among different samples.
We address this by introducing interactive constraints below.

Interactive Constraint Another common concern is the interactive constraint, which involves
choosing more preferable samples. For example, companies would like to retain candidates with a
diverse range of backgrounds and experiences in online recruitment, or real-time suggested contents
are required to avoid homogeneity in recommendation systems. Here, we introduce a bi-variate
weight function g(X,X′) to evaluate the interaction between selected samples. Denote PC(δt) =∑∑
1≤i<j≤t

g(Xi,Xj)θiθjδiδj, PS(δt) =
∑∑

1≤i<j≤t

θiθjδiδj. We define the interactive constraint as

C̃2(δ
t) = E

[
PC(δt)

PS(δt)

]
. (3)

Here, since only the correctly selected samples are of interest, the constraint is concerned with the
average mutual effects between the correctly selected ones rather than all selected ones. When
choosing the function g as some similarities, controlling C̃2(δ

t) at a specified constant K, i.e.,
C̃2(δ

t) ≤ K, is controlling the expected similarity (ES). It is equivalent to requiring that correctly
selected samples exhibit certain diversity and rich information in the covariate space of interest.

Typically, one useful choice for g(X,X′) is the weighted RBF kernel g(X,X′) =

exp
{
− 1

σ2

∑d
k=1 wk(Xk −X

′

k)
2
}

with parameter σ > 0 to measure the similarity between two
independent X and X′. The RBF kernel is a common and widely embraced choice in machine
learning [49, 28]. Here, {w1, . . . , wd} are some given weights per users’ needs. For instance, if
one is just interested in the effects of the k-th feature, then simply wk = 1 and wj = 0 for j ̸= k.
Specifically, the case that wk = 1 for all k = 1, . . . , d is chosen in Section 4. We also consider other
similarity choices of g(X,X′), such as the cosine similarity g(X,X′) = X⊤X′/(∥X∥2∥X′∥2) [52].

Due to the randomness in the denominator, it turns out controlling (3) directly is not easy. Instead,
we employ a modified interactive constraint,

C2(δ
t) =

E
[
PC(δt)

]
E
[
PS(δt)

] . (4)

The constraint (4) aims to control a ratio of expectations, which is still a reasonable interactive
measure. In numerical studies, we see that C̃2(δ

t) in (3) and C2(δ
t) in (4) yield almost identical

patterns. An illustrative example can be found in Appendix D.1.

In sum, the goal is to select samples of interest by a decision rule δT controlling both the individual
and interactive constraints until stopping time T , i.e., C1(δ

T ) ≤ α and C2(δ
T ) ≤ K. We

emphasize that C1(δ
T ) and C2(δ

T ) as well as their pre-specified levels α and K can be chosen up
to the practical applications.
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2.2 Oracle Selection Procedure

To design a general rule that is valid for any arbitrary stopping time T , we consider controlling the
constraints at each time t in an online fashion, such that supt∈N C1(δ

t) ≤ α and supt∈N C2(δ
t) ≤ K.

Since Yt is unavailable, we consider utilizing predictive inference to measure the suspicious patterns.
Let µ(x) := Y | X = x be the regression or classification model associated with (Xt, Yt), and
one reliable estimate as µ̂(·), being estimated on the labeled data D with some machine learning
algorithm. Denote Wt = µ̂(Xt) as a predicted value of Yt and assume that µ̂(·) is a bijection almost
surely. The bijection assumption is considerably mild and widely adopted for the identyification of
each Xt in the predictive inference framework [45]. The θt = I(Yt ∈ A) is Bernoulli(π) distributed
with π = Pr(Yt ∈ A), and Wt can be viewed as generated from one two-group model

Wt | θt ∼ (1− θt)f0 + θtf1,

where f0 and f1 denote the probability distribution functions of Wt conditional on Yt /∈ A (i.e.,
θt = 0) and Yt ∈ A, respectively. Then, the conditional probability of Yt /∈ A is

Lt = Pr(θt = 0 | Wt) =
(1− π)f0(Wt)

f(Wt)
, (5)

where f = (1 − π)f0 + πf1. The Lt coincides with the local FDR in multiple testing literature
[12, 17]. With the two-group model (5), we have E[θt | Xt] = 1 − Lt and further notice that the
individual constraint C1(δ

t) in (1) can be exactly satisfied if
Vt

Rt
:=

∑
i≤t{LiG0(Xi) + (1− Li)G1(Xi)}δi

(
∑

i≤t δi) ∨ 1
≤ α,

holds. Here, we denote Vt =
∑

i≤t{LiG0(Xi) + (1 − Li)G1(Xi)δi} and the number of selected
ones as Rt =

∑
i≤t δi ∨ 1 for notational convenience. Especially, when G0(X) = 1, G1(X) = 0,

then FSR(δt) in (2) can be exactly controlled.

Accordingly, the interactive constraint C2(δ
t) ≤ K in (4) can be achieved if

TSt

NSt
:=

∑∑
1≤i<j≤t

g(Xi,Xj)(1− Li)(1− Lj)δiδj∑∑
1≤i<j≤t

(1− Li)(1− Lj)δiδj
≤ K,

where the expected total mutual effects conditional on {Xi}i≤t and the expected number are denoted
as TSt and NSt, respectively.

Therefore, if Lt is known, when a new sample Xt arrives at time point t, we can perform the decision
rule as follows. Note that there is no need to consider interactive effects before the first selection.
When t comes before the first selection (i.e, Rt−1 = 0), the decision rule is δt = 1 if

Vt−1 + LtG0(Xt) + (1− Lt)G1(Xt)

Rt−1 + 1
≤ α, (6)

holds; otherwise, δt = 0 which means Xt is not selected. When Xt arrives with Rt−1 ≥ 1, then
δt = 1 if (6) and

TSt−1 +

[ ∑
i≤t−1

g(Xi,Xt)(1− Li)δi

]
(1− Lt)

NSt−1 +

[ ∑
i≤t−1

(1− Li)δi

]
(1− Lt)

≤ K (7)

hold simultaneously; otherwise, δt = 0. Note that if we set C1(δ
t) as FSR(δt) and choose K = +∞,

then our method essentially reduces to the same manner as the controlling step of the SAST in Gang
et al. [17]. Our proposed method can be seen as a much more generalized and flexible framework for
controlling both the individual and the interactive constraints simultaneously in an online fashion.

We call this method the oracle II-COS (Individual and Interactive Constrained Online Selection). The
workflow in Figure 1 shows the procedure of the oracle II-COS. The following result shows that it
can exactly achieve our goal.
Proposition 2.1. Assume Lt values are known. Then the oracle II-COS selection rule controls both
constraints at any stopping time T , i.e., C1(δ

T ) ≤ α and C2(δ
T ) ≤ K.
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Figure 1: The implementation flowchart of the oracle II-COS procedure.

2.3 Data-driven II-COS Procedure

As Lt is unknown in practice, we propose a data-driven II-COS procedure, which uses a reliable
estimation L̂t for implementation. We resort to a data-splitting strategy: randomly split historical
data D into two parts, the training set Dtr and the calibration one Dcal of sizes n0 and n1 respectively,
where Dtr is used for training a predictive model and Dcal is to estimate those unknown parameters.
Specifically, we first fit a regression or classification model µ̂(·) on Dtr, and then obtain predicted
values on Dcal, i.e. {µ̂(X̃i) : (X̃i, Ỹi) ∈ Dcal}. Note that conditional on Dtr, {µ̂(X̃i) : (X̃i, Ỹi) ∈
Dcal} are i.i.d. random variables and have the same distribution as Wt = µ̂(Xt), so that it can be
utilized to estimate (5).

Therefore, the estimators of f0 and f , f̂0 and f̂ , can be obtained by applying the kernel density
estimation method to the data {µ̂(X̃i) : (X̃i, Ỹi) ∈ Dcal, Ỹi /∈ A} and {µ̂(X̃i) : (X̃i, Ỹi) ∈
Dcal}, respectively. And the probability π = Pr(Yt ∈ A) can be approximated by π̂ =

n−1
1

∑
(X̃i,Ỹi)∈Dcal

I(Ỹi ∈ A). Further the Lt in (5) can be estimated by

L̂i =
(1− π̂)f̂0(Wi)

f̂(Wi)
∧ 1. (8)

The data-driven II-COS procedure is summarized in Algorithm 1, and it indeed consists of two phases:
offline estimation and online decision. The running time of offline estimation is not critical. At each
time t, the computational complexity is a linear function of the currently selected number Rt. More
implementation details can be found in Section 4 and Appendix B.1.

In fact, the proposed II-COS is flexible to trade off the individual and interactive constraints by
adjusting the thresholds α and K. If one is concerned only with individual cost control, then we can
set K = +∞, with which the interactive constraint is out of work. Similarly, only the interactive
effect is of interest when α = 1. Appendix D.2 provides a toy example to illustrate this.

Before further pursuing, we would discuss the stopping time in practice. It’s worth noting that the
specific choice of stopping rule (and thus stopping time) is completely up to the user. For example,
when m ≥ 2 is the desired number of selections, one can set T = inft{t :

∑t
i=1 δi = m}. Or when

s is the total wages for recruitment, one can set T = inft{t :
∑t

i=1 δisi = s} where si is the payroll
for each selected candidate. Or T is just chosen as one given deadline. With the use of II-COS,
practitioners have the flexibility to design diverse stopping strategies that can adapt seamlessly to
their specific applications. In brief, our method is flexible and is appropriate for various goals based
on the user’s requirements by choosing different G0(X), G1(X), g(Xi,Xj) and varied target levels
(α,K) and a user-specified stopping time.
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Algorithm 1 The data-driven II-COS procedure
Input: Target levels α and K, pairwise function g, cost G0(X) and G1(X), stopping time T ,
interested region A, labeled data D, prediction algorithm H.
Initialization: t = 0, Vt = Rt = 0, TSt = NSt = 0; Decision rule δt = ∅
Estimation: Randomly split D into training set Dtr and calibration set Dcal. On Dtr, fit µ̂(x) with
H. Obtain π̂, f̂0 and f̂ from Dcal.

