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Abstract
We perform the first adversarial robustness study
into Graph Neural Networks (GNNs) that are
provably more powerful than traditional Message
Passing Neural Networks (MPNNs). In particular,
we use adversarial robustness as a tool to uncover
a significant gap between their theoretically pos-
sible and empirically achieved expressive power.
To do so, we focus on the ability of GNNs to count
specific subgraph patterns, which is an established
measure of expressivity, and extend the concept
of adversarial robustness to this task. Based on
this, we develop efficient adversarial attacks for
subgraph counting and show that more powerful
GNNs fail to generalize even to small perturba-
tions to the graph’s structure. Expanding on this,
we show that such architectures also fail to count
substructures on out-of-distribution graphs.

1. Introduction
In recent years, significant efforts have been made to develop
Graph Neural Netwoks (GNNs), for several graph-related
tasks, such as molecule property predictions (Gasteiger et al.,
2020), social network analysis (Fan et al., 2019), or combi-
natorial problems (Gasse et al., 2019), to name a few. The
most commonly used architectures are based on message
passing, which iteratively updates the embedding of each
node based on the embeddings of its neighbors (Gilmer
et al., 2017). Despite their broad success and wide adoption,
different works have pointed out that so called Message
Passing Neural Networks (MPNNs) are at most as powerful
as the 1-Weisfeiler-Lehman (WL) algorithm (Morris et al.,
2019; Xu et al., 2019) and thus, have important limitations in
their expressive power (Chen et al., 2020). This encouraged
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Figure 1. GNNs more powerful than 1-WL are not adversarially
robust for subgraph-counting tasks.

the development of provably more powerful architectures.

However, there is no guarantee that the training process also
yields models that are as powerful as theoretically guaran-
teed. Thus, this work investigates if and to what extent the
empirically achieved expressivity of such GNNs lacks be-
hind their theoretic possibilities by taking a novel look from
the perspective of adversarial robustness. In particular, we
focus on the task of counting different subgraphs, which is
provably impossible for MPNNs (Chen et al., 2020) (except
for very limited cases), but important for many downstream
tasks (Huang et al., 2023; Liu et al., 2019; Monti et al.,
2018).

Using our new adversarial framework for subgraph counting,
we find that the counting ability of theoretically more power-
ful GNNs fail to generalize even to small perturbations to the
graph’s structure (see Figure 1). A result even more interest-
ing given that subgraph counting is polynomially solvable
for fixed subgraph sizes (Shervashidze et al., 2009).1 We
expand on these results and show that these architectures
also fail to count substructures on out-of-distribution (OOD)
graphs. Furthermore, retraining the last MLP layers respon-
sible for the prediction based on the graph embedding does
not entirely resolve this issue.

Contributions. (i) We perform the first study into the ad-
versarial robustness of GNNs provably more powerful than
the 1-WL and use it as an effective tool to uncover a sig-
nificant gap between the theoretically possible and empiri-
cally achieved expressivity for substructure-counting tasks

1In general, this problem is NP-complete (Ribeiro et al., 2021)
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Figure 2. Examples of graph patterns used for subgraph-counting.

(see Section 6). (ii) We extend the concept of an adver-
sarial example from classification to (integer) regression
tasks and develop multiple perturbations spaces interest-
ing for the task of subgraph counting (see Section 4). (iii)
We develop efficient and effective adversarial attacks for
subgraph counting, operating in these perturbations spaces
and creating sound perturbations, i.e., where we know the
ground truth (see Section 5). (iv) In Section 6.2 we show
that subgraph-counting GNNs also fail to generalize to
out-of-distribution graphs, providing additional evidence
that these GNNs fail to reach their theoretically possible
expressivity. Our code implementation can be found at
https://github.com/francesco-campi/Rob-Subgraphs.

2. Background
We consider undirected, unattributes graphs G=(V,E) with
nodes V ={1, . . . , n} and edges E⊆{{i, j} | i, j ∈ V, i ̸=j},
represented by adjacency matrix A ∈ {0, 1}n×n. A graph
GS = (VS , ES) is a subgraph of G if VS ⊆ V and ES ⊆ E.
We say GS is an induced subgraph if ES contains all edges
in E that connect pairs of nodes in VS . An egonet egol(i) is
the induced subgraph containing all nodes with a distance of
at most l from root node i. Furthermore, two graphs G,G′

are isomorphic (≃) if there exists a bijection f : V → V ′

such that {i, j} ∈ E if and only if {f(i), f(j)} ∈ E′.
Lastly, the diameter diam(G) denotes the length of the
largest shortest path in graph G.

2.1. Subgraph-Counting

Consider a fixed graph H which we call a pattern (Fig-
ure 2). A classic graph-related problem is the (induced-)
subgraph-counting of the pattern H (Ribeiro et al., 2021),
which consists of enumerating the (induced) subgraphs of
G isomorphic to H . The subgraph-count of H is denoted by
C(G,H), and by CI(G,H) in the induced case. To simplify
the notation we will also refer to it as C(G) if H is given
in the context. Several algorithms have been developed to
solve the task of subgraph-counting. In this work we specif-
ically consider the (exact) algorithm of Shervashidze et al.
(2009) (presented in Appendix B) due to its low computa-
tional cost.

