
Published in Transactions on Machine Learning Research (09/2023)

TSMixer: An All-MLP Architecture for Time Series Fore-
casting

Si-An Chen d09922007@ntu.edu.tw
National Taiwan University
Google Cloud AI Research

Chun-Liang Li chunliang@google.com
Google Cloud AI Research

Nathanael C. Yoder nyoder@google.com
Google Cloud AI Research

Sercan Ö. Arık soarik@google.com
Google Cloud AI Research

Tomas Pfister tpfister@google.com
Google Cloud AI Research

Reviewed on OpenReview: https: // openreview. net/ forum? id= wbpxTuXgm0

Abstract

Real-world time-series datasets are often multivariate with complex dynamics. To capture
this complexity, high capacity architectures like recurrent- or attention-based sequential
deep learning models have become popular. However, recent work demonstrates that simple
univariate linear models can outperform such deep learning models on several commonly
used academic benchmarks. Extending them, in this paper, we investigate the capabilities of
linear models for time-series forecasting and present Time-Series Mixer (TSMixer), a novel
architecture designed by stacking multi-layer perceptrons (MLPs). TSMixer is based on
mixing operations along both the time and feature dimensions to extract information efficiently.
On popular academic benchmarks, the simple-to-implement TSMixer is comparable to
specialized state-of-the-art models that leverage the inductive biases of specific benchmarks.
On the challenging and large scale M5 benchmark, a real-world retail dataset, TSMixer
demonstrates superior performance compared to the state-of-the-art alternatives. Our results
underline the importance of efficiently utilizing cross-variate and auxiliary information for
improving the performance of time series forecasting. We present various analyses to shed
light into the capabilities of TSMixer. The design paradigms utilized in TSMixer are expected
to open new horizons for deep learning-based time series forecasting. The implementation
is available at: https://github.com/google-research/google-research/tree/master/
tsmixer.

1 Introduction

Time series forecasting is a prevalent problem in numerous real-world use cases, such as for forecasting of
demand of products (Böse et al., 2017; Courty & Li, 1999), pandemic spread (Zhang & Nawata, 2018), and
inflation rates (Capistrán et al., 2010). The forecastability of time series data often originates from three
major aspects:

1

https://openreview.net/forum?id=wbpxTuXgm0
https://github.com/google-research/google-research/tree/master/tsmixer
https://github.com/google-research/google-research/tree/master/tsmixer

Published in Transactions on Machine Learning Research (09/2023)

Figure 1: TSMixer for multivariate time series forecasting. The columns of the inputs means different
features/variates and the rows are time steps. The fully-connected operations are row-wise. TSMixer contains
interleaving time-mixing and feature-mixing MLPs to aggregate information. The number of mixer layer is
denoted as N . The time-mixing MLPs are shared across all features and the feature-mixing MLPs are shared
across all of the time steps. The design allow TSMixer to automatically adapt the use of both temporal and
cross-variate information with limited number of parameters for superior generalization. The extension with
auxiliary information is also explored in this paper.

• Persistent temporal patterns: encompassing trends and seasonal patterns, e.g., long-term inflation,
day-of-week effects;

• Cross-variate information: correlations between different variables, e.g., an increase in blood pressure
associated with a rise in body weight;

• Auxiliary features: comprising static features and future information, e.g., product categories and
promotional events.

2

Published in Transactions on Machine Learning Research (09/2023)

Traditional models, such as ARIMA (Box et al., 1970), are designed for univariate time series, where only
temporal information is available. Therefore, they face limitations when dealing with challenging real-world
data, which often contains complex cross-variate information and auxiliary features. In contrast, numerous
deep learning models, particularly Transformer-based models, have been proposed due to their capacity to
capture both complex temporal patterns and cross-variate dependencies (Gamboa, 2017; Li et al., 2019; Wen
et al., 2017; Zhou et al., 2021; Wu et al., 2021; Lim & Zohren, 2021; Liu et al., 2022a; Zhou et al., 2022b; Liu
et al., 2022b; Zhou et al., 2022a) .

The natural intuition is that multivariate models, such as those based on Transformer architectures, should be
more effective than univariate models due to their ability to leverage cross-variate information. However, Zeng
et al. (2023) revealed that this is not always the case – Transformer-based models can indeed be significantly
worse than simple univariate temporal linear models on many commonly used forecasting benchmarks. The
multivariate models seem to suffer from overfitting especially when the target time series is not correlated
with other covariates. This surprising finding has raised two essential questions:

1. Does cross-variate information truly provide a benefit for time series forecasting?

2. When cross-variate information is not beneficial, can multivariate models still perform as well as
univariate models?

To address these questions, we begin by analyzing the effectiveness of temporal linear models. Our findings
indicate that their time-step-dependent characteristics render temporal linear models great candidates for
learning temporal patterns under common assumptions. Consequently, we gradually increase the capacity of
linear models by

1. stacking temporal linear models with non-linearities (TMix-Only),

2. introducing cross-variate feed-forward layers (TSMixer).

The resulting TSMixer alternatively applies MLPs across time and feature dimensions, conceptually corre-
sponding to time-mixing and feature-mixing operations, efficiently capturing both temporal patterns and
cross-variate information, as illustrated in Fig. 1. The residual designs ensure that TSMixer retains the
capacity of temporal linear models while still being able to exploit cross-variate information.

We evaluate TSMixer on commonly used long-term forecasting datasets (Wu et al., 2021) where univariate
models have outperformed multivariate models. Our ablation study demonstrates the effectiveness of stacking
temporal linear models and validates that cross-variate information is less beneficial on these popular datasets,
explaining the superior performance of univariate models. Even so, TSMixer is on par with state-of-the-art
univariate models and significantly outperforms other multivariate models.

To demonstrate the benefit of multivariate models, we further evaluate TSMixer on the challenging M5
benchmark, a large-scale retail dataset used in the M-competition (Makridakis et al., 2022). M5 contains crucial
cross-variate interactions such as sell prices (Makridakis et al., 2022). The results show that cross-variate
information indeed brings significant improvement, and TSMixer can effectively leverage this information.
Furthermore, we propose a principle design to extend TSMixer to handle auxiliary information such as static
features and future time-varying features. It aligns the different types of features into the same shape then
applied mixer layers on the concatenated features to leverage the interactions between them. In this more
practical and challenging setting, TSMixer outperforms models that are popular in industrial applications,
including DeepAR (Salinas et al. 2020, Amazon SageMaker) and TFT (Lim et al. 2021, Google Cloud Vertex),
demonstrating its strong potential for real world impact.

We summarize our contributions as below:

• We analyze the effectiveness of state-of-the-art linear models and indicate that their time-step-
dependent characteristics make them great candidates for learning temporal patterns under common
assumptions.

3

Published in Transactions on Machine Learning Research (09/2023)

Table 1: Recent works in time series forecasting. Category I is univariate time series forecasting; Category II
is multivariate time series forecasting, and Category III is time series forecasting with auxiliary information.
In this work, we propose TSMixer for Category II. We also extend TSMixer to leverage auxiliary information
including static and future time-varying features for Category III.

Category
Extrapolating Consideration of Consideration of

Modelstemporal patterns cross-variate information auxiliary features
(i.e. multivariateness)

I 4

ARIMA (Box et al., 1970)
N-BEATS (Oreshkin et al., 2020)
LTSF-Linear (Zeng et al., 2023)
PatchTST (Nie et al., 2023)

II 4 4

Informer (Zhou et al., 2021)
Autoformer (Wu et al., 2021)
Pyraformer (Liu et al., 2022a)
FEDformer (Zhou et al., 2022b)
NS-Transformer (Liu et al., 2022b)
FiLM (Zhou et al., 2022a)
TSMixer (this work)

III 4 4 4

MQRNN (Wen et al., 2017)
DSSM (Rangapuram et al., 2018)
DeepAR (Salinas et al., 2020)
TFT (Lim et al., 2021)
TSMixer-Ext (this work)

• We propose TSMixer, an innovative architecture which retains the capacity of linear models to
capture temporal patterns while still being able to exploit cross-variate information.

• We point out the potential risk of evaluating multivariate models on common long-term forecasting
benchmarks.

• Our empirical studies demonstrate that TSMixer is the first multivariate model which is on par with
univariate models on common benchmarks and achieves state-of-the-art on a large-scale industrial
application where cross-variate information is crucial.

2 Related Work

Broadly, time series forecasting is the task of predicting future values of a variable or multiple related variables,
given a set of historical observations. Deep neural networks have been widely investigated for this task (Zhang
et al., 1998; Kourentzes, 2013; Lim & Zohren, 2021). In Table 1 we coarsely split notable works into three
categories based on the information considered by the model: (I) univariate forecasting, (II) multivariate
forecasting, and (III) multivariate forecasting with auxiliary information.