Online decisions: while t ≤ T do
Set t = t+ 1. Compute Wt = µ̂(Xt), L̂t by (8) and the similarities g(Xi,Xt) for those δi = 1.
Replace Lt by L̂t in (6) and (7).
if Rt−1 < 1 and (6) holds then δt = 1;
else δt = 0;
if Rt−1 ≥ 1, (6) and (7) hold then δt = 1;
else δt = 0;
Update: δt = δt−1 ⋃{δt}; Rt = Rt−1 + δt; Vt = Vt−1 + {L̂tG0(Xt) + (1− L̂t)G1(Xt)}δt;

TSt = TSt−1 +

[∑
i<t

g(Xi,Xt)(1− L̂i)δi

]
(1− L̂t)δt; NSt = NSt−1 +

[∑
i<t

(1− L̂i)δi

]
(1− L̂t)δt;

end
Output: Selection set {Xi : δi = 1, δi ∈ δT }.

Extension to varying proportion case. In practice, the distribution of (Xt, Yt) may vary smoothly
over time. In Appendix C, we consider the probability of Yt ∈ A (i.e. the proportion of samples in
the specified region) varying over time and extend the proposed II-COS to learn πt = Pr(Yt ∈ A)
continuously over time and we also construct the corresponding theoretical guarantees.

3 Statistical Performance Guarantees

In this section, we provide statistical guarantees for the data-driven II-COS procedure. The main
difficulties lie in the quantification of data-driven estimation error of Lt and we utilize the classical
kernel density estimation theory along with the structure of our online procedure to effectively
characterize it. For simplicity, we consider that the training data set is given such that the estimated
model µ̂ is fixed. Before presenting our theoretical results, we state the following regularity conditions.

Assumption 3.1 (Density functions and kernel). The density functions and kernel function satisfy

(1) The f1(·) and f0(·) are upper bounded by M > 0, and the f(·) is lower bounded by ℓ > 0.

(2) The f0 and f1 are Hölder-continuous, i.e. |f0(w)− f0(w
′)| ≤ cβ |w−w′|β for any w,w′ ∈

R, and the same for f1 with some fixed 0 < β ≤ 1 and constant cβ .

(3) Kernel K(·) is a bounded symmetric function and enjoys exponential decay.

Assumption 3.2 (Weight functions). There exists constants cG > 0 and cg > 0 such that 0 <
G0(X) ≤ cG, 0 < G1(X) ≤ cG for any X and 0 < g(X,X′) ≤ cg for any X ̸= X′.

Assumption 3.1 is considerably mild and widely adopted in the uniform convergence of kernel
density estimation [36]. If f0 and f1 have bounded first-order derivatives, the Hölder-continuous
assumption would hold with β = 1. The lower bound of f is to ensure the uniform convergence
of the estimated lFDR. Assumption 3.2 is mild since the weight functions are required only to be
positive and bounded. It can be satisfied by a large category of G0, G1 and g. For example, we can
take Gj(X) = aj∥X∥22 for j = 0 or 1 and cG exists when X is bounded. And we can set g as the
RBF and orthogonal similarities with cg = 1.

With those regularity conditions, we establish the validity of the II-COS procedure for the individual
constraint control.
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Theorem 3.3 (Bound for individual constraint). Suppose Assumptions 3.1 and 3.2 hold and take
the bandwidths for estimating f and f0 in the order of n−1/(2β+1)

1 . Then for any given time t, the
individual constraint of the II-COS procedure (Algorithm 1) satisfies C1(δ

t) ≤ α + ∆n1 , where

∆n1
= Dn

−β
2β+1

1

√
log n1 and D is a constant depending on M , ℓ, cβ , β, π, cG and K(·).

Although the C1(·) of II-COS might be slightly larger than the target level in finite samples, this
gap converges to 0 asymptotically as n1 increases. In the numerical studies, we find that a small
calibration size of around 200 is enough to control the C1 in a reasonable range. Taking the FSR as
an individual constraint, Theorem 3.3 indicates that our method can provide asymptotic online FSR
control similar to an online FDR control procedure [16].

The next theorem examines the performance of the II-COS in terms of interactive constraint.

Theorem 3.4 (Bound for interactive constraint). Suppose Assumptions 3.1-3.2 hold and take the
bandwidths for estimating f and f0 in the order of n−1/(2β+1)

1 . Let Ts = inf{t :
∑t

i=1 δi = s} for
s > 2 and assume there exists a constant α′ ∈ (0, 1) such that

∑
i≤t L̂iδi/(1 ∨Rt) ≤ α′ . Then for

any given time t ≥ Tm, the interactive constraint of the II-COS satisfies

C2(δ
t) ≤ K +

(K + cg)∆n1

0.5− mα′

m−1 −∆n1

.

The term mα′/(m − 1) is used to characterize the lower bound of the denominator term of the
interactive constraint. Specifically, when we choose FSR as the individual constraint, we have
α′ = α, which demonstrates the interdependence between controlling individual and interactive
constraints. Furthermore, under arbitrary stopping strategies with a stopping time T , we can have the
asymptotic guarantee.

Corollary 3.5. Suppose the conditions in Theorem 3.4 hold, the stopping moment T ≥ Tm and
α′ < (1− 1/m)/2. Then the II-COS procedure controls the individual and interactive constraints
asymptotically at T , i.e. limn1→∞ C1(δ

T ) ≤ α and limn1→∞ C2(δ
T ) ≤ K.

4 Experiments and Evaluation

We illustrate the breadth of applicability of the II-COS procedure by experiments on simulated data
and real-data applications. As an example, we set the stopping rule as selecting total m = 100
samples, i.e., T = Tm = inft{t :

∑t
i=1 δi = m}. Additional experiments including the extended II-

COS in Appendix C are shown in Appendix D.9. Code for implementing II-COS and reproducing the
experiments and figures in our paper is available at https://github.com/lulin2023/II-COS.

Implementation of II-COS. To our best knowledge, online selection with uncertainty qualification
has only been studied in the field of online multiple testing, which aims to control online FDR. Hence,
we focus on using FSR as the individual criterion and modified ES as the interactive criterion. As
X may be measured on scales with widely differing ranges in different dimensions, we assume that
X’s have been properly scaled in each dimension before computing g. We choose g as the weighted
RBF kernel with σ = 1, wk = 1 here. Other choices for individual and interactive constraints are
considered in Appendix D.5.

Benchmarks. We compare the II-COS procedure with four benchmarks from online multiple testing.
The first one is a structure-adaptive sequential testing rule, the SAST [17], which is implemented
with L̂t. It can achieve the FSR control but ignore the interactive constraint. As mentioned earlier
in Section 2, SAST can also be considered as a special case of our II-COS with K = +∞. Its
details are deferred to Appendix B.2. The other competitors are three well-known online FDR control
algorithms LOND [18], SAFFRON [30] and ADDIS [40] implemented with the conformal p-values
suggested by Bates et al. [7]. Refer more information in Appendix B.3. All the benchmarks can only
control FDR, which demonstrates the flexibility of our method for different constraints.

Performance Measures. The empirical FSR, ES and stopping time (Tm) are evaluated using the
average values of the false selection proportions, the similarity and the stopping time from 500
replications, respectively, where Tm serves as a criterion for assessing selection efficiency.
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4.1 Results on Synthetic Data

Data Description. We consider a classification model: X | Y = 0 ∼ N4 (µ1, I4), and X | Y =
1 ∼ N4 (µ2, I4), where µ1 = (5, 0, 0, 0)⊤,µ2 = (0, 0,−3,−2)⊤. We set Pr(Y = 1) = 0.2. The
information set is A = {1}. The predictor H is taken as random forest with defaulted parameters.
We also consider a regression setting and conduct additional experiments in Appendix D.

Firstly, we observe that methods relying on conformal p-values, such as LOND, SAFFRON, and
ADDIS, encounter the alpha-death (stop early) issue [29]. These methods struggle to select an
adequate number of samples, especially in small calibration sets. In contrast, II-COS ensures the
control of both individual and interactive constraints even with a small ncal (e.g., 200). See more
details and results in Appendix D.3. Hence, to make a fair comparison, we consider a relatively large
size of the calibration set, ncal = 4, 000. We fix training data size ntr = 1, 000.
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Figure 2: The values of FSR(δt) and ES(δt) over time t for II-COS, SAST, LOND, SAFFRON and ADDIS.
The black dashed lines denote the FSR level α = 0.1 and the ES level K = 0.045. Shading represents error
bars of one standard error above and below.
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Figure 3: Boxplots of FSR(δTm), ES(δTm) and stopping time Tm for II-COS, SAST, LOND, SAFFRON and
ADDIS. The black dashed lines indicate the corresponding nominal levels.

Results. Figure 2 presents the online FSR (false selection rate) and ES (expected similarity) values of
five methods against time t, which are individual and interactive constraints, respectively. The FSR
levels of II-COS and SAST are closer to the nominal level than the other three methods. As expected,
only the empirical ES levels of II-COS are controlled under the pre-specified level K over time t.
The LOND and SAFFRON lead to slightly conservative FSR values, while the FSR levels of ADDIS
are inflated compared to the target level. Figure 3 further displays the boxplots of empirical FSR,
ES at stopping time Tm. We observe that only II-COS achieves satisfactory ES values compared
to the nominal level. Moreover, the II-COS has a relatively larger value of Tm compared to those
of other benchmarks. This is consistent with the fact that the II-COS spends more time exploring
the structure information inside the covariate space due to the requirement of interactive constraint.
Similar conclusions for the regression example in Appendix D.4 can be drawn.

Regarding efficiency, we also conducted an experiment to compare the effectiveness of II-COS with
an oracle method possessing knowledge of true state θt. The Tm of II-COS is very close to the oracle.
This close proximity indicates the high efficiency of II-COS. See Appendix D.8 for the details.

4.2 Results on Real Data

We next demonstrate the performance of the II-COS in two real-world applications. Since those
online multiple testing methods based on conformal p-values yield few selected individuals, we focus
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on comparing the II-COS with the SAST. For comparison, we also include the offline method using
conformal p-values, where δt = 1 if p̂t ≤ α. We denote it as CP.