2.2. Expressivity of Graph Neural Networks

The expressivity of machine learning models is about which
functions they can and cannot approximate. There are dif-

Figure 3. Pair of undistinguishable graphs for MPNNs with differ-
ent triangle counts.

ferent ways of studying the expressive power of GNNs. In
this work we specifically consider their ability to count sub-
graphs (Chen et al., 2020) because it is strictly related to
different real-world tasks such as computational chemistry
(Jin et al., 2020) and social network analysis (Jiang et al.,
2010). We define the ability to count subgraphs as follows:

Definition 2.1. A family of functions F can perform
subgraph-counting of a target pattern H on a graph class G if
for any two graphs G1, G2 ∈ G with C(G1, H) ̸= C(G2, H)
there exists a function f ∈ F such that f(G1) ̸= f(G2).

Surprisingly, MPNNs have considerable limitations in
subgraph-counting. In fact, Chen et al. (2020) show that
MPNNs are not able to count induced patterns with three or
more nodes, leaving out only the ability to count edges. For
example, Figure 3 shows two graphs that, despite having
different triangle counts, will always return identical outputs
when fed in the same MPNN.

A different perspective to measure the expressive power
is graph isomorphism. In this regard, Xu et al. (2019);
Morris et al. (2019) demonstrated that an MPNN is at most
as powerful as 1-WL isomorphism test at distinguishing
pairs of non-isomorphic graphs. Moreover, since the WL
algorithms are designed to extract representation vectors
from graphs, they could be used also to perform subgraph-
counting. In particular, Chen et al. (2020) showed that k-
WL, and equivalently powerful architectures, can perform
substructure-counting for patterns with at most k nodes,
creating a connection between the two approaches.

2.3. More Expressive Graph Neural Networks

In this work, we analyze two state-of-the-art architectures
for the task of subgraph counting: PPGN (Maron et al.,
2019a), and I2-GNN (Huang et al., 2023). PPGN represents
the graph structure in a tensor and exploits tensor multiplica-
tions to enhance the expressivity. It reaches the same expres-
sive power of 3-WL, which makes it capable of counting
patterns of size three. I2-GNN, following the approach of
subgraph GNNs (Frasca et al., 2022), decomposes the whole
graph into different subgraphs and processes them indepen-
dently with an MPNN. It has been explicitly developed to
be expressive enough for counting different substructures
and most important for this work, can count arbitrary pat-
terns of size four. Both, PPGN and I2-GNN are effective
architectures for downstream tasks such as molecular prop-
erty predictions.

https://github.com/francesco-campi/Rob-Subgraphs
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3. Related Work
Chen et al. (2020) were the first to study the expressivity
of GNNs w.r.t. their ability to count substructures. They,
and later Tahmasebi et al. (2021) proposed architectures for
counting substructures. However, these suffer from high
computational complexity. Yu et al. (2023) proposed an
architecture purely focusing on subgraph counting. How-
ever, subgraph counting alone can be solved by efficient
randomized algorithms (Bressan et al., 2021). Thus, in this
work, we focus on efficient architectures, which leverage
their subgraph counting ability to improve generalization for
other downstream tasks. In particular, we focus on PPGN
(Maron et al., 2019b) and I2-GNN (Huang et al., 2023).
Both achieve state-of-the-art results for substructure count-
ing while having formal expressivity guarantees.

Different works have studied the adversarial robustness of
GNNs for graph-level classification (Dai et al., 2018) and
node-level classification (Zügner et al., 2018). Regarding
the latter, Gosch et al. (2023) exactly define (semantic-
preserving) adversarial examples. Moreover, Geisler et al.
(2022) use adversarial attacks with sound perturbation mod-
els, i.e., where the ground truth change is known, to in-
vestigate the generalization of neural combinatorial solvers.
Conversely, adversarial robustness for regression tasks has
currently received very little attention (Deng et al., 2020).

4. Robustness in Subgraph-Counting
The field of adversarial robustness is about the problem that
machine learning models are vulnerable to small changes to
their inputs (Goodfellow et al., 2015). In particular, for the
subgraph-counting problem we want to analyze whether the
error of the models increases when tested on perturbed input
graphs G̃ of a graph from a set of perturbed graphs P(G).
To evaluate the performance of a model f on perturbed
graphs G̃ ∈ P(G) we use the following adversarial loss:

ℓadv(G̃) := |f(G̃)− C(G̃,H)|.

4.1. Subgraph-Counting Adversarial Examples

To empirically evaluate the expressivity of machine learning
models for subgraph-counting via adversarial robustness,
we have to introduce a notion of adversarial example. In
classification tasks adversarial examples are simply pertur-
bations that change the predicted class. In general regression
tasks one can define a threshold on ℓadv for which we call a
perturbed graph an adversarial example (Deng et al., 2020).
However, this definition is application-dependent and, in
our work, we define a specific threshold exploiting the fact
that subgraph-counting is an integer regression task.

Definition 4.1. Given a model f and clean graph G, we say
that G̃ ∈ P(G) is an adversarial example for f if:

(i) ⌊f(G) + 0.5⌋ = C(G)

(ii) ⌊f(G̃) + 0.5⌋ ≠ C(G̃)

(iii)
ℓadv(G̃)− ℓadv(G)

ℓadv(G)
> δ.

The conditions (i) and (ii) guarantee that the model predic-
tion, when approximated to the nearest integer, is correct
for G and wrong for G̃. Here, having a correct initial pre-
diction is essential to clearly distinguish the performances
on the original graph from the perturbed graph. In addition,
the condition (iii) ensures that a margin exists between
the errors on the original data instance and the perturbed
one, and the size of the margin depends on the value of
δ. This requisite prevents easily generating adversarial ex-
amples from graphs that are almost wrongly predicted, i.e.
ℓadv(G) ≈ 0.5.

