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Abstract

The recent development of sparse methods for identifying nonlinear dynamical
systems has opened new avenues for efficient and interpretable model-based re-
inforcement learning (RL). In this work, we study online RL in environments
where the system dynamics, modeled as s′ = f(s, a)+noise, is assumed to be
sparse with respect to a big feature map, a structural idea inspired by the SINDy
framework. We introduce an optimistic algorithm that combines online sparse
regression with confidence set construction to guide exploration and planning. Our
theoretical contributions are threefold: (i) we provide the first regret bounds for
sparse nonlinear dynamics, showing that regret scales with the sparsity level d0;
(ii) we relax standard Gaussian assumptions by allowing general subgaussian noise
with bounded variation densities, significantly broadening the class of admissible
stochastic systems; and (iii) we extend our theoretical guarantees to misspecified
models, where the dynamics are only approximately sparse in the chosen feature
space. The algorithm enjoying the regret bound is not computationally efficient, as
it builds on a very heavy online regression method. We propose a practical variant
using ensemble SINDy in place of the online regression algorithm, and SAC within
a Dyna-style framework. Empirical results on classic continuous control tasks
demonstrate the practical viability and robustness of our approach.

1 Introduction

Reinforcement learning (RL) Sutton and Barto [2018] is a paradigm of artificial intelligence in
which the agent interacts with a system to maximize a cumulative reward over a given number of
time-steps. The main challenge to perform this task, which makes it fundamentally different from
the bandit problem Lattimore and Szepesvári [2020], is that actions can influence the state of the
system according to an unknown transition function. Algorithms that try to estimate this transition
function to reduce RL to the planning problem are called model-based. Model-based Reinforcement
Learning and classical continuous control share a fundamental commonality: both seek to design
decision-making or feedback policies based on an internal representation of how the system evolves
over time Recht [2019]. In continuous control, one typically starts with a (potentially simplified)
physics-based model of the system, whose parameters are calibrated to converge to the true model and
allow for the design of an improved controller Simpkins [2012]. In model-based RL, the approach
likewise involves learning or approximating the transition function from data so that a policy can be
optimized against this learned model. However, unlike continuous control, early RL research often
focused on tabular or small discrete environments where learning the dynamics model from scratch
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was feasible without explicit structural assumptions. This gap between the two communities has been
greatly reduced recently due to the ever-increasing interest in high-dimensional environments for
RL, which has led to the development of model-based algorithms that go well beyond the tabular
setting Chua et al. [2018]. Estimating the transition function in these complex domains requires
an overwhelming sample complexity if done as in tabular environments. This motivates the need
for system identification methods that are both parsimonious, remaining statistically tractable, and
powerful, to achieve a satisfactory approximation of the true dynamics.

A prominent example of parsimonious modeling in the control theory community is the Sparse
Identification of Nonlinear Dynamics (SINDy) framework Brunton et al. [2016]. SINDy posits that
the dynamics of a complex system can often be accurately represented by a small number of terms
coming from a redundant feature map (e.g., polynomials, trigonometric terms). In formulas, this
corresponds to assuming that the next state sh+1 of the system behaves according to

sh+1 = W ⋆
hϕh(sh, ah) + ηh, (1)

for a noise variable ηh, where matrix W ⋆
h is sparse, so that only a few elements of the dictionary

(often called feature map) ϕh(·) are in fact relevant. This framework has proven remarkably effective
in domains ranging from fluid mechanics Proctor et al. [2016] to biological systems Champion et al.
[2019]. By leveraging sparsity, SINDy provides enhanced interpretability and robustness, traits that
are increasingly valued in control applications.

Paper structure In the next sections, we first introduce the problem setting and our core assumptions.
We then present a theoretically grounded algorithm with regret guarantees under sparsity. This is
followed by an extension to misspecified models. Finally, we describe a practical variant based on
SINDy and SAC, and validate our approach through experiments on standard control benchmarks.
Finally, we report the related works in the appendix A.