Datasets. We consider the recruitment dataset from Kaggle [22] that contains 45,372 candidates after
removing the missing data and records a binary response indicating whether the candidate passes the
job interview, and other 11 attributes including education status, handicapped or not, and gender. The
other problem is to use 1994 Census Bureau dataset [8] to select a subset of individuals who may
have high incomes in precision marketing. This census dataset records 32,561 individuals with their
14 attributes, including gender, race, marriage, education length and so on.

For each dataset, we randomly partition the data into three parts: ntr = 1, 000 training data, ncal =
1, 000 calibration data and the rest which are used as the online observations. The categorical
attributes are converted into one-hot codes and then are treated as numerical attributes for computing
similarity measures. The prediction algorithm H is random forest with defaulted parameters.

Results. Table 1 reports the results among 500 repetitions. Both the II-COS and SAST enjoy valid
FSR control, but CP yields an inflated FSR level in income investigation. The II-COS performs well
in terms of similarities. To further compare the diversities, we present the proportions of different
education status in in Figure 4. It can be seen that the proposed II-COS demonstrates its superior
diversity in the specific attributes. See Appendix D.6 for more results for the real data. In summary,
the proposed II-COS works well for selecting individuals of interest to achieve various constraints in
practical applications.
Table 1: Average values with candidate dataset and income dataset: FSR(δTm), ES(δTm) (×10−3) and
stopping time Tm. The target FSR level is α = 0.2 for both. For the candidate data, the target ES level
K = 1× 10−3; For the income data, K = 6× 10−3. The bracket contains the standard error.

(a) Candidate dataset [22]

Method FSR ES Tm

II-COS 0.19 (0.002) 0.98 (0.005) 2227 (91.6)
SAST 0.19 (0.002) 8.73 (0.269) 310 (35.2)

CP 0.16 (0.002) 10.34 (0.084) 277 (1.49)

(b) Income dataset [8]

Method FSR ES Tm

II-COS 0.16 (0.007) 5.56 (0.128) 2760 (227.0)
SAST 0.19 (0.008) 30.90 (1.078) 1200 (202.3)

CP 0.42 (0.006) 18.84 (0.640) 283 (3.883)
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Figure 4: Left: Education status composition of the correctly selected samples (II-COS, SAST and CP) in
candidate dataset; Right: Education length (year) composition of the correctly selected samples (II-COS, SAST)
in income dataset. The plots have error bar to show the variation across the 500 runs.

5 Concluding Remarks

Broader Impacts. This work focuses on creating reliable machine learning tools for making real-time
decisions. One key achievement is a new algorithm called II-COS, designed to select informative
samples in real-time while meeting two types of general constraints. II-COS allows for both individual
and interactive control, validated through theoretical analysis and numerical tests. Our method is
model-agnostic and easily applicable to many real-world cases such as producing diversified results
while controlling FSR for online recruitment. One potential negative impact of our work is that
researchers will apply the algorithm without sufficient scrutiny. We emphasize that it’s important to
use caution when applying this method to complex real-world scenarios to prevent misuse.

Limitations. Firstly, we mainly consider binary functions as the interactive constraint. How to adapt
the II-COS to other popular constraints, such as the Gini index, deserves further study. Secondly,
in certain practical scenarios, it is possible to obtain feedback after decisions. Incorporating the
feedback information into our method to enhance its performance warrants future research.
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Supplementary Material for “Real-Time Selection Under General
Constraints via Predictive Inference”

This supplementary material contains:

• Preliminary terms for self-containment (Appendix A);

• Implementation details (Appendix B);

• An extension algorithm to varying proportion case (Appendix C);

• Additional experiments (Appendix D);

• The proofs of all the theoretical results. (Appendix E).

A Preliminary Terms for Self-Containment

Here, we list the preliminary terms we use in the paper for the sake of clarity and self-containment.

• FDR [9], false discovery rate, a widely-adopted error rate notion in the field of multiple
testing, is defined as the expected proportion of incorrectly rejected null hypotheses as
follows:

FDR(t) = E
[
|H0 ∩R(t)|
|R(t)| ∨ 1

]
,

where H0 is the unknown set of true null hypotheses, R(t) represents the set of rejected null
hypotheses until time t and then H0 ∩R(t) is the set of false discoveries.

• FSR, false selection rate, defined as the expected proportion of individuals being not of
interest among the selected subset of individuals. It is in fact equivalent to the definition of
FDR. In our framework in this paper, we describe it equivalently as:

FSR(t) = E

[∑
i≤t(1− θi)δi

(
∑

i≤t δi) ∨ 1

]
.

B Implementation Details of Algorithms
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Figure 5: The implementation flowchart of the data-driven II-COS procedure.
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B.1 Implementation Details of II-COS

Figure 5 shows the implementation flowchart of our proposed data-driven II-COS procedure, including
the offline estimation step and online decision step. Here we introduce more implementation details
to reproduce the results.

About the classifier. For the classification problem, we use the predicted conditional probability
P̂r(Yt = 1 | Xt = x) as µ̂(x) in the procedure of II-COS. Many commonly used algorithms such as
random forest and neural networks can provide such probability estimators. In fact, the choice of µ̂
is not restricted to probability. For example, the support vector machine outputs the distance to the
separating hyperplane for classification, and such distance can be chosen as µ̂.

However, for probability estimators, one potential problem is that when the classifier is quite accurate,
most of Wi’s are concentrated at 0 or 1 and few of them take values between (0, 1). In such a
situation, it is difficult to accurately and stably estimate lFDR Li’s since the density functions f0(w)
and f(w) are not smooth enough and are not lower bounded. This yields that our assumptions are
violated, but the II-COS can still perform satisfactorily with some corrections on the estimation L̂i’s.
Notice that the larger Wi is, the more likely Yi ∈ A and hence the smaller Li is. That is L̂i should be
monotonically decreasing as Wi increases. Observing this, we can make a monotonization correction
on L̂i’s. To be specific, we rearrange L̂i by the decreasing order of Wi. If L̂(W(i−1)) < L̂(W(i))

which violates the monotonicity, we revise it by L̂(W(i−1)) = L̂(W(i)), where W(i) is the ith
smallest among W . This monotonization correction enables us to avoid obvious errors due to
unstable estimation and improve the performances of all the methods utilizing L̂i’s.

Choice of K. A useful interactive constraint needs an appropriate specification of K. For any
two i.i.d. observations X and X′ with corresponding θ and θ′ respectively, the expected C2 of the
individuals of interest is given as C2 := E[g(X,X′) | θ = 1, θ′ = 1], which can be estimated by
Ĉ2 =

∑∑
i<j;i,j∈L g(X̃i, X̃j)/{|L|(|L| − 1)}, where L = {i : Ỹi ∈ A}. It is reasonable to set

K = aĈ2, where a > 0 is user-specific to control the interactive constraint level. Our numerical
evidence reveals that a ∈ (0.1, 0.5) works generally well.

B.2 Implementation Details of SAST

Gang et al. [17] proposed a structure-adaptive sequential testing (SAST) rule for online false dis-
covery rate control. In their work, the rejecting rule is as follows: If Lt < γt and {|Rt−1| +
1}−1

(∑
i∈Rt−1

Li + Lt

)
≤ α, then δt = 1. Otherwise δt = 0, where Rt−1 = {i ≤ t−1 : δi = 1}

and γt is a barrier estimated from an "offline" procedure.

The implementation details of SAST for comparisons in our simulations in Section 4 are different
from the original one. Firstly, the original SAST assumes the null density function f0 is already
known while in our setting f0 remains unknown. Secondly, in our predictive inference setting, the
density functions and the null proportion are directly estimated via calibration set as the offline
estimation procedure in Algorithm 1, not from current rejection sets. Besides, considering the
time-varying structures of the data stream in their setting, Gang et al. [17] incorporated the barrier
strategy in their method, which is not necessary to be adopted here.

B.3 Implementation Details of Conformal p-values

The notion of conformal p-values was originally proposed by Vovk et al. [42] to construct prediction
interval. Recently, there exist some works to apply conformal p-values to implement sample selection
from a multiple-testing perspective, such as Bates et al. [7], Rava et al. [31] and Jin and Candès [21].
In the sample selection problem, the hypothesis has the following form for each t,

H0t : Yt ∈ Ac v.s. H1t : Yt ∈ A.

There are two types of conformal p-values and we adopt the one in Bates et al. [7] which utilizes the
same class calibration. Recall that for Wt, its conformal p-value pt is defined as

p̂t =
1 +

∑
i∈Dcal

I{Q(W̃i) ≤ Q(Wt)}
1 + |Dcal|

.
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The nonconformity score function Q(Wt) is used to indicate the possibility of θt = 0. For example,
in regression settings, if A = [b,+∞), we can use Q(Wj) = b−Wj . If A = (−∞, a] ∪ [b,+∞),
then we can choose Q(Wt) = max{Wt − a, b−Wt}. And in binary classification settings, if A = 1
and Wt indicates the probability of Yt = 1, we set Q(Wt) = 1−Wt.

Even though conformal p-values are correlated, using conformal p-values to conduct multiple testing
can control the FDR level with finite sample guarantee since they are positive regression dependent
on a subset (PRDS) [10]. However, the conformal p-values are lower bounded by 1/(|Dcal| + 1),
which leads to unsatisfactory performance for online multiple testing methods based on p-values.
Since these methods require sufficiently small p-values to make rejections.

In our simulations, we implement LOND, SAFFRON and ADDIS for online sample selection by
R package OnlineFDR [32] with α = 0.1. Other parameters are defaulted. Here we introduce
the details about these online FDR control methods. Ramdas et al. [29] proposed a “statistical
perspective" to control FDR in online setting, which is to keep an estimate of the FDP less than α
similar to the offline setting. Specifically, for offline FDR, let the rejection set R(s) = {i|pi ≤ s}.
An oracle estimate for FDP is given by FDP∗(s) := |H0|·s

|R(s)|∨1 . For online FDR, an oracle estimate of

FDP∗(t) is
∑

j≤t,j∈H0
αj

R(t)∨1 . Table 2 lists a comparison of estimating FDP in classical offline methods
and online methods for FDR control in multiple testing. For the online methods, denote the decision
rule as δt = {pt ≤ αt}, where pt is the corresponding conformal p-value at time t for our problem.
The test levels {αt} for LOND [18], SAFFRON [30] and ADDIS [40] are listed as follows:

Table 2: A comparison of F̂DP in offline methods v.s. online methods for FDR control.