4.2. Perturbation Spaces

We define different perturbation spaces for a graph G as
constrained sets of structurally perturbed graphs constructed
from G. In particular, we consider different combinations of
edge deletions and additions, for example E′ = E ∪ {i, j}
with {i, j} /∈ E represents an edge addition. We always
consider sound perturbation models, i.e, where we know
the ground truth change. These are efficiently implemented
as described in Section 5. It is meaningful to limit the
number of perturbations in order to control how shifted the
distribution of the perturbed subgraph-counts is compared
to the distribution of the original ones. Then, we define the
constrained perturbation space with maximal budget ∆ as:

P∆(G) := {G̃ | 1
2
∥A−A′∥0 ≤ ∆}, (1)

where ∥ · ∥0 represents the number of non-zero elements, i.e.
the number of perturbed edges.

Semantic-Preserving Perturbations. Additionally, we con-
duct a robustness analysis more closely in line with adver-
sarial examples for classification tasks, by incorporating
a further constraint to guarantee the preservation of a spe-
cific level of semantic meaning. In particular, we define the
count-preserving perturbation space as:

Pc
∆(G) := {G̃ | G̃ ∈ P∆(G) ∧ C(G̃) = C(G)}. (2)

Additionally, when considering induced subgraphs, keeping
the count constant does not guarantee that the subgraphs
isomorphic to the pattern remain the same. In fact, perturba-
tions can simultaneously delete a subgraph isomorphic to
the pattern and generate a new one (see Figure 4). We will
denote the subgraph-preserving perturbation space by

Ps
∆(G) := {G̃ | G̃ ∈ P∆(G) ∧
GS ⊆ G,GS ≃ H ⇐⇒ GS ⊆ G̃,GS ≃ H}.

(3)
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Figure 4. This Figure shows examples demonstrating that not all
the count-preserving perturbations are also subgraph-preserving
ones. On the left a subgraph- and count-preserving perturbation
for 4-cycles where the red edge has been deleted. On the right
a perturbation that leaves unchanged the count of 2-paths, but it
deletes the induced substructure {2, 3, 4} to generate {1, 2, 3}.

5. Subgraph-Counting Adversarial Attacks
For a subgraph-counting model f , the goal of an adversarial
attack is to find the pertubed graph G∗ ∈ P(G) that causes
the maximal error increase. This problem can be formulated
as an optimization problem:

G∗ = argmax
G̃∈P(G)

ℓadv(G̃). (4)

Attacking subgraph-counting GNNs for studying their em-
pirical expressivity is particularly challenging. In fact, (i)
the subgraph-count can vary significantly even for slight
structural changes, and (ii) finding G∗ of Equation (4) re-
quires solving a discrete optimization problem.

5.1. Sound Perturbations for Subgraph-Counting

To tackle the sensitivity of the counts to structural changes,
we exploit the exact algorithm to update the ground-truth
count after every perturbation. In this way, we generate
sound perturbations since the exact ground-truth value is
know. In order to prevent this step to become computa-
tionally prohibitive, we develop an efficient count updating
scheme that uses only a small portion of the graph.

Proposition 5.1. Consider a graph G and a pattern H with
diam(H) = d. Then, for every edges {i, j} we have that
egod(i) and egod(j) contain all the subgraphs GS ⊂ G
such that GS ≃ H and i, j ∈ VS .

Proof in Appendix A.

When an edge {i, j} is perturbed, only the subgraphs con-
taining both the end nodes can be affected and potentially
change their isomorphism relation with H . Therefore, ac-
cording to Proposition 5.1, it is sufficient to verify potential
count changes only in egod(i) (or equivalently egod(j)).
Specifically, the theorem assumes that {i, j} is contained
in the graph, hence we extract the egonet from the graph
including {i, j} (original for edge deletion and perturbed
for addition). Next, from the nodes of egod(i) we generate
the induced subgraphs GS and G̃S from the original and
perturbed graphs respectively. Since the possible alterations

Algorithm 1 Beam search (greedy search for k = 1)
Input: G,∆, k
G(0) = {G}
for i = 0 to ∆− 1 do
P(i) = {}
for G̃ in G(i) do
P(i) = P(i) ∪P1(G̃) {or Pc

1(G), Ps
1(G)}

end for
G(i+1) = greatest k in {ℓadv(G̃) | G̃ ∈ P(i)}

end for
Return: G∗ = argmaxG̃∈G(∆){ℓadv(G̃)}

of the subgraph-count are enclosed in GS and G̃S , we have
the following count update rule.

Proposition 5.2. Let G̃ be a perturbation of a single edge
of a graph G, then there holds:

C(G̃) = C(G) + C(G̃S)− C(GS).

Following Proposition 5.2 we need to run the subgraph-
counting algorithm only on the smaller subgraphs GS and
G̃S , rather than on the whole graph G̃. Additionally, Propo-
sition 5.1 guarantees that potential changes in the subgraphs
isomorphic to the patterns are also constrained in the egonet,
thus it can be used also identify perturbations belonging to
the subgraph-preserving perturbation space Ps

∆ .

5.2. Construction of Adversarial Examples

To create adversarial examples we need to solve the discrete
optimization problem in Equation (4). To do so we develop
algorithms that generate more powerful perturbation one
change at a time, in this way, we keep track of the exact
count with the update rule (Proposition 5.2).

