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DPAR: Decoupled Graph Neural Networks with Node-Level
Differential Privacy

Anonymous Author(s)

ABSTRACT
Graph Neural Networks (GNNs) have achieved great success in

learning with graph-structured data. Privacy concerns have also

been raised for the trained models which could expose the sensi-

tive information of graphs including both node features and the

structure information. In this paper, we aim to achieve node-level

differential privacy (DP) for training GNNs so that a node and

its edges are protected. Node DP is inherently difficult for GNNs

because all direct and multi-hop neighbors participate in the calcu-

lation of gradients for each node via layer-wise message passing

and there is no bound on how many direct and multi-hop neigh-

bors a node can have, so existing DP methods will result in high

privacy cost or poor utility due to high node sensitivity. We pro-

pose a Decoupled GNN with Differentially Private Approximate

Personalized PageRank (DPAR) for training GNNs with an en-

hanced privacy-utility tradeoff. The key idea is to decouple the

feature projection and message passing via a DP PageRank algo-

rithm which learns the structure information and uses the top-𝐾

neighbors determined by the PageRank for feature aggregation. By

capturing the most important neighbors for each node and avoiding

the layer-wise message passing, it bounds the node sensitivity and

achieves improved privacy-utility tradeoff compared to layer-wise

perturbation based methods. We theoretically analyze the node DP

guarantee for the two processes combined together and empiri-

cally demonstrate better utilities with the same levels of node DP

compared with existing methods.

CCS CONCEPTS
• Security and privacy→ Privacy protections; Trust frame-
works.
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1 INTRODUCTION
Graph Neural Networks (GNNs) have demonstrated superior per-

formance in mining graph-structured data and learning graph rep-

resentations for downstream inference tasks including node clas-

sification, link prediction, and graph classification [7, 20, 29, 37].

Similar to the privacy concerns that neural network models trained

on private datasets could expose sensitive information of the train-

ing data, GNN models trained on graph data that embed both the

node features and graph topology information are also subject to

different types of privacy attacks [36, 44, 45].

Differential privacy (DP) has become a de facto framework for

training neural networks with rigorous privacy protection for the

training data [1, 14]. A widely used technique is DP stochastic

gradient descent (DP-SGD) [1, 40] which injects calibrated noise

into the gradients during SGD-based training. Standard DP ensures

that there is a bounded risk for an adversary to infer from a trained

model whether a record is used in training the model. For graph

data, since both node features (e.g., personal attributes) and edges

(e.g., social relationships) may contain sensitive information, our

goal is to achieve node-level DP (node DP), so that the risk to infer

whether a node and its connecting edges are used in training the

model is bounded.

Challenges. Achieving node DP for GNNs is inherently challeng-

ing. Unlike grid-based data such as images, graph data contains

both feature vectors for each node and the edges that connect the

nodes. During the training of GNN models, all direct and multi-hop

neighbors participate in the calculation of gradients for each node

via recursive layer-wise message passing [20, 37]. At each layer,

each node aggregates the features (or the latent representations)

from its neighbors when generating its own representation. There

is no bound on how many direct and multi-hop neighbors a node

can have. This means the sensitivity of the gradient due to the

presence or absence of a node can be extremely high due to the

node itself and its neighbors (or correlations between the nodes),

which makes standard DP-SGD based methods [1, 40] infeasible,

resulting in either high privacy cost or poor utility due to the large

required DP noise.

Few recent works tackled node DP for training GNNs and they

mainly attempted to bound the correlations during training to help

bound the sensitivity or privacy cost. Daigavane et al. [10] sample

subgraphs to ensure that each node has a bounded number of neigh-

bors within each subgraph and limit the occurrences of each node

in other subgraphs by extending the privacy-by-amplification tech-

nique [4, 23] to GNN. Their method is limited to GNNs with only

one or two layers. The GAP algorithm [34] assumes a maximum

degree for each node in order to bound the sensitivity of individ-

ual nodes. Meanwhile, their message-passing scheme requires DP

noise at each step, therefore, it further bounds the sensitivity by

bounding the number of hops. This affects the model utility as it

may restrict each node from acquiring useful information from

1
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higher hop neighbors. In sum, these approaches make it feasible to

train GNNs with node DP but still sacrifice the model accuracy due

to the restrictions on the number of hops during training.

Contributions. We propose a Decoupled GNN with Differentially

Private Approximate Personalized PageRank (DPAR) for training

GNNs with node DP and enhanced privacy-utility tradeoff. The key

idea is to decouple the feature aggregation andmessage passing into

two processes: 1) use a DP Approximate Personalized PageRank

(APPR) algorithm to learn the structure information, and 2) use the

top-𝐾 neighbors determined by the APPR for feature aggregation

and model learning with DP. In other words, the APPR learns the

influence score of all direct and multi-hop neighbors, and the layer-

wise message-passing is replaced by neighborhood aggregation

based on the APPR.

Our framework is based on the decoupled GNN training frame-

work [7, 25] which are originally designed to scale up the training

for large graphs. Our main insight is that this decoupled strategy

can be exploited to improve the design of DP algorithms. By captur-

ing the most important neighbors for each node (bounds the node

sensitivity) and avoiding the expensive privacy cost accumulation

from the layer-wise message passing, our framework achieves en-

hanced privacy-utility tradeoff compared to layer-wise perturbation

based methods.

AddingDP to this decoupled framework is nontrivial and presents

several challenges. First, there are no existing works for comput-

ing sparsified APPR with formal node DP. While there exist DP

top-𝐾 selection algorithms [13], directly applying it can result in

poor accuracy due to the high sensitivity since each node (and its

edges) can affect all the elements in the APPR matrix. Second, while

DP-SGD can be used for feature aggregation, the neighborhood

sampling returns a correlated batch of nodes based on the APPR,

making the privacy analysis more complex, particularly for quanti-

fying the privacy amplification ratio. To address these challenges,

we develop DP-APPR algorithms to compute the top-𝐾 sparsified

APPR with DP. We then utilize DP-SGD [1] for feature aggrega-

tion and model training to protect node features. We analyze the

privacy loss caused by the neighborhood sampling and calibrate

tighter Gaussian noise for the clipped gradients to provide a rigor-

ous overall privacy guarantee. We summarize our contributions as

follows.

• We propose DPAR, a novel de-coupled DP framework with spar-

sification for training GNNs with rigorous node DP. DPAR decou-

ples message passing from feature aggregation via DP APPR and

uses the top-𝐾 neighbors determined by APPR for feature aggre-

gation, which captures the most important neighbors for each

node and avoids the layer-wise message passing and achieves bet-

ter privacy-utility tradeoff than existing layer-wise perturbation

based methods.

• We develop two DP APPR algorithms based on the exponential

mechanism and Gaussian mechanism, for selecting top-𝐾 ele-

ments in the APPR vector with formal node DP. We employ sam-

pling and clipping to address the high sensitivity challenge. We

utilize the exponential mechanism [13, 14] to select the indices

of the top-𝐾 elements first, and then compute the corresponding

noisy values with additional privacy costs. The Gaussian mecha-

nism directly adds noise to the APPR vector and then selects the

top-𝐾 from the noisy vectors. We formally analyze the privacy

guarantee for both methods.

• We use DP-SGD for feature aggregation and model learning

based on the DP APPR. By using sparsified DP APPR vectors, we

limit the maximum number of nodes one node can affect during

gradient computation, which is the maximum column-wise 𝑙0
norm of the DP APPR matrix. We incorporate additional clipping

to ensure a maximum ℓ1 norm per column which determines

the sensitivity of each node. We calibrate the Gaussian noise by

theoretically analyzing the privacy loss and privacy amplification

caused by the neighborhood sampling determined by the DP

APPR and provide a rigorous overall privacy guarantee for DPAR.

• We conduct extensive experiments on five real-world graph

datasets to evaluate the effectiveness of the proposed algorithms.

Results show that they achieve better accuracy at the same level

of node DP compared to the state-of-the-art algorithms. We also

illustrate the privacy protection of the trained models.