Offline F̂DP F̂DP(t) Online

BH [9] n·s
|R(s)|∨1

∑
j≤t αj

R(t)∨1 LOND [18]

Storey-BH [37] n·s·π̂0

|R(s)|∨1 , π̂0 =
∑n

i=1 1(pi>λ)

n(1−λ)

∑
j≤t αj

1{pj>λj}
(1−λj)

R(t)∨1 SAFFRON [30]∑
j≤t αj

1{λj<pj≤τj}
τj−λj

R(t)∨1 ADDIS [40]

• LOND: αt = γt(R(t−1)+1), where {γt}∞t=1 is a given infinite non-increasing sequence of
positive constants that sums to α and R(n) =

∑n
t=1 Rt denotes the number of discoveries

in the first n hypotheses tested.

• SAFFRON: At each time t, define Cj+ = Cj+(t) =
∑t−1

i=τj+1, where Ct = I{pt ≤ λ}.
For t = 1, α1 = min{γ1W0, λ}; For t = 2, 3, . . . , αt := min{λ, α̃t}, where

α̃t = W0γt−C0+
+ ((1− λ)α−W0)γt−τ1−C1+

+ (1− λ)α
∑
j≥2

γt−τj−Cj+
.

• ADDIS: The testing levels for ADDIS are given by αt = min{λ, α̂t}, where

α̂t = (η − λ)[ω0γSt−C0+
+ (α− ω0)γSt−τ∗

1 −C1+
+ α

∑
j≥2

γSt−τ∗
j −Cj+

]

and St =
∑

i<t I{pi ≤ η}, τ∗j =
∑

i≤τj
I{pi ≤ η}.

B.4 Experiments Compute Resources

All the experiments were conducted on 3.11 GHz Intel Gen i5-11300H processors with 16 Gb memory
at a Lenovo personal computer and the R platform with version 4.2.1. The time of execution for
each of the individual experimental runs is about 6.686 seconds. And the total compute time for the
synthetic classification example in Section 4 for 500 replications is about 63.877 minutes.
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B.5 A Toy Example for Illustration in Section 2.3

We illustrate the idea of the II-COS procedure via a binary classification example. We aim to select
m = 50 data points of a specific class from unlabeled data arriving sequentially. We choose FSR as
the individual constraint and mES as the interactive constraint.

The data is generated as follows. The 4-dimensional covariates X = (X1, X2, X3, X4)
⊤ are

generated from a mixture of multivariate normal distributions with mean (0, 0, 0, 0) if Y = 0 and
mean (−3,−3, 0, 0) if Y = 1. The proportions of Y = 0 and Y = 1 are 80% and 20% respectively.
In this illustrative example, we set the historical data size n = 1, 000 with calibration size n1 = 500
and would like to select m = 50 data points from the interest region A = {1} with the target FSR
level α = 0.1. The mES threshold K is set at 0.01 for II-COS.

Figure 6 depicts the scatterplot of the first two dimensions of the covariates X, with green dots and
red triangles denoting correctly selected points and falsely selected ones, respectively. The SAST
method proposed by Gang et al. [17] is taken as one benchmark, which considers only the FSR
control. We observe that the selected points of II-COS enjoy significant diversity among the covariate
space and only a few false selections are contained. In contrast, the SAST is inclined to choose
similar samples concentrated at the center of the concerned group and stops too early to fully explore
the covariate space with sequentially arriving samples.

Correctly−selected Falsely−selected

−5.0
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0.0

−6 −4 −2 0
X1

X
2

II−COS

−5.0

−2.5

0.0

−6 −4 −2 0
X1

X
2

SAST

Figure 6: Scatter plots of selected points of the II-COS and SAST. It stops when selecting 50 samples . Left:
the selection results of the II-COS; Right: the results of SAST. Green dots and red triangles indicate correct and
false selections, respectively.

C Extension to Varying Proportion Case

In practice, the distribution of (Xt, Yt) may vary smoothly over time. Due to the unknown Yt, it is
unrealistic to re-estimate parameters (i.e., Estimation Step in Algorithm 1) on both labeled data
and the most recent data. To mitigate this problem, we consider the probability of Yt ∈ A (i.e. the
proportion of samples in the specified region) varying over time and extend the proposed II-COS to
learn πt = Pr(Yt ∈ A) continuously over time.

Let Q(Wt) be one score function, which is high when the possibility of θt = 0 is large and otherwise
low. For example, in regression settings, if A = [a,+∞), we can take Q(Wt) = a −Wt. And in
binary classification, if A = 1 and Wt indicates the probability of Yt = 1, we can set Q(Wt) = 1−Wt.
One valid conformal p-value for Q(Wt) can be obtained as Bates et al. [7],

p̂t =
1 +

∑
i∈Dcal

I{Q(W̃i) ≤ Q(Wt)}
1 + |Dcal|

.

Inspired by the techniques for null proportion estimation in multiple testing literature [37], we note
that Pr(p̂t ≥ λ) ≈ Pr(p̂t ≥ λ, θt = 0) ≈ πt(1− λ) for large λ ∈ (0, 1) (i.e., λ = 0.5).

Thus, we consider using some recent p̂t to estimate a reliable πt. Denote q as the size of a neighbor-
hood {t− q, . . . , t− 1} and fix λ. We employ an exponential weighted scheme to estimate πt where
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the more recent samples will contribute more to the estimation:

π̂λ
t = 1−

∑t−1
j=t−q κb(j − t)I{p̂j > λ}

(1− λ)
∑t−1

j=t−q κb(j − t)
,

where κb(s) = exp{−|s|/b} and b is the bandwidth parameter. Then, we can compute the distribution

of Wt as f̂ t = f̂0(w)(1− π̂t) + f̂1(w)π̂t and estimate Lt by L̂λ
t =

(1−π̂λ
t )f̂0(Wt)

f̂t(Wt)
∧ 1.

The extended II-COS is to substitute L̂λ
t for L̂t in Algorithm 1. The following theorem establishes

the guarantee by assuming the slow change of distribution [6].
Theorem C.1. Assume πt satisfies |πt+1 − πt| ≤ η for any t, and the bandwidth pa-
rameter b satisfies bζ ≤ q for some ζ > 1. Denote ∆′ = c1n

−β/(2β+1)
1

√
log n1 +

c2 max{b−1/3, (log n1/n1)
1/6, (bη)2/3} with constants c1, c2. Suppose pt and λ satisfy Pr(pt > λ |

θt = 1) = 0. Under Assumption 3.1-3.2, we have:

(a) For any given time t, the individual constraint of extended II-COS satisfies C1(δ
t) ≤ α+∆′;

(b) Furthermore, if the conditions in Theorem 3.4 hold, then for any given time t > Tm, the
interactive constraint of the extended II-COS satisfies C2(δ

t) ≤ K +
(K+cg)∆

′

0.5− mα′
m−1−∆′ .

Besides the part similar to ∆n1
in Theorem 3.3, the bound ∆′ owns an additional term that can be

decomposed into three parts. The b−1/3 indicates how many valid samples we use to estimate πt. The
second part comes from the approximation error of p-values. The last one characterizes the effects of
distribution shift. If we properly choose b such that bη = o(1), this term is negligible. Thus when b
and n1 both tend to infinity, ∆′ converges to 0 and the individual and interactive constraints will be
controlled asymptotically.

D Additional Experiments

D.1 Illustration of the Similar Patterns between C̃2 and C2

We calculate the empirical C̃2 and C2 during the online sample selection procedure under regression
setting in Section D.4 with II-COS from 500 replications. The results are summarized in Figure 7.
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Figure 7: Illustration of the similar patterns between C̃2 and C2. Line charts of C̃2(δ
t) (red line) and C2(δ

t)
(blue line) over time t for the regression example. Experiment details are in Appendix D.4. The black dashed
line is K = 0.015. The two measures yield almost identical patterns.

D.2 An Illustration Example of the Flexibility for Choices of α and K.

There exists some trade-off of stopping time and two criteria. In fact, II-COS could result in a short
stopping time when only one criterion is considered. Typically, one could choose K = +∞ for the
case the interactive constraint is out of work and only individual criterion control is considered, and
meanwhile one can set α = 1 with which the interactive constraint is the only concern. The results in
Table 3 evaluated this conclusion where C1 is the FSR and C̃2 is the ES.
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Table 3: Results of flexible choice of α and K for the classification example. Average values among 500
repetitions: FSR(δTm), ES(δTm) and stopping time Tm.

α,K C1(FSR) C̃2(ES) Tm

α = 0.1,K = +∞ 0.101 0.073 446.51
α = 0.1,K = 0.045 0.102 0.044 628.82
α = 1,K = 0.045 0.849 0.038 107.79

Table 4: Average number of selected samples when stopping for II-COS, LOND, SAFFRON and ADDIS.

Classification Regression

ncal II-COS LOND SAFFRON ADDIS II-COS LOND SAFFRON ADDIS

500 100 0.20 0.70 100 100 0.20 21.82 24.05
1000 100 0.72 10.40 100 100 0.87 56.72 59.20
1500 100 11.40 36.33 100 100 12.28 74.70 80.05
2000 100 44.20 50.79 100 100 40.99 80.03 82.02
2500 100 68.33 60.95 100 100 59.72 92.01 91.04

D.3 Effects of the Calibration Size

We perform some additional simulations under the classification setting, to study the stopping early
issue for those methods based on the conformal p-values.

Take α = 0.1 and K = 0.045 for FSR and mES, respectively. In Table 4, we first fix ntr = 1, 000
and m = 100 and vary ncal from 500 to 2,500 to compare the average numbers of selected samples of
these three methods with II-COS until stopping. It is clear that all the three benchmarks are unable to
select enough samples across all the settings, especially with a small calibration set. As the calibration
size n1 increases, their selected numbers tend to be close to the target. This can be understood
because a larger calibration size would generally yield more accurate detection of the individual
of interest and thus alleviate the alpha-death issue to some extent. In contrast, the performances of
II-COS, in terms of the number of selected samples until stopping, would be much less influenced
by the size of calibration data. The II-COS only stops when m samples are obtained under all the
scenarios.