2 Setting

We consider the setting of online optimization of a sparse dynamical system. Given S ⊂ RpS ,A ⊂
RpA (we set p = pS + pA) the state/action spaces respectively, the system evolves as

sh+1 = fh(sh, ah) + ηh, (2)

where fh : S × A → S is an arbitrary, possibly non-linear function and ηh is random noise with
independent realizations at each time-step h. The interaction with this system is divided into K ∈ N
episodes, with each episode lasting for a total of H ∈ N time steps. In each episode, the goal of the
agent is to choose actions {ah}Hh=1 in order to maximize a cumulative reward function, given by∑H

h=1 rh(sh, ah), rh : S ×A → [0, 1].

Value functions To better formalize this goal, we call policy the selection rule according to
which the agent selects their actions at any time step of any episode. Formally, at each episode
k ∈ [K] := {1, . . . ,K}, the agent chooses a policy πk = {πk

h}Hh=1, which is a sequence of mappings
from S to the probability distributions overA. For each stage h ∈ [H], the action is chosen according
to ah ∼ πk

h(·|sh), the agent gains reward rh(sh, ah) and the environment transitions according to
(2). To measure the expected reward that a policy can achieve, we define the value function, i.e.,

the function V π
h (s) := Eπ

[∑H
ℓ=h rℓ(sℓ, aℓ)

∣∣∣∣sh = s

]
. This will be compared to the optimal value

function: V ∗
h (s) = supπ V

π
h (s).

Regret As a measure of performance of an agent across the K episodes of interaction with the
environment, we define the regret as RK :=

∑K
k=1 V

∗
1 (s

k
1)− V πk

1 (sk1), where skh denotes the state
visited at step h of episode k. Note that if RK = o(K) with some probability, then the value function
of the "average played policy" will tend to that of the optimal policy as K → ∞. As the value
function is the expected value of the cumulative reward, this corresponds to learning the optimal
behavior in the environment.

Environment transition and sparsity To propose an algorithm that is able to deal with an environ-
ment of this form, we need some assumptions on its transition (eq. 2).
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Assumption 1. (Sparse feature map decomposition) We assume that

fh(s, a) = W ⋆
hϕh(s, a),

for some feature map and ϕh : S ×A → Rd matrix W ⋆
h ∈ RpS×d. Moreover, each row of W ⋆

h has
at most d0 non-zero entries, with pS ≪ d0 ≪ d.

This assumption is the core of the paper, as it represents what is usually meant by a sparse dynamical
system Brunton et al. [2016]. Moreover, the assumption that pS ≪ d0 ≪ d holds whenever the
feature map is complex enough to capture general classes of nonlinear functions in s, a. Indeed,
polynomials/trigonometric functions of degree N , which have been used as feature maps for nonlinear
continuous RL for their approximation power (Maran et al. [2024c] and Maran et al. [2024b]
respectively), have a length scaling as d =

(
N+p
p

)
≈ Np. Instead, d0 is usually smaller than d, but

just by a polynomial factor (e.g. d ≈ d20).

3 Algorithm: Theoretical Foundation

As we said in the introduction, the central challenge in model-based RL is to balance accurate system
identification with effective control. On the one hand, a good estimation for matrix W ⋆

h (assumption
1) to predict the dynamics of the system. On the other hand, only focusing on estimating the transition
function may lead to a bad regret, as it ignores the reward function. In our approach, we leverage
the sparsity on the principle of optimism in the face of uncertainty Auer et al. [2008] to balance
these two needs. We are going to use some method from online regression Strehl and Littman [2007]
to maintain a confidence set in the parameter space, then plan optimistically within that set. This
idea draws on principles from both sparse regression and optimistic exploration in model-based RL.
Below, we give a high-level overview of the three main ingredients needed to build our algorithm.