2 BACKGROUND
2.1 GNNs with Personalized PageRank
Given a graph𝐺 = (V, E,X), where V and E denote the set of vertices

and edges, respectively, and X ∈ R |V |×𝑑 represents the feature

matrix where each row corresponds to the associated feature vector

𝑋𝑣 ∈ R𝑑 (𝑣 = 1, . . . , |V|) of node 𝑣 . Each node is associated with a

class (or label) vector 𝑌𝑣 ∈ R𝑐 , such as the one-hot encoding vector,

with the number of classes c. Considering the node classification

task as an instance, a GNN model learns a representation function

𝑓 that generates the node embedding h𝑣 for each node 𝑣 ∈ V based

on the features of itself as well as all its neighbors [37], and the

generated node embeddings will further be used to label the class of

unlabeled nodes using the softmax classifier with the cross-entropy

loss.

GNN models use the recursive message-passing procedure to

spread information through a graph, which couples the neighbor-

hood aggregation and feature transformation for node represen-

tation learning. This coupling pattern can cause some potential

issues in model training, including neighbor explosion and over-

smoothing [7, 29]. Recent works propose to decouple the neighbor-

hood aggregation process from feature transformation and achieve

superior performance [7, 12]. Bojchevski et al. [7] show that neigh-

borhood aggregation/propagation based on personalized PageRank

[19] can maintain the influence score of all “neighboring” (rele-

vant) nodes that are reachable to the source node in the graph,

without the explicit message-passing procedure. They pre-compute

a pagerank matrix 𝚷 and truncate it by keeping only the top 𝑘

largest entries of each row and setting others to zero to get a sparse

matrix𝚷
𝒑𝒑𝒓

, which is then used to aggregate node representations,

generated using a neural network, of “neighbors” (most relevant

nodes) to get final predictions, expressed as follows:

𝑧𝑣 = softmax

(∑
𝑢∈N𝑘 (𝑣) 𝝅

′ (𝑣)𝑢𝐻𝑢,:
)
, (1)

where N𝑘 (𝑣) enumerates indices of the 𝑘 non-zero entries in

𝝅 ′ (𝑣) which is the 𝑣-th row of 𝚷
𝒑𝒑𝒓

corresponding to the node 𝑣 ’s

sparse APPR vector. 𝑯𝑢,: is the node representation generated by a

2
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neural network 𝑓𝜃 using the node feature vector 𝑋𝑢 of each node 𝑢

independently.

2.2 Differential Privacy (DP)
DP [9, 14] has demonstrated itself as a strong and rigorous privacy

framework for aggregate data analysis in many applications. DP

ensures the output distributions of an algorithm are indistinguish-

able with a certain probability when the input datasets are differing

in only one record.

Definition 1. ((𝜖 , 𝛿)-Differential Privacy) [14]. Let D and D′ be
two neighboring datasets that differ in at most one entry. A random-
ized algorithm A satisfies (𝜖 , 𝛿)-differential privacy if for all S ⊆
Range(A):

𝑃𝑟 [A(D) ∈ S] ≤ 𝑒𝜖𝑃𝑟
[
A(D′) ∈ S

]
+ 𝛿,

where A(D) represents the output of A with the input D, 𝜖 and 𝛿
are the privacy parameters (or privacy budget) and a lower 𝜖 and 𝛿
indicate stronger privacy and lower privacy loss.

In this paper, we aim to achieve node-level DP for graph data to

protect both the features and edges of a node.

Definition 2. ((𝜖 , 𝛿)-Node-level Differential Privacy) Let G and
G′ be two neighboring graphs that differ in at most one node including
its feature vector and all its connected edges. A randomized algorithm
A satisfies (𝜖 , 𝛿)-node-level DP if for all S ⊆ Range(A):

𝑃𝑟 [A(G) ∈ S] ≤ 𝑒𝜖𝑃𝑟
[
A(G′) ∈ S

]
+ 𝛿,

where A(G) represents the output of A with the input graph G.

2.3 DP-SGD and Challenges
A widely used technique for achieving DP for deep learning models

is DP stochastic gradient descent (DP-SGD) algorithm [1, 26]. It first

computes the gradient g (𝑥𝑖 ) for each example 𝑥𝑖 in the randomly

sampled batch with size 𝐵, and then clips the ℓ2 norm of each

gradient with a clipping threshold 𝐶 to bound the sensitivity of

g (𝑥𝑖 ) to 𝐶 . The clipped gradient g (𝑥𝑖 ) of each example will be

summed together and added with the Gaussian noise N
(
0, 𝜎2𝐶2I

)
to protect privacy. Finally, the average of the noisy accumulated

gradient g̃will be used to update the model parameters for this step.

We express g̃ as:

g̃← 1

𝐵

(∑𝐵
𝑖=1 g (𝑥𝑖 ) + N

(
0, 𝜎2𝐶2I

) )
. (2)

In DP-SGD, each example individually calculates its gradient,

e.g., only the features of 𝑥𝑖 will be used to compute the gradient

g (𝑥𝑖 ) for 𝑥𝑖 . However, when training GNNs, nodes are no longer

independent, and one node’s feature will affect the gradients of

other nodes. In a GNN model with 𝐾 layers, one node has the

chance to utilize additional features from all its neighbors up to

𝐾-hop when calculating its gradient. Rethinking Equation 2, the

bound of the sensitivity of

∑𝐵
𝑖=1 g (𝑥𝑖 ) becomes 𝐵∗𝐶 since changing

one node could potentially change the gradients of all nodes in the

batch

∑𝐵
𝑖=1 g (𝑥𝑖 ). Substituting 𝐵 ∗𝐶 for𝐶 in Equation 2 and we get

the following equation:

g̃′ ← 1

𝐵

(∑𝐵
𝑖=1 g (𝑥𝑖 ) + N

(
0, 𝜎2𝐵2𝐶2I

) )
. (3)

Comparing Equation 3 to 2, to achieve the same level of privacy

at each step during DP-SGD, the standard deviation of the Gaussian

noise added to the gradients is scaled up by a factor of the batch

size 𝐵, resulting in poor utility. Existing works [10, 34] mitigate the

high sensitivity by bounding the number of hops and node degrees

but also sacrifice the information that can be learned from higher

hop neighbors, resulting in limited success in improving accuracy.

3 DPAR
We present our DPAR approach for training DP GNN models via

DP approximate personalized PageRank (APPR). The key idea is

to exploit the decoupled framework (Section 2.1) and decouple

message passing from feature aggregation into two steps: 1) use

a DP APPR algorithm to learn the structure information (Section

3.1), and 2) use the top-𝐾 neighbors determined by the APPR for

feature aggregation and model learning with DP-SGD (Section 3.2).

By capturing the most important neighbors for each node from

the APPR and avoiding explicit message passing, it bounds the

node sensitivity without sacrificing model accuracy, achieving an

improved privacy-utility tradeoff. The overall privacy budget will

be split between the two steps, and we theoretically analyze the

node DP guarantee for the entire framework in Section 3.2.

3.1 Differentially Private APPR
We develop our DP APPR algorithms based on the ISTA algorithm

[16] for computing APPR. Andersen et al. [3] proposed the first

approximate personalized PageRank (APPR) algorithm which is

adopted in [7, 25] to replace the explicit message-passing procedure

for GNNs. Most recently, Fountoulakis et al. [16] demonstrated that

the APPR algorithm can be characterized as an 𝑒𝑙𝑙1-regularized opti-

mization problem, and propose an iterative shrinkage-thresholding

algorithm (ISTA) (Algorithm 3 in [16]) to solve it with a running

time independent of the size of the graph. The input of ISTA con-

tains the adjacency matrix of a graph and the one-hot vector corre-

sponding to the index of one node in the graph, and the output is

the APPR vector of that node. We develop our DP APPR algorithm

based on ISTA due to its status as one of the state-of-the-art APPR

algorithms. ISTA provides an excellent balance between scalabil-

ity and approximation guarantees. Moreover, the resulting sparse

APPR matrix can be easily accommodated into the memory, facili-

tating the subsequent neural network training.

Recall the purpose of calculating APPR vectors is to utilize them

to aggregate representations from relevant nodes for the source

node during model training. The index of each entry in an APPR

vector indicates the index of the same node in the graph, and the

value of each entry reflects the importance or relevance of this

node to the source node. By reserving the top 𝐾 largest entries

for each APPR vector, it is equivalent to computing a weighted

average of the representations of the 𝐾 most relevant nodes to the

source node (recall Equation 1). The graph structure information is

encoded in both the indexes and values of non-zero entries in each

sparse APPR vector. Thus, to provide DP protection for the graph

structure, we propose two DP APPR algorithms to obtain the top-𝐾

indexes and values for each APPR vector.