Multivariate time series forecasting with deep neural networks has been getting increasingly popular with
the motivation that modeling the complex relationships between covariates should improve the forecasting
performance. Transformer-based models (Category II) are common choices for this scenario because of their
superior performance in modeling long and complex sequential data (Vaswani et al., 2017). Various variants
of Transformers have been proposed to further improve efficiency and accuracy. Informer (Zhou et al., 2021)
and Autoformer (Wu et al., 2021) tackle the efficiency bottleneck with different attention designs costing less
memory usage for long-term forecasting. FEDformer (Zhou et al., 2022b) and FiLM (Zhou et al., 2022a)
decompose the sequences using Fast Fourier Transformation for better extraction of long-term information.
There are also extensions on improving specific challenges, such as non-stationarity (Kim et al., 2022; Liu
et al., 2022b). Despite the advances in Transformer-based models for multivariate forecasting, Zeng et al.
(2023) indeed show the counter-intuitive result that a simple univariate linear model (Category I), which

4

Published in Transactions on Machine Learning Research (09/2023)

treats multivariate data as several univariate sequences, can outperform all of the proposed multivariate
Transformer models by a significant margin on commonly-used long-term forecasting benchmarks. Similarly,
Nie et al. (2023) advocate against modeling the cross-variate information and propose a univariate patch
Transformer for multivariate forecasting tasks and show state-of-the-art accuracy on multiple datasets. As
one of the core contributions, instead, we find that this conclusion mainly comes from the dataset bias, and
might not generalize well to some real-world applications.

There are other works that consider a scenario when auxiliary information ((Category III)), such as static
features (e.g. location) and future time-varying features (e.g. promotion in coming weeks), are available.
Commonly used forecasting models have been extended to handle these auxiliary features. These include
state-space models (Rangapuram et al., 2018; Alaa & van der Schaar, 2019; Gu et al., 2022), RNN variants Wen
et al. (2017); Salinas et al. (2020), and attention models Lim et al. (2021). Most real-world time-series
datasets are more aligned with this setting and that is why these deep learning models have achieved great
success in various applications and are widely used in industry (e.g. DeepAR (Salinas et al., 2020) of AWS
SageMaker and TFT (Lim et al., 2021) of Google Cloud Vertex). One drawback of these models is their
complexity, particularly when compared to the aforementioned univariate models.

Our motivations for TSMixer stem from analyzing the performance of linear models for time series forecasting.
Similar architectures have been considered for other data types before, for example the proposed TSMixer
in a way resembles the well-known MLP Mixer architecture, from computer vision (Tolstikhin et al., 2021).
Mixer models have also been applied to text (Fusco et al., 2022), speech (Tatanov et al., 2022), network
traffic (Zheng et al., 2022) and point cloud (Choe et al., 2022). Yet, to the best of our knowledge, the use of
an MLP Mixer based architecture for time series forecasting has not been explored in the literature.

3 Linear Models for Time Series Forecasting

The superiority of linear models over more complex sequential architectures, like Transformers, has been
empirically demonstrated Zeng et al. (2023). We first provide theoretical insights on the capacity of linear
models which might have been overlooked due to its simplicity compared to other sequential models. We then
compare linear models with other architectures and show that linear models have a characteristic not present
in RNNs and Transformers – they have the appropriate representation capacity to learn the time dependency
for a univariate time series. This finding motivates the design of our proposed architecture, presented in
Sec. 4.

Notation: Let the historical observations be X ∈ RL×Cx , where L is the length of the lookback window
and Cx is the number of variables. We consider the task of predicting Y ∈ RT×Cy , where T is the number of
future time steps and Cy is the number of time series we want to predict. In this work, we focus on the case
when the past values of the target time series are included in the historical observation (Cy ≤ Cx). A linear
model learns parameters A ∈ RT×L, b ∈ RT×1 to predict the values of the next T steps as:

Ŷ = AX ⊕ b ∈ RT×Cx , (1)

where ⊕ means column-wise addition. The corresponding Cy columns in Ŷ can be used to predict Y .

Theoretical insights: For time series forecasting, most impactful real-world applications have either
smoothness or periodicity in them, as otherwise the predictability is low and the predictive models would not
be reliable. First, we consider the common assumption that the time series is periodic (Holt, 2004; Zhang
& Qi, 2005). Given an arbitrary periodic function x(t) = x(t− P), where P < L is the period. There is a
solution of linear models to perfectly predict the future values as follows:

Aij =
{

1, if j = L− P + (i mod P)
0, otherwise

, bi = 0. (2)

5

Published in Transactions on Machine Learning Research (09/2023)

When extending to affine-transformed periodic sequences, x(t) = a ·x(t−P) + c, where a, c ∈ R are constants,
the linear model still has a solution for perfect prediction:

Aij =
{
a, if j = L− P + (i mod P)
0, otherwise

, bi = c. (3)

A more general assumption is that the time series can be decomposed into a periodic sequence and a sequence
with smooth trend (Holt, 2004; Zhang & Qi, 2005; Wu et al., 2021; Zhou et al., 2022b). In this case, we show
the following property (see the proof in Appendix A):
Theorem 3.1. Let x(t) = g(t) + f(t), where g(t) is a periodic signal with period P and f(t) is Lipschitz
smooth with constant K (i.e.

∣∣∣ f(a)−f(b)
a−b

∣∣∣ ≤ K), then there exists a linear model with lookback window size
L ≥ P + 1 such that |yi − ŷi| ≤ K(i+ min(i, P)),∀i = 1, . . . , T .

This derivation illustrates that linear models constitute strong candidates to capture temporal relationships.
For the non-periodic patterns, as long as they are smooth, which is often the case in practice, the error is still
bounded given an adequate lookback window size.

Differences from conventional deep learning models. Following the discussions in Zeng et al. (2023)
and Nie et al. (2023), our analysis of linear models offers deeper insights into why previous deep learning
models tend to overfit the data. Linear models possess a unique characteristic wherein the weights of the
mapping are fixed for each time step in the input sequence. This “time-step-dependent” characteristic is a
crucial component of our previous findings and stands in contrast to recurrent or attention-based architectures,
where the weights over the input sequence are outputs of a "data-dependent" function, such as the gates
in LSTMs or attention layers in Transformers. Time-step-dependent models vs. data-dependent models
are illustrated in Fig. 2. The time-step-dependent linear model, despite its simplicity, proves to be highly
effective in modeling temporal patterns. Conversely, even though recurrent or attention architectures have
high representational capacity, achieving time-step independence is challenging for them. They usually overfit
on the data instead of solely considering the positions. This unique property of linear models may help
explain the results in Zeng et al. (2023), where no other method was shown to match the performance of the
linear model.

Limitations of the analysis. The purpose of the analysis is to understand the effectiveness of temporal
linear models in univariate scenario. Real-world time series data might have high volatility, making the
patterns non-periodic and non-smooth. In such scenarios, relying solely on past-observed temporal patterns
might be suboptimal. The analysis beyond Lipschitz cases could be challenging and out of the scope of this
paper (Zhang, 2023), so we leave the analysis for more complex cases for the future work. Nevertheless, the
analysis motivates us to develop a more powerful model based on linear models, which are introduced in
Section 4. We also show the importance of effectively utilizing multivariate information as other covariates
might contain the information that can be used to model volatility – indeed our results in Table 5 underline
that.

4 TSMixer Architecture

Expanding upon our finding that linear models can serve as strong candidates for capturing time dependencies,
we initially propose a natural enhancement by stacking linear models with non-linearities to form multi-layer
perceptrons (MLPs). Common deep learning techniques, such as normalization and residual connections, are
applied to facilitate efficient learning. However, this architecture does not take cross-variate information into
account.

To better leverage cross-variate information, we propose the application of MLPs in the time-domain and
the feature-domain in an alternating manner. The time-domain MLPs are shared across all of the features,
while the feature-domain MLPs are shared across all of the time steps. This resulting model is akin to the
MLP-Mixer architecture from computer vision (Tolstikhin et al., 2021), with time-domain and feature-domain

6

Published in Transactions on Machine Learning Research (09/2023)

wt−2 wt−1 wt ft−2(x)ft−1(x) ft(x)

xt−2 xt−1 xt

xt+1

xt+1 =
∑t

i=1 wixi

Time-step-dependent

xt−2 xt−1 xt

xt+1

xt+1 =
∑t

i=1 fi(x)xi

Data-dependent

Figure 2: Illustrations of time-step-dependent and data-dependent models within a single forecasting time
step.