First, we need a regression method that, from collected transitions (skh, a
k
h, s

k
h+1), and tough an

appropriate sparsity-enforcing regularization, yields an estimate ŝkh+1 of E[skh+1]. Crucially, this
algorithm must provide a theoretical guarantee that exploits the sparsity of the problem, so that
assumption 1 is used at its full. Second, we need a confidence ball that contains W ⋆

h with high
probability. To do so, we can use the predictions ŝkh+1 by the regression algorithm in order to build an
estimation Ŵh of the transition matrix, and the statistical complexity guarantee of the same algorithm
prove that ∥Ŵh −W ⋆

h∥ ≤ β(δ), where δ is the error probability and ∥ · ∥ is some norm. In this way,
we can define our confidence sets as {W : ∥Ŵh −W∥ ≤ β(δ)}. Lastly, once the confidence sets for
the transition are fixed, we use the reward, which we assume to be known, to plan the best actions.
In this way, we can ensure that (as long as the confidence sets hold), the agent plays with the best
policy according to the most optimistic transition function in the confidence balls. In this way, in any
episode, we either achieve a good return (that means the model is accurate) or we gather information
allowing to reduce the size of the confidence balls. The first critical part is to provide a regression
method that can deal with the sparse regression case.

Regression algorithm Selecting an appropriate regression algorithm is non-trivial. Indeed, the
need to work for an arbitrary sequence of input values that may depend on past realizations of the
noise (as they depend on the state and the actions) rules out standard Ridge Regression approaches.
We adopt algorithm SEQSEW, originally introduced in Gerchinovitz [2013]. While we do not delve
into its intricate structure here, we highlight its regret bound. This result, which belongs to the original
paper but was restated in a more convenient form by Lattimore and Szepesvári [2020] (theorem 23.6),
ensures what follows

Theorem 2. (Theorem 23.6 from Lattimore and Szepesvári [2020]) Let xt ∈ Rd, yt ∈ R be arbitrary
sequences such that ∥xt∥2 ≤ X, |yt| ≤ Y for t = 1, . . . T . Let ŷt be the output of SEQSEW at step
t (therefore, knowing xt and all previous data for τ < t). Then, for any θ ∈ Rd with ∥θ∥0 = θ0, we
have

ρT (θ) :=

T∑
t=1

(yt − ŷt)
2 − (yt − x⊤

t θ)
2 ≤ ρmax = Õ(X2θ0), (3)

where Õ hides logarithmic factors in X,Y, T, θ0, ∥θ∥2.
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In our case, the pairs {xt, yt} correspond to xt = ϕh(s
k
h, a

k
h), and yt = skh+1,ι, where ι defines the

ι−th component of the vector. This is done since skh+1 is multivariate and we treat its prediction as
pS single regressions. Our algorithm is going to use these predictions by SEQSEW in order to build
some confidence balls for the parameters.

Confidence ball The result from Theorem 2 can be easily transformed into the definition of a
confidence ball.
Theorem 3. Fix an error probability δ > 0, ι ∈ {1, . . . pS} and h ∈ {1, . . . H}. Let ŷkh,ι be
the output of SEQSEW for the sequences ϕh(s

k
h, a

k
h), s

k
h+1,ι, that are indexed by k. Define the

confidence balls

Ckh,ι :=

{
θ ∈ Rd :

k∑
τ=1

(ŷτh,ι − ϕh(s
τ
h, a

τ
h)

⊤θ)2 ≤ β(δ) + ∥W ⋆
h,ι∥22

}
, (4)

where W ⋆
h,ι is the ι−th row of matrix W ⋆

h , and β(δ) = 1 + 2ρmax + 32 log
(√

8+
√
1+ρmax

δ

)
=

Õ(ρmax + log(1/δ)) (where ρmax comes from equation 3). Then, P(∃k : W ⋆
h,ι /∈ Ckh,ι) ≤ δ .