Exponential Mechanism (DP-APPR-EM).We present the DP

APPR algorithm using the exponential mechanism. While we can

3
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Algorithm 1: DP-APPR using the Exponential Mechanism

(DP-APPR-EM)

Input: ISTA hyperparameters: 𝛾, 𝛼, 𝜌 ; privacy parameters: 𝜖 , 𝜖2, 𝛿 ;

clip bound𝐶2, a graph (𝑉 , 𝐸 ) where𝑉 = {𝑣1, ..., 𝑣𝑁 }, an
integer 𝐾 > 0 and an integer𝑀 ∈ [1, 𝑁 ].

1 Initialize the APPR matrix 𝚷 ∈ R𝑀×𝑁 with all zeros.

2 for 𝑖 = 1, ..., 𝑀 do
3 Compute APPR:
4 Compute the APPR vector p(𝑣𝑖 ) for node 𝑣𝑖 using ISTA;
5 Clip Norm:
6 p̂(𝑣𝑖 ) ←: for each entry p(𝑣𝑖 ) [ 𝑗 ], 𝑗 ∈

[1, ..., 𝑁 ], in p(𝑣𝑖 ) , set p(𝑣𝑖 ) [ 𝑗 ] =

p(𝑣𝑖 ) [ 𝑗 ]/max

(
1,




p(𝑣𝑖 ) [ 𝑗 ]


1
𝐶2

)
7 Add Noise:
8 p̃(𝑣𝑖 ) ← p̂(𝑣𝑖 ) + Gumbel (𝛽I) , where 𝛽 = 𝐶2/𝜖 ;
9 Report Noisy Indexes:

10 N𝐾 ←: select the indexes of the top 𝐾 entries with the largest

values in p̃(𝑣𝑖 ) ;
11 Report Noisy Values:
12 option I: p̃′(𝑣𝑖 ) ←: set p̂(𝑣𝑖 ) [ 𝑗 ], 𝑗 ∈ N𝐾 , to be 1/𝐾 , and other

entries to be 0;

13 option II: p̃′(𝑣𝑖 ) ←: set p̂(𝑣𝑖 ) [ 𝑗 ], 𝑗 ∈ N𝐾 , to be

p̂(𝑣𝑖 ) [ 𝑗 ] + Laplace(𝐾𝐶2/𝜖2 ) , and other entries to be 0;

14 Replace the 𝑖-th row of 𝚷 with p̃′(𝑣𝑖 ) .

15 end
16 return 𝚷 and the overall privacy cost.

employ a DP top-𝐾 selection algorithm based on the exponential

mechanism [13], there are several challenges that need to be ad-

dressed. First, each node (and its edges) can change an arbitrary

number of elements in the APPR vector and lead to significant

changes in each element. Second, each node can change an arbi-

trary number of APPR vectors in the APPR matrix. Both of these

mean extremely high sensitivity, making a direct application of the

top-𝐾 selection algorithm ineffective. To address them, we employ

two techniques: 1) clipping each element to bound the sensitivity,

2) sampling and only computing APPR for a subset of M nodes in

the graph to reduce sensitivity. We then employ the exponential

mechanism to select the top=𝐾 values.

As shown in Algorithm 1, for each of the M sampled nodes, we

first compute the APPR vector using the ISTA algorithm (line 4).

Then we employ clipping to bound the sensitivity of each element

by C2 (line 6). We use the clipped value as its utility score for the

exponential mechanism since the magnitude of each entry indicates

its importance (utility) and is used as the weight when aggregat-

ing the representation of the nodes. We simulate the exponential

mechanism by injecting a one-shot Gumbel noise to the clipped

vector p̂(𝑣) (line 8) and then select the indexes of top 𝐾 largest

noisy entries [13] (line 10). We can then either: option I) set the

values of all top 𝐾 entries to be 1/𝐾 , which means we consider the

top 𝐾 entries equally important to the source node, or option II)

spend additional privacy budget to obtain the noisy values of the

top 𝐾 entries with DP. Given the same total privacy budget, the

option I has a better chance to output indexes of the actual top 𝐾

entries while losing the importance scores. In contrast, option II

sacrifices some accuracy in selecting the indexes of top 𝐾 entries

but has additional importance scores.

Privacy Analysis of DP-APPR-EM. We formally analyze the DP

guarantee of Algorithm 1 utilizing the following corollary for the

exponential mechanism based top-𝐾 selection.

Corollary 1. [13]M𝑘
Gumbel (𝑢) adds the one-shot Gumbel(Δ(𝑢)/𝜖)

noise to each utility score 𝑢 (𝑥, 𝑟 ) and outputs the k indices with the
largest noisy values. For any 𝛿 ≥ 0,M𝑘

Gumbel (𝑢) is (𝜀
′, 𝛿)-DP where

𝜖′ = 2 ·min

{
𝑘𝜖, 𝑘𝜖

(
𝑒2𝜖−1
𝑒2𝜖+1

)
+ 𝜖

√︁
2𝑘 ln(1/𝛿)

}
The privacy analysis conducted in [13] assumes independent

users and the sensitivity Δ(𝑢) is 1. In our case, each node (and its

edges) can modify an arbitrary number of elements in the APPR

vector and each element can change at most by 𝐶2 due to clipping

(line 6). Consequently, the sensitivity Δ(𝑢) used in Corollary 1 is

set to 𝐶2 and the noise is calibrated accordingly in our algorithm

(line 8). Additionally, since each node can change up to M vectors

in the APPR matrix, we use sequential composition to bound the

privacy loss for M APPR vectors. With the calibrated noise and

composition, we establish the DP guarantee in Theorem 1.

Theorem 1. For any 𝜖 > 0, 𝜖2 > 0 and 𝛿 ∈ (0, 1], let 𝜖1 =

2 ·min

{
𝐾𝜖, 𝐾𝜖

(
𝑒2𝜖−1
𝑒2𝜖+1

)
+ 𝜖

√︁
2𝐾 ln(1/𝛿)

}
, Algorithm 1 is (𝜖𝑔1 , 2𝑀𝛿)-

differentially private for option I, and (𝜖𝑔2 , 2𝑀𝛿)-differentially private

for option II, where 𝜖1 = 𝜖𝑔1/
(
2

√︃
𝑀 ln

(
𝑒 + 𝜖𝑔1/2𝑀𝛿

) )
and 𝜖1 + 𝜖2 =

𝜖𝑔2/
(
2

√︃
𝑀 ln

(
𝑒 + 𝜖𝑔2/2𝑀𝛿

) )
.

Proof. See Appendix 7.1 for the proof. □

Gaussian Mechanism.We explore another DP-APPR algorithm

(DP-APPR-GM) based on the Gaussian mechanism [14] and output

perturbation. The idea behind DP-APPR-GM is to use the clipping

strategy to bound the global sensitivity of each output PageRank

vector and add Gaussian noise to each bounded PageRank vector to

achieve DP. See Appendix 7.2 for more details about DP-APPR-GM.

We omit them here due to space limitations.

3.2 Differentially Private GNNs
We show our overall approach for training a DP GNN model in

Algorithm 2. The main idea is to use DP APPR for neighborhood

sampling and then use DP-SGD to achieve DP for the node features.

We employ additional sampling and clipping to reduce the privacy

cost.

Given the graph dataset 𝐺 , we first use a sampling rate 𝑞′ to
randomly sample nodes from𝐺 to form a subgraph𝐺 = (V, E, X) con-

taining only the sampled nodes and their connected edges, which

is used for training in Algorithm 3. This sampling step brings a

privacy amplification effect in our privacy guarantee by multiply-

ing a factor of 𝑞′ [5, 23]. Note that this is different from the batch

sampling during each iteration of the training process. We further

sample𝑀 nodes to compute the DP APPR using DP-APPR-EM or

DP-APPR-GM and use it as input for Algorithm 2.