Greedy Search. We develop an efficient and effective
greedy search algorithm (Algorithm 1). At each step we
select the most effective perturbation of the current per-
turbed graph G̃ in P1(G̃) (or in Pc

1(G̃),Ps
1(G̃)) until the

budget limit is reached. The new subgraph-counts of per-
turbations in P1(G̃) are computed with Proposition 5.2,
whereas the preserving perturbation spaces are generated
with Algorithm 2.

Beam search. A more advanced algorithm that does not
increase the computational complexity is beam search. Con-
cretely, it follows simultaneously k different paths to explore
more extensively the perturbation space (see Algorithm 1).

To improve the computational efficiency the perturbations
in P1 can be randomly selected according to the degrees
of the end nodes of the perturbed edge. Concretely, the
probability to pick the perturbation where the edge {i, j}
has been added (or deleted) is proportional to d(i)2 + d(j)2,
since intuitively these are the most relevant edges.
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Algorithm 2 Pc
1(G) generation (analogous for Ps

1(G))
Input: G, C(G)
Pc

1(G) = {}
for G̃ in P1(G) do
C(G̃) = C(G) + C(G′

S)− C(GS)
if C(G̃) = C(G) then
Pc

1(G) = Pc
1(G) ∪ {G̃}

end if
end for
Return: Pc

1(G)

6. Experiments
In Section 6.1, we analyze the empirical expressivity of
GNNs using our subgraph-counting adversarial attacks and
using generalization as a (proxy) measure. Extending on
this, in Section 6.2 we investigate if the same GNNs can
count subgraph patterns for out-of-distribution graphs. Here
we present the results of the induced subgraph-counting of
triangles, 4-cycles and chordal cycles, for other patterns
refer to Appendix C.

6.1. Adversarial Robustness

Here, we analyze the empirical expressivity of GNNs using
our subgraph-counting adversarial attacks.

Dataset and models. We generate a synthetic dataset of
5,000 Stochastic-Block-Model graphs with 30 nodes di-
vided into 3 different communities. The probabilities of
generating edges connecting nodes within the same commu-
nity are [0.2, 0.3, 0.4], while the probability of generating
edges between nodes of different communities is 0.1. We
randomly split the dataset into training, validation, and test
sets with percentages 30%, 20%, 50%. We then train PPGN
(Maron et al., 2019a) and I2-GNN (Huang et al., 2023).

Experimental Settings. We train each model 5 times using
different initialization seeds to prevent bad weight initial-
ization influencing the final results. Then, for each of the
trained models fi with seed i, we use our adversarial attacks
(see Section 5) to generate adversarial examples from 100
correctly predicted test graphs and average the percentage
of successful attacks over all seeds. Furthermore, we inves-
tigate if the adversarial graphs for a model fi transfer to the
other models fj trained with a different initialization seed
j ̸= i. We inspect all three different perturbation spaces
with budgets ∆ of 1%, 5%, 10% and 25% with respect to
the average number of edges of the graphs in the dataset and
use δ = 1 as margin. In detail, we use beam search with
beam width k = 10 to explore Pc

∆ and Ps
∆, while we rely

on greedy search for P∆.

Results. The plots in Figure 5 show the percentage of pertur-
bations found by the optimization algorithms that represent

Table 1. AUC of the functions in Figure 5 normalized by the area
under the unity function. The label NR stands for Non-Robust and
NR (tr.) for Non-Robust (Transfer).

Pert. Arch. Trangle 4-Cycle Chord. C.

Space NR NR (tr.) NR NR (tr.) NR NR (tr.)

P∆
PPGN 0.18 0.10 0.95 0.87 0.95 0.86

I2-GNN 0.20 0.17 0.88 0.63 0.72 0.46

Pc
∆

PPGN 0.090 0.050 0.92 0.84 0.93 0.73
I2-GNN 0.0 0.0 0.76 0.40 0.41 0.097

Ps
∆

PPGN 0.09 0.50 0.85 0.58 0.90 0.59
I2-GNN 0.0 0.0 0.66 0.23 0.38 0.082

a successful adversarial example according to Definition 4.1.
To condensate the results in a numerical value, we report
in Table 1 the area under the curve (AUC) of the functions
Non-Robust and Non-Robust (Transfer) in Figure 5. The
results are reported as the proportion with respect to the
area under the unity function f(x) = 1, which represents
the worse case where all permutations generate an adversar-
ial example already at ∆ = 1%. Interestingly, the results
show that we can find several adversarial examples for both
architectures. In particular, PPGN is highly unrobust in
the subgraph-counting of patterns with four nodes. How-
ever, several adversarial examples can be found also for
the triangle count, even though the theoretical expressiv-
ity of PPGN claims that it is a family of functions that
can count 3-dimensional subgraphs in the sense of Defi-
nition 2.1. Similarly, the more expressive model I2-GNN
is fooled on 4-dimensional patterns, in spite of being suf-
ficiently powerful to count them. This indicates that the
empirical expressivity achieved does not match the theoreti-
cal expressivity since the models are not able to generalize
to subgraph-counting tasks that they should in theory be
able to solve. Additionally, in Appendix C.2 we investigate
some structural properties of the adversarial examples.

6.2. Out-of-Distribution Generalization

Next, we examine the performance of the same architectures
when tested on graphs that are OOD with respect to the
original training. Here, we retrain the last Multi-Layer
Percepton (MLP) prediction layers to investigate more in
detail whether the problem lies in the expressivity of the
extracted graph representations or in the last layers that
leverage the graph representations for the predictions.