For the proof, see the appendix C. This confidence set satisfies a very useful property, which is going
to be one of the main backbones of the regret bound:

Lemma 1. For every h, k, ι, let Λk
h := I +

∑k
τ=1 ϕh(s

k
h, a

k
h)ϕh(s

k
h, a

k
h)

⊤, where I stands for the
identity matrix of size d. Moreover, let Ŵ k

h,ι := (Λk
h)

−1
∑k

τ=1 ŷ
k
h,ιϕh(s

k
h, a

k
h). Then,

Ckh,ι ⊆
{
θ ∈ Rd : ∥θ − Ŵ k

h,ι∥2Λk
h
≤ β(δ) + ∥W ⋆

h,ι∥22
}
.

The previous lemma allows us to give a much better idea of what the confidence ball looks like. In
fact, if we see Ŵ k

h,ι as a replacement for the standard OLS solution, the result of lemma 1 is similar
to standard confidence bound for linear bandits/MDPs [Jin et al., 2020, Abbasi-Yadkori et al., 2011],
just that it scales with the sparsity parameter d0, instead of d.

Planning To design our algorithm 1, the only missing part is the choice of the policy πk
h to be

played at stage h of episode k. Here, the idea is to leverage our construction of the confidence balls to
build an optimistic estimate of the Q∗

h-function of the MDP, which we can obtain iteratively at each
step h, starting from h = H . This procedure builds on the well-known Value Iteration VI algorithm
Sutton and Barto [2018]. In fact, if the matrix W ⋆ were known, we could explicitly implement VI as
follows:

V ∗
h+1(s) = argmax

a∈A
Q∗

h+1(s, a) Q∗
h(s, a) = rh(s, a) +

∫
S
V ∗
h+1(W

⋆
hϕh(s, a) + η)dµh+1(η)︸ ︷︷ ︸
E[V k

h+1(s
′)]

.

(5)
This procedure cannot be directly implemented, as we do not know W ⋆. Still, knowing that W ⋆ ∈ Ckh
with high probability, we can perform the same algorithm with respect to the most promising matrix
W ∈ Ckh . This is precisely what we do in lines 11 and 12 of algorithm 1. The only difference w.r.t.
VI (equation ) is in line 12 where we replace the E[V k

h+1(s
′)] with the "expected next state under

W ", that is E[V k
h+1(s

′)|W ] =
∫
S V k

h+1(Wϕh(s, a) + η)dµh+1(η). Then, to ensure optimism, we
maximize over W ∈ Ckh , which, as we said, contains the true value W ⋆ with high probability. In this
way, we are able to ensure optimism, as we prove in the appendix C.

We now explain in more depth the structure of algorithm 1, which combines the previous three steps.
The first lines, up to 4 initialize our confidence balls and online regression algorithms SEQSEW
Gerchinovitz [2013], one for each time-step h and dimension ι. Then, we start iterating over the
episode and, we said, we compute the current policy using VI over the most optimistic model W in
lines 11 and 12. This policy is then run over the environment (line 17). Here, there is an additional
step compared to standard RL algorithms: once we chosen the action, we query the online learner
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Algorithm 1 DYNAMIC PLANNER WITH CONFIDENCE-BASED ESTIMATION (DPCBE)
Require: Upper bounds X,Y , Initial radius R, Reward function rh, Failure probability δ
1: for ι = 1 . . . pS and h = 1, . . . , H do
2: Initialize C1h,ι := R ·B1(0)
3: Initialize ONLINELEARNER[h, ι]← SEQSEW(X,Y )
4: end for
5: for k = 1, 2, . . .K do
6: for h = 1, 2, . . . H do
7: Ckh = ×ι∈[pS ]Ckh,ι
8: end for
9: Qk

H(s, a) = rH(s, a)
10: for h = H − 1, . . . , 1 do
11: V k

h+1(s) = argmaxa∈A Qk
h+1(s, a)

12: Qk
h(s, a) = maxW∈Ck

h+1
rh(s, a) + E[V k

h+1(s
′)|W ]