Figure 3: The architecture of TMix-Only. It is similar to TSMixer but only applies time-mixing.

operations representing time-mixing and feature-mixing operations, respectively. Consequently, we name our
proposed architecture Time-Series Mixer (TSMixer).

The interleaving design between these two operations efficiently utilizes both temporal dependencies and
cross-variate information while limiting computational complexity and model size. It allows TSMixer to use a
long lookback window (see Sec. 3), while maintaining the parameter growth in only O(L + C) instead of
O(LC) if fully-connected MLPs were used. To better understand the utility of cross-variate information and
feature-mixing, we also consider a simplified variant of TSMixer that only employs time-mixing, referred to
as TMix-Only, which consists of a residual MLP shared across each variate, as illustrated in Fig. 3. We also
present the extension of TSMixer to scenarios where auxiliary information about the time series is available.

4.1 TSMixer for Multivariate Time Series Forecasting

For multivariate time series forecasting where only historical data are available, TSMixer applies MLPs
alternatively in time and feature domains. The architecture is illustrated in Fig. 1. TSMixer comprises the
following components:

• Time-mixing MLP: Time-mixing MLPs model temporal patterns in time series. They consist of
a fully-connected layer followed by an activation function and dropout. They transpose the input
to apply the fully-connected layers along the time domain and shared by features. We employ a
single-layer MLP, as demonstrated in Sec.3, where a simple linear model already proves to be a
strong model for learning complex temporal patterns.

• Feature-mixing MLP: Feature-mixing MLPs are shared by time steps and serve to leverage
covariate information. Similar to Transformer-based models, we consider two-layer MLPs to learn
complex feature transformations.

• Temporal Projection: Temporal projection, identical to the linear models inZeng et al. (2023), is
a fully-connected layer applied on time domain. They not only learn the temporal patterns but also
map the time series from the original input length L to the target forecast length T .

7

Published in Transactions on Machine Learning Research (09/2023)

• Residual Connections: We apply residual connections between each time-mixing and feature-
mixing layer. These connections allow the model to learn deeper architectures more efficiently and
allow the model to effectively ignore unnecessary time-mixing and feature-mixing operations.

• Normalization: Normalization is a common technique to improve deep learning model training.
While the preference between batch normalization and layer normalization is task-dependent, Nie
et al. (2023) demonstrates the advantages of batch normalization on common time series datasets. In
contrast to typical normalization applied along the feature dimension, we apply 2D normalization on
both time and feature dimensions due to the presence of time-mixing and feature-mixing operations.

Contrary to some recent Transformer advances with increased complexity, the architecture of TSMixer is
relatively simple to implement. Despite its simplicity, we demonstrate in Sec. 5 that TSMixer remains
competitive with state-of-the-art models at representative benchmarks.

4.2 Extended TSMixer for Time Series Forecasting with Auxiliary Information

In addition to the historical observations, many real-world scenarios allow us to have access to static S ∈ R1×Cs

(e.g. location) and future time-varying features Z ∈ RT×Cz (e.g. promotion in subsequent weeks). The
problem can also be extended to multiple time series, represented by X(i)M

i=1, where M is the number of
time series, with each time series is associated with its own set of features. Most recent work, especially
those focus on long-term forecasting, only consider the historical features and targets on all variables (i.e.
Cx = Cy > 1, Cs = Cz = 0). In this paper, we also consider the case where auxiliary information is available
(i.e. Cs > 0, Cz > 0).

To leverage the different types of features, we propose a principle design that naturally leverages the feature
mixing to capture the interaction between them. We first design the align stage to project the feature with
different shapes into the same shape. Then we can concatenate the features and seamlessly apply feature
mixing on them. We extend TSMixer as illustrated in Fig. 4. The architecture comprises two parts: align
and mixing. In the align stage, TSMixer aligns historical features (RL×Cx) and future features (RT×Cz) into
the same shape (RL×Ch) by applying temporal projection and a feature-mixing layer, where Ch represents
the size of hidden layers. Additionally, it repeats the static features to transform their shape from R1×Cs to
RT×Cs in order to align the output length.

In the mixing stage, the mixing layer, which includes time-mixing and feature-mixing operations, naturally
leverages temporal patterns and cross-variate information from all features collectively. Lastly, we employ a
fully-connected layer to generate outputs for each time step. The outputs can either be real values of the
forecasted time series (RT×Cy), typically optimized by mean absolute error or mean square error, or in some
tasks, they may generate parameters of a target distribution, such as negative binomial distribution for retail
demand forecasting (Salinas et al., 2020). We slightly modify mixing layers to better handle M5 dataset, as
described in Appendix B.

4.3 Differences between TSMixer and MLP-Mixer

While TSMixer shares architectural similarities with MLP-Mixer, the development of TSMixer, motivated
by our analysis in Section 3, has led to a unique normalization approach. In TSMixer, two dimensions
represent features and time steps, unlike MLP-Mixer’s features and patches. Consequently, we apply 2D
normalization to maintain scale across features and time steps, since we have discovered the importance of
utilizing temporal patterns in forecasting. Besides, we have proposed an extended version of TSMixer to
better extract information from heterogeneous inputs, essential to achieve state-of-the-art results in real-world
scenarios.

5 Experiments

We evaluate TSMixer on seven popular multivariate long-term forecasting benchmarks and a large-scale
real-world retail dataset, M5 (Makridakis et al., 2022). The long-term forecasting datasets cover various

8

Published in Transactions on Machine Learning Research (09/2023)

Figure 4: TSMixer with auxiliary information. The columns of the inputs are features and the rows are time
steps. We first align the sequence lengths of different types of inputs to concatenate them. Then we apply
mixing layers to model their temporal patterns and cross-variate information jointly.

applications such as weather, electricity, and traffic, and are comprised of multivariate time series without
auxiliary information. The M5 dataset is for the competition task of predicting the sales of various items at
Walmart. It is a large scale dataset containing 30,490 time series with static features such as store locations, as
well as time-varying features such as campaign information. This complexity renders M5 a more challenging
benchmark to explore the potential benefits of cross-variate information and auxiliary features. The statistics
of these datasets are presented in Table 2.

9

Published in Transactions on Machine Learning Research (09/2023)

Table 2: Statistics of all datasets. Note that Electricity and Traffic can be considered as multivariate time
series or multiple univariate time series since all variates share the same physical meaning in the dataset (e.g.
electricity consumption at different locations).

ETTh1/h2 ETTm1/m2 Weather Electricity Traffic M5
of time series (M) 1 1 1 1 1 30,490
of variants (C) 7 7 21 321 862 1
Time steps 17,420 699,680 52,696 26,304 17,544 1,942
Granularity 1 hour 15 minutes 10 minutes 1 hour 1 hour 1day
Historical feature (Cx) 0 0 0 0 0 14
Future feature (Cz) 0 0 0 0 0 13
Static feature (Cs) 0 0 0 0 0 6
Data partition 12/4/4 (month) 7:2:1 1886/28/28 (day)(Train/Validation/Test)

Table 3: Evaluation results on the long-term forecasting datasets. The numbers of models marked with “*”
are obtained from Nie et al. (2023). The best numbers in each row are shown in bold and the second best
numbers are underlined. We skip TMix-Only in comparisons as it performs similar to TSMixer. The last row
shows the average percentage of MSE improvement of TSMixer over other methods.

Multivariate Model Univariate Model
Models TSMixer TFT FEDformer* Autoformer* Informer* TMix-Only Linear PatchTST*
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1 96 0.361 0.392 0.674 0.634 0.376 0.415 0.435 0.446 0.941 0.769 0.359 0.391 0.368 0.392 0.370 0.400
192 0.404 0.418 0.858 0.704 0.423 0.446 0.456 0.457 1.007 0.786 0.402 0.415 0.404 0.415 0.413 0.429
336 0.420 0.431 0.900 0.731 0.444 0.462 0.486 0.487 1.038 0.784 0.420 0.434 0.436 0.439 0.422 0.440
720 0.463 0.472 0.745 0.666 0.469 0.492 0.515 0.517 1.144 0.857 0.453 0.467 0.481 0.495 0.447 0.468

ETTh2 96 0.274 0.341 0.409 0.505 0.332 0.374 0.332 0.368 1.549 0.952 0.275 0.342 0.297 0.363 0.274 0.337
192 0.339 0.385 0.953 0.651 0.407 0.446 0.426 0.434 3.792 1.542 0.339 0.386 0.398 0.429 0.341 0.382
336 0.361 0.406 1.006 0.709 0.400 0.447 0.477 0.479 4.215 1.642 0.366 0.413 0.500 0.491 0.329 0.384
720 0.445 0.470 1.187 0.816 0.412 0.469 0.453 0.490 3.656 1.619 0.437 0.465 0.795 0.633 0.379 0.422