Dataset. For these experiments we use Erdos-Renyi graphs
with 10 nodes and edge generation probabilities of 0.3 for
the first dataset (d1) and 0.8 for the OOD dataset (d2). The
size and splits of the datasets are analogous to Section 6.1.
Therefore, we consider as OOD graphs that are generated
from a distribution with the same number of nodes but
different edge generation probabilities.
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Figure 5. The plots illustrate in blue the success rate of our
subgraph-counting adversarial attacks at finding perturbations that
represent adversarial examples according to Definition 4.1 con-
strained and subgraph preserving perturbation spaces. In orange,
we represent how effective the adversarial examples are when
transferred to the models trained with a different initialization seed.
The values are the average of the results obtained with 5 different
initialization seeds with the relative standard errors.

Experimental Settings. Firstly, we train the PPGN and I2-
GNN architectures on the dataset d1 and test them on both d1
and d2 to investigate the OOD generalization performances
of the architectures. Additionally, we train the models di-
rectly on d2 to have a comparison of the best performances
achievable on this dataset. The errors are expressed using
the mean absolute error (ℓ1) and an extension of it, which is
obtained by normalizing by the ground-truth count (ℓc).

Table 2. Test errors of the OOD experiments that investigate the
generalization abilities of the architectures. Specifically, di rep-
resents models trained and tested on the same dataset di, OOD
models trained on d1 and tested in d2 and in MLP we additionally
retrain the final layers on d2.

Arch. Exp. Trangle 4-Cycle Chord. C.

Setting ℓ1 ℓc ℓ1 ℓc ℓ1 ℓc

PPGN

d1 0.0058 7.8e-4 0.059 0.010 0.10 0.011
OOD 2.98 0.041 5.40 1.17 20.0 0.25

d2 0.0091 1.7e-4 0.040 0.0050 0.12 0.0017
MLP 0.059 9.8e-4 0.29 0.0.043 1.083 0.014

I2-GNN

d1 0.0027 2.8e-4 0.035 0.0062 0.020 0.0023
OOD 3.25 0.044 2.16 0.45 6.75 0.084

d2 0.032 6.2e-4 0.028 0.0031 0.30 0.0042
MLP 0.20 0.0031 0.19 0.025 1.56 0.020

Results. Table 2 shows the test errors of the aforemen-
tioned settings averaged over five different initialization
seeds. Here we observe that the models achieve very poor
performances on general OOD graphs compared to their
ideal performances (OOD and d2 rows). However, if the
model were able to perform subgraph-counting, as theo-
retically claimed, they should be able to perform this task
regardless of the graph distribution. This result matches
with Section 6.1 and shows that the models do not learn to
detect the patterns and they rather overfit on the training
distribution. However, this behavior could be intrinsic to the
models’ architecture. The models are designed to extract a
vector representation from each input graph, which is then
mapped to the prediction through an MLP. Then, the fact
that different graph distributions might generate different
graph representations leads us to investigate whether the
problem is a poor generalization of the map between the
graph embedding and the count. To test this possibility, we
retrain on d2 only the final MLP of the models previously
trained on d1 (row MLP in Table 2). While this adjustment
is helpful, the errors are consistently one order of magnitude
higher than the ones obtained training directly on d2. This
indicates that the graph representations do not achieve their
theoretic separation power and that the problem does not
only lie in the last MLP prediction layers.

7. Conclusion
We propose a novel approach to assess the empirical ex-
pressivity of subgraph-counting achieved by GNNs via ad-
versarial robustness. We show that despite being theoreti-
cally capable of counting certain patterns, the models lack
generalization as they struggle to correctly predict adver-
sarially perturbed and OOD graphs. Therefore, the training
algorithms are not able to find weights corresponding to
a maximally expressive solution. Extending our study to
other related GNNs such as KP-GNN (Feng et al., 2022) is
an interesting direction for future work.
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A. Proof of Proposition 5.1
Proposition A.1. Let consider a graph G and a pattern H with diam(H) = d. Then, for every edges {i, j} we have that
egod(i) and egod(j) contain all the subgraphs GS ⊂ G such that GS ≃ H and i, j ∈ VS .

Proof. Let’s consider any subgraph GS = (VS , ES) of the graph G = (V,E) such that GS ≃ H . Firstly we show that
egod(i) = (Ve, Ee) contains GS , that is equivalent to showing that VS ⊆ Ve and ES ⊆ Ee. By construction, we have that
diam(H) = diam(GS) = d, which implies that for every node l ∈ VS the shortest path connecting i and l has at most
length d. Therefore, by definition of egonet, we have that VS ⊆ Ve Moreover, we know by construction that ES ⊆ E and
can write the following series of set inclusions:

ES ⊆ VS × VS ⊆ Ve × Ve.

All in all, we have that:
ES ⊆ E ∩ (Ve × Ve) = Ee.

Showing that egod(j) contains VS is analogous.

We can also easily show that for any egol(i) (or egol(j)) with l > d Proposition A.1 does not hold. In fact, it is sufficient
to consider i such that there exists a pair of nodes {i, l} where the shortest path connecting the two nodes has length d.
Therefore, by construction l /∈ Ve and Proposition A.1 does not hold.

