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Abstract

Offline-to-online reinforcement learning has re-
cently been shown effective in reducing the online
sample complexity by first training from offline col-
lected data. However, this additional data source
may also invite new poisoning attacks that target
offline training. In this work, we reveal such vulner-
abilities in critic-regularized offline RL by propos-
ing a novel data poisoning attack method, which is
stealthy in the sense that the performance during
the offline training remains intact, but the online
fine-tuning stage will suffer a significant perfor-
mance drop. Our method leverages the techniques
from bi-level optimization to promote the over-
estimation/distribution shift under offline-to-online
reinforcement learning. Experiments on four en-
vironments confirm the satisfaction of the new
stealthiness requirement, and can be effective in
attacking with only a small budget and without
having white-box access to the victim model.

1 INTRODUCTION

Offline reinforcement learning (RL) has recently opened
up new opportunities of leveraging offline batch data to
improve the RL algorithms, significantly reducing the on-
line sample complexity of interacting with the environment
(Levine et al., 2020). It is particularly valuable for many
applications where directly applying an automated policy
can be dangerous, expensive, or unethical. For example,
educational assistants, autonomous driving, and healthcare.

However, due to the limited coverage of offline data or
the suboptimality of the demonstrator (Fu et al., 2020), a
purely offline trained model is generally not effective when
deployed online, and a common wisdom is to fine-tune it via
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additional online interactions, whose sample complexity is
expected to be saved thanks to the initialization from offline
training (Xie et al., 2021; Nakamoto et al., 2023).

Interestingly, such a direct offline-to-online transfer (O2O)
is often plagued with catastrophic performance drop at on-
line transfer, which poses safety challenges for the real sys-
tem such as driving and therapy. This is primarily due to the
distributional shift of the state (Fujimoto et al., 2019; Kumar
et al., 2019; Fu et al., 2019; Kumar et al., 2020a), and the Q-
value has not been well estimated, often over-estimated, for
the state-actions lying outside the offline distribution (Farah-
mand et al., 2010; Munos, 2005).

Existing literature (e.g. Kumar et al., 2020b; Kostrikov et al.,
2022; Lee et al., 2022; Yu & Zhang, 2023; Nakamoto et al.,
2023) shows that improved O2O RL methods can effec-
tively control negative effect caused by the distribution shift,
hence leading to improved online sample efficiency. Typical
O2O solutions includes endowing conservatism on offline
Q-function approximation (Kumar et al., 2020b; Nakamoto
et al., 2023), or regularizing the divergence between the
learned policy and the behavior policy (Nair et al., 2020), to
avoid catastrophic distribution shift caused by false value
over-estimation. In addition, distribution correction (Lee
et al., 2022), critic reconstruction (Yu & Zhang, 2023), and
ensemble methods (Zhang et al., 2023; Wang et al., 2023)
also show effective O2O transfers.

There is still a long list of O2O methods that emerged re-
cently (Wagenmaker & Pacchiano, 2023; Chen & Wen,
2023; Mark et al., 2023; Lei et al., 2024, etc.). Among
the aforementioned works, surgery on the Q-function is one
of the most prevalent principles to address O2O. As O2O
heavily depends on a “well-behaved”Q-function, it also cre-
ates vulnerability in such scenarios, as one may manipulate
Q-functions in a malicious way.

The key question we investigate in this paper is

Are the O2O algorithms robust to reward poison-
ing on the offline batch data?
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Since offline data often comes from crowd-sourcing or other
third parties, it may carry malicious poisons that catastrophi-
cally damage the online fine-tuning while remaining stealthy
by keeping the offline performance competitive.

In general, poison attack is performed on the training data,
such that the models trained with it will perform poorly
on the test scenarios. In O2O RL, the attacker may alter
the state, action, or reward of the offline data. In this paper,
we focus on poisoning of rewards, and aim to achieve two
objectives:

• Effectiveness: after offline training on the poisoned
data, the agent will suffer a catastrophic performance
drop at the beginning of the online fine-tuning, com-
pared with its performance at the end of the offline
training.

• Stealthiness: during the offline training, the perfor-
mance as measured by interacting with the environ-
ment (but not using it to update the model) should be
similar to that achieved by a clean trained agent. This
is in addition to the standard ℓp norm constraints on
the magnitude of reward modification.

These definitions of stealthiness and effectiveness are partic-
ular realistic. As O2O RL is a two-phase learning scheme,
attacks that aim to undermine the offline performance may
be of less risk to the system because the victim can detect
the low performance of the offline model. However, an at-
tacker that is stealthy offline but effective online could be
more surprising and harmful. Therefore, understanding such
vulnerability of O2O RL is essential towards robust O2O
transfer.

Our contribution is to achieve these goals, revealing the
vulnerability of O2O RL to data poisoning attack. Our inno-
vations can be summarized as follows:

• We propose the first poisoning attack on O2O RL that
promotes the Q-function over-estimation and hence
distributional shift.

• We achieve the poisoning through an efficient bi-level
optimization technique.

• Our approach requires no access to the victim agent or
the online environment.

We applied our poisoner to Frozen Lake (Brockman et al.,
2016) and three locomotion environments from D4RL (Fu
et al., 2020). The stealthiness is clearly verified, and it is
shown more effective in compromising online fine-tuning
performance than other baselines.