ETTm1 96 0.285 0.339 0.752 0.626 0.326 0.390 0.510 0.492 0.626 0.560 0.284 0.338 0.303 0.346 0.293 0.346
192 0.327 0.365 0.752 0.649 0.365 0.415 0.514 0.495 0.725 0.619 0.324 0.362 0.335 0.365 0.333 0.370
336 0.356 0.382 0.810 0.674 0.392 0.425 0.510 0.492 1.005 0.741 0.359 0.384 0.365 0.384 0.369 0.392
720 0.419 0.414 0.849 0.695 0.446 0.458 0.527 0.493 1.133 0.845 0.419 0.414 0.419 0.415 0.416 0.420

ETTm2 96 0.163 0.252 0.386 0.472 0.180 0.271 0.205 0.293 0.355 0.462 0.162 0.249 0.170 0.266 0.166 0.256
192 0.216 0.290 0.739 0.626 0.252 0.318 0.278 0.336 0.595 0.586 0.220 0.293 0.236 0.317 0.223 0.296
336 0.268 0.324 0.477 0.494 0.324 0.364 0.343 0.379 1.270 0.871 0.269 0.326 0.308 0.369 0.274 0.329
720 0.420 0.422 0.523 0.537 0.410 0.420 0.414 0.419 3.001 1.267 0.358 0.382 0.435 0.449 0.362 0.385

Weather 96 0.145 0.198 0.441 0.474 0.238 0.314 0.249 0.329 0.354 0.405 0.145 0.196 0.170 0.229 0.149 0.198
192 0.191 0.242 0.699 0.599 0.275 0.329 0.325 0.370 0.419 0.434 0.190 0.240 0.213 0.268 0.194 0.241
336 0.242 0.280 0.693 0.596 0.339 0.377 0.351 0.391 0.583 0.543 0.240 0.279 0.257 0.305 0.245 0.282
720 0.320 0.336 1.038 0.753 0.389 0.409 0.415 0.426 0.916 0.705 0.325 0.339 0.318 0.356 0.314 0.334

Electricity 96 0.131 0.229 0.295 0.376 0.186 0.302 0.196 0.313 0.304 0.393 0.132 0.225 0.135 0.232 0.129 0.222
192 0.151 0.246 0.327 0.397 0.197 0.311 0.211 0.324 0.327 0.417 0.152 0.243 0.149 0.246 0.147 0.240
336 0.161 0.261 0.298 0.380 0.213 0.328 0.214 0.327 0.333 0.422 0.166 0.260 0.164 0.263 0.163 0.259
720 0.197 0.293 0.338 0.412 0.233 0.344 0.236 0.342 0.351 0.427 0.200 0.291 0.199 0.297 0.197 0.290

Traffic 96 0.376 0.264 0.678 0.362 0.576 0.359 0.597 0.371 0.733 0.410 0.370 0.258 0.395 0.274 0.360 0.249
192 0.397 0.277 0.664 0.355 0.610 0.380 0.607 0.382 0.777 0.435 0.390 0.268 0.406 0.279 0.379 0.256
336 0.413 0.290 0.679 0.354 0.608 0.375 0.623 0.387 0.776 0.434 0.404 0.276 0.416 0.286 0.392 0.264
720 0.444 0.306 0.610 0.326 0.621 0.375 0.639 0.395 0.827 0.466 0.443 0.297 0.454 0.308 0.432 0.286

TSMixer MSE Imp. 51.94% 16.69% 24.51% 62.40% -0.66% 6.77% -1.53%

For multivariate long-term forecasting datasets, we follow the settings in recent research (Liu et al., 2022b;
Zhou et al., 2022a; Nie et al., 2023). We set the input length L = 512 as suggested in Nie et al. (2023)
and evaluate the results for prediction lengths of T = {96, 192, 336, 720}. We use the Adam optimization
algorithm (Kingma & Ba, 2015) to minimize the mean square error (MSE) training objective, and consider MSE

10

Published in Transactions on Machine Learning Research (09/2023)

and mean absolute error (MAE) as the evaluation metrics. We apply reversible instance normalization (Kim
et al., 2022) to ensure a fair comparison with the state-of-the-art PatchTST (Nie et al., 2023).

For the M5 dataset, we mostly follow the data processing from Alexandrov et al. (2020). We consider
the prediction length of T = 28 (same as the competition), and set the input length to L = 35. We
optimize log-likelihood of negative binomial distribution as suggested by Salinas et al. (2020). We follow the
competition’s protocol (Makridakis et al., 2022) to aggregate the predictions at different levels and evaluate
them using the weighted root mean squared scaled error (WRMSSE). More details about the experimental
setup and hyperparameter tuning can be found in Appendices C and E.

5.1 Multivariate Long-term Forecasting

For multivariate long-term forecasting tasks, we compare TSMixer to state-of-the-art multivariate models
such as FEDformer (Zhou et al., 2022b), Autoformer (Wu et al., 2021), Informer (Zhou et al., 2021), and
univariate models like PatchTST (Nie et al., 2023) and LTSF-Linear (Zeng et al., 2023). Additionally, we
include TFT (Lim et al., 2021), a deep learning-based model that considers auxiliary information, as a
baseline to understand the limitations of solely relying on historical features. We also evaluate TMix-Only, a
variant of TSMixer that only applies time-mixing, to assess the effectiveness of feature-mixing. The results
are presented in Table 3. A comparison with other MLP-like alternatives is provided in Appendix F.

TMix-Only We first examine the results of univariate models. Compared to the linear model, TMix-Only
shows that stacking proves beneficial, even without considering cross-variate information. Moreover, TMix-
Only performs at a level comparable to the state-of-the-art PatchTST, suggesting that the simple time-mixing
layer is on par with more complex attention mechanisms.

TSMixer Our results indicate that TSMixer exhibits similar performance to TMix-Only and PatchTST. It
significantly outperforms state-of-the-art multivariate models and achieves competitive performance compared
to PatchTST, the state-of-the-art univariate model. TSMixer is the only multivariate model that is competitive
with univariate models with all other multivariate models performing significantly worse than univariate
models. The performance of TSMixer is also similar to that of TMix-Only, which implies that feature-mixing
is not beneficial for these benchmarks. These observations are consistent with findings in (Zeng et al., 2023)
and (Nie et al., 2023). The results suggest that cross-variate information may be less significant in these
datasets, indicating that the commonly used datasets may not be sufficient to evaluate a model’s capability
of utilizing covariates. However, we will demonstrate that cross-variate information can be useful in other
scenarios.

Effects of lookback window length To gain a deeper understanding of TSMixer’s capacity to
leverage longer sequences, we conduct experiments with varying lookback window sizes, specifically
L = {96, 336, 512, 720}. We also perform similar experiments on linear models to support our findings
presented in Section 3. The results of these experiments are depicted in Fig. 5. More results and details
can be found in Appendix D. Our empirical analyses reveal that the performance of linear models improves
significantly as the lookback window size increases from 96 to 336, and appears to be reaching a convergence
point at 720. This aligns with our prior findings that the performance of linear models is dependent on the
lookback window size. On the other hand, TSMixer achieves the best performance when the window size is
set to 336 or 512, and maintains the similar level of performance as the window size is increased to 720. As
noted by Nie et al. (2023), many multivariate Transformer-based models (such as Transformer, Informer,
Autoformer, and FEDformer) do not benefit from lookback window sizes greater than 192, and are prone to
overfitting when the window size is increased. In comparison, TSMixer demonstrates a superior ability to
leverage longer sequences and better generalization capabilities than other multivariate models.

5.2 Large-scale Demand Forecasting

We evaluate TSMixer on the large-scale retail dataset M5 to explore the model’s ability to leverage complicated
cross-variate information and auxiliary features. M5 comprises thousands of multivariate time series, each with
its own historical observations, future time-varying features, and static features, in contrast to the long-term

11

Published in Transactions on Machine Learning Research (09/2023)

Figure 5: Performance comparison on varying lookback window size L of linear models and TSMixer.

Table 4: Evaluation on M5 without auxiliary information. We report the mean and standard deviation
of WRMSSE across 5 different random seeds. TMix-Only is a univariate variant of TSMixer where only
time-mixing is applied. The multivariate models outperforms univariate models with a significant gap.

Models Multivariate Test WRMSSE Val WRMSSE
Linear 0.983±0.016 1.045±0.018
PatchTST 0.976±0.014 0.992±0.011
TMix-Only 0.960±0.041 1.000±0.027
Autoformer 4 0.742±0.029 0.640±0.023
FEDformer 4 0.804±0.039 0.674±0.014
TSMixer 4 0.737±0.033 0.605±0.027

forecasting benchmarks, which typically consist of a single multivariate historical time series. We utilize
TSMixer-Ext, the architecture introduced in Sec.4.2, to leverage the auxiliary information. Furthermore, the
presence of a high proportion of zeros in the target sequence presents an additional challenge for prediction.
Therefore, we learn negative binomial distributions, as suggested bySalinas et al. (2020), to better fit the
distribution.

