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Abstract
Inferring properties of graph-structured data, e.g.,
the solubility of molecules, essentially involves
learning the implicit mapping from graphs to
their properties. This learning process is often
costly for graph property learners like Graph Con-
volutional Networks (GCNs). To address this,
we propose a paradigm called Graph Neural
Teaching (GraNT) that reinterprets the learning
process through a novel nonparametric teaching
perspective. Specifically, the latter offers a theo-
retical framework for teaching implicitly defined
(i.e., nonparametric) mappings via example selec-
tion. Such an implicit mapping is realized by a
dense set of graph-property pairs, with the GraNT
teacher selecting a subset of them to promote
faster convergence in GCN training. By analyti-
cally examining the impact of graph structure on
parameter-based gradient descent during training,
and recasting the evolution of GCNs—shaped by
parameter updates—through functional gradient
descent in nonparametric teaching, we show for
the first time that teaching graph property learners
(i.e., GCNs) is consistent with teaching structure-
aware nonparametric learners. These new findings
readily commit GraNT to enhancing learning ef-
ficiency of the graph property learner, showing
significant reductions in training time for graph-
level regression (-36.62%), graph-level classifica-
tion (-38.19%), node-level regression (-30.97%)
and node-level classification (-47.30%), all while
maintaining its generalization performance.

1. Introduction
Graph-structured data, commonly referred to as graphs, are
typically represented by vertices and edges (Hamilton et al.,
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Figure 1: An illustration of the implicit mapping f∗ between
a graph G and its property f∗(G), where f0 denotes the
mapping of the initial graph property learner, e.g., an initial-
ized GCN.

2017; Chami et al., 2022). The vertices, or nodes, contain
individual features, while the edges link these nodes and
capture the structural information, collectively forming a
complete graph. Graph properties can be categorized as
either node-level or graph-level1. For example, the node cat-
egory is a node-level property in social network graphs (Fan
et al., 2019), while the solubility of molecules is a graph-
level property in molecular graphs (Ramakrishnan et al.,
2014). Inferring these graph properties essentially involves
learning the implicit mapping from graphs to these prop-
erties (Hamilton et al., 2017). An intuitive illustration of
this mapping is provided in Figure 1. As a representative
graph property learner, the Graph Convolutional Network
(GCN) (Defferrard et al., 2016; Kipf & Welling, 2017) has
shown strong generalizability, delivering impressive perfor-
mance across various fields such as social networks (Min
et al., 2021; Li et al., 2023), quantum chemistry (Gilmer
et al., 2017; Mansimov et al., 2019), and biology (Stark
et al., 2006; Burkhart et al., 2023).

However, the learning process of the implicit mapping—i.e.,
the training—can be quite expensive for GCNs, partic-
ularly when dealing with large-scale graphs (Liu et al.,
2022a). For example, learning node-level properties in real-
world e-commerce relational networks involves millions of

1This paper adopts a graph-level focus in its discussion un-
less otherwise specified, with node-level considered as a multi-
dimensional generalization.

Our project page is available at https://chen2hang.
github.io/_publications/nonparametric_teaching_for_
graph_proerty_learners/grant.html.
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nodes (Robinson et al., 2024). In the case of graph-level
property learning tasks, the scale can become prohibitively
large (Hu et al., 2021). As a result, there is a pressing need
to reduce training costs and improve the learning efficiency.

Recent studies on nonparametric teaching (Zhang et al.,
2023b;a; 2024a) offer a promising solution to the above
problem. Specifically, nonparametric teaching provides a
theoretical framework for efficiently selecting examples
when the target mapping (i.e., either a function or a model)
being taught is nonparametric, i.e., implicitly defined. It
builds on the idea of machine teaching (Zhu, 2015; Zhu
et al., 2018)—involving designing a training set (dubbed
the teaching set) to help the learner rapidly converge to the
target functions—but relaxes the assumption of target func-
tions being parametric (Liu et al., 2017; 2018), allowing
for the teaching of nonparametric (viz. non-closed-form)
target functions, with a focus on function space. Unfortu-
nately, these studies focus solely on regular feature data and
overlook the structural aspects of the inputs, resulting in dif-
ficulty when the inputs are irregular graphs—universal data
structures that include both features and structure (Chami
et al., 2022). Moreover, the update of a GCN is gen-
erally carried out through gradient descent in parameter
space, leading to a gap compared to the functional gradi-
ent descent used in nonparametric teaching within function
space (Zhang et al., 2023b;a; 2024a). These call for more
examination prior to the adoption of nonparametric teaching
theory in the context of graph property learning.

To this end, we systematically explore the impact of graph
structure on GCN gradient-based training in both param-
eter and function spaces. Specifically, we analytically ex-
amine the impact of the adjacency matrix, which encodes
the graph structure, on parameter-based gradient descent
within parameter space, and explicitly show that the param-
eter gradient maintains the same form when the graph size
is scaled. The structure-aware update in parameter space
drives the evolution of GCN, which can be expressed us-
ing the dynamic graph neural tangent kernel (GNTK) (Du
et al., 2019; Krishnagopal & Ruiz, 2023), and is then cast
into function space. We prove that this dynamic GNTK
converges to the structure-aware canonical kernel utilized
in functional gradient descent, suggesting that the evolution
of GCN under parameter gradient descent is consistent with
that under functional gradient descent. Therefore, it is natu-
ral to interpret the learning process of graph properties via
the theoretical lens of nonparametric teaching: the target
mapping is realized by a dense set of graph-property pairs,
and the teacher selects a subset of these pairs to provide to
the GCN, ensuring rapid convergence of this graph property
learner. Consequently, to enhance the learning efficiency of
GCN, we introduce a novel paradigm called GraNT, where
the teacher adopts a counterpart of the greedy teaching al-
gorithm from nonparametric teaching for graph property

learning, specifically by selecting graphs with the largest
discrepancy between their property true values and the GCN
outputs. Lastly, we conduct extensive experiments to val-
idate the effectiveness of GraNT in a range of scenarios,
covering both graph-level and node-level tasks. Our key
contributions are listed as follows:

• We propose GraNT, a novel paradigm that interprets graph
property learning within the theoretical context of non-
parametric teaching. This enables the use of greedy algo-
rithms from the latter to effectively enhance the learning
efficiency of the graph property learner, GCN.

• We analytically examine the impact of graph structure on
parameter-based gradient descent within parameter space,
and reveal the consistency between the evolution of GCN
driven by parameter updates and that under functional gra-
dient descent in nonparametric teaching. We further show
that the dynamic GNTK, stemming from gradient descent
on the parameters, converges to the structure-aware canon-
ical kernel of functional gradient descent. These connect
nonparametric teaching theory to graph property learn-
ing, thus expanding the applicability of nonparametric
teaching in the context of graph property learning.

• We demonstrate the effectiveness of GraNT through ex-
tensive experiments in graph property learning, covering
regression and classification at both graph and node levels.
Specifically, GraNT saves training time for graph-level re-
gression (-36.62%), graph-level classification (-38.19%),
node-level regression (-30.97%) and node-level classi-
fication (-47.30%), while upkeeping its generalization
performance.

2. Related Works
Graph property learning. Due to the versatility of graphs
in modeling diverse data types (Chami et al., 2022), there
has been a recent surge of research interest on graphs (Xia
et al., 2021), especially attempts of learning implicit map-
ping from graph data to interested properties (Guo et al.,
2021; Zhuang et al., 2023; Cao et al., 2023) for diverse
downstream tasks, such as those related to proteins (Fout
et al., 2017; Gligorijević et al., 2021) and molecular finger-
prints (Duvenaud et al., 2015). There have been various
efforts to the learner design for better mapping learning,
such as the GCN learner (Defferrard et al., 2016; Kipf &
Welling, 2017), which borrows the idea of convolutional
neural networks used in image tasks (LeCun et al., 2015),
and the graph attention network, which applies the attention
operation (Veličković et al., 2018), and to the learning ef-
ficiency (Chen et al., 2018; Liu et al., 2022b; Zhang et al.,
2023c), such as normalization (Cai et al., 2021), graph de-
composition (Xue et al., 2023) and lazy update (Narayanan
et al., 2022). Differently, we approach graph property
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learning from a fresh perspective of nonparametric teach-
ing (Zhang et al., 2023b;a) and adopt a corresponding ver-
sion of the greedy algorithm to enhance the training effi-
ciency of GCN.