Utilizing the sparsified DP APPR vectors (each row has only top

𝐾 non-zero elements) limits the impact of a node on the gradient

4
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Algorithm 2: Differentially Private GNNs

Input: The graph dataset𝐺 , sampling rate 𝑞′ , randomly sampled

training graph𝐺 = (𝑉 , 𝐸,𝑋 ) from𝐺 by 𝑞′ where
𝑉 = {𝑣1, ..., 𝑣𝑁 }, a sampled subset𝑉𝑀 ⊆ 𝑉 with size𝑀

(for computing APPR), learning rate 𝜂𝑡 , batch size 𝐵,

training steps𝑇 , noise scale 𝜎 , gradient norm bound𝐶 , clip

bound 𝜏 , the DP APPR matrix 𝚷 ∈ R𝑀×𝑁 of𝑉𝑀 satisfying

(𝜖𝑝𝑟 , 𝛿𝑝𝑟 )-DP.
1 Initialize 𝜃0 randomly

2 for 𝑗 = 1, ..., 𝑁 do

3 𝚷:, 𝑗 ← 𝚷:, 𝑗 /max

(
1,
∥𝚷:, 𝑗 ∥

1

𝜏

)
4 end
5 for 𝑡 = 1, ...,𝑇 do
6 Take a randomly sampled batch 𝐵 and their 𝐾 neighbors based

on 𝚷 from𝑉𝑀 .

7 Compute Gradient:
8 For each 𝑖 ∈ 𝐵𝑡 , compute g𝑡 (𝑣𝑖 ) ← ∇𝜃𝑡 L (𝜃𝑡 , 𝑣𝑖 ) .
9 Clip Gradient:

10 g𝑡 (𝑣𝑖 ) ← g𝑡 (𝑣𝑖 ) /max

(
1,
∥g𝑡 (𝑣𝑖 ) ∥2

𝐶

)
.

11 Add Noise:
12 g̃𝑡 ← 1

𝐵

(∑
𝑖 g𝑡 (𝑣𝑖 ) + N

(
0, 𝜎2𝐶2I

) )
.

13 Update Parameters:
14 𝜃𝑡+1 ← 𝜃𝑡 − 𝜂𝑡 g̃𝑡 .
15 end
16 return 𝜃𝑇 and the overall privacy cost.

computation of up to 𝐵′ nodes, where 𝐵′ is the maximum column-

wise 𝑙0 norm of the DP APPR matrix (number of non-zero elements

in each column). The exact impact or sensitivity is determined by

the maximum column-wise ℓ1 norm of the DP APPR matrix (see

privacy analysis for more details). Hence, we employ additional

clipping on the DP APPR matrix to bound the sensitivity. Given 𝚷

computed using DP-APPR algorithms, each column of 𝚷 is clipped

to have a maximum ℓ1 norm of 𝜏 to limit privacy loss (line 4).

During each step of the training, we randomly sample a batch

of 𝐵 nodes and their neighbors (both direct and indirect) based on

the APPR vectors, and the features of up to 𝐵 ∗ 𝐾 nodes are loaded

into memory for gradient computation (line 6). The loss function

L(𝜃, 𝑣𝑖 ) is the cross-entropy between node 𝑣𝑖 ’s true label and its

prediction from Equation 1. Following DP-SGD, the gradient for

each node in the batch is computed, clipped to have a maximum

ℓ2 norm of 𝐶 , and added with Gaussian noise of sensitivity 𝐶 (line

7-12). The model is then updated with the average noisy gradient

(line 14).

Privacy Analysis. Theorem 2 presents the DP analysis of Algo-

rithm 2. An essential distinction between our algorithm and the

original DP-SGD is that our neighborhood sampling returns a corre-

lated batch of nodes for gradient computation (i.e., the computation

of g𝑡 (𝑣𝑖 ) requires the features of the neighboring nodes of node

𝑣𝑖 , and node 𝑣𝑖 accesses the fixed 𝐾 nodes based on the DP-APPR

vector), while the original DP-SGD uses the much simpler Poisson

sampling. As a result, the privacy analysis of our algorithm is more

involved, especially in terms of quantifying the privacy amplifica-

tion ratio under such a neighbor-correlated sampling setting. We

prove that the privacy amplification ratio is proportional to the

maximum of the column-wise ℓ1 norm of the DP-APPR matrix.

For the composition of DP-APPR and DP-SGD, we use the stan-

dard composition theorem. Recall that for the privacy composition

of multiple DP-APPR vectors for the privacy of DP-APPR (Theorem

1 and 2), we used a strong composition theorem. We note that our

privacy analysis can always benefit from a more advanced compo-

sition theorem to achieve tighter overall privacy, which can be a

future work direction.

Theorem 2. There exist constants 𝑐1 and 𝑐2 so that given prob-
ability 𝑞 = 𝐵/𝑁 and the number of steps 𝑇 , for any 𝜖𝑠𝑔𝑑 < 𝑐1𝑞

2𝑇,

Algorithm 2 is 𝑞′ (𝜖𝑠𝑔𝑑 + 𝜖𝑝𝑟 , 𝛿𝑠𝑔𝑑 + 𝛿𝑝𝑟 ) -differentially private corre-

sponding to𝐺 , for any 𝛿𝑠𝑔𝑑 > 0 if we choose 𝜎 ≥ 𝑐2
𝑞𝜏
√
𝑇 log(1/𝛿𝑠𝑔𝑑 )
𝜖𝑠𝑔𝑑

.

Proof. See Appendix 7.3 for the proof. □

4 EXPERIMENTAL RESULTS
We evaluate our method on five graph datasets with varying sizes

and edge density: Cora-ML [6], Microsoft Academic graph [35], CS,

[35], Physics [35] and Reddit [20]. Appendix 7.4 provides the details

of each dataset.

Setup. To simulate the real-world situations where training nodes

are assumed to be private and not publicly available, we split the

nodes into a training set (80%) and a test set (20%), and select in-

ductive graph learning setting by removing edges between the two

sets. The training nodes are inaccessible during inference. We use

the same 2-layer feed-forward neural network with a hidden layer

size of 32 as in [7] for all datasets. The training epochs are fixed at

200, the learning rate at 0.005, and the batch size at 60. The hyper-

parameters for ISTA are chosen through grid search as 𝛼 = 0.25,

𝜌 = 10
−4
, and 𝛾 = 10

−4
. In our comparison with baseline methods,

we set 𝐾 to 2 for computing top-𝐾 sparsified DP APPR. We also

present results on the effect of 𝐾 with different 𝐾 values. The graph

sampling rate is set to 𝑞′ = 9% for all datasets, and 𝑀 = 70 nodes

are chosen randomly and uniformly to generate DP-APPR vectors.

Experiments are conducted on a server with an Nvidia K80 GPU, a

6-core Intel CPU, and 56 GiB RAM. Results are based on the mean

of 10 independent trials. The source code is available
1
.

Our Approach and Baselines. Our proposed algorithms using

the DP-APPR with exponential mechanism (options I and II in

Algorithm 1) are referred to as DPAR-EM0 and DPAR-EM1, re-
spectively, and our algorithm using the DP-APPR with Gaussian

mechanism is referred to as DPAR-GM.

We compare our proposed algorithms with two state-of-the-art

methods achieving node DP for GNN and one baseline method: 1)

SAGE [10] samples subgraphs of 1-hop neighbors of each node to

train 1-layer GNNs with the GraphSAGE [20] model. 2) GAP [34]

uses aggregation perturbation andMLP-based encoder and classifier

with DP-SGD and a bounded node degree and the number of hops.

3) Features is a baseline method that only uses node feature as an

independent input to train the GNN model and does not consider

the structural information of the graph. It utilizes the original DP-

SGD to achieve node DP. Note that Features is equal to the case
where we use the one-hot label indicator vector as each node’s

1
The source code is available at: https://anonymous.4open.science/r/anonymous-D626.
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Table 1: Privacy budget and test accuracy on each graph dataset

Dataset Privacy Budget GAP SAGE Features DPAR-EM0 DPAR-EM1 DPAR-GM DPARNoDP GAPNoDP

Cora-ML

(1, 2 × 10−3) 0.34 0.152 0.5733 0.3421 0.2895 0.3333

0.7076 0.8883

(8, 2 × 10−3) 0.5733 0.368 0.6107 0.5965 0.6199 0.4854

MS Academic

(1, 8 × 10−4) 0.6563 0.013 0.83 0.8306 0.8569 0.8225

0.955 0.9571

(8, 8 × 10−4) 0.8581 0.063 0.8723 0.9054 0.9135 0.9165

CS

(1, 8 × 10−4) 0.66 0.0917 0.8344 0.8898 0.8921 0.8927
0.9707 0.9571

(8, 8 × 10−4) 0.8537 0.7366 0.895 0.9017 0.8994 0.9063

Reddit

(1, 1 × 10−4) 0.7047 0.086 0.7436 0.9167 0.9286 0.934
0.9698 0.9949

(8, 1 × 10−4) 0.9161 0.82 0.777 0.9375 0.9399 0.931

Physics

(1, 1 × 10−4) 0.8192 0.1263 0.8412 0.8887 0.8927 0.8948
0.9548 0.9597

(8, 1 × 10−4) 0.9088 0.8919 0.9017 0.9023 0.9020 0.9101

APPR vector in Algorithm 2 (i.e., no correlation with other nodes

is used). We included this baseline to help characterize the datasets

and calibrate the results, i.e., a good performance of the method

may suggest that the topological structure of the particular dataset

has limited benefit in training GNN. The models DPARNoDP and

GAPNoDP indicate the versions of the respective methods (DPAR,
GAP) with no DP protection.