13: πk
h(s) = argmaxa∈A Qk

h(s, a)
14: end for
15: Receive initial state sk1
16: for h = 1, 2, . . . H − 1 do
17: Choose action ak

h ∼ πk
h(·|skh)

18: for ι = 1, . . . pS do
19: Input ϕh(s

k
h, a

k
h) to ONLINELEARNER[h, ι], receiving ŝkh+1,ι

20: Update Ckh,ι with ŝkh+1,ι according to equation (4).
21: end for
22: Receive next state from the environment skh+1

23: for ι = 1, . . . pS do
24: Update ONLINELEARNER[h, ι] with skh+1,ι

25: end for
26: end for
27: end for

(line 19) in order to get a prediction that we are then using to update the confidence ball (line 20).
After this, we receive the next state (line 22) from the environment. This state is not directly used to
update the confidence balls, as it usually happens, but to update the online learners (line 24).

In fact, our policy is a function of confidence balls, which are only updated based on data that we
collect from the online learner. The online learner is the only element that directly uses data from the
observed transition. As we shall see, this multi-layered structure is the key to achieving our regret
bound in the next section.

Regret bound In this section, we present the guarantees for our algorithm. We start from a very
general formulation that holds in a wide generality of environments, and then specialize to a few cases
of interest. Apart from assumption 1, we have to make an assumption about the distribution of the
noise ηh that influences the transition at any time step. Usually, it is assumed that this noise follows
from a multivariate Gaussian distribution Kakade et al. [2020]. Here, we relax this assumption by
introducing a general class of distributions for the noise.
Assumption 4. For any h, the noise ηh is σ−subgaussian. Moreover, it follows a distribution in RpS

with density function µh(·) sich that µh(·) ∈ BV(χh), where BV(χ) := {∥∇µ(·)∥M ≤ χ}.

Here, ∇ stands for the (weak) gradient operator, and the norm ∥ · ∥M is defined, for any function
g : Rp → Rp, as ∥g∥M = supf∈C(Rp,Rp), ∥f∥L∞≤1

∫
Rp⟨f(x), g(x)⟩dx. The generality of this call

is going to be explained in the next paragraph. For now, we just give the regret bound under this
assumption.
Theorem 5. Assume 1 and 4 which holds for χh ≤ χ for every h = 1, . . . H − 1. Then, with proba-

bility at least 1− δ, algorithm 1 achieves the following regret bound RK ≤ Õ(H2χpS
√
d0dK) .

The most interesting parameters that emerge from this regret bound are d, d0, and χ, as pS ≪ d0
and H,K are standard in the theoretical RL literature. As we can see, even if the system is sparse,
the dependency on d still appears in the regret bound, even if under a square root. This is still an
improvement of the state of the art, where the dependency was linear, and cannot be further improved,
even in the case of sparse linear bandits (see section 23.3 in Lattimore and Szepesvári [2020]). In

5



fact, our bound scales as the one by Abbasi-Yadkori et al. [2012], which works with sparse linear
bandits. The other very interesting parameter that appears is χ, which is strictly linked to assumption
4 and represents the maximal total variation of the density function of the noise. Even if it is formally
difficult to characterize this parameter in terms of something more interpretable, the next paragraph
shows that it is bounded in most real cases.

Bounding χ for common noise classes Before this work, it was known that a) in case of Gaussian
noise, a regret bound scaling polynomially in H in a model with transition of the form sh+1 =
f(sh, ah) + η was possible (Kakade et al. [2020]). b) In general, MDPs with this form may suffer
an exponential lower bound in H (Maran et al. [2024c] theorem 2). In particular, the lower bound
b) leverages a Dirac-type noise at some time steps, which is highly concentrated on a discrete
number of points. We can see our assumption 4 as a way to prevent this scenario to happen and see
χ = maxh ∥µh∥BV as a measure of how much the density function of the noise concentrates on one
or more single points. In fact, we have, fixing S ⊂ R, for clarity,

• µ(s) = δ0(s) leads to χ = +∞ (Dirac’s delta is not in BV).
• µ(s) = 1√

2πσ2
exp(−s2/(2σ2)) leads to χ = 1√

2πσ2
(Gaussian noise is in BV).