Nonparametric teaching. Machine teaching (Zhu, 2015;
Zhu et al., 2018) focuses on designing a teaching set that
enables the learner to quickly converge to a target model
function. It can be viewed as the reverse of machine learn-
ing: while machine learning seeks to learn a mapping from
a given training set, machine teaching aims to construct
the set based on a desired mapping. Its effectiveness has
been demonstrated across various domains, including crowd-
sourcing (Singla et al., 2014; Zhou et al., 2018), robust-
ness (Alfeld et al., 2017; Ma et al., 2019; Rakhsha et al.,
2020), and computer vision (Wang et al., 2021; Wang &
Vasconcelos, 2021). Nonparametric teaching (Zhang et al.,
2023b;a) advances iterative machine teaching (Liu et al.,
2017; 2018) by broadening the parameterized family of
target mappings to include a more general nonparametric
framework. In addition, the practical effectiveness of this
theoretical framework has been confirmed in improving the
efficiency of multilayer perceptrons (MLPs) when learning
implicit mappings from signal coordinates to their corre-
sponding values (Sitzmann et al., 2020; Tancik et al., 2020;
Luo et al., 2023; 2024; 2025; Zhang et al., 2024a). Neverthe-
less, the limited focus on the structural aspects of the input in
these studies makes it difficult to directly apply their findings
to general tasks involving graph-structured data (Hamilton
et al., 2017; Chami et al., 2022). This work systematically
examines the impact of graph structure and highlights the
alignment between the evolution of GCN driven by parame-
ter updates and that guided by functional gradient descent
in nonparametric teaching. These insights, for the first time,
broaden the scope of nonparametric teaching theory in graph
property learning and position our GraNT as a means to im-
prove the learning efficiency of GCN.

3. Background
Notation.2 Let G(n) = (V, E) be a graph, where V de-
notes the set of n vertices (nodes) and E denotes the set
of edges. The d-dimensional feature vector is denoted as
[xi]d = (x1, · · · , xd)

⊤ ∈ Rd, where the entries xi are in-
dexed by i ∈ Nd (Nd := {1, · · · , d}). For simplicity, this
feature vector may be denoted as x. The collection of fea-
ture vectors for all nodes is represented by an n× d feature
matrix Xn×d (abbreviated as X). The i-th row and j-th
column of this matrix, corresponding to the i-th node and
j-th feature, are denoted by X(i,:) and X(:,j), respectively.
Equivalently, these can be expressed as e⊤i X and Xej ,
where ei is a basis vector with its i-th entry equal to 1 and
all other entries equal to 0. The structure of the graph G(n)

2A notation table is provided in Appendix A.1.

is captured by its adjacency matrix A ∈ Rn×n, allowing
the graph to be concisely represented as G = (X,A) ∈ G.
The property of the graph is denoted by y ∈ Y , where y is
a scalar for graph-level properties (i.e., Y ⊆ R) and a vector
for node-level properties (i.e., Y ⊆ Rn). A set containing
m elements is written as {ai}m. If {ai}m ⊆ {ai}n holds,
then {ai}m represents a subset of {ai}n of size m, with in-
dices i ∈ Nn. A diagonal matrix with elements a1, · · · , am
is denoted by diag(a1, · · · , am), and if all m entries are
identical, it is simplified as diag(a;m).

Consider K(G,G′) : G × G 7→ R as a symmetric
and positive definite graph kernel (Vishwanathan et al.,
2010). It can also be written as K(G,G′) = KG(G′) =
KG′(G), and for simplicity, KG(·) can be abbreviated to
KG. The reproducing kernel Hilbert space (RKHS) H as-
sociated with K(G,G′) is defined as the closure of the
linear span {f : f(·) =

∑r
i=1 aiK(Gi, ·), ai ∈ R, r ∈

N,Gi ∈ G}, equipped with the inner product ⟨f, g⟩H =∑
ij aibjK(Gi,Gj), where g =

∑
j bjKGj

(Liu & Wang,
2016; Zhang et al., 2023b;a). Rather than assuming the
ideal case with a closed-form solution f∗, we consider
the more practical scenario where the realization of f∗

is given (Zhang et al., 2023b;a; 2024a). For simplicity,
we assume the function is scalar-valued, aligning with
the focus on the graph level in this discussion3. Given
the target mapping f∗ : G 7→ Y , it uniquely returns y†
for the corresponding graph G† such that y† = f∗(G†).
With the Riesz–Fréchet representation theorem (Lax, 2002;
Schölkopf et al., 2002; Zhang et al., 2023b), the evaluation
functional is defined as follows:

Definition 1. LetH be a reproducing kernel Hilbert space
with a positive definite graph kernel KG ∈ H, where G ∈
G. The evaluation functional EG(·) : H 7→ R is defined
with the reproducing property as follows:

EG(f) = ⟨f,KG(·)⟩H = f(G), f ∈ H. (1)

Additionally, for a functional F : H 7→ R, the Fréchet
derivative (Coleman, 2012; Liu, 2017; Zhang et al., 2023b)
of F is given as follows:

Definition 2. (Fréchet derivative in RKHS) The Fréchet
derivative of a functional F : H 7→ R at f ∈ H, denoted
by ∇fF (f), is implicitly defined by F (f + ϵg) = F (f) +
⟨∇fF (f), ϵg⟩H + o(ϵ) for any g ∈ H and ϵ ∈ R. This
derivative is also a function inH.

Graph convolutional network (GCN) is proposed to learn
the implicit mapping between graphs and their proper-
ties (Kipf & Welling, 2017; Xu et al., 2018). Specifically,
a L-layer GCN fθ(G) ≡ X(L) resembles a L-layer MLP,

3In nonparametric teaching, extending from scalar-valued func-
tions to vector-valued ones, which pertains to node-level properties,
is a well-established generalization in Zhang et al., 2023a.
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with the key difference being the feature aggregation at the
start of each layer, which is based on the adjacency matrix
A (Wu et al., 2019; Krishnagopal & Ruiz, 2023).

X(ℓ) = σ
(
(A+ I)κℓX(ℓ−1)W (ℓ)

)
, ℓ ∈ NL−1

X(L) = ρ
(
(A+ I)κLX(L−1) ·W (L)

)
, (2)

where W (ℓ) is the weight matrix at layer ℓ, with dimensions
hℓ−1×hℓ, hℓ denotes the width of layer ℓ with h0 = d, and
κℓ denotes the convolutional order at the ℓ-th layer. X(0)

is the input feature matrix, σ represents activation function
(e.g., ReLU), and ρ refers to the pooling operation (e.g.,
ρ(a) = 1⊤a for summation pooling).

Nonparametric teaching (Zhang et al., 2023b) is defined
as a functional minimization over a teaching sequence
D = {(x1, y1), . . . (xT , yT )}, where the input x ∈ Rd

represents regular feature data without considering struc-
ture, with the set of all possible teaching sequences denoted
as D:

D∗ = argmin
D∈D

M(f̂ , f∗) + λ · card(D)

s.t. f̂ = A(D). (3)

The formulation above involves three key components:M
which quantifies the disagreement between f̂ and f∗ (e.g.,
L2 distance in RKHSM(f̂∗, f∗) = ∥f̂∗ − f∗∥H), card(·),
which represents the cardinality of the teaching sequence D,
regularized by a constant λ, and A(D), which refers to the
learning algorithm used by the learners, typically employing
empirical risk minimization:

f̂ = argmin
f∈H

Ex∼P(x) (L(f(x), f∗(x))) (4)

with a convex (w.r.t. f ) loss L, which is optimized using
functional gradient descent:

f t+1 ← f t − ηG(L, f∗; f t,xt), (5)

where t = 0, 1, . . . , T is the time step, η > 0 represents
the learning rate, and G denotes the functional gradient
computed at time t.

To derive the functional gradient, given by

G(L, f∗; f†,x) = Ex

(
∂L(f∗, f)

∂f

∣∣∣∣
f†

)
·Kx, (6)

Zhang et al., 2023b;a introduce the chain rule for functional
gradients (Gelfand et al., 2000) (see Lemma 3) and use the
Fréchet derivative to compute the derivative of the evalua-
tion functional in RKHS (Coleman, 2012) (cf. Lemma 4).

Lemma 3. (Chain rule for functional gradients) For differ-
entiable functions G(F ) : R 7→ R that depend on function-
als F (f) : H 7→ R, the expression

∇fG(F (f)) =
∂G(F (f))

∂F (f)
· ∇fF (f) (7)

is typically referred to as the chain rule.