Inference Phase. As suggested in [7], instead of computing the

APPR vectors for all testing nodes and generating predictions based

on their APPR vectors, we use power iteration during inference,

e.g.,

𝑄 (0) = 𝐻, 𝑄 (𝑝 ) = (1 − 𝛼 )𝐷−1𝐴𝑄 (𝑝−1) + 𝛼𝐻, 𝑝 ∈ [1, ..., 𝑃 ] . (4)

In Equation 4, 𝐻 is the representation matrix of testing nodes

generated by the trained private model, with the input being the

feature matrix of the testing nodes. 𝐷 and 𝐴 are the degree matrix

and adjacency matrix of the graph containing only testing nodes,

respectively. The final output of power iteration 𝑄 (𝑃 ) will be input
into a softmax layer to generate the predictions for testing nodes.

We set 𝑃 = 2 and the teleportation constant 𝛼 = 0.25 as suggested

in [7] in our experiments.

4.1 Privacy vs. Accuracy Trade-off
We use the value of privacy budget 𝜖 (with fixed 𝛿 chosen to be

roughly equal to the inverse of each dataset’s number of training

nodes) to represent the level of privacy protection and use the test

accuracy for node classification to indicate the model’s utility. Table

1 shows results between our proposed methods and baselines in all

datasets.

From Table 1, in comparison to GAP and SAGE, our meth-

ods show superior test accuracy under the same privacy budget

on all datasets. For instance, when 𝜖 = 1, our methods (DPAR-
GM, DPAR-EM0, and DPAR-EM1) achieve the highest test accu-
racy of 0.3421/0.8569/0.8927/0.934/0.8948 on Cora-ML/MS Aca-

demic/CS/Reddit/Physics datasets respectively. The best accuracy

achieved by the baselines (GAP and SAGE) is 0.34/0.6563/0.66/0.7047
/0.8192 on the corresponding datasets, indicating the test accuracy

improvement by 0.62%/30.6%/35.3%/32.5%/9.23% respectively on

these datasets under the same privacy protection budget. The per-

formance improvement demonstrates our method’s superior ability

to balance the privacy-utility trade-off on training graph datasets

with privacy considerations.

DPAR-GM DPAR-EM0 DPAR-EM1
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(b) K=4, 𝜖𝑠𝑔𝑑=8.0
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(c) K=16, 𝜖𝑠𝑔𝑑=2.0
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(d) K=16, 𝜖𝑠𝑔𝑑=8.0

Figure 1: Relationship between privacy budget 𝜖 (fixed 𝛿 =

2 × 10−3) and test accuracy on Cora-ML dataset.
Existing research in the graph neural network community sug-

gests that features alone, especially for heterophilic graphs, can

sometimes result in better-trained node classification models with

MLP as the backend architecture compared to state-of-the-art GNN

models [31]. For the Cora-ML dataset, which has a low edge density,

the Features approach outperforms our methods when 𝜖 is small

(e.g., 1). This is because our methods allocate part of the privacy

budget to protect graph structure information, which may not be

as critical, while Features uses its entire privacy budget to protect

node features without considering graph structure information.

However, as 𝜖 increases (e.g., 8), our methods outperform Features.
Our proposed methods protect the graph structure and node

features independently via the decoupled framework. Different

graphs possess unique characteristics, and the relative significance

of structure information and node features can differ among them.
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Accordingly, our methods are able to allocate the total privacy

budget differently to protect node features and structures, which

leads to more precise and tunable privacy protection for graph data

that includes both feature and structural information.
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Figure 2: Cora-ML. The privacy budget 𝜖 ratio for DP-ARRP
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Figure 3: CS. The privacy budget 𝜖 ratio for DP-ARRP
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Figure 4: MS Academic. The privacy budget 𝜖 ratio for DP-
ARRP
Ablation Study of Different DP-APPR Methods. To further

study the impact of DP-APPR on the model accuracy, in Figure 1, we

fix 𝜖𝑠𝑔𝑑 (privacy budget for DP-SGD) and use varying 𝜖𝑝𝑟 (privacy

budget for DP-APPR) as the x-axis. For DPAR-GM and DPAR-
EM1, the higher the 𝜖𝑝𝑟 , the less noise is added when calculating

the APPR vector for each training node. This allows a better chance

for each node to aggregate representations from more important

nodes using more precise importance scores. Hence these models

have higher test accuracy compared to DPAR-EM0. While for

DPAR-EM0, noise in DP-APPR will only affect the output of the

indexes of the top 𝐾 most relevant nodes corresponding to the

source node, but not their importance scores. DPAR-EM0 achieves
better performance than DPAR-GM and DPAR-EM1 when the

privacy budget 𝜖𝑝𝑟 is small, this is because DPAR-EM0 uses 1/𝐾
as the importance score for all nodes (considering nodes equally

important), which diminishes the negative effect of less important

or irrelevant nodes having high importance scores due to the noise

inDPAR-GM andDPAR-EM1. BothDPAR-EM0 andDPAR-EM1
are based on the exponential mechanism designed for identifying

the index of the top-𝐾 accurately. Therefore, when the privacy

budget is small, they outperform DPAR-GM. However, when the

privacy budget is large, they all have a good chance to find the

indexes of the actual top 𝐾 , and DPAR-GM becomes gradually

better than DPAR-EM0 and DPAR-EM1, as the Gaussian noise

has better privacy loss composition property.

0.1 0.3 0.5 0.7 0.9

Ratio

0.4

0.6

0.8

1

T
e

s
t 

A
c
c
u

ra
c
y

(a) DPAR-GM

0.1 0.3 0.5 0.7 0.9

Ratio

0.4

0.6

0.8

1

(b) DPAR-EM0

0.1 0.3 0.5 0.7 0.9

Ratio

0.4

0.6

0.8

1

(c) DPAR-EM1

Figure 5: Reddit. The privacy budget 𝜖 ratio for DP-ARRP
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Figure 6: Physics. The privacy budget 𝜖 ratio for DP-ARRP

4.2 Privacy Protection Effectiveness
Privacy Budget Allocation between DP-APPR and DP-SGD.
The total privacy budget is divided between DP-APPR and DP-SGD.

We compare the impact of the budget allocation by changing the

ratio of the total privacy budget used by each of them. Figure 2,

3, 4, 5, and 6 report the model test accuracy with varying ratios

of the total privacy budget used for DP-APPR for the five datasets

respectively, and they share the same legend as in Figure 2. A lower

ratio means a smaller privacy budget is allocated for DP-APPR

while more is allocated for DP-SGD. The impact of the ratio on the

privacy-utility trade-off is closely aligned with the characteristics

of each dataset. From Figure 2, the model achieves better accuracy

when the ratio is lower, regardless of the total privacy budget.

This is because of the characteristics of the Cora-ML dataset, as its

node features are more important than its structure. Interestingly,

when the privacy budget is small, Figure 3,4, 5, and 6 show that

information from node features is crucial for all datasets. Allocating

more privacy budget to DP-SGD can learn more useful information

from the node features and improve model accuracy. When the

privacy budget is large, e.g., 𝜖 = 8, we find that in MS Adacemic

and CS datasets, the model can achieve the best results when the

budget is equally divided, suggesting the importance of learning

from both the structure information and features.