2 RELATED WORK

The vulnerability to various types of attacks has been well
studied in supervised learning field. Evasion attack (Good-
fellow et al., 2015) assumes the attacker can manipulate

testing inputs after the victim model is trained. Data poison-
ing attack, on the other hand, is performed on the training
inputs. The attacker may insert (Chen et al., 2017) or modify
the training inputs (Biggio et al., 2012; Shafahi et al., 2018)
to undermine the performance of the trained victim model.

Attacks in Online RL Reward poisoning has been exten-
sively studied in bandit (Ma et al., 2018; Bogunovic et al.,
2021; Garcelon et al., 2020; Guan et al., 2020; Jun et al.,
2018; Liu & Shroff, 2019; Lu et al., 2021; yang et al., 2020;
Zuo, 2020) and online RL (Banihashem et al., 2022; Huang
& Zhu, 2019; Liu & Lai, 2023; Rakhsha et al., 2021a,b; Sun
et al., 2021; Zhang et al., 2020) settings.

Attacks in Offline RL Reward poisoning in batch/offline
RL (Ma et al., 2019; Rangi et al., 2022b; Zhang & Parkes,
2008; Zhang et al., 2009; Rakhsha et al., 2021b,a) is perhaps
more relevant to our work, in contrast to online learning
where the data collection procedure is also polluted due to
attacked policy. In addition, Gong et al. (2022) proposed the
first backdoor attack in offline RL by altering the training
observations; and Wu et al. (2023) designed a data poising
attack specifically on multi-agent RL.

Defenses in RL To address the vulnerabilities raised in the
literature, various defenses against adversarial attacks on RL
have been proposed (e.g., Zhang et al., 2009; Banihashem
et al., 2023; Lykouris et al., 2021; Rangi et al., 2022a).

However, existing attacks in online RL require access to
online environment and are therefore infeasible in many
practical scenarios. On the other hand, offline RL attacks
leads to poor performance during the validation and can
be detected before online fine-tuning. To the best of our
knowledge, the stealthiness notion—where the impact on
performance is not noticeable offline but occurs online—has
not been explored in current literature. Hence, none of the
existing attack (or defense) methods can be directly applied
to O2O RL settings to achieve our objectives.

3 PROBLEM SETUP

In this section, we set up the three participants in the O2O
poisoning problem: the environment, the victim agent, and
the attacker.

3.1 PRELIMINARY

We formulate the RL process via the standard Markov De-
cision Process (MDP)M = (S,A,P, R, γ, µ0). Here S is
the state space,A is the action space, P : S×A×S → [0, 1]
is the transition function, R : S × A → R is the reward
function, γ ∈ [0, 1) is the discount factor, and µ0 : S → R
is the initial state distribution.

For the victim agent, we define its policy π(a|s) as a dis-
tribution of taking action a at state s. The agent’s goal is to



find the optimal policy that maximizes the expected return
π∗ = argmaxπ J(π), where J(π) := Eπ[

∑∞
t=0 γ

trt|M].

In the offline RL setting, there is a batch of transitions
D = {(s, a, r, s′)}, referred to as offline dataset D, that are
collected by applying an unknown behavior policy in the
environment. And the offline agent aims to learn a high-
return policy π given D, although the expected return Jπ
may vary depending on the quality of dataset D. O2O RL
appends a subsequent online fine-tuning stage by continuing
the training of π and Q (if applicable) using new online
interactions along with (optionally) pre-collected offline
data.

In the O2O literature, it has been shown that offline conserva-
tive Q-learning (CQL, Kumar et al., 2020b) followed by an
off-policy algorithm—often soft actor critic (SAC, Haarnoja
et al., 2018)—for online fine-tuning is a strong yet simple
baseline (Lee et al., 2022; Yu & Zhang, 2023). Intuitively,
it is effective because CQL provides a good Q-function ini-
tialization that suppresses Q-values for out-of-distribution
(OOD) actions, avoiding poor online exploration led by false
over-estimation. And using an off-policy algorithm online
allows faster learning as the Q-function is now freed from
conservative constraints/penalties.

As CQL+SAC has served as a common baseline in O2O
literature (Lee et al., 2022; Nakamoto et al., 2023; Yu &
Zhang, 2023), we will use the same CQL+SAC scheme as
our victim O2O agent for continuous action experiments,
including the MuJoCo (Todorov et al., 2012) locomotion
tasks. For discrete action environments such as Frozen Lake,
we used DoubleDQN (Hasselt et al., 2016) as the online
algorithm.

Soft Actor-Critic SAC is an actor-critic algorithm based
on the maximum entropy framework. Akin to canonical
actor-critic, it includes actor update and critic update, as
shown in (2) and (1), respectively. In particular, we em-
ployed SAC-v2 (Haarnoja et al., 2018), an alternative im-
plementation that automatically adjusts the entropy of the
policy, via the Lagrangian dual formulation, where the La-
grangian multiplier is often called the temperature α, and
its update rule is given in (3) via its derivative in α.