B. Counting algorithm
To generate synthetic datasets and to perform adversarial attacks (Section 5) we need an algorithm that is capable of
counting subgraphs. However, subgraph counting is a highly complex procedure, and naive approaches could scale to a
prohibitive amount of computations. As a matter of fact, only enumerating all the possible k-dimensional subgraph requires(
n
k

)
iterations, which can become intractable for sufficiently large graphs. Since the computation of groud-truth will be

extensively used by adversarial attacks, finding an efficient algorithm to count subgraphs is in our interest to reduce the
overall computational complexity of the attacks. (Shervashidze et al., 2009) proposed a method to count induced graphlets
of size 3, 4, and 5 with a computational complexity of O(Ndk−1), where d is the maximum node degree and k is the size of
the graphlets, which is linear in the number of nodes and is especially efficient sparser graphs. In particular, in this work we
will consider only connected subgraphs of 3 and 4 nodes to have a broad overview of the performances on patterns with
different structural properties (Figure 6).

Triangle (c
(3)
1 ) 2-Path (c

(3)
2 ) 4-Clique Chordal cycle

Tailed triangle 3-Star 4-Cycle 3-Path

Figure 6. Connected subgraphs with 3 or 4 nodes. In brackets the name with which we represent the count variables in Algorithm 3

The core idea of the algorithm is to extract connected paths of length k − 1 and a single node connected to the path, then
this set of nodes is assigned to a substructure using handcrafted conditions based on the additional connections between
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nodes. For example, for a 2-path {v1, v2, v3} and an additional node v4 that is connected only to the head and the tail of the
path, one can conclude that the four nodes generate a 4-Cycle.

The algorithm that counts 3-dimensional graphlets (Algorithm 3) starts by considering every edge {v1, v2} in the graph,
which has O(Nd) complexity. Next, one can count the subgraphs with specific computations on the neighboring sets of
v1 and v2, in particular, the nodes in both neighborhoods will constitute a triangle, and the ones belonging only to one
neighborhood will constitute a 2-path. This last step has O(d) complexity because every neighborhood contains at most d
nodes. Finally, every subgraph is detected more than once as every pattern can be identified starting with any of its edges,
then every variable is normalized by dividing by the number of edges of the pattern it represents.

The 4-dimensional version has an analogous working principle adapted to the 4 four nodes case. As before, the algorithm
iterates over every edge in the graph, then all the nodes v3 adjacent to this edge (O(d)) are considered and separated into 3
disjoint groups based on the connections with {v1, v2} (connected with both nodes, only the first one or only the second
one). At this point, similarly to before, the patterns can be identified with specific computations of the neighborhoods of
v1, v2, v3. For example, if v3 is only in the neighborhood of v1 and v4 connected to all the previous nodes, then {v1, . . . , v4}
is a tailed triangle. In the last step, the variables need to be normalized to take into account multiple detections of the same
subgraph. By construction, once the triplet {v1, v2, v3} is set, the algorithm can detect a subgraph containing this triplet
only once, hence normalization constant is the number of times the algorithm obtains a triplet included in a subgraph. In
particular, triangles can be obtained in three different ways, starting from each edge, and, for the same reason, 2-paths can
be obtained in two ways. All in all, the normalization constant for a general pattern is 2p+ 3t, where p is the number of
2-paths in the pattern and t is the number of triangles. Moreover, these algorithms can not only count the induced subgraphs,
but also identify them by returning the set of nodes N ′ ⊂ N that generates them, which will be essential for subgraph
preserving attacks (Section 5).

Algorithm 3 Count 3-dimensional induced subgraphs in a graph G = (N,E)

c
(3)
i ← 0, i ∈ {1, 2} {Initialize the variables}

for {v1, v2} ∈ E do
c
(3)
1 ← c

(3)
1 +

∣∣N (v1) ∩N (v2)
∣∣ {Update the substructure counts}

c
(3)
2 ← c

(3)
2 +

∣∣N (v1)/
(
N (v2) ∪ {v2}

)∣∣
c
(3)
2 ← c

(3)
2 +

∣∣N (v2)/
(
N (v1) ∪ {v1}

)∣∣
end for
c
(3)
1 (G)← c

(3)
1 (G)/3 {Normalize the variables }

c
(3)
2 (G)← c

(3)
2 (G)/2

Return: c(3)i , i ∈ {1, 2}

C. Additional Results
In this section, we extend the experiments of Section 6 to all the connected patterns with three and four nodes Figure 6. In
particular, in Appendix C.1 we extend the adversarial robustness experiments, in Appendix C.2 we compare some structural
properties of the adversarial examples with the clean graphs, and in Appendix C.3 we present the complete results of the
OOD experiments.

C.1. Adversarial Robustness

In Figure 7 we present the complete adversarial robustness results of PPGN on all the 3- and 4-dimensional patterns on all
the 3 perturbations paces (P∆,Pc

∆ and Ps
∆). In Figure 8 we present the analogous results for I2-GNN. The dataset and

experimental settings are identical to Section 6.1. Additionally, in Table 3 we include the training errors of the models with
respect to the MAE (ℓ1) and the MAE normalized by the ground-truth count (ℓc). Specifically, we present the average error
over five models trained using different initialization seeds and the standard errors. Note ℓ1 error of 3-Path is considerably
higher than 0.5, which makes the search of correctly predicted test graphs almost impossible. For this reason, we excluded
the 3-Path pattern from the adversarial robustness experiments. On the new patterns, the results remain aligned to the
discussion in Section 4 except for 2-Path in Pc

∆,P
s
∆, and 3-Star in Ps

∆. However, these specific cases are caused by the fact
that the perturbation spaces contain almost no elements (see bold elements in Table 4).
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Table 3. Test error of the architectures GIN, PPGN, and I2-GNN on the Stochastic Block Model dataset with respect to ℓ1 and ℓc metrics
for different subgraph-counting tasks. The results are expressed as the average over the 5 different weight initialization ± the standard
error.