4.3 Effects of Privacy Parameters
We use the Cora-ML dataset as an example to demonstrate the

effects of the parameters specific to privacy, including the clipping

bound inDP-APPR, the number of nodesM inDP-APPR, the number

of selected top-𝐾 entries in DP-APPR, the batch size in DP-SGD, and

the clipping bound inDP-SGD. By default, we set the batch size to 60,

the clipping bound 𝐶1 in DP-APPR-GM to 0.01, the clipping bound

𝐶2 in DP-APPR-EM to 0.001, the gradient norm clipping bound 𝐶
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for DP-SGD to 1, and M to 70. We analyze them individually while

keeping the rest constant as the default values.

Clipping Bound in DP-APPR (𝐶1 and 𝐶2). Figure 7 shows the
effect of clipping bound in DP-APPR on the model’s test accuracy.

Given a constant total privacy budget, the standard deviation of

the noise added to the APPR vectors is proportional to the clip-

ping bound (𝐶1 in DP-APPR-GM and 𝐶2 in DP-APPR-EM). Hence,

choosing a smaller clipping bound in general can avoid adding too

much noise and result in better accuracy. However, too small of

a clipping bound may degrade the accuracy due to the clipping

error. In experiments, we set𝐶1 to be 0.01 and𝐶2 to be 0.001 for all

datasets.
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Figure 7: Cora-ML. Relationship between clipping bound of
DP-APPR and model test accuracy. Fix total privacy budget
(𝜖, 𝛿) = (8, 2 × 10−3).
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Figure 8: Cora-ML: Relationship between the number of se-
lected top K entries in DP-APPR vector and model test accu-
racy.
Number of Top-𝐾 in DP-APPR (𝐾). Figure 8 shows the accuracy
with respect to varying 𝐾 for the top-𝐾 selection in DP-APPR.

The Gaussian mechanism’s sensitivity depends on the ℓ2 norm of

the APPR vector. We use a clip bound 𝐶1 to restrict the ℓ2 norm

of the APPR vector, therefore the privacy guarantees are linked

to 𝐶1, not 𝐾 . 𝐾 impacts the number of non-zero entries in each

DP-APPR vector, influencing node feature embeddings. A small 𝐾

may not capture enough neighbors while a higher K may include

more irrelevant nodes as "neighbors", inversely affecting aggregated

information. For the Exponential mechanism, we clip each APPR

vector value by 𝐶2 to control sensitivity. The privacy guarantee

is dependent on both 𝐶2 and 𝐾 . A larger K means more noise for

each entry, affecting accuracy. From Figure 8, we can observe that

DPAR-EM1 results highlight this effect, while DPAR-EM0 mitigates

it by assigning a value of 1/𝐾 without additional noise. In our

experiments compared against baselines, we use a fixed 𝐾 = 2 for

all datasets.

We also investigate the impact of batch size in DP-SGD (𝐵), the

clipping bound in DP-SGD (𝐶), and the number of nodes in DP-

APPR (𝑀). Due to space constraints, we have included the results

in Appendix 7.6.

5 RELATEDWORK
Differentially Private Graph Publishing. Works on privacy-

preserving graph data publishing aim to release the entire graph

[18, 21, 32, 38], or the statistics or properties of the original graph

[2, 8, 11, 24, 30, 41], with the DP guarantee. Different from those

works, our work in this paper focuses on training GNN models

on private graph datasets and publishing the model that satisfies a

formal node-level DP guarantee.

Differentially Private Graph Neural Networks. Yang et al. [39]
propose to train a graph generation model using DP-SGD to gen-

erate graphs with the edge-DP guarantee that protects individual

link privacy. Sajadmanesh et al. [33] develop a privacy-preserving

GNN training algorithm based on local DP (LDP) to protect node

features’ privacy without considering node edges’ privacy. Zhang

et al. [43] use LDP and functional mechanism [42] to enforce pri-

vacy guarantee on user’s sensitive features when training graph

embedding models for the recommendation. Lin et al. [28] propose

a privacy-preserving learning framework for decentralized network

graphs where each local user has a local graph, to preserve LDP

for every user, particularly on the notion of edge DP. Epasto et al.

[15] introduce a differentially private (DP) Personalized PageRank

algorithm with an edge-level DP guarantee for graph embedding.

However, none of these works achieved the goal of providing strict

node-level DP concerning both features and connected edges for

each node in the graph when training GNN models.

Few recent works achieved node-level DP for training GNNmod-

els [10, 34] as we have discussed earlier. While they make it feasible

to train GNNs with node DP, they still sacrifice the model accu-

racy due to the restrictions on the number of hops or layers during

training. Our experiment results showed that DPAR outperforms

both of these approaches.

6 CONCLUSION
We studied the problem of private learning for GNN models. Our

method is based on a two-stage framework including DP approxi-

mate personalized PageRank and DP-SGD for protecting the graph

structure information and node features respectively. We devel-

oped two DP-APPR algorithms using the Gaussian mechanism and

the exponential mechanism for learning the PageRank with the

most relevant neighborhood of each node. DP-APPR not only pro-

tects nodes’ edge information but also limits the sensitivity of each

node during the model training using DP-SGD, which facilitates

DP-SGD to play its role in protecting nodes’ feature information.

Experimental results on real-world graph datasets demonstrate the

effectiveness of our proposed methods in achieving better privacy

and utility trade-off compared to state-of-the-art methods. We leave

the development of better DP-APPR algorithms with tighter privacy

guarantees and adaptive privacy budget allocation strategy (e.g.,

between DP-APPR and DP-SGD based on dataset characteristics)

as future work.
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7 APPENDIX
7.1 Proof for Theorem 1

Proof. We first consider the privacy loss of outputting the

noisy APPR vector p̃′(𝑣𝑖 ) for node 𝑣𝑖 in Algorithm 1. For each el-

ement in the APPR vector, we use its value as its utility score.

Since each element is nonnegative and clipped by the constant

𝐶2, the 𝑒𝑙𝑙1 sensitivity Δ(𝑢) of each element is equal to 𝐶2. By

adding the one-shot Gumbel noise Gumbel(𝛽I) where 𝛽 = 𝐶2/𝜖
to the clipped APPR vector p̃ (𝑣𝑖 ), option I selects 𝐾 indices with

the largest noisy values and satisfies (𝜖1, 𝛿)-DP where 𝜖1 = 2 ·
min

{
𝐾𝜖, 𝐾𝜖

(
𝑒2𝜖−1
𝑒2𝜖+1

)
+ 𝜖

√︁
2𝐾 ln(1/𝛿)

}
according to Corollary 1. Op-

tion II uses the Laplace mechanism [14] to report 𝐾 selected noisy

values. By adding Laplace noise Laplace (KC2/𝜖2) to each clipped

element, option II costs an additional 𝜖2 privacy budget [14] since

the 𝑒𝑙𝑙1 sensitivity of each element is𝐶2, and satisfies (𝜖1+𝜖2, 𝛿)-DP.
Now we consider the privacy loss of Algorithm 1 which out-

puts𝑀 noisy APPR vectors. We use the optimal composition the-

orem in [22] which argues that for 𝑘 sub-mechanisms, each with

an (𝜖, 𝛿)-DP guarantee, the overall privacy guarantee is (𝜖𝑔, 𝛿𝑔),
where 𝜖 = 𝜖𝑔/(2

√︁
𝑘 ln(𝑒 + 𝜖𝑔/𝛿𝑔)) and 𝛿 = 𝛿𝑔/2𝑘 . By substituting

𝑀 for 𝑘 and 𝜖1 / 𝜖1 + 𝜖2 (option I/option II) for 𝜖 , we get the pri-

vacy loss of Algorithm 1 with option I is (𝜖𝑔1 , 2𝑀𝛿), where 𝜖1 =

𝜖𝑔1/
(
2

√︃
𝑀 ln

(
𝑒 + 𝜖𝑔1/2𝑀𝛿

) )
, and the privacy loss of Algorithm 1

with option II is (𝜖𝑔2 , 2𝑀𝛿), where 𝜖1+𝜖2 = 𝜖𝑔2/
(
2

√︃
𝑀 ln

(
𝑒 + 𝜖𝑔2/2𝑀𝛿

) )
.