Lemma 4. The gradient of the evaluation functional at the
feature x, defined as Ex(f) = f(x) : H → R, is given
by ∇fEx(f) = K(x, ·), where K(x,x′) : Rd × Rd → R
represents a feature-based kernel.

4. GraNT
We begin by analyzing the effect of the adjacency matrix
on parameter-based gradient descent. Then, by translating
the evolution of GCN—driven by structure-aware updates
in parameter space—into function space, we show that the
evolution of GCN under parameter gradient descent aligns
with that under functional gradient descent. Lastly, we
present the greedy GraNT algorithm, which efficiently se-
lects graphs with steeper gradients to improve the learning
efficiency of GCN.

4.1. Structure-aware update in the parameter space

In GCNs, the structural information of graphs is captured
through feature aggregation, expressed as (A+ I)κX , as
shown in Equation 2. The use of (A + I)κ limits the
flexibility in learning aggregated hidden features, σ((A +
I)κXW ), because it applies the same weights to features
aggregated from different convolutional orders within a sin-
gle layer. This paper considers more flexible GCNs, where
the weights for features aggregated from different convo-
lutional orders within a single layer are handled indepen-
dently (Krishnagopal & Ruiz, 2023). Before presenting the
detailed formulation, we introduce the concatenation oper-
ation

⊕
and define A[κ] :=

⊕κ−1
i=0 Ai = [I A · · · Aκ−1],

an n× κn matrix. By unfolding the aggregated features at
different orders and assigning them distinct weights (Krish-
nagopal & Ruiz, 2023), the flexible GCN can be expressed
as

X(ℓ) = σ
(
A[κℓ]diag(X(ℓ−1);κℓ) ·W (ℓ)

)
, ℓ ∈ NL−1

X(L) = ρ
(
A[κL]diag(X(L−1);κL) ·W (L)

)
. (8)

Here, the notations are consistent with those in Equation 2,
with the exception that W (ℓ) is the weight matrix of size
κℓhℓ−1 × hℓ. Figure 2 presents an example that illustrates
the workflow of this flexible GCN.

Let the column vector θ ∈ Rm represent the weights of all
layers in a flattened form, where m denotes the total number
of parameters in the GCN. Given a training set of size N ,
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{(Gi,yi)|Gi ∈ G,yi ∈ Y}N , the parameter update using
gradient descent (Ruder, 2016) is expressed as follows:

θt+1 ← θt − η

N

N∑
i=1

∇θL(fθt(Gi),yi). (9)

Due to the sufficiently small learning rate η, the updates are
tiny over several iterations, which allows them to be treated
as a time derivative and then converted into a differential
equation (Du et al., 2019):

∂θt

∂t
= − η

N

[
∂L(fθt(Gi),yi)

∂fθt(Gi)

]⊤
N

·
[
∂fθt(Gi)

∂θt

]
N

. (10)

The term ∂fθ(G)
∂θ (with the indexes omitted for simplicity),

which indicates the direction for updating the parameters,
can be written more specifically as

∂fθ(G)

∂θ
=

[
∂X(L)

∂W (L)
,

∂X(L)

∂W
(L−1)
(:,1)

, · · · , ∂X(L)

∂W
(L−1)
(:,hL−1)︸ ︷︷ ︸

w.r.t. the (L − 1)-th layer

,

· · · , ∂X(L)

∂W
(1)
(:,1)

, · · · , ∂X(L)

∂W
(1)
(:,h1)


︸ ︷︷ ︸

w.r.t. the first layer

. (11)

Here, each term represents the derivative of output X(L)

w.r.t. weight column vectors. In contrast to derivatives with
regular features as inputs, where the derivatives are indepen-
dent across features, the adjacency matrix A dictates feature
aggregation in these derivatives in a batch manner, where
each feature of a single node is treated individually (Du
et al., 2019). To clearly demonstrate, in an analytical and
explicit manner, how A directs structure-aware updates in
the parameter space, we present an example involving the
derivative of a two-layer GCN with summation pooling:

∂fθ(G)

∂θ
=

 ∂X(2)

∂W (2)
,
∂X(2)

∂W
(1)
(:,1)

, · · · , ∂X(2)

∂W
(1)
(:,h1)

 , (12)

where the term ∂X(2)

∂W (2) is given by

1⊤
n A[κ2]︸ ︷︷ ︸

size: n×κ2n

size: κ2n×κ2h1︷ ︸︸ ︷
diag(σ(A[κ1]diag(X(0);κ1)W

(1));κ2)︸ ︷︷ ︸
size: 1×κ2h1

, (13)

and for i ∈ Nh1
, the term ∂X(2)

∂W
(1)

(:,i)

is

1⊤ A[κ2]︸ ︷︷ ︸
size: n×κ2n

size: κ2n×κ1h0︷ ︸︸ ︷ σ̇ ·A[κ1]diag(X(0);κ1) ·W (2)
(i−h1+h1)

· · ·
σ̇ ·A[κ1]diag(X(0);κ1) ·W (2)

(i−h1+κ2h1)


︸ ︷︷ ︸

size: 1×κ1h0

, (14)

1
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Figure 2: A workflow illustration of a two-layer flexible
GCN with a four-node graph G as input.

with σ̇ =
∂σ(A[κ1]diag(X(0);κ1)W

(1)

(:,i)
)

∂A[κ1]diag(X(0);κ1)W
(1)

(:,i)

. Orange indicates

the first layer, green denotes the second layer, and 1⊤
n in

purple corresponds to the summation pooling4. When using
ReLU as the activation function, σ̇ ·A[κ1]diag(X(0);κ1) =
σ
(
A[κ1]diag(X(0);κ1)

)
. The derivation can be found in

Appendix A.2.

When the convolutional order κ is reduced to 1 for all layers,
meaning structural information is excluded, the GCN gradi-
ent computed for a single input graph exactly matches that
of the MLP when applied to a batch composed of the node
features. This suggests that the structure-aware, parameter-
based gradient is more general than the one used in MLPs,
indicating that this work can be seen as a generalization of
Zhang et al., 2024a. Furthermore, from the explicit expres-
sions in Equations 13 and 14, it can be observed that the
gradient of GCN does not depend on the size of the input
graph (i.e., the number of nodes). Instead, it depends on the
feature dimension and convolutional order. In other words,
the parameter gradient retains the same form even when the
input graph size n is scaled.

4.2. The functional evolution of GCN

The structure-aware update in the parameter space drives
the functional evolution of fθ ∈ H. This variation of fθ,
which captures how fθ changes in response to updates in θ,
can be derived using Taylor’s theorem as follows:

f(θt+1)− f(θt) = ⟨∇θf(θ
t), θt+1 − θt⟩+ o(θt+1 − θt), (15)

4Without the pooling operation, it corresponds to the scenario
where the graph property is considered at the node level.
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where f(θ†) ≡ fθ† . In a manner similar to the transforma-
tion of parameter updates, it can be rewritten in a differential
form (Zhang et al., 2024a):

∂fθt

∂t
=

〈
∂f(θt)

∂θt
,
∂θt

∂t

〉
︸ ︷︷ ︸

(∗)

+o

(
∂θt

∂t

)
. (16)

By plugging in the specific parameter updates, i.e., Equa-
tion 10, into the first-order approximation term (∗) of this
variation, we get

∂fθt
∂t = − η

N

[
∂L(fθt (Gi),yi)

∂fθt (Gi)

]⊤
N
· [Kθt(Gi, ·)]N + o

(
∂θt

∂t

)
, (17)

where the symmetric and positive definite Kθt(Gi, ·) :=〈
∂fθt (Gi)

∂θt ,
∂fθt (·)
∂θt

〉
(see the detailed derivation in Ap-

pendix A.3). Due to the inclusion of nonlinear activation
functions in f(θ), the nonlinearity of f(θ) with respect to
θ causes the remainder o(θt+1 − θt) to be nonzero. In a
subtle difference, Jacot et al., 2018; Du et al., 2019; Krish-
nagopal & Ruiz, 2023 apply the chain rule directly, giving
less attention to the convexity of L with respect to θ. This
leads to the first-order approximation being derived as the
variation, with Kθ being referred to as the graph neural
tangent kernel (GNTK). It has been shown that the GNTK
stays constant during training when the GCN width is as-
sumed to be infinite (Du et al., 2019; Krishnagopal & Ruiz,
2023). However, in practical applications, there is no need
for the GCN width to be infinitely large, which leads us to
investigate the dynamic GNTK (Figure 5 in Appendix A.3
provides an example of how GNTK is computed).