Arch. Loss Triangle 2-Path 4-Clique Chord. C. Tailed Tr. 3-Star 4-Cycle 3-Path

GIN ℓ1 2.6 ± 0.017 7.6 ± 0.062 0.81 ± 0.0041 4.4 ± 0.0087 15.0 ± 0.14 21.0 ± 0.076 6.3 ± 0.012 40.0 ± 0.15
ℓc 0.13 ± 6.2e-4 0.03 ± 2.3e-4 0.34 ± 0.0015 0.27 ± 0.0019 0.098 ± 7.8e-4 0.087 ± 4.0e-4 0.18 ± 0.0015 0.053 ± 1.5e-4

PPGN ℓ1 0.014 ± 5.5e-4 0.15 ± 0.0098 0.038 ± 0.001 0.38 ± 0.0069 1.1 ± 0.065 0.81 ± 0.075 0.23 ± 0.0083 2.7 ± 0.12
ℓc 6.9e-4 ± 2.2e-5 6.0e-4 ± 4.0e-5 0.013 ± 6.5e-4 0.017 ± 4.7e-4 0.0061 ± 4.0e-4 0.0033 ± 3.0e-4 0.0061 ± 2.0e-4 0.0035 ± 1.7e-4

I2-GNN ℓ1 0.0069 ± 4.4e-4 0.26 ± 0.025 0.0031 ± 2.9e-4 0.058 ± 0.005 0.39 ± 0.022 0.6 ± 0.042 0.25 ± 0.093 1.5 ± 0.31
ℓc 3.8e-4 ± 3.0e-5 0.001 ± 9.9e-5 6.7e-4 ± 7.0e-5 0.0028 ± 2.2e-4 0.0022 ± 1.4e-4 0.0024 ± 1.7e-4 0.0068 ± 0.0026 0.0021 ± 4.0e-4

Table 4. Average size of the preserving perturbations with budget 1. The values represent an estimation of the number of alternatives that
each step of the search algorithm has.

Trangle 2-Path 4-Clique Chord. C. Tailed Tr. 3-Star 4-Cycle 3-Path

| Pc
1(G)| 205.32 1.69 410.93 244.04 27.94 12.24 88.98 1.64

| Ps
1(G)| 205.32 0.02 410.93 241.82 27.62 1.6 74.34 0.62
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Figure 7. The plots illustrate in blue the success rate of our subgraph-counting adversarial attacks at finding perturbations that represent
adversarial examples according to Definition 4.1 in the three perturbation spaces we defined for PPGN. In orange, we represent how
effective the adversarial examples are when transferred to the models trained with a different initialization seed. The values are the average
of the results obtained with 5 different initialization seeds with the relative standard errors.

C.2. Structural Properties of Adversarial Examples

The previous experiments identify the adversarial examples for the two more expressive architectures, then we can analyze
them to get a few insights about the reasons why the architectures are not robust. In Figure 9 we compare the distribution of
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Figure 8. The plots illustrate in blue the success rate of our subgraph-counting adversarial attacks at finding perturbations that represent
adversarial examples according to Definition 4.1 in the three perturbation spaces we defined for I2-GNN. In orange, we represent how
effective the adversarial examples are when transferred to the models trained with a different initialization seed. The values are the average
of the results obtained with 5 different initialization seeds with the relative standard errors.

the subgraph counts of the test graphs and the adversarial graphs generated from the constrained perturbation space. This
experiment is designed to explore whether the adversarial examples generation exploits the fact that this perturbation space
allows changing significantly the semantic meaning of the graphs. Concretely, for each pattern, we extract the successful
transferring adversarial examples, i.e. perturbations that fool all five trained models, with budget ∆ = 10%, and compare
their subgraph-count distribution to the distribution of the corresponding clean graphs. We specifically choose to consider
exclusively the adversarial examples that transfer to the other models because they intuitively represent the failure modes
that affect the architectures in general. Moreover, we only consider patterns where at least 5% of attacks have produced
a successful adversarial example. This makes the representations more reliable since the distributions are estimated over
at least 25 samples 2. To plot the two distributions we use a violinplot, which, differently from a box plot, gives also a
visual representation of probability density. From the plots, we notice a variation in the distribution for several patterns. In
particular, all the adversarial distributions have heavier tails, which means that outliers counts are more frequent, and in
some cases also the whole distribution is shifted. This result suggests that altering the ground truth count is a failure mode
for both architectures and justifies the introduction of more restrictive perturbation spaces which preserve the subgraph
count. However, the adversarial attacks are capable of generating adversarial examples also for the count and subgraph
preserving spaces, which encourages us to further investigate additional failure modes. In Figure 10 we continue with this
analysis by comparing the distribution of the number of edges of the adversarial graphs and the clean graphs. The plots
specifically show the distributions of the transferring adversarial examples generated from the count preserving perturbation
space with budget ∆ = 25% and the corresponding test graphs. Here we find that the adversarial graphs tend to have more
edges they seem to belong to a different graph distribution.