• µ(s) = 1(−a,a)(s) leads to χ = 1/(2a) (uniform noise is in BV).

• Every bounded µ(·) with at most m local maxima is in BV with χ ≤ m sups∈S µ(s).

Moreover, one crucial property of this class of density functions, which makes it very useful, is that it
is closed under convex combinations, as results from the following proposition.
Proposition 6. For any pair of density functions µ(·) ∈ BV (χ), µ̃(·) ∈ BV (χ̃) and any constant
λ ∈ [0, 1], their convex combination satisfies λµ(·) + (1− λ)µ̃(·) ∈ BV (λχ+ (1− λ)χ̃) .

This shows that assuming 4 increases dramatically the level of generality: indeed, any Gaussian
Mixture is included in the BV class, which makes this class extremely flexible. We now investigate
how a small change in the algorithm can lead to a generalization of theorem 10 to the case where the
model 1 is misspecified.

3.1 Extension: misspecified models

For the sake of this section, we relax assumption 1 in the following way:
Assumption 7. (Sparse misspecified feature map decomposition) For some feature map and ϕh :
S ×A → Rd matrix W ⋆

h ∈ RpS×d such that each row of W ⋆
h has at most d0 non-zero entries, with

pS ≪ d0 ≪ d, let ξh : S ×A → [0,∞) be the function

ξh(·) := ∥W ⋆
hϕh(·)− fh(·)∥L∞ .

We assume that, for any h = 1, . . . H , ξh(·) is uniformly bounded by a constant ξ∞.

We can see that Assumption 1 corresponds to Assumption 7 for ξ∞ = 0. As the next result shows, a
modification of algorithm 1 allows us to generalize its regret bound to this, more challenging, setting.
Theorem 8. Assume 7 and 4 which holds for χh ≤ χ for every h = 1, . . . H − 1. Let us modify
the construction of the confidence sets in equation 4 by using as confidence radius β′(δ) = β(δ) +
Kξ2∞ log(1/δ). Then, with probability at least 1− δ, algorithm 1 achieves the following regret bound

RK ≤ Õ
(
H2χpS

√
d0dK +H2pS

√
dKξ∞

)
.

The new regret bound contains a first term H2χpS
√
d0dK which is identical to the previous regret

bound. The dependence on the misspecification is all captured by the other term, H2pS
√
dKξ∞,

where some things need to be commented on. First, the linear growth in K is expected: for big ξ∞,
the regret grows linearly, as the approximation power of our feature map is very limited. What is
more concerning is the multiplicative factor

√
d, which creates a trade-off: bigger d may reduce

the misspecification, but if the reduction is not sufficient, the term
√
dξ∞ gets bigger, actually.

This potentially pernicious phenomenon affects many other algorithms for Bandits/Reinforcement
Learning with linear function approximation, and cannot be avoided in general Lattimore et al. [2020].
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Algorithm 2 OPTIMISTIC SIMULATION WITH CONFIDENCE-BALL REGRESSION (OSCAR)
Require: Regularization parameter α, Reward function r, Basis Functions ϕ, Batch size b, Horizon H , Number

of off-policy iterations Ne, Number of on-policy iterations No, Number of model interactions Nm, Policy
π(·|sw), Ball scale factor λ

1: Initialize dataset De ← ∅
2: Collect trajectories in De using Random Policy for Ne episodes
3: SINDy(De, ϕ) ▷ Fit SINDy Model
4: for each (s, a) in De do ▷ Set Confidence Ball
5: Predict s′ = SINDy(s, a)
6: Update C with s′ according to equation (4)
7: end for
8: for n = Ne + 1, ..., No do ▷ Start On Policy Interaction
9: for h = 1, 2, ..., H do