LSAC
Q (ψ,D) := E

(s,a,r,s′)∼D

[
(Qψ(s, a)− y(r, s′))

2
]

y(r, s′) :=r+γ E
a′∼πθ(s′)

[Qψ̄(s
′, a′)−α logπθ(a

′|s′)]
(1)

LSAC
π (θ,D) := E

s∼D
E

a∼πθ(s)
[αlogπθ(a|s)−Qψ(s, a)] (2)

LSAC
temp(α,D) :=−α E

s∼D
E

a∼πθ(s)
[log πθ(a|s)− H̄]. (3)

Here the expectation Ea∼πθ(s)[·] could be directly evaluated
for discrete action spaces and be stochastically approxi-
mated for continuous action spaces.

The actor update (2) aims to maximize the Q-values hence

maximizing the cumulative rewards alongside the policy’s
entropy. The critic update (1) aims to find a better soft Q-
function approximation by minimizing the squared tempo-
ral difference error, where ψ̄ stands for target network, a
commonly used trick in RL literature to stabilize RL train-
ing. It can be often updated using the Polyak averaging
(or exponential moving averaging), which is essentially
ψ̄ ← τψ+(1− τ)ψ̄, where τ ∈ (0, 1) is a hyper-parameter
that controls how fast the target network ψ̄ evolves towards
the current Q-network ψ. The temperature update (3) au-
tomatically tunes α > 0 to ensure that the entropy of the
policy is lower bounded by a target entropy H̄.

Conservative Q-Learning CQL is a popular choice for
offline and O2O RL that combats the distribution shift issue.
The central idea is to regularize the Q-values of actions that
are not observed in the offline dataset. Such regularity avoids
over-estimations of OOD actions that may have a low return
in the real environment. We will also provide an illustration
of such a conservative estimation in our toy example in
Figure 1. Specifically, we consider a commonly used variant
of CQL, namely CQL(H), whose regularizer is given in (4)
along with the squared loss. In addition, CQL(H) follows
(5) to update policy for continuous action spaces, while in
discrete space the policy is induced greedily from Qψ .

LCQL
Q (ψ,D) := E

(s,a,r,s′)∼D

[
(Qψ(s, a)− y(r, s′))

2
]

+ λ E
(s,a)∼D

[log
∑
uexp(Qψ(s, u))−Qψ(s, a)]︸ ︷︷ ︸

=: RCQL(Qψ,D)

,

discrete: y(r, s′) :=r+γQψ̄(s
′, argmaxa′Qψ(s

′, a′))

continuous: y(r, s′) :=r+γ E
a′∼πθ(s′)

[Qψ̄(s
′, a′)]

(4)

LCQL
π (θ,D) := − E

s∼D
E

a∼πθ(s)
[Qψ(s, a)]. (5)

whereRCQL is a conservative regularizer, similarly the ex-
pectation Ea∼π(s)[·] and the log-sum-exp log

∑
aexpQ(s, a)

are tractable for discrete action spaces and can be stochasti-
cally approximated for continuous spaces.

Algorithm 1 is an example of O2O protocol with CQL used
for offline training and SAC for online fine-tuning. For our
additional experiments in Section 6.2, one could replace the
offline/online algorithms with corresponding alternatives.

3.2 MOTIVATION

Distribution Shift It is argubly well known, in the O2O
literature (Nair et al., 2020; Lee et al., 2022; Yu & Zhang,
2023; Nakamoto et al., 2023), that (dramatic) distribu-
tion shifts caused by over-estimated Q values for OOD
state/actions lead to catastrophic performance drops dur-
ing O2O transfer. This serves as the key motivation for our
attacking algorithm, which we elaborate on next.



Algorithm 1 O2O protocol: offline (CQL) + online (SAC)

1: Input: offline dataset D = {(s, a, r, s′)}
2: // offline training phase with CQL.
3: initialize CQL parameters θ, ψ, ψ̄
4: for number of offline iterations do
5: sample mini-batch from offline dataset D
6: update ψ, θ with (4), (5) respectively
7: ψ̄ ← τψ + (1− τ)ψ̄
8: end for
9: // online training phase with SAC.

10: load parameters θ, ψ, ψ̄ for SAC
11: initialize temperature α for SAC
12: for number of online iterations do
13: // environmental step
14: a ∼ πθ(a|s), r ∼ R(s, a), s′ ∼ P(s′|s, a)
15: D ← D

⋃
{(s, a, r, s′)}

16: // gradient step
17: sample mini-batch from online buffer D
18: update ψ, θ, α with (1), (2), (3) respectively
19: ψ̄ ← τψ + (1− τ)ψ̄
20: end for
21: Output: network parameters ψ, θ

At offline training time, the target value for Bellman backups
of critic update in (1) uses actions a′ sampled from the
learned policy πθ, while the Q function was trained only
on actions produced by the offline data under the behavior
policy (the expectation overD in (1)). As a result, the offline
learned Q function typically over-estimates the value of
Q(s, a) for an OOD action a, i.e., when a is never applied at
state s in the offline dataset. A similar issue also plagues the
actor update in (2), where Qψ is evaluated on a ∼ πθ(s).

During online fine-tuning, the agent has a chance to update
over-estimated OOD actions due to, for example, ϵ-greedy
exploration and encountering OOD states. The bootstrap
error resulting from over-estimation could wipe out the
offline learned policy that previously performed well.