Forecast with Historical Features Only First, we compare TSMixer with other baselines using historical
features only. As shown in Table 4 the multivariate models perform much better than univariate models for
this dataset. Notably, PatchTST, which is designed to ignore cross-variate information, performs significantly

Table 5: Evaluation on M5 with auxiliary information.

Models Auxiliary feature Test WRMSSE Val WRMSSEStatic Future
DeepAR 4 4 0.789±0.025 0.611±0.007
TFT 4 4 0.670±0.020 0.579±0.011

TSMixer-Ext

0.737±0.033 0.000±0.000
4 0.657±0.046 0.000±0.000

4 0.697±0.028 0.000±0.000
4 4 0.640±0.013 0.568±0.009

12

Published in Transactions on Machine Learning Research (09/2023)

Table 6: Computational cost on M5. All models are trained on a single NVIDIA Tesla V100 GPU. All models
are implemented in PyTorch, except TFT, which is implemented in MXNet.

Models Multivariate Auxiliary feature # of params training time (s) inference (step/s)
Linear 1K 2958.18 110
PatchTST 26.7K 886.101 120
TMix-Only 6.3K 4073.72 110
Autoformer 4 471K 119087.64 42
FEDformer 4 1.7M 11084.43 56
TSMixer 4 189K 11077.95 96
DeepAR 4 4 1M 8743.55 105
TFT 4 4 2.9M 14426.79 22
TSMixer-Ext 4 4 244K 11615.87 108

worse than multivariate TSMixer and FEDformer. This result underscores the importance of modeling cross-
variate information on some forecasting tasks, as opposed to the argument in (Nie et al., 2023). Furthermore,
TSMixer substantially outperforms FEDformer, a state-of-the-art multivariate model.

TSMixer exhibits a unique value as it is the only model that performs as well as univariate models when
cross-variate information is not useful, and it is the best model to leverage cross-variate information when it
is useful.

Forecast with Auxiliary Information To understand the extent to which TSMixer can leverage auxiliary
information, we compare TSMixer against established time series forecasting algorithms, TFT (Lim et al.,
2021) and DeepAR (Salinas et al., 2020). Table 5 shows that with auxiliary features TSMixer outperforms
all other baselines by a significant margin. This result demonstrates the superior capability of TSMixer
for modeling complex cross-variate information and effectively leveraging auxiliary features, an impactful
capability for real-world time-series data beyond long-term forecasting benchmarks. We also conduct ablation
studies by removing the static features and future time-varying features. The results demonstrates that while
the impact of static features is more prominent, both static and future time-varying features contribute to the
overall performance of TSMixer. This further emphasizes the importance of incorporating auxiliary features
in time series forecasting models.

Computational Cost We measure the computational cost of each models with their best hyperparameters
on M5. As shown in Table 6, TSMixer has much smaller size compared to RNN- and Transformer-based
models. TSMixer has similar training time with multivariate models, however, it achieves much faster
inference, which is almost the same as simple linear models. Note that PatchTST has faster inference speed
because it merges the feature dimension into the batch dimension, which leads to more parallelism but loses
the multivariate information, a key aspect for high forecasting accuracy on real-world time-series data.

6 Conclusions

We propose TSMixer, a novel architecture for time series forecasting that is designed using MLPs instead of
commonly used RNNs and attention mechanisms to obtain superior generalization with a simple architecture.
Our results at a wide range of real-world time series forecasting tasks demonstrate that TSMixer is highly
effective in both long-term forecasting benchmarks for multivariate time-series, and real-world large-scale
retail demand forecasting tasks. Notably, TSMixer is the only multivariate model that is able to achieve
similar performance to univariate models in long term time series forecasting benchmarks. The TSMixer
architecture has significant potential for further improvement and we believe it will be useful in a wide
range of time series forecasting tasks. Some of the potential future works include further exploring the
interpretability of TSMixer, as well as its scalability to even larger datasets. We hope this work will pave the
way for more innovative architectures for time series forecasting.

13

Published in Transactions on Machine Learning Research (09/2023)

References
Ahmed M Alaa and Mihaela van der Schaar. Attentive state-space modeling of disease progression. Advances
in neural information processing systems, 32, 2019.

Alexander Alexandrov, Konstantinos Benidis, Michael Bohlke-Schneider, Valentin Flunkert, Jan Gasthaus,
Tim Januschowski, Danielle C. Maddix, Syama Rangapuram, David Salinas, Jasper Schulz, Lorenzo Stella,
Ali Caner Türkmen, and Yuyang Wang. GluonTS: Probabilistic and Neural Time Series Modeling in
Python. Journal of Machine Learning Research, 21(116):1–6, 2020. URL http://jmlr.org/papers/v21/
19-820.html.

Joos-Hendrik Böse, Valentin Flunkert, Jan Gasthaus, Tim Januschowski, Dustin Lange, David Salinas,
Sebastian Schelter, Matthias Seeger, and Yuyang Wang. Probabilistic demand forecasting at scale.
Proceedings of the VLDB Endowment, 10(12):1694–1705, 2017.

George EP Box, Gwilym M Jenkins, Gregory C Reinsel, and Greta M Ljung. Time series analysis: forecasting
and control. John Wiley & Sons, 1970.

Carlos Capistrán, Christian Constandse, and Manuel Ramos-Francia. Multi-horizon inflation forecasts using
disaggregated data. Economic Modelling, 27(3):666–677, 2010.

Jaesung Choe, Chunghyun Park, Francois Rameau, Jaesik Park, and In So Kweon. Pointmixer: Mlp-mixer
for point cloud understanding. In Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv,
Israel, October 23–27, 2022, Proceedings, Part XXVII, pp. 620–640. Springer, 2022.

Pascal Courty and Hao Li. Timing of seasonal sales. The Journal of Business, 72(4):545–572, 1999.

Francesco Fusco, Damian Pascual, and Peter Staar. pnlp-mixer: an efficient all-mlp architecture for language.
arXiv preprint arXiv:2202.04350, 2022.

John Cristian Borges Gamboa. Deep learning for time-series analysis. arXiv preprint arXiv:1701.01887, 2017.

Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured state spaces.
In The Tenth International Conference on Learning Representations, ICLR 2022, Virtual Event, April
25-29, 2022. OpenReview.net, 2022.

Charles C Holt. Forecasting seasonals and trends by exponentially weighted moving averages. International
journal of forecasting, 20(1):5–10, 2004.

Taesung Kim, Jinhee Kim, Yunwon Tae, Cheonbok Park, Jang-Ho Choi, and Jaegul Choo. Reversible instance
normalization for accurate time-series forecasting against distribution shift. In The Tenth International
Conference on Learning Representations, ICLR 2022, Virtual Event, April 25-29, 2022. OpenReview.net,
2022.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua Bengio and
Yann LeCun (eds.), 3rd International Conference on Learning Representations, ICLR 2015, San Diego,
CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015.

Nikolaos Kourentzes. Intermittent demand forecasts with neural networks. International Journal of Production
Economics, 143(1):198–206, 2013.

Shiyang Li, Xiaoyong Jin, Yao Xuan, Xiyou Zhou, Wenhu Chen, Yu-Xiang Wang, and Xifeng Yan. Enhancing
the locality and breaking the memory bottleneck of transformer on time series forecasting. In Hanna M.
Wallach, Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett
(eds.), Advances in Neural Information Processing Systems 32: Annual Conference on Neural Information
Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, pp. 5244–5254,
2019.

Bryan Lim and Stefan Zohren. Time-series forecasting with deep learning: a survey. Philosophical Transactions
of the Royal Society A, 379(2194):20200209, 2021.

14

http://jmlr.org/papers/v21/19-820.html
http://jmlr.org/papers/v21/19-820.html

Published in Transactions on Machine Learning Research (09/2023)

Bryan Lim, Sercan Ö Arık, Nicolas Loeff, and Tomas Pfister. Temporal fusion transformers for interpretable
multi-horizon time series forecasting. International Journal of Forecasting, 37(4):1748–1764, 2021.

Shizhan Liu, Hang Yu, Cong Liao, Jianguo Li, Weiyao Lin, Alex X. Liu, and Schahram Dustdar. Pyraformer:
Low-complexity pyramidal attention for long-range time series modeling and forecasting. In The Tenth
International Conference on Learning Representations, ICLR 2022, Virtual Event, April 25-29, 2022.
OpenReview.net, 2022a.