□

7.2 Gaussian Mechanism (DP-APPR-GM)
We propose another DP APPR algorithm (DP-APPR-GM) based on

the Gaussian mechanism [14] and output perturbation. DP-APPR-

GM utilizes a similar sampling and clipping strategy to limit the

sensitivity of the APPR vector and directly adds Gaussian noise to

each element to achieve DP. As shown in Algorithm 3, for each

node 𝑣 , we clip the ℓ2 norm of its APPR vector p(𝑣) (line 6) and add

the calibrated Gaussian noise to each element in the clipped p(𝑣)
(line 8). We then select the top 𝐾 largest entries in p̃(𝑣) to get a

sparse vector p̃′(𝑣) (line 10).

Privacy Analysis of DP-APPR-GM. Using the properties of the
Gaussian mechanism and the optimal composition theorem [22],

we establish the overall privacy guarantee for the DP-APPR-GM

algorithm. Note that the DP guarantee is independent of 𝐾 , in

contrast with DP-APPR-EM.

Theorem 3. Let 𝜖 > 0 and 𝛿 ∈ (0, 1], Algorithm 3 is (𝜖𝑔, 2𝑀𝛿)-

differentially private where 𝜖 = 𝜖𝑔/
(
2

√︃
𝑀 ln

(
𝑒 + 𝜖𝑔/2𝑀𝛿

) )
.

Proof. We utilize the optimal composition theorem in [22]

which argues that for 𝑘 sub-mechanisms, each with an (𝜖, 𝛿)-DP
guarantee, the overall privacy guarantee is (𝜖𝑔, 𝛿𝑔)-DP, where 𝜖 =
𝜖𝑔/(2

√︁
𝑘 ln(𝑒 + 𝜖𝑔/𝛿𝑔)) and 𝛿 = 𝛿𝑔/2𝑘 . In Algorithm 3, the noisy

APPR vector for each node satisfies (𝜖, 𝛿)-DP by the Gaussian mech-

anism independently. Since the returned APPR matrix contains the

noisy APPR vectors of 𝑀 nodes, the number of components for

Algorithm 3: DP-APPR using the Gaussian Mechanism

(DP-APPR-GM)

Input: ISTA hyperparameters: 𝛾, 𝛼, 𝜌 ; privacy parameters: 𝜖 , 𝛿 ; clip

bound𝐶1, a graph (𝑉 , 𝐸 ) where𝑉 = {𝑣1, ..., 𝑣𝑁 }, an
integer 𝐾 > 0 and an integer𝑀 ∈ [1, 𝑁 ].

1 Initialize the APPR matrix 𝚷 ∈ R𝑀×𝑁 with all zeros.

2 for 𝑖 = 1, ..., 𝑀 do
3 Compute APPR Vector:
4 Compute the APPR vector p(𝑣𝑖 ) for node 𝑣𝑖 using ISTA;
5 Clip Norm:

6 p̂(𝑣𝑖 ) ← p(𝑣𝑖 ) /max

(
1,
∥p(𝑣𝑖 ) ∥2
𝐶1

)
;

7 Add Noise:
8 p̃(𝑣𝑖 ) ← p̂(𝑣𝑖 ) + N(0, 𝜎

2I) , where 𝜎 =
√︁
2 ln(1.25/𝛿 )𝐶1/𝜖 ;

9 Sparsification:
10 p̃′(𝑣𝑖 ) ←: select the top 𝐾 largest entries in p̃(𝑣𝑖 ) by setting all

other entries with small values to zero.

11 Replace the 𝑖-th row of 𝚷 with p̃′(𝑣𝑖 ) .

12 end
13 return 𝚷 and compute the overall privacy cost using the optimal

composition theorem.

composition is𝑀 . We substitute𝑀 for k and 2𝑀𝛿 for 𝛿𝑔 , which can

conclude the proof. □

7.3 Proof for Theorem 2
Proof. Denote 𝜇0 the Gaussian distribution with mean 0 and

variance 1. Assume D′ is the neighboring feature dataset of D,

which differs at 𝑖† such that x′
𝑖†

≠ x𝑖† . Without loss of generality,

we assume ∇𝑓 (x𝑖 ) = 0, for any x𝑖 ∈ D, while ∇𝑓 (x′
𝑖†
) = 𝒆1. Recall

that the DP-APPR matrix is 𝚷, where 𝚷𝑖: is the 𝑖-th row and the

DP-APPR vector for node 𝑖 , while 𝚷:𝑗 is the 𝑗-th column of 𝚷. In

addition, we can assume that ∥𝚷:𝑗 ∥1 ≤ 𝜏 due to the clipping in line

3, for all 𝑗 = 1, . . . , 𝑛, and denote 𝜇𝜏 the Gaussian distribution with

mean 𝜏 and variance 1. Then, we have E[G(D)] and E [G (D′)]
below,

E[G(D)] = [ |B|
𝑛

∑︁
𝑗≠𝑖†, 𝑗∉N(𝑖†)

𝐺 𝑗 ] + [
|B|
𝑛

∑︁
𝑗≠𝑖†, 𝑗∈N(𝑖†)

𝐺 𝑗 ] + [
|B|
𝑛
𝐺𝑖 ]

= [ |B|
𝑛

∑︁
𝑗≠𝑖†, 𝑗∉N(𝑖†)

∑︁
𝑘∈N( 𝑗 )

𝚷 𝑗𝑘∇𝑓 (x𝑘 )]

+[ |B|
𝑛

∑︁
𝑗≠𝑖†, 𝑗∈N(𝑖†)

©­«
∑︁

𝑘∈N( 𝑗 )\𝑖†
𝚷 𝑗𝑘∇𝑓 (x𝑘 ) + 𝚷 𝑗𝑖†∇𝑓

(
x𝑖†

)ª®¬]
+[ |B|

𝑛

©­­«
∑︁

𝑘∈N(𝑖†)\𝑖†
𝚷𝑖†𝑘∇𝑓 (x𝑘 ) + 𝚷𝑖†𝑖†∇𝑓

(
x𝑖†

)ª®®¬],

(5)
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which indicates G(D) ∼ 𝜇0.

E
[
G

(
D′

) ]
= [ |B|

𝑛

∑︁
𝑗≠𝑖†, 𝑗∉N(𝑖†)

𝐺 𝑗 ] + [
|B|
𝑛

∑︁
𝑗≠𝑖†, 𝑗∈N(𝑖†)

𝐺 ′𝑗 ] + [
|B|
𝑛
𝐺 ′𝑖 ]

= [ |B|
𝑛

∑︁
𝑗≠𝑖†, 𝑗∉N(𝑖†)

∑︁
𝑘∈N( 𝑗 )

𝚷 𝑗𝑘∇𝑓 (x𝑘 )]

+[ |B|
𝑛

∑︁
𝑗≠𝑖†, 𝑗∈N(𝑖†)

©­«
∑︁

𝑘∈N( 𝑗 )\𝑖†
𝚷 𝑗𝑘∇𝑓 (x𝑘 ) + 𝚷 𝑗𝑖∇𝑓

(
x′
𝑖†

)ª®¬]
+[ |B|

𝑛

©­­«
∑︁

𝑘∈N(𝑖†)\𝑖†
𝚷𝑖†𝑘∇𝑓 (x𝑘 ) + 𝚷𝑖†𝑖†∇𝑓

(
x′
𝑖†

)ª®®¬]
= E[G(D)] + |B|

𝑛

𝑛∑︁
𝑗=1

𝚷 𝑗𝑖†

(
𝑓

(
x′
𝑖†

)
− 𝑓

(
x𝑖†

) )
= E[G(D)] + |B|

𝑛




𝚷
:𝑖†




1
≤ E[G(D)] + |B|

𝑛
𝜏,

(6)

which indicates G (D′) ∼ 𝜇0 + | B |𝑛 𝜇𝜏 .

In the following, we quantify the divergence between G and G′
by following the moments accountant paper, where we show that

E

[(
𝜇 (𝑧)
𝜇0 (𝑧)

)𝜆 ]
≤ 𝛼, and E

[(
𝜇0 (𝑧)
𝜇 (𝑧)

)𝜆 ]
≤ 𝛼, for some explicit 𝛼 . To do

so, the following is to be bounded for 𝑣0 and 𝑣1.