A Toy Example We now provide a toy bandit example
in Figure 1 to further demonstrate our motivation. The key
idea of this example is that uniformly lifting the Q-values
can achieve both stealthiness and effectiveness, because a
uniform over-estimation would not change the policy in
the offline phase, as demonstrated in Figure 1a; and it will
promote online distributional shift, as shown in Figure 1b.

While the toy example simply assumes that the Q-function
can be directly manipulated to achieve a uniform over-
estimation, this is however infeasible in a poisoning attack
setting. In Section 4, we show that one could achieve it by
formulating it as a bi-level optimization.
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(a) Offline phase: Let Q, Q̂ and Q̃ be the ground truth Q-function,
the CQL approximation without being poisoned, and an uniformly
poisoned Q-function, respectively. The bar plot shows the number
of observed data for the corresponding action. It can be observed
that Q̂ well approximates in-distribution actions {−1, 0, 1} and
under-estimates OOD actions as expected. The poisoned Q̃ is
stealthy as a uniform increase does not change the policy but breaks
the conservatism which would lead to poor online performance.

5 4 3 2 1 0 1 2 3 4 5
Action ID

2

0

2

4

6

8

10

Q
-v

al
ue

ground truth Q 
poisoned approximation Q (online fine-tuned)
greedy action w.r.t. online Q

0

10

20

30

40

50

# 
of

 p
ul

ls

converged due 
to frequent pullsOOD actions still 

over-estimated

Toy bandit problem with Gaussian-like Q-values (online fine-tuning)
offline pulls
online pulls

(b) Online phase: Suppose we initialize an online agent with the
offline poisoned Q̃. After some online interactions, which are clean
as the poisoning is only applied to offline data, one could observe
that the majority of interactions are in-distribution because they
have higher Q̃-values at the beginning. However, by providing
many clean data for in-distribution actions, their Q̃ estimations
converge to ground truth. As a result, the ood actions become
dominate due to higher Q̃ values because they were updated less
frequently, hence promoting online distributional shift.

Figure 1: A toy bandit example, with Gaussian-like reward
function and eleven actions, to demonstrate the intuition
that maximizing Q-values (uniformly) can achieve both
stealthiness and effectiveness.

4 THE ATTACK ALGORITHM

We investigate the vulnerability of O2O RL under data poi-
soning during offline training. Since the attacker is not al-
lowed to perform any attack during the online fine-tuning
phase, the victim will eventually recover from any offline
attack given infinite online training resource. Thus, we set
the attacker’s goal to be such that the victim model, when
fine-tuned online, suffers as much performance drop—both
in magnitude and duration—at the initial phase as possible.



Algorithm 2 Update δr with IFT

1: Input: offline dataset D = {(s, a, r, s′)}, poison δr,
surrogate critic parameters ψ, step size η

2: v1← ∂Lδr

∂ψ |δr,ψ , where Lδr is the outer objective in (6)

3: v2 ← InverseHVP(v1,
∂LQ(ψ,D)

∂ψ ) with LQ from (4).

4: v3 ← ∂2LQ(ψ,D)
∂δr∂ψ

v2. In PyTorch, it can be implemented

by v3 = grad(∂LQ(ψ,D)
∂δr

, ψ, grad_outputs = v2)
5: Output: Updated δr = δr+ ηv3 as (6) is maximization

4.1 THE THREAT MODEL

Following the standard poisoning attack protocol, we as-
sume that the victim may not access clean demonstrations
during offline training. Key to our threat model is the re-
quirement that the victim model must retain good “online
performance” when offline training concludes, because
otherwise the attack would be detected and the model would
be precluded from online fine-tuning. Here the “online per-
formance” is evaluated by hypothetically applying the policy
to an online environment, but without updating the policy
(as opposed to online training). In reality, the agent may
have a very limited budget to run such evaluations, for ex-
ample, running it only once before launching into online
training. However, given that offline policy evaluation is
notorious for its high variance, we define the performance
of offline training in this way, noting that the value of such
evaluation is not used by either the agent’s RL algorithm or
the attacker’s poisoning algorithm.

Although reward, state, and action are all feasible targets of
poisoning on the offline batch data, we restrict our attention
to reward because it is a single scalar and carries less struc-
ture than states and actions, hence allowing more stealthy
poisoning. The attacker is not allowed to access the victim
model, such as its policy network or value functions. Follow-
ing the common practice such as Witche’s Brew (Geiping
et al., 2021) and continual input-aware poisoning (Kang
et al., 2023), the attacker may internally train a surrogate
RL agent and queries it to construct the poisons.

In addition to the aforementioned stealthiness constraints,
we also impose the standard ℓp norm constraints on the
reward perturbations. For example, the ℓ0 norm constraints
specifying how many offline transitions can be perturbed,
and ℓ1 norm constraints on the total or average amount of
perturbation. For a vector x, its ℓ1 norm is ∥x∥1 :=

∑
i |xi|,

and its ℓ∞ norm is ∥x∥∞ := maxi |xi|.

4.2 THE POISONING ALGORITHM

Due to the stealthy requirement, the poisoning algorithms
for offline RL such as Gong et al. (2022) cannot serve our
purpose as it would lead to poor online performance for

the offline trained model. Our inspiration originates from
the distribution shift phenomenon, which shows that over-
estimation of the Q-function will lead to poor online per-
formance, while keeping the performance during offline
training competitive. Thus, we seek to poison the reward
by promoting the resulting Q values at OOD actions, hence
maximally exacerbate the over-estimation problem.