2We run 500 attacks, 100 for each one of the 5 models
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In particular, the adversarial examples are generated from the perturbation space P10%, and we present only the patterns having at least
5% of successful attacks.
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Figure 10. Distribution of the number of edges of the transferring adversarial examples (in orange) and their relative clean graphs (in
blue). In particular, the adversarial examples are generated from the perturbation space Pc

25%, and we present only the patterns having at
least 5% of successful attacks.
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Table 5. P-values that represent the statistical significance of the shift between the subgraph count distributions of the transferring
adversarial graph extracted from P∆ and their relative clean graphs. In particular, we report the p-values of a t-test for the null hypothesis
that the expected values of the distributions are the same. The p-values of samples with less than 25 elements are omitted.

Arch. Budget Triangle 2-Path 4-Clique Chord. C. Tailed Tr. 3-Star 4-Cycle

PPGN

1% - - - 0.4 0.0095 0.63 0.87
5% - 0.0067 0.11 0.64 7.0e-11 0.25 0.32

10% - 8.4e-10 3.0e-11 9.7e-5 2.6e-9 0.19 2.8e-9
25% 2.2e-6 4.6e-10 3.0e-16 1.6e-28 0.062 1.0e-16 1.3e-116

I2-GNN

1% - - - - 0.04 0.15 -
5% - 8.2e-6 5.7e-38 9.5e-17 1.9e-22 1.5e-22 1.6e-10

10% 2.1e-24 1.1e-19 7.9e-59 1.9e-45 2.7e-51 2.1e-57 2.0e-33
25% 2.2e-103 1.1e-80 1.5e-102 8.5e-112 3.5e-86 1.5e-78 7.9e-105

Table 6. P-values that represent the statistical significance of the shift between the distributions of the number of edges of the transferring
adversarial graph extracted from Pc

∆ and their relative clean graphs. In particular, we report the p-values of a t-test for the null hypothesis
that the expected values of the distributions are the same. The p-values of samples with less than 25 elements are omitted.

Arch. Budget Triangle 2-Path 4-Clique Chord. C. Tailed Tr. 3-Star 4-Cycle

PPGN

1% - - - 5.2e-5 0.49 0.89 0.0073
5% - - 1.1e-4 0.53 0.0017 7.3e-12 1.7e-5

10% - - 0.0069 1.2e-11 1.8e-18 5.0e-37 4.1e-4
25% 0.51 - 1.3e-67 5.2e-99 2.3e-83 7.4e-147 6.8e-75

I2-GNN

1% - - - - - 0.69 -
5% - - - - 0.32 7.9e-6 -

10% - - - - 0.029 1.1e-20 -
25% - - - 2.7e-8 1.6e-26 3.8e-110 1.8e-19

Additionally, we investigate the statistical significance of the aforementioned distributional shifts. To do so, we compute
the p-values of the t-tests (with no equal population variance assumption) for the null hypothesis that the distributions of
the adversarial and clean graphs have the same expected value. Table 5 shows the p-values for the tests for the subgraph
count distributions of adversarial examples extracted from the constrained perturbation space and the clean graphs. Instead,
Table 6 shows the analogous result for the distribution of the number of edges and for adversarial graphs searched in the
count-preserving perturbation space. Moreover, as before we only consider the subgraphs and budget from which at least
5% of the attacks are successful, for all the other cases we omit the p-value. All in all, the results show that from budget
10% we can affirm for almost all the distribution shift is statistically significant.

C.3. Out-of-Distribution Generalization

Similarly, we present also the OOD experiments results for all the patterns in Table 7. Also in this case the discussion of the
results in Section 6.2 complies also with the results on the new patterns.
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Table 7. Test errors of the OOD experiments that investigate the generalization abilities of the architectures. Specifically, di represents
models trained and tested on the same dataset di, OOD models trained on d1 and tested in d2 and in MLP we additionally retrain the final
layers on d2.

Arch. Exp. Trangle 2-Path 4-Clique Chord. C. Tailed Tr. 3-Star 4-Cycle 3-Path

Setting ℓ1 ℓc ℓ1 ℓc ℓ1 ℓc ℓ1 ℓc ℓ1 ℓc ℓ1 ℓc ℓ1 ℓc ℓ1 ℓc

PPGN

d1 0.0058 7.8e-4 0.016 4.7e-1 0.0098 0.0027 0.11 0.011 0.28 0.011 0.12 0.012 0.058 0.010 0.28 0.0090
OOD 2.98 0.041 5.42 0.16 7.87 0.12 20.12 0.25 28.57 2.40 5.47 4.16 5.47 1.21 13.91 5.53

d2 0.0091 1.7e-4 0.012 2.6e-4 0.049 0.0016 0.12 0.0017 0.12 0.0029 0.017 0.0021 0.040 0.0050 0.063 0.0058
MLP 0.059 9.8e-4 0.11 0.0027 0.32 0.0067 1.083 0.014 1.04 0.054 0.24 0.081 0.29 0.044 0.72 0.10

I2-GNN

d1 0.0027 2.8e-4 0.027 8e-4 0.0054 5.8e-4 0.021 0.0023 0.065 0.0030 0.080 0.0079 0.035 0.0062 0.065 0.0032
OOD 3.27 0.044 1.61 0.046 21.1 0.30 6.83 0.086 21.51 1.97 3.14 2.34 2. 16 0.45 7.29 1.96

d2 0.032 6.2e-4 0.028 5.9e-4 0.048 0.0015 0.30 0.0042 0.18 0.0057 0.070 0.0093 0.028 0.0031 0.12 0.011
MLP 0.2 0.0031 0.19 0.0048 0.91 0.015 1.59 0.021 1.2 0.032 0.22 0.045 0.19 0.026 0.37 0.066