E𝑧∼𝑣0

[(
𝑣0 (𝑧 )
𝑣1 (𝑧 )

)𝜆]
= E𝑧∼𝑣1

[(
𝑣1 (𝑧 )
𝑣0 (𝑧 )

)𝜆+1]
(7)

Following [1], the above can be expanded with binomial expan-

sion, which gives

E𝑧∼𝑣1

[(
𝑣1 (𝑧 )
𝑣0 (𝑧 )

)𝜆+1]
=

∑𝜆+1
𝑡=0 (𝜆 + 1)E𝑧∼𝑣1

[(
𝑣0−𝑣1 (𝑧 )
𝑣1 (𝑧 )

)𝑡 ]
= 1 + 0 +𝑇3 +𝑇4 + . . .

(8)

Next, we bound 𝑇3 by substituting the pairs of 𝑣0 = 𝜇0, 𝑣1 = 𝜇

and 𝑣0 = 𝜇, 𝑣1 = 𝜇0 in, and upper bound them, respectively.

For 𝑇3, with 𝑣0 = 𝜇0, 𝑣1 = 𝜇, we have

𝑇3 =
(𝜆 + 1)𝜆

2

E𝑧∼𝜇

[(
𝜇0 (𝑧) − 𝜇 (𝑧)

𝜇 (𝑧)

)
2

]
=
(𝜆 + 1)𝜆

2

E𝑧∼𝜇

[(
𝑞𝜇𝜏 (𝑧)
𝜇 (𝑧)

)
2

]
=
𝑞2 (𝜆 + 1)𝜆

2

∫ +∞

−∞

(𝜇𝜏 (𝑧))2

𝜇0 (𝑧) + 𝑞𝜇𝜏 (𝑧)
𝑑𝑧 ≤ 𝑞

2 (𝜆 + 1)𝜆
2

∫ +∞

−∞

(𝜇𝜏 (𝑧))2

𝜇0 (𝑧)
𝑑𝑧

=
𝑞2 (𝜆 + 1)𝜆

2

E𝑧∼𝜇0

[(
𝜇𝜏 (𝑧)
𝜇0 (𝑧)

)
2

]
=
𝑞2 (𝜆 + 1)𝜆

2

exp

(
𝜏2

𝜎2

)
≤ 𝑞

2 (𝜆 + 1)𝜆
2

(
𝜏2

𝜎2
+ 1

)
≤ 𝑞

2𝜏2 (𝜆 + 1)𝜆
𝜎2

,

(9)

where in the last inequality, we assume
𝜏2

𝜎2
+ 1 ≤ 2

𝜏2

𝜎2
, i.e.,

𝜏2

𝜎2
≥ 1.

Thus, it requires 𝜎 ≤ 𝜏 .
As a result,

𝛼G (𝜆) ≤
𝑞2𝜏2 (𝜆 + 1)𝜆

𝜎2
+𝑂

(
𝑞3𝜆3/𝜎3

)
. (10)

To satisfy 𝑇
𝑞2𝜏2𝜆2

𝜎2
≤ 𝜆𝜖𝑠𝑔𝑑

2
, and exp

(
− 𝜆𝜖𝑠𝑔𝑑

2

)
≤ 𝛿𝑠𝑔𝑑 , we set

𝜖𝑠𝑔𝑑 = 𝑐1𝑞
2𝜏2𝑇, (11)

𝜎 = 𝑐2
𝑞𝜏

√︁
𝑇 log(1/𝛿𝑠𝑔𝑑 )
𝜖𝑠𝑔𝑑

. (12)

Given the input DP APPR matrix costs additional (𝜖𝑝𝑟 , 𝛿𝑝𝑟 ) pri-
vacy budget, by using the standard composition theorem of DP, we

get the total privacy budget by 𝐺 is (𝜖𝑠𝑔𝑑 + 𝜖𝑝𝑟 , 𝛿𝑠𝑔𝑑 + 𝛿𝑝𝑟 ). Since
𝐺 is randomly sampled from the graph dataset 𝐺 , we can conclude

the proof with the privacy amplification theorem of DP [5, 23]. □

7.4 Datasets
We evaluate our method on five graph datasets: Cora-ML [6] which

consists of academic research papers from various machine learning

conferences and their citation relationships, Microsoft Academic

graph [35] which contains scholarly data from various sources and

the relationships between them, CS and Physics [35] which are

co-authorship graphs, Reddit [20] which is constructed from Reddit

posts, where edges represent connections between posts when the

same user commented on both. Table 2 shows the statistics of the

five datasets.

Table 2: Dataset statistics

Dataset Cora-ML MS Academic CS Reddit Physics

Classes 7 15 15 8 8

Features 2,879 6,805 6,805 602 8,415

Nodes 2,995 18,333 18,333 116,713 34,493

Edges 8,416 81,894 327,576 46,233,380 495,924

7.5 Illustration of Privacy Protection
To provide an intuitive illustration of the privacy protection pro-

vided by the DP trained models using our methods, we visualize the

t-SNE clustering of training nodes’ embeddings generated by the

private models with varying 𝜖 values in Figure 9 for the Cora-ML

dataset. We omit the results for other datasets as they display a

similar pattern leading to the same conclusion. The color of each

node corresponds to the label of the node. We can observe that

when the privacy budget is small (𝜖 = 1), the model achieves strong

privacy protection, thus it becomes hard to distinguish the training

nodes belonging to different classes from each other. Meanwhile,

when the privacy guarantee becomes weak (𝜖 becomes larger), em-

beddings of nodes with the same class label are less obfuscated,

hence gradually forming a cluster. This observation demonstrates

that the privacy budget used in our proposed methods is correlated

with the model’s ability to generate private node embeddings, and

therefore also associated with the privacy protection effectiveness

against adversaries utilizing the generated embeddings to carry out

privacy attacks [17, 27].

7.6 More Results on Effects of Privacy
Parameters

Batch Size in DP-SGD (𝐵). Figure 10 shows the effect of batch

size on the model’s test accuracy. According to Theorem 2, given

the fixed total privacy budget and epochs, the standard deviation

of the Gaussian noise is proportional to the square root of the

batch size. Therefore, a larger batch size increases the noise for

the gradients. On the other hand, it may provide a more accurate

update given more nodes and correlations included in the batch.

Hence, we observe a relatively flat curve when the batch size is not

super small.
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Figure 9: Cora-ML. Clustering of training nodes’ embeddings generated by private models with different privacy guarantees 𝜖
(fixed 𝛿 = 2 × 10−3) and training methods.
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Figure 11: Cora-ML. Relationship between clipping bound
of DP-SGD and model test accuracy. Fix total privacy budget
(𝜖, 𝛿) = (8, 2 × 10−3).

DPAR-GM DPAR-EM0 DPAR-EM1

50 100 150 200

M

0

0.1

0.2

0.3

0.4

T
e

s
t 

A
c
c
u

ra
c
y

(a) 𝜖 = 1.0

50 100 150 200

M

0.2

0.3

0.4

0.5

0.6

T
e

s
t 

A
c
c
u

ra
c
y

(b) 𝜖 = 8.0

Figure 12: Cora-ML: Relationship between the number of
nodes M in DP-APPR vector calculation and model test accu-
racy. K = 2.
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Figure 10: Cora-ML. Batch size vs. model test accuracy. Fix
total privacy budget (𝜖, 𝛿) = (8, 2×10−3). K=4 (left), K=16 (right)

Clipping Bound in DP-SGD (𝐶). Figure 11 shows the effect of
gradient norm clipping bound 𝐶 in DP-SGD on the model’s test

accuracy. The clipping bound affects the noise scale added to the

gradients (linearly) as well as the optimization direction of model

parameters. A large clipping bound may involve too much noise

to the gradients, while a small clipping bound may undermine

gradients’ ability for unbiased estimation. The result verifies this

phenomenon. We use 𝐶= 1 for all datasets in our experiments.

Number of Nodes in DP-APPR (𝑀). During the DP-APPR algo-

rithm, a subset of M nodes is randomly sampled from the input

training graph. Figure 12 illustrates the relationship between M and

test accuracy under different total privacy budgets (𝜖=1 and 𝜖=8,

with 𝛿 = 2 × 10−3). As M increases, the privacy budget allocated

for calculating each DP-APPR vector decreases. This leads to more

noise in each DP-APPR vector, which can adversely affect its utility

and result in lower accuracy as observed. However, too small of an

𝑀 will degrade the performance since it will not contain enough

information about the graph structure. In our experiments, we set

M = 70 for all datasets.
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