Furthermore, to verify that II-COS can guarantee both FSR(δTm) and ES(δTm) control with a
relatively small calibration size ncal (such as 200), we apply II-COS in synthetic data. The details of
the data generation process can be found in Section 4 and D.4.

We fix ntr = 1000, m = 100 and ncal varies from 200 to 800. The average of FSR(δTm) and
ES(δTm) with II-COS for both scenarios are calculated from 500 replications. The results are
summarized as Table 5. It’s obvious that for different ncal, both FSR(δTm) and ES(δTm) are
controlled under the pre-specified constant α and K respectively under all scenarios with our II-COS
method.

Table 5: Average values of FSR(δTm)(%) and ES(δTm)(×10−2) (with standard errors in parentheses) for
II-COS with different ncal under classification setting (α = 10%,K = 4.50 × 10−2) and regression setting
(α = 10%,K = 1.50× 10−2).

Classification Regression
ncal FSR (Tm) ES (Tm) FSR (Tm) ES (Tm)
200 9.22(0.73) 4.41(0.08) 5.74(0.18) 1.49(0.03)
400 9.22(0.69) 4.42(0.07) 4.84(0.19) 1.49(0.04)
600 9.47(0.80) 4.39(0.09) 5.18(0.19) 1.49(0.04)
800 9.36(0.69) 4.40(0.08) 5.79(0.19) 1.49(0.04)
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D.4 Results on Synthetic Data for Regression Setting

The following regression setting is considered: Y = −7X2
1 + 5 expX2 + 10(X3 +X4)

2 + ε, with
X ∼ N4(0, I4) and ε ∼ N (0, 1). The informative set is A = (c,∞), where c is the 80% quantile
of Y . The FSR and mES are considered as C1 and C2, respectively. The prediction algorithm H
is taken as neural network, with a single hidden layer and 10 hidden neurons, implemented by R
package nnet, and K is chosen as 0.015.

The simulation results are summarized in Figure 8 and 9 from 500 replications. The results are similar
to those for classification setting. It’s further verified that our proposed II-COS outperforms all the
benchmarks under both classification and regression scenarios.
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Figure 8: Simulation results for regression setting. Line charts of FSR(δt) (Left) and ES(δt) (Right)
for II-COS, SAST, LOND, SAFFRON and ADDIS over time t. The black dashed lines are the
corresponding FSR level α = 0.1 and the ES level K = 0.015. Shading represents error bars of one
standard error above and below.
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Figure 9: Simulation results for regression setting. Boxplots of FSR(δTm) (Left), ES(δTm) (Middle)
and Tm (Right) for II-COS, SAST, LOND, SAFFRON and ADDIS. The black dashed lines are the
corresponding FSR level α = 0.1 and ES level K = 0.015.

D.5 Experiments for Other Individual and Interactive Constrains.

Other individual constraints To better illustrate the performance of our proposed method, we
also conduct an experiment for the general individual constraint. We choose G0(X) = |

∑d
i=1 Xi|,

G1(X) = |
∑d

i=1 Xi|/2 for EC (expected cost), and choose G0(X) = 1, G1(X) = 0 for FSR. Other
settings are the same as the classification model. The results are shown in Figure 10. We can see that
only the proposed II-COD can guarantee all EC (expected cost), FSR and ES control, while all the
benchmarks are out of control for EC or ES.

Other pairwise function g. Besides the RBF kernel, popular choices include the cosine similarity
[47, 52] with adjustment g(X,X′) = X⊤X′/(∥X∥2∥X′∥2) + 1, and the absolute value of cosine
similarity, i.e., g(X,X′) = |X⊤X′|/(∥X∥2∥X′∥2) which characterizes the orthogonality between
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Figure 10: Boxplots of EC(δTm), FSR(δTm), and ES(δTm) for II-COS, SAST, LOND, SAFFRON and
ADDIS under classification model. The black dashed lines indicate the corresponding nominal levels α1 =
0.5, α2 = 0.2,K = 0.045.

X and X′ and is often considered in the field of design of experiments [15]. The similarity functions
mentioned above all satisfy Assumption 3.2. As a supplement to the experiments in the main text, we
choose the cosine similarity with adjustment g(X,X′) = X⊤X′/(∥X∥2∥X′∥2)+1 for classification
setting. Notice that the original cosine similarity X⊤X′/(∥X∥2∥X′∥2) can be negative sometimes.
Hence we add a constant 1 which guarantees g(X,X′) ≥ 0 and does not change the final results. The
simulation results are summarized in Figure 11 from 500 replications. As can be seen, the simulation
results are similar to those when choosing the RBF kernel in Section 4.1.
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Figure 11: Boxplots of FSR(Tm), ES(Tm) and Tm with random forest algorithms under classification setting
for II-COS, SAST, LOND, SAFFRON and ADDIS. The similarity function g is chosen as the cosine similarity
with adjustment g(X,X′) = X⊤X′/(∥X∥2∥X′∥2) + 1. The black dashed lines are the corresponding FSR
level α = 0.1 and the ES level K = 1.0.

D.6 Additional Results for Real Data Analysis

In Table 6, the average proportions of handicapped and female in the selected candidates are in the
last two columns of (a). The average proportions of minority and female among the correctly selected
individuals are in the last two columns of (b).

D.7 Additional Experiments for Different Learning Algorithms

Except for the random forest algorithm, we further apply two different learning algorithms H for
classification setting to estimate the model µ̂(X): Support vector machine (SVM) and Neural network
(NN) with a single hidden layer and 10 hidden neurons, which are implemented by R packages
kernlab and nnet, respectively. For NN algorithm, the entropy fitting is used for classification
setting. The empirical FSR(Tm) and ES(Tm) levels are estimated by the average of the false
selection proportion and the expected similarity respectively from 500 replications. The results are
summarized in Figure 12. As can be seen, the simulation results are similar as those when applying
random forest in Section 4.1.
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Table 6: Average values with candidate dataset and income dataset: FSR(δTm), ES(δTm) (×10−3) and
stopping time Tm. The average proportions of handicapped and female in the selected candidates are in the last
two columns of (a). The average proportions of minority and female among the correctly selected individuals
are in the last two columns of (b). The target FSR level is α = 0.2 for both. For the candidate data, the target
ES level K = 1× 10−3; For the income data, K = 6× 10−3.

(a) Candidate dataset [22]

Method FSR ES Tm Handicap Female
II-COS 0.19 0.98 2227 0.15 0.48
SAST 0.19 8.73 310 0.05 0.47

CP 0.16 10.34 277 0.04 0.46

(b) Income dataset [8]

Method FSR ES Tm Minority Female
II-COS 0.16 5.56 2760 0.05 0.09
SAST 0.19 30.90 1200 0.03 0.05

CP 0.42 18.84 283 0.06 0.13
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Figure 12: Boxplots of FSR(Tm) and ES(Tm) with two different learning algorithms under classification
setting for II-COS, SAST, LOND, SAFFRON and ADDIS. The black dashed lines are the corresponding FSR
level α = 0.1 and the ES level K = 0.045.

D.8 Experiments for the comparison with oracle procedure

Regarding efficiency, we conducted an experiment to compare the effectiveness of II-COS with an
oracle method possessing knowledge of true state θt. This can be succinctly formulated as follows.
At time t, δt = 1 if θt = 1 and PC(δTm)/PS(δTm) ≤ K,the process halts when

∑
i≤t δi = m. To

ensure a fair comparison, we fix α = 0.01 for II-COS and choose K = 0.045 for both methods. The
results are shown in Table 7. The FSR of the oracle procedure is 0 as expected. The Tm of II-COS is
very close to the oracle. This close proximity indicates the high efficiency of II-COS. Both FSR and
ES are effectively controlled by II-COS.

D.9 Experiments for the Extended II-COS under Varying Proportion Case

Table 7: FSR(δTm), ES(δTm) (×10−2)
and Tm of the II-COS and the oracle proce-
dure under classification model.

Method FSR ES Tm

II-COS 0.0097 4.41 686.245
Oracle 0 4.41 681.665

Let N be a prespecified large integer denoting the number
of samples arriving sequentially. Denote n as the size of
available labeled history dataset D. We fix N = 5000,
n = 5000. Consider three different varying patterns for πt:

1. Blocks pattern: πt = 0.3, for t ∈ [1, 100] ∪
[501, 600] ∪ [1001, 1100] ∪ [1501, 2000] ∪
[2001, 2100] ∪ [2501, 2600] ∪ [3001, 3100] ∪
[3501, 4000]; πt = 0.2 for t ∈ [101, 500] ∪
[601, 1000] ∪ [1101, 1500] ∪ [2101, 2500] ∪
[2601, 3000] ∪ [3101.3500] ∪ [4000, 5000].
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2. Linear pattern: Vary πt linearly from 0 to 0.5,
πt = 0.5t/N .

3. Sine pattern: πt = {sin(8πt/N) + 1}/4, πt

ranges between 0 and 0.5.

The other settings are the same as those in classification setting. For the historical dataset, we fix
πt = 0.2.

In simulation we generate 500 data points prior to t = 1 to form an initial proportion estimate. The
varying proportion estimates are updated every 200 time points. The bandwidth parameter b for
estimating πλ

t are chosen based on normal reference rule. We set b = 38. The window size q are
chosen by a rule of thumb in practice. Let q = Cb, where C is a fixed constant between 10 and 20.
In our simulations, we fix q = 500 and λ = 0.5. As for the density estimation, we first estimate f0
and f1 on the calibration data, then compute f̂ t = f̂0(w)(1− π̂t) + f̂1(w)π̂t. Thus accordingly, we

estimate Lt by L̂λ
t =

(1−π̂λ
t )f̂0(Wt)

f̂t(Wt)
∧ 1. As for those methods based on conformal p-values, they do

not need modification since they only require the exchangeability of data in the null hypothesis. The
varying proportion case does not violate such a condition.