Consider describing the variation of fθ ∈ H from a high-
level, functional perspective (Zhang et al., 2024a). Using
functional gradient descent, it can be expressed as:

∂fθt

∂t
= −ηG(L, f∗; fθt , {Gi}N ), (18)

where the functional gradient is given by:

G(L, f∗; fθt , {Gi}N ) = 1
N

[
∂L(fθt (Gi),yi)

∂fθt (Gi)

]⊤
N
· [K(Gi, ·)]N . (19)

The asymptotic relationship between GNTK and the
structure-aware canonical kernel (Vishwanathan et al., 2010;
Zhang et al., 2024a) in the context of functional gradient is
given in Theorem 5 below, with the proof in Appendix B.

Theorem 5. For a convex loss L and a given training set
{(Gi,yi)|Gi ∈ G,yi ∈ Y}N , the dynamic GNTK, derived
from gradient descent on the parameters of a GCN, con-
verges pointwise to the structure-aware canonical kernel in
the dual functional gradient with respect to the input graphs.
Specifically, the following holds:

lim
t→∞

Kθt(Gi, ·) = K(Gi, ·),∀i ∈ NN . (20)

This suggests that GNTK, which incorporates structural
information, serves as a dynamic alternative to the structure-
aware canonical kernel in functional gradient descent with
graph inputs, making the GCN’s evolution through param-
eter gradient descent align with that in functional gradient
descent (Kuk, 1995; Du et al., 2019; Geifman et al., 2020).
This functional insight bridges the teaching of the graph
property learner, GCN, with that of structure-aware non-
parametric learners, while also simplifying further analysis
(e.g., a convex functional L preserves its convexity with
respect to fθ from a functional perspective, but is typically
nonconvex when considering θ). By leveraging the func-
tional insight and employing the canonical kernel (Dou &
Liang, 2021) instead of GNTK (which should be considered
alongside the remainder), it aids in deriving sufficient reduc-
tion concerning L in Proposition 6, with the proof deferred
to Appendix B.

Proposition 6. (Sufficient Loss Reduction) Suppose the
convex lossL is Lipschitz smooth with a constant τ > 0, and
the structure-aware canonical kernel is bounded above by a
constant γ > 0. If the learning rate η satisfies η ≤ 1/(2τγ),
then it follows that a sufficient reduction in L is guaranteed,
as shown by

∂L
∂t
≤ −ηγ

2

(
1

N

N∑
i=1

∂L(fθt(Gi),yi)

∂fθt(Gi)

)2

. (21)

This demonstrates that the variation of L over time is capped
by a negative value, meaning it decreases by at least the mag-
nitude of this upper bound as time progresses, guaranteeing
convergence.

4.3. GraNT algorithm

Building on the insights regarding the effect of the adjacency
matrix, which captures the graph structure, on parameter-
based gradient descent, as well as the consistency between
teaching a GCN and a nonparametric learner, we introduce
the GraNT algorithm. This algorithm seeks to increase the
steepness of gradients to improve the learning efficiency of
GCN. By interpreting the gradient as a sum of the projec-
tions of ∂L(fθ,f

∗)
∂fθ

onto the basis {K(Gi, ·)}N , increasing
the gradient can be achieved by simply maximizing the
projection coefficient ∂L(fθ(Gi),yi)

∂fθ(Gi)
, without the need to cal-

culate the norm of the basis ∥K(Gi, ·)∥H (Wright, 2015;
Zhang et al., 2024a). This suggests that selecting graphs
that either maximize

∣∣∣∂L(fθ(Gi),yi)
∂fθ(Gi)

∣∣∣ or correspond to larger

components of ∂L(fθ,f
∗)

∂fθ
can effectively increase the gradi-

ent, which implies

{Gi}m∗
= argmax

{Gi}m⊆{Gi}N

∥∥∥∥[∂L(fθ(Gi),yi)

∂fθ(Gi)

]
m

∥∥∥∥
2

. (22)
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Algorithm 1 GraNT Algorithm
Input: Target mapping f∗ realized by a dense set of graph-
property pairs, initial GCN fθ0 , the size of selected training
set m ≤ N , small constant ϵ > 0 and maximal iteration
number T .

Set fθt ← fθ0 , t = 0.

while t ≤ T and ∥[fθt(Gi)− f∗(Gi)]N∥2 ≥ ϵ do
The teacher selects m teaching graphs:

/* (Graph-level) Graphs corresponding

to the m largest |fθt(Gi)− f∗(Gi)|. */

{Gi}m∗
= argmax

{Gi}m⊆{Gi}N

∥[fθt(Gi)− f∗(Gi)]m∥2.

/* (Node-level) Graphs associated with

the m largest
∥fθt (Gi)−f∗(Gi)∥2

ni
. */

{Gi}m∗
= argmax

{Gi}m⊆{Gi}N

∥∥∥[ fθt (Gi)−f∗(Gi)
ni

]
m

∥∥∥
F

,

with Frobenius norm ∥ · ∥F .

Provide {Gi}m∗ to the GCN learner.

The learner updates fθt based on received {Gi}m∗:

// Parameter-based gradient descent.
θt ← θt − η

m

∑
Gi∈{Gi}m

∗ ∇θL(fθt(Gi), f
∗(Gi)).

Set t← t+ 1.
end

From a functional standpoint, when handling a convex loss
functional L, the norm of the partial derivative of L with
respect to fθ, represented as ∥∂L(fθ)

∂fθ
∥H, is positively corre-

lated with ∥fθ−f∗∥H. As fθ progressively converges to f∗,
∥∂L(fθ)

∂fθ
∥H diminishes (Boyd et al., 2004; Coleman, 2012).

This relationship becomes especially noteworthy when L is
strongly convex with a larger convexity constant (Kakade
& Tewari, 2008; Arjevani et al., 2016). Leveraging these
insights, the GraNT algorithm selects graphs by

{Gi}m∗
= argmax

{Gi}m⊆{Gi}N

∥[fθ(Gi)− f∗(Gi)]m∥2 . (23)

The pseudo code, including the node-level version, is pro-
vided in Algorithm 1.

5. Experiments and Results
We start by evaluating GraNT on graph-level regression
and classification tasks, then proceed to validate it on node-
level tasks. The overall results on the test set are shown
in Table 1, which clearly highlights the effectiveness of
GraNT in graph property learning: it reduces training time
by 36.62% for graph-level regression, 38.19% for graph-
level classification, 30.97% for node-level regression, and
47.30% for node-level classification, all while maintaining
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Figure 3: Validation set performance for graph-level tasks:
ZINC (regression) and ogbg-molhiv (classification).

comparable testing performance. Detailed settings are given
in Appendix C.

Given the common practice of training GCN in batches, i.e.,
graphs are fed in batches, it is both natural and intuitive to
implement GraNT at the batch level. This involves selecting
batches that exhibit the largest average discrepancy between
the actual properties and the corresponding GCN outputs, re-
ferred to as GraNT (B). Meanwhile, another variant, called
GraNT (S), selects single graph with the largest discrepan-
cies within each batch in proportion, then reorganizes the
selected graphs into new batches.

Graph-level tasks. We evaluate GraNT using several
widely recognized benchmark datasets as follows:

• QM9 (Wu et al., 2018): 130k organic molecules graphs
with quantum chemical properties (regression task);

• ZINC (Gómez-Bombarelli et al., 2018): 250k molecular
graphs with bioactivity and solubility chemical properties
(regression task);

• ogbg-molhiv (Hu et al., 2020): 41k molecular graphs with
HIV inhibitory activity properties (binary classification
task);

• ogbg-molpcba (Hu et al., 2020): 438k molecular graphs
with bioactivity properties (multi-task binary classifica-
tion task).