Yong Liu, Haixu Wu, Jianmin Wang, and Mingsheng Long. Non-stationary transformers: Exploring the
stationarity in time series forecasting. In Advances in Neural Information Processing Systems, 2022b.

Spyros Makridakis, Evangelos Spiliotis, and Vassilios Assimakopoulos. M5 accuracy competition: Results,
findings, and conclusions. International Journal of Forecasting, 38(4):1346–1364, 2022. ISSN 0169-2070.
doi: https://doi.org/10.1016/j.ijforecast.2021.11.013. Special Issue: M5 competition.

Yuqi Nie, Nam H. Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth 64 words:
Long-term forecasting with transformers. In International Conference on Learning Representations, 2023.

Boris N. Oreshkin, Dmitri Carpov, Nicolas Chapados, and Yoshua Bengio. N-BEATS: neural basis ex-
pansion analysis for interpretable time series forecasting. In 8th International Conference on Learning
Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020.

Syama Sundar Rangapuram, Matthias W Seeger, Jan Gasthaus, Lorenzo Stella, Yuyang Wang, and Tim
Januschowski. Deep state space models for time series forecasting. Advances in neural information
processing systems, 31, 2018.

David Salinas, Valentin Flunkert, Jan Gasthaus, and Tim Januschowski. Deepar: Probabilistic forecasting
with autoregressive recurrent networks. International Journal of Forecasting, 36(3):1181–1191, 2020.

Oktai Tatanov, Stanislav Beliaev, and Boris Ginsburg. Mixer-tts: non-autoregressive, fast and compact
text-to-speech model conditioned on language model embeddings. In ICASSP 2022-2022 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 7482–7486. IEEE, 2022.

Ilya O. Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Thomas Unterthiner,
Jessica Yung, Andreas Steiner, Daniel Keysers, Jakob Uszkoreit, Mario Lucic, and Alexey Dosovitskiy.
Mlp-mixer: An all-mlp architecture for vision. In Marc’Aurelio Ranzato, Alina Beygelzimer, Yann N.
Dauphin, Percy Liang, and Jennifer Wortman Vaughan (eds.), Advances in Neural Information Processing
Systems 34: Annual Conference on Neural Information Processing Systems 2021, NeurIPS 2021, December
6-14, 2021, virtual, pp. 24261–24272, 2021.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser,
and Illia Polosukhin. Attention is all you need. Advances in neural information processing systems, 30,
2017.

Ruofeng Wen, Kari Torkkola, Balakrishnan Narayanaswamy, and Dhruv Madeka. A multi-horizon quantile
recurrent forecaster. arXiv preprint arXiv:1711.11053, 2017.

Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: Decomposition transformers with
auto-correlation for long-term series forecasting. In Marc’Aurelio Ranzato, Alina Beygelzimer, Yann N.
Dauphin, Percy Liang, and Jennifer Wortman Vaughan (eds.), Advances in Neural Information Processing
Systems 34: Annual Conference on Neural Information Processing Systems 2021, NeurIPS 2021, December
6-14, 2021, virtual, pp. 22419–22430, 2021.

Ruibin Xiong, Yunchang Yang, Di He, Kai Zheng, Shuxin Zheng, Chen Xing, Huishuai Zhang, Yanyan Lan,
Liwei Wang, and Tie-Yan Liu. On layer normalization in the transformer architecture. In Proceedings
of the 37th International Conference on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event,
volume 119 of Proceedings of Machine Learning Research, pp. 10524–10533. PMLR, 2020.

15

Published in Transactions on Machine Learning Research (09/2023)

Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. Are transformers effective for time series forecasting? In
Proceedings of the AAAI Conference on Artificial Intelligence, 2023.

G Peter Zhang and Min Qi. Neural network forecasting for seasonal and trend time series. European journal
of operational research, 160(2):501–514, 2005.

Guoqiang Zhang, B Eddy Patuwo, and Michael Y Hu. Forecasting with artificial neural networks:: The state
of the art. International journal of forecasting, 14(1):35–62, 1998.

J Zhang and K Nawata. Multi-step prediction for influenza outbreak by an adjusted long short-term memory.
Epidemiology & Infection, 146(7):809–816, 2018.

Tong Zhang. Mathematical analysis of machine learning algorithms. Cambridge University Press, 2023.

Yu Zheng, Zhangxuan Dang, Chunlei Peng, Chao Yang, and Xinbo Gao. Multi-view multi-label anomaly
network traffic classification based on mlp-mixer neural network. arXiv preprint arXiv:2210.16719, 2022.

Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang. Informer:
Beyond efficient transformer for long sequence time-series forecasting. In Thirty-Fifth AAAI Conference
on Artificial Intelligence, AAAI 2021, Thirty-Third Conference on Innovative Applications of Artificial
Intelligence, IAAI 2021, The Eleventh Symposium on Educational Advances in Artificial Intelligence, EAAI
2021, Virtual Event, February 2-9, 2021, pp. 11106–11115. AAAI Press, 2021.

Tian Zhou, Ziqing Ma, Xue Wang, Qingsong Wen, Liang Sun, Tao Yao, Wotao Yin, and Rong Jin. Film:
Frequency improved legendre memory model for long-term time series forecasting. In Advances in Neural
Information Processing Systems, 2022a.

Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, and Rong Jin. Fedformer: Frequency enhanced
decomposed transformer for long-term series forecasting. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song,
Csaba Szepesvári, Gang Niu, and Sivan Sabato (eds.), International Conference on Machine Learning,
ICML 2022, 17-23 July 2022, Baltimore, Maryland, USA, volume 162 of Proceedings of Machine Learning
Research, pp. 27268–27286. PMLR, 2022b.

16

Published in Transactions on Machine Learning Research (09/2023)

A Proof of Theorem 3.1

Theorem 3.1. Let x(t) = g(t) + f(t), where g(t) is a periodic signal with period P and f(t) is Lipschitz
smooth with constant K (i.e.

∣∣∣ f(a)−f(b)
a−b

∣∣∣ ≤ K), then there exists a linear model with lookback window size
L ≥ P + 1 such that |yi − ŷi| ≤ K(i+ min(i, P)),∀i = 1, . . . , T .

Proof. Without loss of generality, we assume the lookback window starts at t = 1 and the historical values is
x ∈ RL. The ground truth of the future time series:

yi = x(L+ i) = x(P + 1 + i) = g(P + 1 + i) + f(P + 1 + i) = g(1 + i) + f(P + 1 + i)

Let A ∈ RT×(P +1), and

Aij =

1, if j = P + 1 or j = (i mod P) + 1
−1, if j = 1
0, otherwise

, bi = 0

Then

ŷi = Aix + b

= x(i mod P)+1 − x1 + xP +1

= x((i mod P) + 1)− x(1) + x(P + 1)

So we have:

yi − ŷi = x(P + i+ 1)− x((i mod P) + 1) + x(1)− x(P + 1)
= (x(P + i+ 1)− x((i mod P) + 1)) + (x(1)− x(P + 1))
= f(P + i+ 1)− f((i mod P) + 1) + g(P + i+ 1)− g((i mod P) + 1)
+ f(1)− f(P + 1) + g(1)− g(P + 1)
= (f(P + i+ 1)− f(P + 1))− (f((i mod P) + 1)− f(1))

And the mean absolute error between yi and ŷi would be:

|yi − ŷi| = |(f(P + i+ 1)− f(P + 1))− (f((i mod P) + 1)− f(1))|
≤ |f(P + i+ 1)− f(P + 1)|+ |f((i mod P) + 1)− f(1)|
≤ K|(P + i+ 1)− (P + 1)|+K|(i mod P + 1)− 1|
≤ K(i+ min(i, P))

B Implementation Details

B.1 Normalization

There are three types of normalizations used in the implementation:

1. Global normalization: Global normalization standardizes all variates of time series independently
as a data pre-processing. The standardized data is then used for training and evaluation. It is a
common setup in long-term time series forecasting experiments to prevent from the affects of different
variate scales. For M5, since there is only one target time series (sales), we do not apply the global
normalization.

17

Published in Transactions on Machine Learning Research (09/2023)

2. Local normalization: In contrast to global normalization, local normalization is applied on each batch
as pre-processing or post-processing. For long-term forecasting datasets, we apply reversible instance
normalization (Kim et al., 2022) to ensure a fair comparison with the state-of-the-art results. In
M5, we independently scale the sales of all products by their mean for model input and re-scale the
model output.

3. Model-level normalization: We apply batch normalization on long-term forecasting datasets as
suggested in (Nie et al., 2023) and apply layer normalization on M5 as described below.