The simulation results are shown in Figures 13-15, from which we can observe that the extended
version of II-COS performs better than the benchmarks under all three different varying settings for
both C1(FSR) and C2(ES) control.
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Figure 13: Boxplots of FSR(δTm), ES(δTm) and Tm for II-COS, SAST, LOND, SAFFRON and ADDIS
(Blocks pattern). The black dashed lines indicate the corresponding nominal levels.
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Figure 14: Boxplots of FSR(δTm), ES(δTm) and Tm for II-COS, SAST, LOND, SAFFRON and ADDIS
(Linear pattern). The black dashed lines indicate the corresponding nominal levels.
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Figure 15: Boxplots of FSR(δTm), ES(δTm) and Tm for II-COS, SAST, LOND, SAFFRON and ADDIS
(Sine pattern). The black dashed lines indicate the corresponding nominal levels.

E Proofs

E.1 Auxiliary Lemmas

The following results include a standard uniform bound for kernel density estimator [36, 20] and a
simple corollary from the central limit theorem [11].

Lemma E.1. If Assumption 3.1 hold and we take the bandwidth h = n
−1/(2β+1)
1 , then with probabil-

ity at least 1− 1/n1

sup
w∈R

|f̂(w)− f(w)| ≤ D1n
−β

2β+1

1

√
log n1,

where D1 = D1(M, cβ , β,K) is a positive constant depending on M and β, cβ of Hölder continuity
and the kernel K(·).

Lemma E.2. The estimation π̂ satisfies

|π̂ − π| ≤
√

π(1− π)n
− 1

2+γ
1 ,

with probability 1− n−2γ
1 for any constant 0 < γ < 1/2.

Next lemma characterizes the uniform convergence of L̂(w).

Lemma E.3 (Uniform convergence of L̂(w)). Suppose Assumption 3.1 holds. Taking the bandwidth
of kernel density estimator as h = n

−1/(2β+1)
1 , then we have

sup
w∈R

|L̂(w)− L(w)| ≤ D2n
−β

2β+1

1

√
log n1,

for some positive constant D2 = D2(M,D1, ℓ, π) with probability 1− 2/n1 − 1/n
1/3
1 .

Proof.
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Note that L̂(w) = (1− π̂) f̂0(w)

f̂(w)
∧ 1 and

sup
w∈R

|L̂(w)− L(w)| ≤ sup
w∈R

∣∣∣∣∣(1− π̂)
f̂0(w)

f̂(w)
− L(w)

∣∣∣∣∣ = sup
w∈R

∣∣∣∣∣ (1− π̂)f̂0(w)f(w)− (1− π)f0(w)f̂(w)

f̂(w)f(w)

∣∣∣∣∣
≤ sup

w∈R

1

f̂(w)f(w)

{
(1− π̂)f(w)|f̂0(w)− f0(w)|+ |π − π̂|f0(w)f(w) + (1− π)f0(w)|f̂(w)− f(w)|

}
≤ sup

w∈R

|f̂0(w)− f0(w)|+ f0(w)|π − π̂|
f̂(w)

+ sup
w∈R

L(w)|f̂(w)− f(w)|
f̂(w)

(i)

≤ 1

infw∈R f̂(w)
{D1n

−β
2β+1

1

√
log n1 +M

√
π(1− π)n

− 1
2+γ

1 +D1 · n
−β

2β+1

1

√
log n1}

(ii)

≤ 2

ℓ
{D∗

1n
−β

2β+1

1

√
log n1 +M

√
p(1− p)n

− 1
2+γ

1 +D1 · n
−β

2β+1

1

√
log n1}

(iii)

≤ D2n
−β

2β+1

1

√
log n1,

where D∗
1 = D∗

1(D1, π) is a positive constant depending on D1 and π because f̂0 is estimated by
about n1(1 − π) samples. The (i) follows the results directly in Lemma E.1 and Lemma E.2 and
the bounds of f(w) and f0(w) in Assumption 3.1-(1) with probability 1− 2/n1 − 1/n2γ

1 . The (ii)
holds since

f̂(w) ≥ f(w)−D1n
−β

2β+1

1

√
log n1 ≥ ℓ−D1n

−β
2β+1

1

√
log n1 > ℓ/2

for sufficiently large n1. Due to the fact β ≤ 1 and taking γ = 1/6 in Lemma E.2, the (iii) holds
with D2 = 2{D∗

1 +M
√
π(1− π) +D1}/ℓ. Hence we verify the conclusion. □

The next lemma shows the property of data-driven II-COS procedure which is useful to give the
bound of the mES gap.

Lemma E.4. Suppose δt is the decision result at time t ≥ Ts by the data-driven II-COS procedure
with

∑
i≤t L̂iδi/1 ∨

∑
i≤t δi ≤ α′, where Ts = inf{t :

∑t
i=1 δi = s} and s ≥ 2. Then we have

E(
∑∑

1≤i<j≤t

δiδj)

E
{ ∑∑

1≤i<j≤t

δiδj(1− L̂i)(1− L̂j)
} ≤

(
1− 2s

s− 1
α′)−1

.

Proof. It suffices to show∑∑
1≤i<j≤t

δiδj(1− L̂i)(1− L̂j) ≥ (1− 2s

s− 1
α′)
∑∑
1≤i<j≤t

δiδj .

By the selection procedure, we have

t∑
i=1

δi(1− L̂i) ≥ (1− α′)

t∑
i=1

δi. (9)

Squaring both sides of (9) and making some decomposition, we have

∑∑
1≤i<j≤t

δiδj(1− L̂i)(1− L̂j) ≥ (1− α′)2
∑∑
1≤i<j≤t

δiδj +
1

2

t∑
i=1

{(1− α′)2 − (1− L̂i)
2}δi.

Notice that
t∑

i=1

δi =
2

s− 1

∑∑
1≤i<j≤t

δiδj .
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We have

(1− α′)2
∑∑
1≤i<j≤t

δiδj +
1

2

t∑
i=1

{(1− α′)2 − (1− L̂i)
2}δi

≥(1− α′)2
∑∑
1≤i<j≤t

δiδj +
1

2

t∑
i=1

{(1− α′)2 − 1}δi

≥(1− α′)2
∑∑
1≤i<j≤t

δiδj −
α′(2− α′)

2

2

s− 1

∑∑
1≤i<j≤t

δiδj

≥(1− 2s

s− 1
α′)
∑∑
1≤i<j≤t

δiδj .

□

The next two lemmas will be used in the analysis of the extended II-COS for varying proportion case.

Lemma E.5. Assume that random variables Y1, Y2, have density functions bounded by a constant
c > 0, and other two random variables Y3, and Y4 satisfy P(|Y1 − Y3| ≤ ε) ≥ 1 − ζ and
P(|Y2 − Y4| ≤ ϵ) ≥ 1− ς , where ε > 0, ϵ > 0, ζ > 0 and ς > 0. Then for all t > 0,

|P(Y1 > t, Y2 > t)− P(Y3 > t, Y4 > t)| ≤ 2c(ε+ ϵ) + 3(ζ + ς).

Proof. Define the events E1 = {|Y1 − Y3| ≤ ε}, E2 = {|Y2 − Y4| ≤ ϵ}, and E = E1
⋃
E2. Note that

P(Y1 + ε > t, E1) ≤ P(Y3 > t, E1) ≤ P(Y1 − ε > t, E1),

and
P(Y2 + ϵ > t, E2) ≤ P(Y4 > t, E2) ≤ P(Y2 − ϵ > t, E2),

we have

P(Y1 > t, Y2 > t)− P(Y3 > t, Y4 > t)

≤ |P(Y1 > t, Y2 > t)− P(Y3 > t, Y4 > t, E)|+ P(Ec
1) + P(Ec

2)

≤ |P(Y1 > t, Y2 > t)− P(Y1 − ε > t, Y2 − ϵ > t, E)|
+ |P(Y1 > t, Y2 > t)− P(Y1 + ε > t, Y2 + ϵ > t, E)|+ P(Ec

1) + P(Ec
2)

≤ |P(Y1 > t, Y2 > t)− P(Y1 − ε > t, Y2 − ϵ > t)|+ 3P(Ec
1) + 3P(Ec

2)

+ |P(Y1 > t, Y2 > t)− P(Y1 + ε > t, Y2 + ϵ > t)|
≤ 2c(ε+ ϵ) + 3(ζ + ς),

the last inequality holds because the density function is bounded.

□

Lemma E.6. If bζ ≤ q for some ζ > 1 and b is sufficiently large, the exponential weight κb(s) =
exp{−|s|/b} satisfies ∑q

s=1 κ
2
b(s)

{
∑q

s=1 κb(s)}2
≤ Cb

1

b

and ∑q
s=1 sκb(s)∑q
s=1 κb(s)

≤ Cbb,

where Cb > 0 is constant determined by b.

Proof. Take Zb = exp{−1/b}. Notice that

j∑
s=i

κb(s) =
exp{−(i+ 1)/b} − exp{−(j + 1)/b}

1− exp{−1/b}
=

Zi+1
b − Zj+1

b

1− Zb
.
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Thus for a constant Cb > 0. we have∑q
s=1 κ

2
b(s)

{
∑q

s=1 κb(s)}2
=
(Z4

b − Z2q
b

1− Z2
b

)
/
(Z4

b − 2Zq+2
b + Z2q

b

1 + Z2
b − 2Zb

)
(i)

≤ Cb(1− Zb)

(ii)

≤ Cb
1

b
,

where (i) holds since b is sufficiently large such that Zq
b = exp{−q/b} ≤ exp{−bζ−1} can be

eliminated and Zb < 1. The last inequality (ii) holds by exp{x} ≥ x+ 1.

By the same discussion, we have∑q
s=1 sκb(s)∑q
s=1 κb(s)

≤
∫ ∞

1

sZs
bds/

(Z2
b − Zq

b

1− Zb

)
≤
( Zb

(1− Zb)2

)
/
(Z2

b − Zq
b

1− Zb

)
≤ Cb

1

1− Zb

≤ Cb(b+ 1).