To clearly illustrate the practical efficiency of GraNT, we
plot the wallclock time versus loss/metric curves. This is
done by conducting a validation after each training epoch,
i.e., performing an evaluation on the validation dataset after
each training process. Specifically, we display the validation
set loss and the typical Mean Absolute Error (MAE) for
ZINC in Figure 3 (a) and (b), respectively. In both plots,
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GraNT Dataset Time (s) Loss ↓ MAE ↓ ROC-AUC ↑ AP ↑

✗

QM9 9654.81 2.0444 0.0051±0.0009 - -
ZINC 33033.82 3.1160 0.0048±0.0004 - -

ogbg-molhiv 2163.50 0.1266 - 0.7572±0.0005 -
ogbg-molpcba 130191.26 0.0577 - - 0.3270±0.0000

gen-reg 3344.78 0.0086 0.0007±0.0001 - -
gen-cls 11662.25 0.1314 - 0.9150±0.0024 -

✓

B

S

QM9 6392.26 (-33.79%) 2.0436 0.0051±0.0009 - -
ZINC 20935.24 (-36.62%) 3.1165 0.0048±0.0004 - -

ogbg-molhiv 1457.39 (-32.64%) 0.1238 - 0.7676±0.0036 -
ogbg-molpcba 80465.06 (-38.19%) 0.0577 - - 0.3358±0.0001

gen-reg 2308.97 (-30.97%) 0.0086 0.0007±0.0001 - -
gen-cls 6145.72 (-47.30%) 0.1314 - 0.9157±0.0013 -

QM9 7076.37 (-26.71%) 2.0443 0.0051±0.0009 - -
ZINC 22265.83 (-32.60%) 3.1170 0.0048±0.0004 - -

ogbg-molhiv 1597.69 (-26.15%) 0.1421 - 0.7705±0.0027 -
ogbg-molpcba 89858.65 (-30.98%) 0.0575 - - 0.3351±0.0025

gen-reg 2337.46 (-30.12%) 0.0086 0.0007±0.0001 - -
gen-cls 8171.21 (-29.93%) 0.1313 - 0.9157±0.0014 -

Table 1: Training time and testing results across different benchmarks. GraNT (B) and GraNT (S) demonstrate similar testing
performance while significantly reducing training time compared to the "without GraNT", across graph-level (QM9, ZINC,
ogbg-molhiv, ogbg-molpcba) and node-level (gen-reg, gen-cls) datasets, for both regression and classification tasks.

Time (s) MAE ↓

AL-3DGraph‡ (Subedi et al., 2024) 9200.27 0.7991
AL-3DGraph♯ (Subedi et al., 2024) 9364.74 0.4719
AL-3DGraph§ (Subedi et al., 2024) 12601.77 0.1682
GraNT (B) 6392.26 0.0051
GraNT (S) 7076.37 0.0051

‡: lr=5e-5, batch_size=256, which matches GraNT settings.
♯: lr=5e-4, batch_size=256.
§: lr=5e-4, batch_size=32, which corresponds to the default
settings used in the provided code for that paper.

Table 2: Comparison of GraNT with active learning-based
methods on the QM9 dataset.

one can see that the curves for GraNT (B) and GraNT (S)
span about two-thirds of the width of the "without GraNT"
curve, with both the loss and MAE for GraNT decreasing
at a faster rate than those for the "without GraNT" case.
Moreover, GraNT (B) takes slightly less time to terminate
than GraNT (S). This is because GraNT (S) selects teaching
graphs from each batch, which can add extra operational
time compared to GraNT (B) that uses direct batch selection.

Figures 3 (c) and (d) show the loss and the commonly used
ROC-AUC curves on the validation set, respectively, for
ogbg-molhiv. Both plots clearly highlight the superiority
of GraNT over the "without GraNT". In addition, Figure 3
(d) shows that the ROC-AUC values of GraNT (B) and
GraNT (S) consistently exceed that of "without GraNT"

Time (s) ROC-AUC ↑
GCN (Kipf & Welling, 2017) 2888.80 0.7385
GCN+Virtual Node (Kipf & Welling, 2017) 3083.16 0.7608
GMoE-GCN (Wang et al., 2023) 3970.16 0.7536
GMoE-GIN (Wang et al., 2023) 3932.06 0.7468
GDeR-GCN† (Zhang et al., 2024b) 1772.23 0.7261
GDeR-PNA† (Zhang et al., 2024b) 5088.88 0.7616
GraNT (B) 1457.39 0.7676
GraNT (S) 1597.69 0.7705

†: batch_size=500, retain_ratio=0.7.

Table 3: Comparison of GraNT with recent efficient methods
on the ogbg-molhiv dataset.

once the wallclock time reaches approximately 500s. How-
ever, the curves appear relatively jagged, which can be at-
tributed to the label imbalance in this benchmark dataset.
This imbalance also explains why, even when the validation
loss decreases significantly, the ROC-AUC curve does not
rise to a higher range. The detailed numerical results for
training time and testing performance are provided in Ta-
ble 1. The comparisons between GraNT and recent SOTA
methods are shown in Table 2 for QM9 and Table 3 for
ogbg-molhiv.

Node-level tasks. We also assess GraNT for node-level
property learning using synthetic data. Specifically, we
utilize the graphon, a typical limit object of a convergent
sequence of graphs (Xu et al., 2021; Xia et al., 2023), to
generate two synthetic datasets: gen-reg (containing 50k
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Figure 4: Validation set performance for node-level tasks: gen-reg (regression) and gen-cls (classification).

graphs) for regression and gen-cls (containing 50k graphs)
for classification.

Figures 4 (a) and (b) illustrate the validation loss and MAE
curves for gen-reg, respectively. From both plots, it is clear
that GraNT reached convergence more quickly in terms of
wallclock time compared to the "without GraNT", highlight-
ing its efficiency.

Figure 4 (c) and (d) show the validation loss and ROC-AUC
for gen-cls, respectively. Both plots demonstrate that GraNT
requires less wallclock time to converge compared to the
"without GraNT". Furthermore, although this dataset is
generated with imbalanced labels, similar to ogbg-molhiv,
there is a notable difference: when the validation loss is
low, the corresponding ROC-AUC exceeds 0.9, which is a
relatively high value. This underscores the effectiveness of
GraNT. The detailed numerical results for training time and
testing performance are shown in Table 1.

All experimental results demonstrate that GraNT (B) and
GraNT (S) offer significant time-saving benefits while main-
taining comparable generalization performance, and in some
cases, even outperforming the "without GraNT". Further ex-
perimental results, including result plots for QM9 and ogbg-
molpcba, training curves for the aforementioned datasets,
and additional validations on the AMD device, can be found
in Appendix C.

6. Concluding Remarks and Future Work
This paper proposes GraNT, a novel paradigm that enhances
the learning efficiency of graph property learner (GCN)
through nonparametric teaching theory. Specifically, GraNT
reduces the wallclock time needed to learn the implicit map-
ping from graphs to properties of interest by over 30%,
while maintaining comparable test performance, as shown
through extensive experiments. Furthermore, GraNT estab-
lishes a theoretical connection between the evolution of a
GCN using parameter-based gradient descent and that of a
function using functional gradient descent in nonparametric
teaching. This connection between nonparametric teaching
theory and GCN training broadens the potential applications
of nonparametric teaching in graph property learning.

In future work, it would be interesting to investigate other

variations of GraNT for different graph property learners,
such as graph attention networks (Veličković et al., 2018).
Moreover, exploring the practical applications of GraNT
to improve the efficiency of data-driven methods (Henaff,
2020; Touvron et al., 2021; Müller et al., 2022) within the
field of graph property learning offers promising opportuni-
ties for future progress, particularly in fields like molecular
biology and protein research.

Impact Statement
Recent interest in learning implicit mappings from graph
data to specific properties has grown significantly, especially
in science-related fields, driven by the ability of graphs to
model diverse types of data. This work focuses on improv-
ing the learning efficiency of implicit graph property map-
pings through a novel nonparametric teaching perspective,
which has the potential to positively impact graph-related
fields and society. Furthermore, it connects nonparametric
teaching theory with GCN training, expanding its applica-
tion in graph property learning. As a result, it also holds
promise for valuable contributions to the nonparametric
teaching community.
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Appendix

A. Additional Discussions
A.1. Notation Overview

Notation Description

G(n) = (V, E) Graph with n vertices and edge set E
V Set of n vertices (nodes) in the graph
E Set of edges in the graph
[xi]d d-dimensional feature vector with entries xi

x Simplified notation for [xi]d
Xn×d Feature matrix of all nodes (n× d)
X(i,:) i-th row of X (feature vector of node i)
X(:,j) j-th column of X (feature j across nodes)
ei i-th basis vector (1 at i-th position, 0 elsewhere)
A Adjacency matrix of graph G(n)

G = (X,A) Representation of graph with feature matrix and adjacency matrix
G Collection of all graphs
y Property of the graph (scalar or vector)
Y Space of graph properties (R or Rn)
{ai}m Set of m elements
diag(a1, . . . , am) Diagonal matrix with elements a1, . . . , am
diag(a;m) Diagonal matrix with m repeated entries a
Nd := {1, · · · , d} Set of natural numbers from 1 to d
K(G,G′) Positive definite graph kernel function
H Reproducing kernel Hilbert space (RKHS) defined by K
f∗ Target mapping from G to Y
y† Property f∗(G†) of graph G†

Table 4: Summary of Key Notations.