B.2 Differences between TSMixer and TSMixer-Ext

Due to the different normalizations between long-term forecasting benchmarks and M5, we slightly modify
the mixing layers in TSMixer-Ext to better fit M5. We consider post-normalization rather than pre-
normalization (Xiong et al., 2020) because pre-normalization may lead to NaN when the scale of input is too
large. Furthermore, we apply layer normalization instead of batch normalization because batch normalization
requires much larger batch size to obtain stable statistics of M5. The resulting architecture is shown in Fig. 6.

Figure 6: Mixing layers in TSMixer-Ext.

B.3 Formulae of TSMixer architecture

In this section, we provide the mathematical formulae of each components in TSMixer.

B.3.1 TSMixer Components

The TSMixer architecture is composed of several key components, which are implemented using a combination
of linear layers, nonlinear activation functions, dropout, normalization, and residual connections. These are
all standard deep learning operations that are commonly used. The major components of TSMixer are:

1. Temporal Projection and Time Mixing, which are used to model transformations between time
steps.

2. Feature Mixing, which is used to model feature transformations.
3. Conditional Feature Mixing, which is used to transform hidden features based on the static

features S.
4. Mixer Layer, which is the composition of the Time Mixing and the Feature Mixing.
5. Conditional Mixer Layer, which is the composition of the Time Mixing and the Conditional

Feature Mixing.

For the layers involving the change of output size, we use subscripts A→ B denotes the size is changing from
A to B.

18

Published in Transactions on Machine Learning Research (09/2023)

Temporal Projection Given an input matrix X ∈ RL×C , the Temporal Projection (TP) is a linear layer
that acts on the columns of X (denoted as X∗,i) and is shared across all columns to project the time series
from the input length to the prediction length. The operation is defined as:

TPL→T (X)∗,i = W1X∗,i + b1,∀i = 1, . . . , C, (4)

where W1 ∈ RL×T and b1 ∈ RT are the weights and biases of the linear layer respectively. The subscript
L→ T denotes the mapping between input and output dimensions.

Time Mixing Similar to the Temporal Projection, the Time Mixing (TM) acts on all columns of X and
applies commonly used deep learning layers to perform temporal feature transformation. The operation is
defined as:

TM(X)∗,i =

Norm
(

X∗,i + Drop
(
σ
(
TPL→L (X)∗,i

)))
,

∀i = 1, . . . , C, (5)

where σ(·) is an activation function, Drop(·) is dropout and Norm(·) can be layer normalization or batch
normalization. It is important to note that the normalization is applied on the entire matrix (along both time
and feature domain), rather than row-by-row (along the feature domain) as in Transformer-based models.
The TM block allows TSMixer to effectively capture temporal dependencies in the time series data.

Feature Mixing The Feature Mixing (FM) is a two-layer residual MLP that acts on the rows of the input
matrix X ∈ RL×C and is shared across all rows. The block is designed to model feature transformations and
is applied to each row Xj,∗ of the input matrix. The operation is defined as:

Uj,∗ = Drop (σ (W2Xj,∗ + b2)) ,
FMC→C(X)j,∗ = Norm (Xj,∗ + Drop (W3Uj,∗ + b3)) ,

∀j = 1, . . . , L,

where W2,W3 ∈ RC×C and b2, b3 ∈ RC .

When it is necessary to project the features to a different size H (H 6= C), TSMixer applies a linear
transformation to the residual term:

FMC→H(X)j,∗ = Norm (WHXj,∗ + bH + Drop (W3Uj,∗ + b3)) ,
∀j = 1, . . . , L,

where W3,WH ∈ RH×C , b3, bH ∈ RH .

Conditional Feature Mixing The Conditional Feature Mixing (CFM) is a variation of the FM block
that takes into account an associated static feature S ∈ R1×Cs in addition to the input sequence X ∈ RL×H .
The block is designed to transform hidden features depending on the static features. The operation is defined
as:

Vj,∗ = FRCs→H(ExpandL(S))
CFMC→H(X,S)j,∗ = FMC+H→H(X ⊕ V)j,∗ (6)
∀j = 1, . . . , L, (7)

where ExpandL(·) expands the input along the time dimension by repeating it L times, V ∈ RL×H and
X ⊕ V ∈ RL×(C+H) is the concatenation of X and V along the feature dimension.

19

Published in Transactions on Machine Learning Research (09/2023)

Mixer Layer and Conditional Mixer Layer The Mixer Layer (Mix) is a composition of the Time
Mixing and Feature Mixing, whereas the Conditional Mixer Layer (CMix) is a composition of the Time Mixing
and Conditional Feature Mixing. Both Mix and CMix blocks apply the temporal and feature transformations
respectively:

MixC→H(X) = FRC→H (TRL→L(X))
CMixC→H(X,S) = CFRC→H (TRL→L(X),S) .

(8)

B.3.2 Basic TSMixer for Multivariate Time Series Forecasting

For long-term time series forecasting (LTSF) tasks, TSMixer only uses the historical target time series X as
input. A series of mixer blocks are applied to project the input data to a latent representation of size C. The
final output is then projected to the prediction length T :

O1 = MixC→C(X)
Ok = MixC→C(Ok−1),∀k = 2, . . . ,K
Ŷ = TPL→T (OK)

where Ok is the latent representation of the k-th mixer block and Ŷ is the prediction. We project the sequence
to length T after the mixer blocks as T may be quite long in LTSF tasks. To increase the model capacity,
we modify the hidden layers in Feature Mixing by using W2 ∈ RH×C ,W3 ∈ RC×H , b2 ∈ RH , b3 ∈ RC in
Eq. equation B.3.1, where H is a hyper-parameter indicating the hidden size. Another modification is using
pre-normalization (Xiong et al., 2020) instead of post-normalization in residual blocks to keep the input scale.

B.3.3 Extended TSMixer for Time Series Forecasting with Auxiliary Information

Given input data consisting of a target time series X ∈ RL×C , historical features X̂ ∈ RL×Cx , apriori known
future features Z ∈ RT×Cz , and static features S ∈ R1×Cs , TSMixer applies a series of conditional feature
mixing and conditional mixer layers to project the input data to a latent representation of size H. The
operation of a the architecture consisting K blocks is defined as:

X ′ = CFMC+Cx→H(TLL→T (X ⊕ X̂),S)
Z ′ = CFMCz→H(Z,S)
O1 = CMix2H→H(X ′ ⊕Z ′,S)
Ok = CMixH→H(Ok−1,S),∀k = 2, . . . ,K

where X ′ ∈ RT×H is the latent representation of all past information projected to the prediction length,
Z ′ ∈ RT×H is the latent representation of future features, Ok ∈ RT×H is the output of the k-th mixer
block. The final output, OK , is then linearly projected to the prediction space, which can be real values or
the parameters of a probability distribution (e.g. negative binomial distribution that is commonly used for
demand prediction (Salinas et al., 2020)).

C Experimental Setup

C.1 Long-term time series forecasting datasets

For the long-term forecasting datasets (ETTm2, Weather, Electricity, and Traffic), we use publicly-available
data that have been pre-processed by Wu et al. (2021), and we follow experimental settings used in recent
papers (Liu et al., 2022b; Zhou et al., 2022a; Nie et al., 2023). Specifically, we standardize each covariate
independently and do not re-scale the data when evaluating the performance. We train each model with a
maximum 100 epochs and do early stopping if the validation loss is not improved after 5 epochs.

20

Published in Transactions on Machine Learning Research (09/2023)

C.2 M5 dataset

We obtain the M5 dataset from Kaggle1. Please refer to the participants guide to check the details about the
competition and the dataset. We refer to the example script in GluonTS (Alexandrov et al., 2020)2 and the
repository of the third place solution3 in the competition to implement our basic feature engineering. We list
the features we used in our experiment in Table 7.

Table 7: Static features and time-varying features used in our experiments.
Static features Time-varying features
state_id snap_CA
store_id snap_TX
category_id snap_WI
department_id event_type_1
item_id event_type_2
mean_sales normalized_price_per_item

normalized_price_per_group
day_of_week
day_of_month
day_of_year
sales (prediction target, only available in history)

Our implementation is based on GluonTS. We use TFT and DeepAR provided in GluonTS, and implement
PatchTST, FEDformer, and our TSMixer ourselves. We modified these models if necessary to optimize
the negative binomial distribution, as suggested by DeepAR paper (Salinas et al., 2020). We train each
model with a maximum 300 epochs and employ early stopping if the validation loss is not improved after
30 epochs. We noticed that optimizing other objective function might get significantly worse results when
evaluate WRMSSE. To obtain more stable results, for all models, we take the top 8 hyperparameter settings
based on validation WRMSSE and train them for an additional 4 trials (totaling 5 trials) and select the best
hyperparameters based on their mean validation WRMSSE, then report the evaluation results on the test set.
The hyperparameter settings can be found in Appendix E.