Specifically, we first randomly sample q% offline transi-
tions Cp := {(s, a, rp, s′)} as candidate transitions to be
poisoned. Then we perturb the reward on these transitions
to construct a poisoned buffer Dp = {(s, a, rp + δr, s

′)}.
Finally we combine it with the rest of clean transitions to
construct the poisoned training set Dt := Dp ∪ (D \ Cp).

Let δr be a vector whose components correspond to the
reward perturbation on each transition in Cp. Then our poi-
soner conceptually solves the following constrained bi-level
optimization for δr:

max
δr

E
s∼D

E
a∼µ

[Qψ∗(s, a)]︸ ︷︷ ︸
over-estimation

−βR(Qψ∗ ,Dt)︸ ︷︷ ︸
extra stealthiness

(6)

s.t. ∥δr∥1 / |D
p| ≤ ϵ1 and ∥δr∥∞ ≤ ϵ∞ (7)

ψ∗ ← (surrogate)-victim-RL(Dt). (8)

where µ is a distribution overA,R is a critic regularizer, and
(surrogate)-victim-RL is an offline RL algorithm,
either the victim or a surrogate model. Ideally, we use uni-
form µ to promote uniform over-estimation for stealthiness.
The regularizerR aims to further ensure stealthiness, as ex-
act uniform over-estimation might not be always achievable,
due to, e.g., optimization error or continuous action space.

Note in the first term of the outer objective, we do not require
a to be from the offline data, i.e., it does not have to be what
was taken at state s. This exactly serves our purpose of
simulating OOD actions, and promoting their Q values. It is
similar in spirit to the log-sum-exp term in (4). For Frozen
Lake task, whose action space is discrete and finite, it is
straightforward to apply uniform µ. While for locomotion
tasks with bounded continuous space, the expectation over
a can be efficiently approximated with samples.

For the choice of regularizerR, it can be typically the con-
straints derived for offline RL algorithms, for example com-
monly used KL (Wu et al., 2019), uncertainty quantifica-
tion (Bai et al., 2022), and CQL regularizer RCQL

Q , as its
purpose is to improve offline performance (ensuring stealth-
iness) akin to offline RL regularizers. In practice, we use the
CQL regularizer as it can be implemented for both discrete
and continuous action spaces, respectively.

To summarize, our poisoner solves

max
δr

E
s∼D

E
a∼U(A)

[Qψ∗(s, a)]− βRCQL(Qψ∗ ,Dt) (9)

s.t. (7) and (8). (10)

where U stands for uniform distribution. And the intuition
behindRCQL is to constrain the (poisoned) Q-functions from



Algorithm 3 O2OP: Poison Generation via Surrogate Model

1: Input: clean offline dataset D = {(s, a, r, s′)}
2: randomly pick a set of transitions Cp for poisoning
3: initialize surrogate CQL model parameters θ, ψ, ψ̄
4: initialize poisoned dataset Dp={(s, a, rp + δr, s

′)}
5: combine clean and poisoned dataset into the training

dataset Dt = Dp ∪ D \ Cp
6: for step = 1 ... number of offline steps do
7: sample a mini-batch from Dt
8: // surrogate-victim-RL steps
9: update ψ, ψ̄, θ according to (4) and (5)

10: // IFT steps for poison update
11: if step mod IFT_freq. == 0 then
12: // access to only surrogate model ψ
13: update δr via Algorithm 2 using ψ
14: end if
15: end for
16: // output poisoned Dt for subsequent victim training
17: Output: Dt, which applies reward perturbation δr

deviating from the dataset actions, a common technique in
offline RL. This is achieved by maximizing the Q values of
the dataset actions withRCQL.

4.3 SOLVING THE BI-LEVEL OPTIMIZATION

To solve (9), a key quantity needed is the derivative of the
outer objective with respect to δr, which in turn needs the
derivative of Qψ∗ with respect to δr. This is challenging be-
cause their dependence is through an offline RL algorithm.
The fundamental mathematical solution is the implicit func-
tion theorem (IFT), based on which a number of techniques
with improved computational and spatial complexity have
been widely used in previous works on hyper-parameter
tuning (Bengio, 2000; Maclaurin et al., 2015; Shaban et al.,
2019; Lorraine et al., 2020). Here, we utilize these tech-
niques in a similar way as described in Algorithm 2, where
instead of tuning the hyper-parameter, we update δr. In par-
ticular, we follow Lorraine et al. (2020) and approximate
the Inverse Hessian Vector Product (HVP) by using the
Neumann approximation.

Equipped with the gradient in δr, we could simply perform
gradient based updates such as ADAM. However, this is very
expensive because IFT-style algorithms require solving the
inner offline RL to the optimal. For computational efficiency,
we only run offline RL for a few steps in each iteration, and
use the suboptimal ψ to update δr via Algorithm 2. The
entire procedure is summarized in Algorithm 3, illustrating
how the attacker generates the poison δr, hence the poisoned
dataset Dt. And the victim algorithm, not necessarily has to
be the same as the surrogate algorithm (CQL) will then be
trained on Dt. We will refer to it as O2O poisoner (O2OP).