A.2. The derivation of structure-aware updates in the parameter space.

Let’s focus on the derivative of a two-layer GCN with summation pooling:

∂fθ(G)

∂θ
=

 ∂X(2)

∂W (2)︸ ︷︷ ︸
the second layer

,
∂X(2)

∂W
(1)
(:,1)

, · · · , ∂X(2)

∂W
(1)
(:,h1)︸ ︷︷ ︸

the first layer


⊤

. (24)

Using the chain rule, we can calculate the derivative of fθ(G) w.r.t. the second-layer weights W (2), which is a vector of
size κ2h1, as follows:

∂X(2)

∂W (2)
=

∂1⊤
nA

[κ2]diag(X(1);κ2) ·W (2)

∂W (2)

= 1⊤
nA

[κ2]diag(X(1);κ2)

= 1⊤
n A[κ2]︸ ︷︷ ︸

size: n×κ2n

size: κ2n×κ2h1︷ ︸︸ ︷
diag(σ(A[κ1]diag(X(0);κ1)W

(1));κ2))︸ ︷︷ ︸
size: 1×κ2h1

. (25)
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The derivative of fθ(G) w.r.t. the first-layer weights is more complex. For i ∈ Nh1

∂X(2)

∂W
(1)
(:,i)

=
∂1⊤A[κ2]diag(X(1)eie

⊤
i ;κ2) ·W (2)

∂W
(1)
(:,i)

=
∂1⊤A[κ2]

size: κ2n×κ2︷ ︸︸ ︷
diag(X(1)ei;κ2) ·

size: κ2×κ2h1︷ ︸︸ ︷
diag(e⊤i ;κ2)W

(2)

∂W
(1)
(:,i)

=

∂1⊤A[κ2]

size: κ2n×κ2︷ ︸︸ ︷
diag(X(1)ei;κ2) ·

size: κ2×1︷ ︸︸ ︷ W
(2)
(i−h1+h1)

· · ·
W

(2)
(i−h1+κ2h1)


∂W

(1)
(:,i)

=

∂1⊤A[κ2]

size: κ2n×1︷ ︸︸ ︷ X(1)eiW
(2)
(i−h1+h1)

· · ·
X(1)eiW

(2)
(i−h1+κ2h1)


∂W

(1)
(:,i)

= 1⊤A[κ2]


∂X(1)ei

∂W
(1)

(:,i)

W
(2)
(i−h1+h1)

· · ·
∂X(1)ei

∂W
(1)

(:,i)

W
(2)
(i−h1+κ2h1)



= 1⊤ A[κ2]︸ ︷︷ ︸
size: n×κ2n

size: κ2n×κ1h0︷ ︸︸ ︷ σ̇ ·A[κ1]diag(X(0);κ1) ·W (2)
(i−h1+h1)

· · ·
σ̇ ·A[κ1]diag(X(0);κ1) ·W (2)

(i−h1+κ2h1)


︸ ︷︷ ︸

size: 1×κ1h0

, (26)

with σ̇ =
∂σ(A[κ1]diag(X(0);κ1)W

(1)

(:,i)
)

∂A[κ1]diag(X(0);κ1)W
(1)

(:,i)

. Orange marks the first-layer elements, green colors the second-layer elements, and

1⊤
n in purple refers to the summation pooling. If we use ReLU as the activation function, σ̇ · A[κ1]diag(X(0);κ1) =

σ
(
A[κ1]diag(X(0);κ1)

)
.

For the GCN shown in Figure 2, the derivative, i.e., Equation 25 is specified with κ1, κ2 = 3, 2 as

∂X(2)

∂W (2)
= 1⊤ A[2]︸︷︷︸

size: n×2n

size: 2n×2h1︷ ︸︸ ︷
diag(σ(A[3]diag(X(0); 3)W (1)); 2)

︸ ︷︷ ︸
size: 1×2h1

. (27)

∂X(2)

∂W
(1)
(:,i)

= 1⊤ A[2]︸︷︷︸
size: n×2n

size: 2n×3h0︷ ︸︸ ︷(
σ̇ ·A[3]diag(X(0); 3) ·W (2)

(i)

σ̇ ·A[3]diag(X(0); 3) ·W (2)
(i+h1)

)
︸ ︷︷ ︸

size: 1×3h0

, (28)

When a graph is input into a GCN, the adjacency matrix A governs the operations between nodes, ensuring the update is
structure-aware by performing row-wise operations on the feature matrix. Meanwhile, the weight matrix W controls how
the features are processed, by performing column-wise operations on the feature matrix.
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Figure 5: Graphical illustration of GNTK computation: Kθ(G(3),G
′
(4)) =

〈
∂fθ(G)

∂θ , ∂fθ(G
′)

∂θ

〉
= ∂fθ(G)

∂W
(1)

(1,1)

∂fθ(G
′)

∂W
(1)

(1,1)

+ · · · +
∂fθ(G)

∂W
(1)

(κ1d,h1)

∂fθ(G
′)

∂W
(1)

(κ1d,h1)

+ ∂fθ(G)

∂W
(2)

(1)

∂fθ(G
′)

∂W
(2)

(1)

+ · · ·+ ∂fθ(G)

∂W
(2)

(κ2h1)

∂fθ(G
′)

∂W
(2)

(κ2h1)

.

A.3. Graph Neural Tangent Kernel (GNTK)

By substituting the parameter evolution (Equation 10)

∂θt

∂t
= − η

N

[
∂L(fθt(Gi),yi)

∂fθt(Gi)

]⊤
N

·
[
∂fθt(Gi)

∂θt

]
N

. (29)

into the first-order approximation term (∗) of Equation 16, it obtains

(∗) =

〈
∂fθt(·)
∂θt

,− η

N

[
∂L(fθt(Gi),yi)

∂fθt(Gi)

]⊤
N

·
[
∂fθt(Gi)

∂θt

]
N

〉

= − η

N

[
∂L(fθt(Gi),yi)

∂fθt(Gi)

]⊤
N

·
〈
∂fθt(·)
∂θt

,

[
∂fθt(Gi)

∂θt

]
N

〉
= − η

N

[
∂L(fθt(Gi),yi)

∂fθt(Gi)

]⊤
N

·
[〈

∂fθt(·)
∂θt

,
∂fθt(Gi)

∂θt

〉]
N

= − η

N

[
∂L(fθt(Gi),yi)

∂fθt(Gi)

]⊤
N

· [Kθt(Gi, ·)]N , (30)

which derives Equation 17 as

∂fθt

∂t
= − η

N

[
∂L(fθt(Gi),yi)

∂fθt(Gi)

]⊤
N

· [Kθt(Gi, ·)]N + o

(
∂θt

∂t

)
, (31)

where the symmetric and positive definite Kθt(Gi, ·) :=
〈

∂fθt (Gi)
∂θt ,

∂fθt (·)
∂θt

〉
is referred to as graph neural tangent kernel

(GNTK) (Du et al., 2019; Krishnagopal & Ruiz, 2023). Figure 5 illustrates the GNTK calculation process. In simple terms,
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examining a model’s behavior by focusing on the model itself, rather than its parameters, often involves the use of kernel
functions.

It can be observed that the quantity ∂fθt (·)
∂θt representing the partial derivative of the GCN with respect to its parameters,

present in Kθt(Gi, ·) =
〈

∂fθt (Gi)
∂θt ,

∂fθt (·)
∂θt

〉
, is determined by both the structure and the specific parameters θt, but does

not depend on the input graphs. The other term ∂fθt (Gi)
∂θt relies not only on the GCN structure and specific θt, but also on

the input graph. If the input for ∂fθt (Gi)
∂θt is not specified, the GNTK simplifies to a general form Kθt(·, ·). When a specific

graph Gj is defined as the input for ∂fθt (·)
∂θt , GNTK becomes a scalar as Kθt(Gi,Gj) = ⟨∂fθt (Gi)

∂θt ,
∂fθt (Gj)

∂θt ⟩. These are
in line with the kernel used in functional gradient descent. By providing the input graph Gi, one coordinate of Kθt is
fixed, causing the GCN to update along Kθt(Gi, ·), based on the magnitude of ∂fθt (Gi)

∂θt . This process aligns with the
core principle of functional gradient descent. In summary, both the GNTK and the canonical kernel are consistent in their
mathematical formulation and show alignment in how they affect the evolution of the corresponding GCN. Furthermore,
Theorem 5 highlights the asymptotic connection between the GNTK and the canonical kernel used in functional gradient
descent.
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B. Detailed Proofs
Before providing the detailed proofs, we first introduce the gradient of an evaluation functional EG(f).