D Effects of Lookback Window Size

We show the effects of different lookback window size L = {96, 336, 512, 720} with the prediction length
T = {96, 192, 336, 720} on ETTm2, Weather, Electricity, and Traffic. The results are shown in Fig. 7.

E Hyperparameters

Table 8: Hyerparamter tuning spaces and best configurations for
TSMixer and TFT on long-term forecasting benchmarks.

ETTh1
Search space Learing rate Blocks Dropout Hidden size Heads
Model T 0.001, 0.0001 1, 2, 4, 6, 8 0.1, 0.3, 0.5, 0.7, 0.9 8, 16, 32, 64 4, 8

TSMixer

96 0.0001 6 0.9 512 relu
192 0.001 4 0.9 256 relu
336 0.001 4 0.9 256 relu
720 0.001 2 0.9 64 relu

1https://www.kaggle.com/competitions/m5-forecasting-accuracy/data
2https://github.com/awslabs/gluonts/blob/dev/examples/m5_gluonts_template.ipynb
3https://github.com/devmofl/M5_Accuracy_3rd

21

https://www.kaggle.com/competitions/m5-forecasting-accuracy/data
https://github.com/awslabs/gluonts/blob/dev/examples/m5_gluonts_template.ipynb
https://github.com/devmofl/M5_Accuracy_3rd

Published in Transactions on Machine Learning Research (09/2023)

TFT

96 0.001 0.3
192 0.001 0.1
336 0.001 0.1
720 0.001 0.1

ETTh2
Search space Learing rate Blocks Dropout Hidden size Heads
Model T 0.001, 0.0001 1, 2, 4, 6, 8 0.1, 0.3, 0.5, 0.7, 0.9 8, 16, 32, 64 4, 8

TSMixer

96 0.0001 4 0.9 8 relu
192 0.001 1 0.9 8 relu
336 0.0001 1 0.9 16 relu
720 0.0001 2 0.9 64 relu

TFT

96 0.0001 0.9
192 0.001 0.9
336 0.001 0.7
720 0.001 0.7

ETTm1
Search space Learing rate Blocks Dropout Hidden size Heads
Model T 0.001, 0.0001 1, 2, 4, 6, 8 0.1, 0.3, 0.5, 0.7, 0.9 8, 16, 32, 64 4, 8

TSMixer

96 0.0001 6 0.9 16 relu
192 0.0001 4 0.9 32 relu
336 0.0001 4 0.9 64 relu
720 0.0001 4 0.9 16 relu

TFT

96 0.001 0.5
192 0.001 0.3
336 0.001 0.3
720 0.001 0.9

ETTm2
Search space Learing rate Blocks Dropout Hidden size Heads
Model T 0.001, 0.0001 1, 2, 4, 6, 8 0.1, 0.3, 0.5, 0.7, 0.9 8, 16, 32, 64 4, 8

TSMixer

96 0.001 8 0.9 256 relu
192 0.0001 1 0.9 256 relu
336 0.0001 8 0.9 512 relu
720 0.0001 8 0.1 256 relu

TFT

96 0.0001 0.7 512
192 0.0001 0.3 256
336 0.0001 0.3 128
720 0.0001 0.1 512

Weather
Search space Learing rate Blocks Dropout Hidden size Heads
Model T 0.001, 0.0001 1, 2, 4, 6, 8 0.1, 0.3, 0.5, 0.7, 0.9 8, 16, 32, 64 4, 8

TSMixer

96 0.0001 4 0.3 64 relu
192 0.0001 8 0.7 32 relu
336 0.0001 2 0.7 8 relu
720 0.0001 8 0.7 16 relu

TFT

96 0.001 2 0.9 64
192 0.001 1 0.1 32
336 0.001 1 0.1 32
720 0.001 2 0.7 64

Electricity
Search space Learing rate Blocks Dropout Hidden size Heads
Model T 0.001, 0.0001 1, 2, 4, 6, 8 0.1, 0.3, 0.5, 0.7, 0.9 64, 128, 256, 512 4, 8

TSMixer

96 0.0001 6 0.7 32 relu

22

Published in Transactions on Machine Learning Research (09/2023)

192 0.0001 8 0.7 16 relu
336 0.0001 6 0.7 64 relu
720 0.001 6 0.7 64 relu

TFT

96 0.0001 4 0.5 32
192 0.0001 6 0.9 8
336 0.0001 4 0.1 8
720 0.001 4 0.3 64

Traffic
Search space Learing rate Blocks Dropout Hidden size Heads
Model T 0.001, 0.0001 1, 2, 4, 6, 8 0.1, 0.3, 0.5, 0.7, 0.9 64, 128, 256, 512 4, 8

TSMixer

96 0.0001 8 0.7 256 relu
192 0.0001 8 0.7 256 relu
336 0.0001 6 0.7 512 relu
720 0.0001 2 0.9 256 relu

TFT

96 0.001 4 0.3 64
192 0.001 4 0.9 64
336 0.001 6 0.7 128
720 0.0001 8 0.1 256

Table 9: Hyerparamter tuning spaces and best configurations for all models on M5.
M5

Search space Learing rate Blocks Dropout Hidden size Heads
Model 0.001 1, 2, 3, 4 0, 0.05, 0.1, 0.3 64, 128, 256, 512 4, 8
PatchTST 0.001 2 0 64
Autoformer 0.001 2 0 128
FEDformer 0.001 1 0 256
DeepAR 0.001 2 0.05 256
TFT 0.001 1 0.05 64 4
TSMixer 0.001 2 0 64

F Alternatives to MLPs

In Section 3, we discuss the advantages of linear models and their time-step-dependent characteristics.
In addition to linear models and the proposed TSMixer, there are other architectures whose weights are
time-step-dependent. In this section, we examine full MLP and Convolutional Neural Networks (CNNs), as
alternatives to MLPs. The building block of full MLPs applies linear operations on the vectorized input with
T × C dimensions and vectorized output with L× C dimensions. As CNNs, we consider a 1-D convolution
layer followed by a linear layer.

The results of this evaluation, conducted on the ETTm2 and Weather datasets, are presented in Table 10.
The results show that while full MLPs have the highest computation cost, they perform worse than both
TSMixer and CNNs. On the other hand, the performance of CNNs is similar to TSMixer on the Weather
dataset, but significantly worse on ETTm2, which is a more non-stationary dataset. Compared with TSMixer,
the main difference is both full MLPs and CNNs mix time and feature information simultaneously in each
linear operation, while TSMixer alternatively conduct either time or feature mixing. The alternative mixing
allows TSMixer to use a large lookback window, which is favorable theoretically (Section 3) and empirically
(previous ablation), but also keep a reasonable number of parameters, which leads to better generalization.
On the other hand, the number of parameters of conventional MLPs and CNNs grow faster than TSMixer
when increasing the window size L, which may suffer higher chance of overfitting than TSMixer.

23

Published in Transactions on Machine Learning Research (09/2023)

Figure 7: Effects of lookback window size on TSMixer.

Table 10: Comparison with other MLP-like alternatives.
Models TSMixer Full MLP CNN
Metric MSE MAE MSE MAE MSE MAE

ETTm2

96 0.163 0.252 0.441 0.486 0.232 0.334
192 0.216 0.290 1.028 0.755 0.323 0.410
336 0.268 0.324 1.765 1.049 0.616 0.593
720 0.420 0.422 2.724 1.305 2.009 1.214

Weather

96 0.145 0.198 0.190 0.279 0.149 0.220
192 0.191 0.242 0.250 0.338 0.194 0.263
336 0.242 0.280 0.298 0.375 0.242 0.306
720 0.320 0.336 0.360 0.422 0.293 0.355

24

	Introduction
	Related Work
	Linear Models for Time Series Forecasting
	TSMixer Architecture
	TSMixer for Multivariate Time Series Forecasting
	Extended TSMixer for Time Series Forecasting with Auxiliary Information
	Differences between TSMixer and MLP-Mixer

	Experiments
	Multivariate Long-term Forecasting
	Large-scale Demand Forecasting

	Conclusions
	Proof of Theorem 3.1
	Implementation Details
	Normalization
	Differences between TSMixer and TSMixer-Ext
	Formulae of TSMixer architecture
	TSMixer Components
	Basic TSMixer for Multivariate Time Series Forecasting
	Extended TSMixer for Time Series Forecasting with Auxiliary Information

	Experimental Setup
	Long-term time series forecasting datasets
	M5 dataset

	Effects of Lookback Window Size
	Hyperparameters
	Alternatives to MLPs