The last inequality holds since exp{x} ≤ 1/(1 − x) for x < 1. For simplicity, we use the same
notation Cb to denote the constants. □

E.2 Proof of Proposition 2.1

Proof. For the part of individual constraint control, note that Li is defined as

Li = Pr(θi = 0 | Wi) = E [(1− θi) | Wi] .

Define W∗ = σ(W1, · · · ). The stopping time T is measurable respect to W∗. The individual
constraint at time T satisfies

C1(δ
T ) = E

{∑
i≤T {(1− θi)G0(Xi) + θiG1(Xi)}δi

(
∑

i≤T δi) ∨ 1

}

= E

E{(RT ∨ 1)−1
∑
i≤t

{(1− θi)G0(Xi) + θiG1(Xi)}δi | W∗}
(i)
= E

(Rt ∨ 1)−1
∑
i≤t

{E
{
(1− θi) | Wi

}
G0(Xi) + E

{
θi | Wi

}
G1(Xi)}δi


= E

{
(Rt ∨ 1)−1

∑
i≤t

{LiG0(Xi) + (1− Li)G1(Xi)}δi
}
.

The (i) holds since Xi’s are independent of each other. By construction of the selection rule, we have
that at the stopping time T , ((RT ∨ 1)−1

∑
i≤T {LiW0(Xi) + (1− Li)W1(Xi)}δi ≤ α. It follows

that C1(δ
T ) ≤ α at a random time T . By construction of the selection rule, we have for stopping

time T ,

∑∑
1≤i<j≤T

g(Xi,Xj)δiδj(1− Li)(1− Lj) ≤ K ×
∑∑
1≤i<j≤T

δiδj(1− Li)(1− Lj). (10)

Taking expectations on both sides of inequality (10) and by double expectation theorem, we finally
obtain

E
{ ∑∑

1≤i<j≤T

g(Xi,Xj)δiδjθiθj

}
≤ K × E

{ ∑∑
1≤i<j≤T

δiδjθiθj

}
.
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It follows that for every time t ≥ T2,

C2(δ
T ) =

E
{ ∑∑

1≤i<j≤T

g(Xi,Xj)δiδjθiθj

}
E
{
(
∑

i≤T δiθi)(
∑

i≤T δiθi − 1)
} ≤ K

□

E.3 Proof of Theorem 3.3

Proof. In the data-driven II-COS procedure, δi is determined by the estimated lFDR L̂i and we have

1

Rt

∑
i≤t

{L̂iG0(Xi) + (1− L̂i)G1(Xi)}δi ≤ α.

Note that

C1(δ
t) = E

{ 1

Rt

∑
i≤t

{LiG0(Xi) + (1− Li)G1(Xi)}δi
}

= E
{ 1

Rt

∑
i≤t

{L̂iG0(Xi) + (1− L̂i)G1(Xi)}δi
}
+ E

{ 1

Rt

∑
i≤t

{(Li − L̂i)G0(Xi) + (L̂i − Li)G1(Xi)}δi
}

≤ α+ E
{ 1

Rt

∑
i≤t

{(Li − L̂i)G0(Xi) + (L̂i − Li)G1(Xi)}δi
}
.

It suffices to bound the absolute value of the second term. We have∣∣∣E{ 1

Rt

∑
i≤t

{(Li − L̂i)G0(Xi) + (L̂i − Li)G1(Xi)}δi
}∣∣∣

≤E
{ 1

Rt

∑
i≤t

{|Li − L̂i||G0(Xi)|+ |L̂i − Li||G1(Xi)|}δi
}

≤E
{ 1

Rt

∑
i≤t

{ sup
w∈R

|Li − L̂i||G0(Xi)|+ sup
w∈R

|L̂i − Li||G1(Xi)|}δi
}

≤2cGD2n
−β

2β+1

1

√
log n1 + 2n−1

1 + n
− 1

3
1 .

The last inequality follows from Lemma E.3 and maxw |L̂(w) − L(w)| ≤ 1. Notice that n− 1
3

1 ≤

n
−β

2β+1

1 by β ≤ 1. We have

C1(δ
t) ≤ α+Dn

−β
2β+1

1

√
log n1,

where D = 2cGD2 + 3. □

E.4 Proof of Theorem 3.4

Proof. Notice that

E
{∣∣∑∑

1≤i<j≤t

g(Xi,Xj)δiδj(1− L̂i)(1− L̂j)−
∑∑
1≤i<j≤t

g(Xi,Xj)δiδj(1− Li)(1− Lj)
∣∣}

≤E
{∑∑

1≤i<j≤t

g(Xi,Xj)δiδj(|L̂i − Li|+ |L̂j − Lj |+ L̂i|L̂j − Lj |+ Lj |L̂i − Li|)
}

(i)

≤2cgE
{∑∑

1≤i<j≤t

δiδj(|L̂i − Li|+ |L̂j − Lj |)
}

(ii)

≤ 2cgDn
−β

2β+1

1

√
log n1E(

∑∑
1≤i<j≤t

δiδj). (11)
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The (i) holds by Assumption 3.2 and L(w), L̂(w) ≤ 1 even when t is random, as the uniform
convergence of L̂(w). And (ii) follows from Lemma E.3. By the similar arguments we have∣∣∣E{∑∑

1≤i<j≤t

δiδj(1− L̂i)(1− L̂j)−
∑∑
1≤i<j≤t

δiδj(1− Li)(1− Lj)
}∣∣∣

≤2Dn
−β

2β+1

1

√
log n1E(

∑∑
1≤i<j≤t

δiδj). (12)

Denote ∆n1
= Dn

−β
2β+1

1

√
log n1. Combining (11) and (12), it follows that for every time t ≥ Ts,

C2(δ
t) =

E
{ ∑∑

1≤i<j≤t

g(Xi,Xj)δiδj(1− Li)(1− Lj)
}

E
{ ∑∑

1≤i<j≤t

δiδj(1− Li)(1− Lj)
}

(i)

≤
E
{ ∑∑

1≤i<j≤t

g(Xi,Xj)δiδj(1− L̂i)(1− L̂j)
}
+ 2cg∆n1

E(
∑∑

1≤i<j≤t

δiδj)

E
{ ∑∑

1≤i<j≤t

δiδj(1− Li)(1− Lj)
}

(ii)

≤
[
K + 2cg∆n1

E(
∑∑

1≤i<j≤t

δiδj)

E
{ ∑∑

1≤i<j≤t

δiδj(1− L̂i)(1− L̂j)
}]× E

{ ∑∑
1≤i<j≤t

δiδj(1− L̂i)(1− L̂j)
}

E
{ ∑∑

1≤i<j≤t

δiδj(1− Li)(1− Lj)
}

(iii)

≤
{
K +

2cg∆n1

1− 2mα′

m−1

}
×

E
{ ∑∑

1≤i<j≤t

δiδj(1− L̂i)(1− L̂j)
}

E
{ ∑∑

1≤i<j≤t

δiδj(1− Li)(1− Lj)
}

(iv)

≤
{
K +

2cg∆n1

1− 2mα′

m−1

}
×
[
1− 2∆n1

E(
∑∑

1≤i<j≤t

δiδj)

E
{ ∑∑

1≤i<j≤t

δiδj(1− L̂i)(1− L̂j)
}]−1

(v)

≤
{
K +

2cg∆n1

1− 2mα′

m−1

}{
1− 2∆n1

1− 2mα′

m−1

}−1

.

The (i) follows from (11) , and (ii) comes from the operation of our algorithm, where

E
{ ∑∑

1≤i<j≤t

g(Xi,Xj)δiδj(1− L̂i)(1− L̂j)
}
≤ K · E

{ ∑∑
1≤i<j≤t

δiδj(1− L̂i)(1− L̂j)
}
.

The (iii) and (v) are directly from Lemma E.4. The (iv) holds due to (12). Thus we have

C2(δ
t) ≤ K +

(K + cg)∆n1

0.5− mα′

m−1 −∆n1

□

E.5 Proof of Corollary 3.5

Proof. Define the C1 constraint conditional on W as

C ′
1(δ

t) =
1

Rt

∑
i≤t

{(Li − L̂i)G0(Xi) + (L̂i − Li)G1(Xi)}δi.

By the proofs of Theorem 3.3, we have for any t

C ′
1(δ

t) ≤ α+ 2cG sup
w∈R

|L̂(w)− L(w)|.
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Hence at stopping time Tm, we have

C ′
1(δ

Tm) = E[C ′
1(δ

Tm)] ≤ E[sup
t

C ′
1(δ

t)] ≤ α+ 2cGE[ sup
w∈R

|L̂(w)− L(w)|] ≤ α+∆n1 .

By the proof of Theorem 3.4, we can also drop off the expectation and replace ∆n1 with
supw∈R |L̂(w)− L(w)|. That is

{1−
2 supw∈R |L̂(w)− L(w)|

1− 2mα
m−1

}∑∑
1≤i<j≤t

g(Xi,Xj)δiδj(1− Li)(1− Lj)

≤
{
K +

2cg supw∈R |L̂(w)− L(w)|
1− 2mα

m−1

}∑∑
1≤i<j≤t

δiδj(1− Li)(1− Lj). (13)

Hence at stopping time t = Tm, (13) still holds. Take expectations at both sides and we will get

C2(δ
Tm) ≤ K +

(K + cg)∆n1

0.5− mα′

m−1 −∆n1

.

Notice that ∆n1
= Dn

−β
2β+1

1

√
log n1 converges to 0 as n1 → ∞ and α′ < (1 − 1/m)/2 by the

condition. It follows that

lim
n1→∞

C1(δ
Tm) ≤ α and lim

n1→∞
C2(δ

Tm) ≤ K.

E.6 Proof of Theorem C.1

Proof. We first denote some notations. For notational simplicity, we use c to denote constants in the
following proofs.

Recall the conformal score function Q(Xt). The conformal p-value is

p̂t =
1 +

∑
i∈L I{Q(W̃i) ≤ Q(Wt)}

1 + |L|
= F̂n2(Zt),

where n2 = |L|.
Denote the population p-value as pt = F (Q(Wt)), where F (·) is the distribution of Q(Wt) condi-
tional on θt = 0. Denote πt = Pr(θt = 1) and

πλ
t = 1− Pr(pt > λ)

1− λ
.