Lemma 7. The gradient of an evaluation functional EG(f) = f(G) : H 7→ R is ∇fEG(f) = KG.

Proof of Lemma 7 Let us define a function ϕ by adding a small perturbation ϵg (ϵ ∈ R, g ∈ H) to f ∈ H, so that
ϕ = f + ϵg. ϕ ∈ H since RKHS is closed under addition and scalar multiplication. Therefore, for an evaluation functional
EG[f ] = f(G) : H 7→ R, we can evaluate ϕ at G as

EG[ϕ] = EG[f + ϵg]

= EG[f ] + ϵEG[g] + 0

= EG[f ] + ϵ⟨K(G, ·), g⟩H + 0 (32)

Recall implicit definition of Fréchet derivative in RKHS (see Definition 2) EG[f + ϵg] = EG[f ] + ϵ⟨∇fEG[f ], g⟩H + o(ϵ),
it follows from Equation 32 that we have the gradient of a evaluation functional∇fEG[f ] = KG.

■

Proof of Theorem 5 By describing the evolution of a GCN in terms of parameter variations and from a high-level perspective
within the function space, we obtain

− η

N

[
∂L(fθt(Gi),yi)

∂fθt(Gi)

]⊤
N

· [K(Gi, ·)]N = − η

N

[
∂L(fθt(Gi),yi)

∂fθt(Gi)

]⊤
N

·
[〈

∂fθt(Gi)

∂θt
,
∂fθt(·)
∂θt

〉]
N

+ o

(
∂θt

∂t

)
. (33)

After the reorganization, we get

− η

N

[
∂L(fθt(Gi),yi)

∂fθt(Gi)

]⊤
N

· [K(Gi, ·)−Kθt(Gi, ·)]N = o

(
∂θt

∂t

)
. (34)

By inserting the evolution of the parameters

∂θt

∂t
= −η ∂L

∂θt
= − η

N

[
∂L(fθt(Gi),yi)

∂fθt(Gi)

]⊤
N

·
[
∂fθt(Gi)

∂θt

]
N

(35)

into the remainder, we have

− η

N

[
∂L(fθt(Gi),yi)

∂fθt(Gi)

]⊤
N

· [K(Gi, ·)−Kθt(Gi, ·)]N = o

(
− η

N

[
∂L(fθt(Gi),yi)

∂fθt(Gi)

]⊤
N

·
[
∂fθt(Gi)

∂θt

]
N

)
. (36)

When training a GCN with a convex loss L, which is convex concerning fθ but often not with regard to θ, we have the limit
of the vector limt→∞

[
∂L(fθt (Gi),yi)

∂fθt (Gi)

]
N

= 0. Since the right side of the equation is a higher order infinitesimal than the
left, to preserve this equality, it leads us to the conclusion that

lim
t→∞

[K(Gi, ·)−Kθt(Gi, ·)]N = 0. (37)

This means that for each G ∈ {Gi}N , GNTK converges pointwise to the canonical kernel.

■

Proof of Proposition 6 By recalling the definition of the Fréchet derivative in Definition 2, the convexity of L implies that

∂L
∂t
≤
〈

∂L
∂fθt+1

,
fθt

∂t

〉
H︸ ︷︷ ︸

Ξ

. (38)
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By identifying the Fréchet derivative of ∂L
∂fθt+1

and the evolution of fθt , the right-hand side term Ξ can be represented as

Ξ =
〈
Gt+1,−ηGt

〉
H

= − η

N2

〈[
∂L(fθt+1(Gi),yi)

∂fθt+1(Gi)

]⊤
N

· [KGi ]N , [KGi ]
⊤
N ·
[
∂L(fθt(Gi),yi)

∂fθt(Gi)

]
N

〉
H

= − η

N2

[
∂L(fθt+1(Gi),yi)

∂fθt+1(Gi)

]⊤
N

·
〈
[KGi

]N , [KGi
]⊤N
〉
H ·
[
∂L(fθt(Gi),yi)

∂fθt(Gi)

]
N

= − η

N

[
∂L(fθt(Gi),yi)

∂fθt(Gi)

]⊤
N

K̄

[
∂L(fθt+1(Gi),yi)

∂fθt+1(Gi)

]
N

, (39)

where K̄ = K/N , and K is an N ×N symmetric, positive definite matrix with elements K(Gi,Gj) positioned at the i-th

row and j-th column. For convenience, we adopt the simplified notation that
∂L(f

θ□
(Gi),yi)

∂f
θ□

(Gi)
:= ∂f

θ□
L(fθ□ ;Gi). The final

term in Equation 39 can be rewritten as

− η

N

[
∂fθtL(fθt ;Gi)

]⊤
N
K̄
[
∂fθt+1L(fθt+1 ;Gi)

]
N

= − η

N

[
∂fθtL(fθt ;Gi)

]⊤
N
K̄
([

∂fθt+1L(fθt+1 ;Gi)
]
N
+
[
∂fθtL(fθt ;Gi)

]
N
−
[
∂fθtL(fθt ;Gi)

]
N

)
= − η

N

[
∂fθtL(fθt ;Gi)

]⊤
N
K̄
[
∂fθtL(fθt ;Gi)

]
N

− η

N

[
∂fθtL(fθt ;Gi)

]⊤
N
K̄
([

∂fθt+1L(fθt+1 ;Gi)
]
N
−
[
∂fθtL(fθt ;Gi)

]
N

)
= − η

N

[
∂fθtL(fθt ;Gi)

]⊤
N
K̄
[
∂fθtL(fθt ;Gi)

]
N

+
η

N

([
∂fθt+1L(fθt+1 ;Gi)

]⊤
N
−
[
∂fθtL(fθt ;Gi)

]⊤
N
−
[
∂fθt+1L(fθt+1 ;Gi)

]⊤
N

)
·K̄ ·

([
∂fθt+1L(fθt+1 ;Gi)

]
N
−
[
∂fθtL(fθt ;Gi)

]
N

)
. (40)

The last term in Equation 40 above can be further detailed as
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Since K̄ is positive definite, it is apparent that
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is a non-negative term. Hence, by combining Equations 39, 40, and 41, we obtain
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Based on the definition of the evaluation functional and the assumption that L is Lipschitz smooth with a constant τ > 0,
the term 2⃝ in the final part of Equation 42 is bounded above as
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Under the assumption that the canonical kernel is bounded above by a constant γ > 0, we have〈
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As a result, 1⃝ is bounded above by
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Meanwhile, the final term in Equation 43 is also bounded above:
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Hence, by combining Equations 42, 43, 44, and 45, we derive
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which means
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Therefore, if η ≤ 1
2τγ , it follows that
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C. Experiment Details
This section outlines the experiment details, covering the experimental setup, supplementary results, and a brief analysis of
graph-level and node-level tasks on benchmark datasets.

C.1. Experimental Setup

Device Setup. We mainly conduct experiments using NVIDIA Geforce RTX 3090 (24G).

Dataset Splitting. The train / val / test split configurations for the benchmark datasets are provided in Table 5.

Dataset train validation test

QM9 110000 10000 10831
ZINC 220011 24445 5000

ogbg-molhiv 32901 4113 4113
ogbg-molpcba 350343 43793 43793

gen-reg 30000 10000 10000
gen-cls 30000 10000 10000

Table 5: Dataset splitting for the benchmark datasets.

Hyperparameter Settings. The key hyperparameter settings for all benchmark datasets are listed in Table 6. The analysis
of the hyperparameter, start-ratio, under GraNT(B) is provided in Table 7.