It is noteworthy that the attacker does not require accessing

Algorithm 4 Baselines: poison-uniform/wb

1: Input: clean offline dataset D = {(s, a, r, s′)}
2: randomly pick a set of transitions Cp for poisoning
3: initialize victim model parameters θ, ψ, ψ̄
4: initialize poisoned dataset Dp={(s, a, rp + δr, s

′)}
5: // fixed perturbation for poison-uniform
6: if poison-uniform then δr ← ϵ1 end if
7: obtain the training dataset Dt = Dp ∪ D \ Cp
8: for step = 1 ... number of offline steps do
9: sample a mini-batch from Dt

10: // victim-RL steps
11: update ψ, ψ̄, θ according to (4) and (5)
12: // simultaneously poisoning for poison-wb
13: if poison-wb and stepmod IFT_freq.==0 then
14: // poison-wb accesses victim-RL
15: update δr via Algorithm 2 using ψ
16: end if
17: end for

the victim agent’s model, neither the policy nor the value
functions. Instead, it trains its own surrogate agent based on
which the poison is constructed. Surrogate models are quite
commonly used (Geiping et al., 2021; Kang et al., 2023;
Souri et al., 2022; Cherepanova et al., 2021; Goldblum et al.,
2023), and its effectiveness is far from trivial because RL
is well known for high variance. With different seed and
different mini-batches sampled, the surrogate agent can be
quite different from the real agent, making it nontrivial for
the learned poison to remain effective.

5 EMPIRICAL EVALUATION

We now empirically verify that our proposed poisoner O2OP
fulfills the aforementioned objectives. We tested on Frozen
Lake (Brockman et al., 2016), Hopper, HalfCheetah, and
Walker2d environments from the D4RL dataset (Fu et al.,
2020). In this section, we use CQL for offline training, and
SAC or DDQN for online fine-tuning in continuous or dis-
crete tasks, respectively. Following the common protocol,
we repeated experiments on each environment with 5 seeds,
and then plotted the mean return from the 5 trials.

Baseline Comparators Since there is yet no existing al-
gorithm addressing our task, we adopted a uniform poisoner
which sets all δr to ϵ1. To study the effectiveness of us-
ing surrogate models, we also compared with an attacker
which has white-box access to the victim model. These
two methods will be referred to as poison-uniform and
poison-wb, respectively.

Environments Frozen Lake is a discrete text environment.
The environment consists a 4-by-4 or 8-by-8 grid, with a
goal state and several holes (terminal states). The agent re-
ceives a reward of 1 for reaching to goal state, and reward



Figure 2: Visualizations of Frozen Lake, HalfCheetah, Hop-
per and Walker2d, respectively.∗

of 0 for all other states. It should aim to reach the goal state
without falling into a hole. Locomotion tasks are simulated
robotics environments, where the rewards are measured by
the forward travel distance while staying “stable”. D4RL
dataset contains a collection of different skill levels for each
locomotion task, depending on the average return of behav-
ior policy that collects the dataset. We use “medium” level
dataset for our experiments. Figure 2 visualized a typical
4-by-4 Frozen Lake, as well as locomotion environments.

5.1 DISCRETE ENVIRONMENT: FROZEN LAKE

We trained an offline discrete CQL agent for 100 epochs,
with 500 steps in each epoch. The online agent was trained
for 50 epochs on clean online environment, with a buffer
carried over from their offline phase. For this environment,
we included all offline transitions D in our candidate set
Dp, and tested with ϵ1 ∈ {0.1, 0.02} and ϵ∞ = 1 from
(7). O2OP first generated δr from a surrogate model as
described in Algorithm 3, and used it to poison a new victim
which was trained by CQL with a different initialization and
mini-batch sampling seed.

Figure 3 shows the average online return during the offline
training (left) and online fine-tuning (right), both at ϵ = 0.1.
All poisoned victims perform similarly to the clean trained
agent during the offline phase, fulfilling the stealthiness
objective. However, our O2OP drove down the online return
from 0.65 to 0.3, which is only slightly higher than that
of the white-box poisoner (0.25). In contrast, the online
return of the uniform baseline stayed above 0.45. We also
aggregated the average returns over all offline or online steps
by taking their mean. This is provided in the legend.

We further reduced our budget to ϵ1 = 0.02 in Figure 4.

*Figures borrowed from (Brockman et al., 2016).

Figure 3: O2O return in offline phase (left) and online phase
(right) for Frozen Lake with ϵ1 = 0.1

Figure 4: Frozen Lake with ϵ1 = 0.02

Here, the stealthiness remains satisfied offline. During on-
line fine-tuning, the uniform poisoned victim agent has a
minimum average return above 0.5, while our O2OP drives
it below 0.35, which is almost the same as the white-box
attacker. This confirms the effectiveness of our O2OP.

5.2 CONTINUOUS ENVIRONMENTS

We next move on to illustrate the attack effectiveness in a
continuous space. The continuous CQL agents were trained
for 600 epochs offline, with 500 gradient steps per epoch.
The online continuous SAC agents were trained for addi-
tional 100 epochs. We reduced the poison ratio to 2% (i.e.
q = 2) for more realistic attacks.