The corresponding local FDR is defined as

Lλ
t =

πλ
t f0(Wt)

f t(Wt)
.

It follows the definition of Cλ
1 (δ

t) and Cλ
2 (δ

t).

Cλ
1 (δ

t) = E
{ 1

Rt

∑
i≤t

{Lλ
i G0(Xi) + (1− Lλ

i )G1(Xi)}δi
}

and

Cλ
2 (δ

t) =

E{
∑∑

1≤i<j≤t

g(Xi,Xj)δiδj(1− Lλ
i )(1− Lλ

j )}

E{
∑∑

1≤i<j≤t

g(Xi,Xj)δiδj}
.

The estimated proportion is defined as

π̂λ
t = 1−

∑t−1
j=t−q κb(j − t)I{p̂j > λ}

(1− λ)
∑t−1

j=t−q κb(j − t)
.
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And denote the ideal estimated proportion via population p-values as

π̃λ
t = 1−

∑t−1
j=t−q κb(j − t)I{pj > λ}

(1− λ)
∑t−1

j=t−q κb(j − t)
,

where κb(s) = exp{−|s|/b} and q is the size of a neighborhood for estimation before time t.

We first claim the following proposition and the proof is deferred in Section E.7.

Proposition E.7. Suppose the assumptions in Theorem 3 hold. Then

|π̂λ − πλ| ≤ cmax
{1
b
,

√
log n1

n
1/2
1

, (bη)2
}1/2−γ

(14)

with probability 1−max
{
1/b,

√
log n1/n1, (bη)

2
}2γ

, where c > 0 is a constant and 0 < γ < 1/2.

Notice that

sup
w

|f̂ t(w)− f t(w)|

=sup
w

|f̂0(w)(1− π̂t) + f̂1(w)π̂t − f0(w)(1− πt)− f1(w)πt|

≤ sup
w

|f̂0(w)− f0(w)|+ sup
w

|f̂1(w)− f1(w)|+ 2M |π̂t − πt|.

The last inequality holds since π̂t ∈ [0, 1] and f0(w) and f1(w) are upper bounded by M .

Thus by Lemma E.1 and take γ in Proposition E.7 at 1/6, with probability 1 −

cmax
{
1/b,

√
log n1/n1, (bη)

2
}1/3

we have

sup
w

|f̂ t(w)− f t(w)| ≤ cn
−β

2β+1

1

√
log n1 + cmax

{
b−

1
3 ,
( log n1

n1

) 1
6

, (bη)
2
3

}
.

By the procedure of Lemma E.3 directly, with probability 1− cmax
{
1/b,

√
log n1/n1, (bη)

2
}1/3

we have

sup
w

|L̂λ
t (w)− Lλ

t (w)| ≤ cn
−β

2β+1

1

√
log n1 + cmax

{
b−

1
3 ,
( log n1

n1

) 1
6

, (bη)
2
3

}
.

It follows that

Cλ
1 (δ

t) ≤ α+ cn
−β

2β+1

1

√
log n1 + 2ccG max

{
b−

1
3 ,
( log n1

n1

) 1
6

, (bη)
2
3

}
.

Denote ∆′
n1

= 2ccGn
−β

2β+1

1

√
log n1 + cmax

{
b−

1
3 ,
(

logn1

n1

) 1
6

, (bη)
2
3

}
. By our assumption, bη =

o(1). So
lim

b,n1→∞
∆′

n1
= 0.

By the additional assumption that Pr(pt > λ | θt = 1) = 0, we have πλ
t = πt. Thus Hence the first

part of Theorem 3 is completed.

At last, we can use the same procedure to prove that

Cλ
2 (δ

t) ≤ K +
(K + cg)∆

′
n1

0.5− mα′

m−1 −∆′
n1

.

Since πλ
t = πt, Cλ

2 (δ
t) = C2(δ

t) and the results directly follow.
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E.7 Proof of Proposition E.7

Proof. Notice that

Pr(|π̂λ
t − πλ

t | > ε) ≤ Pr
(
|π̂λ

t − π̃λ
t | >

ε

2

)
+ Pr

(
|π̃λ

t − πλ
t | >

ε

2

)
.

We discuss for the two parts respectively. For the first term of the above inequality, it suffices to show
the upper bound of the second moment of |π̂λ

t − π̃λ
t |.

For convenience, denote Uj = I(pj > λ), and Vj = I(p̂j > λ). It follows

E{|π̂λ
t − π̃λ

t |2}

=
1

{
∑t−1

j=t−q κb(j − t)}2(1− λ)2
E

 t−1∑
j=t−q

κb(j − t)(Uj − Vj)

2

=

∑t−1
j=t−q κ

2
b(j − t)E{(Uj − Vj)

2}
{
∑t−1

j=t−q κb(j − t)}2(1− λ)2
+

∑
i,j∈Nq(t),q ̸=j κb(i− t)κb(j − t)E{(Ui − Vi)(Uj − Vj)}

{
∑t−1

j=t−q κb(j − t)}2(1− λ)2

=
1

{
∑t−1

j=t−q κb(j − t)}2(1− λ)2

[ t−1∑
j=t−q

κ2
b(j − t)

{
Pr(pj > λ) + Pr(p̂j > λ)− 2Pr(pj > λ, p̂j > λ)

}
+2

∑
t−q≤i<j≤t−1

κb(i− t)κb(j − t)
{
Pr(pi > λ, pj > λ)− 2Pr(p̂i > λ, pj > λ) + Pr(p̂i > λ, p̂j > λ)

}]
.

Now we check the upper bound of |pj − p̂j |. We can rewrite them as pj = F (Q(Wj)) and
p̂j = F̂n2(Q(Wj)). Even though n2 is a random variable, due to the two-group model, F̂n2(·) is still
an empirical distribution function composed by i.i.d. samples conditional on {θ̃i}i∈C where C is the
index set of calibration set. Thus by DKW inequality, for any ε1 > 0

Pr (|pj − p̂j | ≤ ε1) = E
[
Pr
(
|pj − p̂j | ≤ ε1 | {θ̃i}i∈C

) ]
≤ E

[
Pr

(
sup
z

∣∣∣F (z)− F̂n2
(z)
∣∣∣ ≤ ε1 | {θ̃i}i∈C

)]
≤ E

[
1− 2 exp{−n2ε

2
1}
]

≤ 1− 2 exp{−(1− π)n1ε
2
1} − 4π/{n1(1− π)}.

The last inequality holds since n2 ≥ (1− π)n1/2 with probability 1− 4π/{n1(1− π)}.

Thus by Lemma E.5 and the fact that pj has a bounded density function, we obtain

|Pr(pj > λ)− Pr(p̂j > λ)| ≤ 2ε1 + 6 exp{−(1− π)n1ε
2
1}+ 12π/{n1(1− π)}.

Take ε1 =
√

log n1/{n1(1− π)}, for sufficient large n1 such that
√
n1 log n1 ≥ 6 + 6π we have

|Pr(pj > λ)− Pr(p̂j > λ)| ≤ 2
√
log n1

(1− π)n1/2
+

6 + 12π/(1− π)

n1
≤ 3

√
log n1

(1− π)n1/2
.

Again by Lemma E.5 and the same ε1, for any i, j ∈ {t− q, . . . , t− 1} := Nq(t), we have

|Pr(pj > λ, pi > λ)− Pr(p̂j > λ, p̂i > λ)| ≤ 4ε1+12 exp{−(1−π)n1ε
2
1}+

24π

n1(1− π)
≤ 6

√
log n1

(1− π)n
1/2
1

.

Therefore by Lemma E.6, we have

E(|π̂λ
t − π̃λ

t |) ≤
9Cb

√
log n1

bn
1/2
1 (1− π)(1− λ)2

+
12

√
log n1

n
1/2
1 (1− π)(1− λ)2

.
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So by definition and Markov’ inequality, we have

Pr
(
|π̂λ

t − π̃λ
t | >

ε

2

)
≤ 4E(|π̂λ

t − π̃λ
t |)

ε2

≤ 36Cb

√
log n1

bn
1/2
1 (1− π)(1− λ)2ε2

+
48
√
log n1

n
1/2
1 (1− π)(1− λ)2ε2

For the second part, we have
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ε

2

)
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)
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]
{
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(i)

≤ Cb

bε2(1− λ)2
+

4
∑t−1

j=t−q κ
2
b(j − t){Pr(pj > λ)− Pr(pt > λ)}2

{
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j=t−q κ
2
b(j − t)}2ε2(1− λ)2

(ii)

≤ Cb

bε2(1− λ)2
+

16η2
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j=t−q(j − t)2κ2
b(j − t)

{
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j=t−q κ
2
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(iii)

≤ Cb

bε2(1− λ)2
+

16(Cbbη)
2

{
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j=t−q κ
2
b(j − t)}2ε2(1− λ)2

(15)

The (i) holds since Var{I(pj > λ)} ≤ 1/4. As for (ii), consider Aλ = {w : F (Q(w)) > λ}. Then
by the two-group model we have Pr(pt > λ) =

∫
Aλ

{f0(w)(1− πt) + f1(w)πt}dw. Hence

|Pr(pj > λ)− Pr(pt > λ)| =
∫
Aλ

{
f0(w)|πj − πt|+ f1(w)|πt − πj |

}
dw ≤ 2|j − t|η

by our assumptions. And (iii) is directly from the second part of Lemma E.6.

Above all, we finally conclude that for all ε > 0 and sufficiently large n1, we have

Pr(|π̂λ
t − πλ

t | > ε) ≤ Cb

bε2(1− λ)2
+

36Cb

√
log n1

bn
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2
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≤ max
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b
,

√
log n1
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1
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} c
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for some constant c > 0.

Thus take ε = max
{
1/b,

√
log n1/n

1/2
1 , (bη)2

}1/2−γ√
c and we obtain

|π̂λ − πλ| ≤ cmax
{1
b
,

√
log n1

n
1/2
1

, (bη)2
}1/2−γ

with probability 1 −max
{
1/b,

√
log n1/n1, (bη)

2
}2γ

, where 0 < γ < 1/2. Hence we complete
the proof.
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to reproduce that algorithm.
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the architecture clearly and fully.
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