Dataset lr κ-list batch-size start-ratio (GraNT) epochs

QM9 0.00005 [3, 2] 256 0.05 750
ZINC 0.0004 [5, 4, 2, 2] 256 0.05 1000

ogbg-molhiv 0.01 [4, 3, 2, 2] 500 0.1 600
ogbg-molpcba 0.015 [5, 4, 3, 2, 2] 128 0.1 800

gen-reg 0.0002 [3, 2] 100 0.05 250
gen-cls 0.0002 [4, 3] 200 0.05 500

Table 6: Key hyperparameter settings for the benchmark datasets, with the “start-ratio” specified for GraNT.

Dataset Metric 0.05 0.1 0.2 0.4 0.8 full

QM9 MAE 0.0051 0.0053 0.0053 0.0053 0.0053 0.0051
Training time (s) 6392.26 6974.30 7918.51 10828.18 14081.66 9654.81

ogbg-molhiv ROC-AUC 0.7546 0.7676 0.7652 0.7618 0.7592 0.7572
Training time (s) 1362.09 1457.39 1719.43 2157.05 3173.92 2163.5

gen-cls ROC-AUC 0.9157 0.9156 0.9156 0.9156 0.9156 0.9150
Training time (s) 6145.72 6237.92 6939.95 9459.22 13153.81 11662.25
Table 7: Performance comparison w.r.t. “start-ratio” for different datasets.

C.2. Graph-level Tasks

We train the GCN using GraNT (B), GraNT (S), and the "without GraNT", all under a common experimental setup for
graph-level tasks. For GraNT (B) and GraNT (S), we adopt a curriculum learning strategy (Bengio et al., 2009; Zhang
et al., 2024a). Intuitively, at the start of training, the model is undertrained and undergoes significant changes, which calls
for more frequent selection by the teacher but with small subsets to help the learner better digest the provided graphs; in
contrast, by the end of training, the model stabilizes and is able to digest large subsets. Specifically, the selection interval
progressively widens over 50 stages, beginning from the first epoch and gradually extending to the maximum interval. The
initial selection ratios are predefined (i.e., the "start-ratio" hyperparameter) for each benchmark dataset. Additionally, for
ogbg-molhiv and ogbg-molpcba, we use the ReduceLROnPlateau (Hinton et al., 2012) as the learning rate scheduler,
with the ‘lr’ values in Table 6 representing the initial learning rate. Besides, we activate the learning rate restarting scheme
whenever a new selection action is initiated. More experimental results and a brief analysis are provided below.
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Figure 6: Validation set performance of graph-level tasks on QM9 (regression).
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Figure 7: Training set performance of graph-level tasks on QM9 (regression).

First, we show the validation and training performance for the regression task on QM9 in Figure 6 and Figure 7, along with
the training performance for the regression task on ZINC in Figure 8. For the classification tasks, the training performance
on ogbg-molhiv is displayed in Figure 9. Moreover, the validation / training performance on ogbg-molpcba are provided in
Figure 10 and Figure 11, respectively.

For QM9, as shown in Figure 6, GraNT (B) and GraNT (S) require less time than "without GraNT" and show a quicker
decline in validation loss and MAE curves. In the early stages, the curves follow a nearly linear trend. This occurs because
the learning rate is small, allowing the model to learn simple features and adjust its parameters gradually at the beginning.
As the optimizer moves through the parameter space with steady steps, the model begins to capture more complex features,
resulting in a shift to a nonlinear phase in the validation loss and MAE. In Figure 7, the training loss and MAE curves show
significant fluctuations early on, which can be attributed to the frequent selection process. This requires the model to rapidly
learn and adapt to new teaching graphs. Over time, the curves take on a step-like shape, suggesting that the selection process
is stabilizing and the model has become adequately adaptive. Similarly, the training loss and MAE curves for ZINC in
Figure 8 display similar trends.However, it is worth mentioning that GraNT (B) and GraNT (S) cut down the training time
by around 3.5 hours for ZINC compared to "without GraNT", all while maintaining similar performance.

For ogbg-molhiv, as shown in Figure 9, the training ROC-AUC curve for GraNT (B) and GraNT (S) fluctuates due to
the underlying data imbalance. However, the overall trend and final results align with expectations, even surpassing the
"without GraNT" curve. To showcase the generalizability and scalability of GraNT, we further evaluate it on the large-scale
multi-classification benchmark dataset ogbg-molpcba, which is 10 times larger than the ogbg-molhiv dataset. Figure 10
shows that the validation AP (Average Precision) curves for GraNT (B) and GraNT (S) consistently outperform the "without
GraNT" curve in the mid-to-late stages. Additionally, it is notable that GraNT (B) and GraNT (S) reduce the training time
by approximately 13.8 hours compared to the "without GraNT" setup. These results further emphasize GraNT’s ability to
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Figure 8: Training set performance of graph-level tasks on ZINC (regression).
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Figure 9: Training set performance of graph-level tasks on ogbg-molhiv (classification).

enhance training time efficiency on large-scale and complex datasets, particularly in the fields of chemistry and biomedical
sciences. Additionally, the training loss and AP curves are shown in Figure 11.

Furthermore, on the AMD Instinct MI210 (64GB) device, we also validate the effectiveness of GraNT for graph-level tasks
on the QM9 dataset, highlighting its cross-device effectiveness. As illustrated in Figure 12, GraNT (B) and GraNT (S)
converge more quickly than "without GraNT," showing a faster decline in validation loss and MAE. Roughly speaking,
GraNT (B) and GraNT (S) save more than 40% of the time compared to "without GraNT" while achieving comparable
results.The training curves are displayed in Figure 13.

C.3. Node-level Tasks

We train the GCN with GraNT (B), GraNT (S), and "without GraNT" using a standard experimental setup for node-level
tasks, while applying the same curriculum learning strategy used in graph-level tasks. To evaluate GraNT on synthetic
data, we utilize graphon (Xu et al., 2021; Xia et al., 2023) to create the gen-reg and gen-cls datasets. Specifically, we set
the resolution of the synthetic graphon to 1000×1000, which produces graphs that can be easily aligned by arranging the
node degrees in strictly increasing order. Additionally, each graph contains approximately 100 nodes, with a total of 50k
graphs across both datasets. Lastly, we use a 2-layer GCN with a specific initialization to assign regression properties or
classification labels to each node, while the dimension of node features in all graphs is set to 40.

The training performance results for gen-reg and gen-cls are shown in Figure 14 and Figure 15. In particular, Figure 14
clearly demonstrates that GraNT converges more quickly in terms of wallclock time compared to "without GraNT," which
initially drops faster. This faster initial drop may occur because, for gen-reg, training on all the graphs provides sufficient
information about the implicit mapping from graphs to their properties, resulting in better validation performance in the early
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Figure 10: Validation set performance of graph-level tasks on ogbg-molpcba (multi-task classification).
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Figure 11: Training set performance of graph-level tasks on ogbg-molpcba (multi-task classification).

epochs, even though it requires more computational time. Over time, GraNT selects more representative teaching graphs
(those with larger gradients), gradually accumulating enough information for the implicit mapping. In Figure 15, GraNT (B)
takes the least time and shows a faster decline in the training loss curve compared to GraNT (S), while also reaching the
final ROC-AUC results more quickly. Additionally, the training ROC-AUC curve exhibits significant oscillations early on,
which can be attributed to the frequent selection of a diverse set of teaching graphs and the label imbalance.

In addition, we conduct experiments on node-level tasks with the gen-cls dataset using the AMD Instinct MI210 (64GB)
device, further showcasing cross-device generalizability of GraNT. Specifically, GraNT (B) and GraNT (S) save about
one-third of the time compared to without GraNT, while achieving even better performance. The validation and training
performance results are shown in Figure 16 and Figure 17, respectively. As observed, when the loss curves flatten at their
lowest points, the final validation and training ROC-AUC curves for GraNT (B) and GraNT (S) surpass those of the "without
GraNT" baseline, highlighting GraNT’s effectiveness in improving performance while reducing time consumption.
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Figure 12: Validation set performance of graph-level tasks for QM9 (regression) on AMD device.
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Figure 13: Training set performance of graph-level tasks for QM9 (regression) on AMD device.
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Figure 14: Training set performance of node-level tasks on gen-reg (regression).
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Figure 15: Training set performance of node-level tasks on gen-cls (classification).
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Figure 16: Validation set performance of node-level tasks for gen-cls (classification) on AMD device.
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(a) Training Loss.
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(b) Training ROC-AUC.

Figure 17: Training set performance of node-level tasks for gen-cls (classification) on AMD device.
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