Hopper As the hopper-medium dataset has rewards rang-
ing in (0, 6), we increased our poison’s ℓ1 norm budget to
ϵ1 = 4. To improve stealthiness, we enforced the constraint
∥δr∥∞ ≤ ϵ∞ = 5. Accordingly, the same choices were
made on both baselines poison-uniform/wb. Despite
the slightly high values of ϵ1 and ϵ∞, we only poison 2%
of the transitions, which is consistent with poisoning or
backdoor attacks in supervised learning.

Figure 5 shows that, analogously to Frozen Lake, all the
three poisoners perform similarly to the clean unpoisoned
case in terms of the offline performance, which again con-
firms the stealthiness of O2OP. During online fine-tuning,



Figure 5: O2O return in offline phase (left) and online phase
(right) for Hopper with 2% poison.

Figure 6: O2O return in offline phase (left) and online phase
(right) for HalfCheetah with 2% poison.

Figure 7: O2O return in offline phase (left) and online phase
(right) for Walker2d with 2% poison.

however, O2OP achieves a performance drop from 3000
to 2600 (when online iteration is around 46000), while the
white-box version can further slash it to 2000. In contrast,
poison-uniform can hardly degrade the online return,
if at all. This shows that O2OP remains effective in this
continuous space with a small poison ratio.

HalfCheetah The reward in halfcheetah-medium lies be-
tween −3 and 9, with the mean around 5. We again only
poisoned 2% transitions, and set ϵ1 = 4 and ϵ∞ = 5.
Similarly to Hopper, Figure 6 shows our O2OP effectively
created a return drop during the online fine-tuning, while
poison-uniform is again nearly harmless to the vic-

Figure 8: O2O return in offline phase (left) and online phase
(right) on Hopper with varying ϵ1 and ϵ∞ budgets.

tim at the same ratio and budget. The offline stealthiness is
evidenced once more as the four methods achieve similar
offline returns.

Walker2d The walker2d-medium dataset has similar re-
ward range as halfcheetah-medium, and we thus used identi-
cal settings to it. As shown in Figure 7, the poisoned offline
return remains comparable to the clean offline return, i.e.,
stealthy. Although the online return seems less stable than
in the previous experiments, O2OP managed to curtail the
return from 3800 to nearly 2500 at its lowest, while the
clean and poison-uniform baselines produce returns
fluctuating between 3200 and 4000.

6 ABLATION STUDIES

We further experiment with our method using different ℓp
budgets, alternative victim algorithms, different model ar-
chitectures, and under defense strategies.

6.1 IMPACT OF ℓp BUDGET

We also tested with different budget of ϵ1 and ϵ∞ on Hopper.
As Figure 8 shows, different budgets do not affect the offline
return too much. On the other hand, the amount of online
performance drop does vary significantly with the budgets.
In general, a larger poison budget leads to a greater drop.

6.2 ALTERNATIVE CHOICE OF VICTIMS

In addition, we will apply our attack to different choices
of offline victims. Specifically, we consider two critic-
regularized offline algorithms: BRAC (Wu et al., 2019) and
PBRL (Bai et al., 2022), where one regularizes the critic
updates to avoid over-estimation akin to CQL. The corre-



sponding updates of BRAC and PBRL are listed below:

LBRAC
Q (ψ,D) := E

(s,a,r,s′)∼D

[
(Qψ(s, a)− y(r, s′))

2
]

y(r, s′) :=r+γ E
a′∼πθ(s′)

[Qψ̄(s
′, a′)−αDs′(πθ|πb)]

(11)

LBRAC
π (θ,D) := E

s∼D
E

a∼πθ(s)
[αDs′(πθ|πb)−Qψ(s, a)]

(12)

LPBRL
Q (ψ,D) := E

(s,a,r,s′)∼D

[
(Qψ(s, a)− y(r, s′))

2
]

+ E
s∼D

E
a∼πθ

[
(Qψ̄(s, a)− αEψ̄(s, a)−Qψ(s, a))2

]
y(r, s′) :=r+γ E

a′∼πθ(s′)
[Qψ̄(s

′, a′)−αEψ̄(s′, a′)]

(13)

LPBRL
π (θ,D) := − E

s∼D
E

a∼πθ(s)
[Qψ(s, a)] (14)

where Ds(πθ|πb) := D(πθ(·|s)|πb(·|s)) is a (sample-based
approximation of) divergence between the learned policy
πθ and a reference/behavior policy πb (optionally learned
by behavior cloning); and Eψ̄(s, a) := std(Q

(i)

ψ̄
(s, a)) is an

uncertainty quantification using ensembled Q-functions.

We conducted additional experiments with BRAC+DQN
and PBRL+DQN in Frozen Lake to validate the effective-
ness beyond CQL as victim (where BRAC or PBRL is used
for both victim and surrogate). Figure 9 shows the proposed
attack remain effective for different O2O RL choices.

6.3 ALTERNATIVE CHOICE OF SURROGATE

To further test O2OP’s effectiveness when the surrogate and
victim models are different, we now use BRAC and PBRL
as surrogate models, and keep CQL as the victim. Figure 10
shows that our O2OP remains effective with different surro-
gate models.

6.4 IMPACT OF NETWORK ARCHITECTURE

To further demonstrate the effectiveness of O2OP when the
surrogate and victim models have different network architec-
tures, we use the same victim architecture (two hidden layers
of size 256 each) for the clean, O2OP-same-network, and
O2OP-different-network experiments. O2OP-same-network
means the surrogate model has the same architecture as
the victim model, while O2OP-different-network uses a
network with layers of sizes {32, 64, 128} to generate δr.
Figure 11 demonstrates that O2OP remains effective even
with different surrogate model architectures.

6.5 ASSESSING O2OP UNDER DEFENSE

We next study how well our attack remains effective in
the face of defense algorithms. To this end, we added two
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Figure 9: Ablation on different victim algorithms with
Frozen Lake: we in addition test BRAC and PBRL as offline
victim algorithms.
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Figure 10: Ablation on different surrogate models with
Frozen Lake: CQL remains the offline victim algorithm,
but BRAC and PBRL are used as surrogate to learn δr.

simple defense strategies: (i) using a single-class SVM, an
unsupervised outlier detection method, to filter and remedy
the data; (ii) a uniform decrease, by the mean of the learned
δr, to all poisoned rewards. Note that the second defender
is a “strong” one in the sense that it leverages knowledge
(the mean of δr) that is not typically available to defend-
ers. Nonetheless, we observe that these defenses were not
effective as shown in Figure 12.

7 FURTHER DETAILS

Regularizer RCQL For continuous action space, we fol-
low the implementation of d3rlpy (Seno & Imai, 2022). For
discrete action space, we first observe thatRCQL is equiva-
lent to a cross-entropy loss (or negative log-likelihood):

RCQL(Q,D) := E
(s,a)∼D

[log
∑
uexp(Q(s, u))−Q(s, a)] (15)

=− E
(s,a)∼D

[
log

expQ(s, a)∑
uexpQ(s, u)

]
=− E

(s,a)∼D
[logπQ(a|s)]

(16)

We then use label smoothing with ϵ = 0.1 for a smoother
regularization, as different actions amay present in the same



Figure 11: O2O return in offline phase (left) and online
phase (right) for Frozen Lake when surrogate model having
different network architectures.

Figure 12: O2O return in offline phase (left) and online
phase (right) for Frozen Lake under potential defense.

state s, unlike in standard classification problems.

Offline Dataset Collection D4RL does not have a dataset
for Frozen Lake. Instead, we collect an offline dataset our-
selves by following a collection procedure similar to prior
offline RL works (Kumar et al., 2019; Wu et al., 2019). We
first train a near-optimal policy through online interaction
and then use this policy to collect a certain number of tra-
jectories in the environment. The collected dataset has 5
trajectories with 195 transitions and an average return of 1.

IFT Optimizer We use a community implementation of
the IFT optimizer* for our bi-level optimization.

8 CONCLUSION

Summary We proposed a novel reward poisoning method
that reveals the vulnerability of O2O RL fine-tuning under
a novel stealthiness notion—impact occurs only during on-
line fine-tuning while the offline RL performance remains
intact. Our approach leverages the distribution shift phe-
nomenon during O2O transfer by promoting Q-function
over-estimation for out-of-distribution actions through a bi-
level optimization performed with the application of the
implicit function theorem.

*Available at here.

Limitation Our work only tested critic-regularized offline
RL methods—CQL, BRAC, and PBRL—as our method
is motivated by the over-estimated Q-function to make
those critic regularizations less effective. It remains unclear
whether such vulnerability exists in other categories of O2O
algorithms, such as actor regularization (Nair et al., 2020),
replay distribution correction (Lee et al., 2022), or policy
ensemble (Zhang et al., 2023; Wang et al., 2023).

Future Direction To further extend our understanding of
O2O RL, it is important to study the aforementioned non-
critic-regularized methods, as each of these categories may
present unique vulnerabilities and characteristics that differ
from critic-regularized methods.

Additionally, exploring effective defense is vital for a robust
O2O training pipeline. Future research could focus on de-
veloping resilient learning algorithms and enhancing data
sanitization techniques to detect and remove perturbed data.

Societal Impact Our work focuses on understanding of
the vulnerability of RL algorithms, particularly in the con-
text of O2O transfer. While we introduce a novel reward
poisoning method to study vulnerabilities in RL fine-tuning,
it is important to highlight that our research is conducted
strictly within a controlled experimental setting and is in-
tended purely for academic and scientific purposes.

The environments we use, Frozen Lake and MuJoCo loco-
motion tasks, are toy-level simulations. These simplified
scenarios ensure that our research remains theoretical and
cannot be misused by third parties to cause real-world harm.
Our intention is to identify weaknesses in RL systems to
help develop more resilient and secure algorithms.

By exposing and analyzing these vulnerabilities, we aim to
contribute to the broader field of RL safety and robustness,
ultimately leading to stronger and more reliable RL fine-
tuning models. This, in turn, can enhance the safety and
performance of RL applications in various domains.

Our work does not support or encourage the malicious use
of reward poisoning techniques. Instead, our findings are
intended to serve as a foundation for developing effective
defense strategies against such attacks. By sharing our in-
sights with the research community, we hope to foster a
collaborative effort towards mitigating the risks associated
with adversarial attacks in RL.

Overall, our work is designed to advance the field of RL in
a positive and constructive manner, with the ultimate aim of
creating safer and more robust RL systems that can benefit
society as a whole.
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