10: Observe state sh
11: Sample action ah ∼ π(·|sŴh )
12: Predict sh+1 = SINDy(sh, ah)
13: Update C with sh+1 according to equation (4)
14: Observe next state sh+1

15: Update De ← (sh, ah, sh+1)
16: end for
17: Randomly sample a batch of b states S = {s} ∼ De ▷ Start Model Interaction and Policy Update
18: for i = 1, 2, . . . Nm do
19: Uniformly sample b scale factors β ∼ U [0, λ]

20: Sample b models M ∼ N(Ŵ , β(Λ + α · I)−1)
21: Uniformly sample b scale factors β′ ∼ U [0, λ]

22: Sample b models M ′ ∼ N(Ŵ , β′(Λ + α · I)−1)
23: Initialize A← ∅, S′ ← ∅, K ← ∅
24: for each (s,m,m′) in S ×M ×M ′ do
25: Sample action a ∼ π(·|sm

′
)

26: Observe s′ = m · ϕ(s, a)
27: Collect k = r(s, a)
28: Update A← (a), S′ ← (s′),K ← (k)
29: end for
30: Perform a SAC update using batch (S ×M,A,K, S′ ×M)
31: end for
32: SINDy(De, ϕ) ▷ Update SINDy Model
33: end for

4 Algorithm: Practical Variant

The algorithmic solution presented in Section 3 relies on the usage of SEQSEW [Gerchinovitz, 2013]
as a regressor to build the confidence balls for the parameters. However, a computationally feasible
version of SEQSEW is still an open problem (see Lattimore and Szepesvári [2020] 23.5 Note 1). To
design a practical version, we employed the SINDy framework as a regressor Brunton et al. [2016].

SINDy SINDY is a model discovery framework that identifies the governing equations of a
dynamical system directly from measured data. Specifically, SINDY can extract differential equations
or data given a collection of possible features ϕh. SINDY sparsity refers to selecting a minimal
set of functions to represent the dynamics, while its non-linearity indicates that these functions can
include nonlinear combinations of state variables. The sparsity assumption 1 motivates the choice
of SINDY for the identification of the dynamics, since it relies on the Sequentially Threshold Least
Squares with RIDGE (STLRidge) algorithm which iteratively performs RIDGE regression forcing to
zero coefficients below a certain threshold. This process is repeated until convergence, progressively
refining the model by discarding less relevant terms. To improve robustness in the presence of noise
and enhance performance on real-world data, Ensemble-SINDY [Fasel et al., 2022, E-SINDY] has
been proposed as an extension of the standard algorithm.

We now explain the structure of algorithm 2 in more detail. Initially, a random policy is exploited
to explore the environment and collect useful data for the initialization of the SINDY model. For
each state-action pair collected from the environment, the next state prediction is used to update the
confidence ball according to Lemma 1. The center of the confidence ball Ŵ can be computed online,
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initializing the matrix Λ and a vector P to zero value. For each new tuple state, action, and next state,
they are updated with the following rules:

Λh+1 ← Λh + ϕh(s, a)ϕh(s, a)
T Ph+1 = Ph + s′ϕh(s, a)

So that each row of the matrix Ŵ can be computed as Ŵh,ι = (Λh+1 + α · I)−1P . with α being an
hyperparameter for regularization of the SINDY model and I the identity matrix. After this setup
phase, the main algorithm follows a Dyna-style learning approach, alternating between interactions
with the real and surrogate environment, where the real environment is used only for data gathering.

The original algorithm involves a nested optimization problem over actions and models (line 12).
To address this in practice, we define an extended state sw which includes both the observed
environment state and the dynamical system parameters, enabling evaluation across all models within
the confidence ball. To evaluate the state-model-action space, we adopt a Dyna-style approach with
Soft Actor-Critic [Haarnoja et al., 2018, SAC], considering models randomly sampled from the
confidence ball at each step. Model sampling is done using Thompson Sampling with posterior
reshaping, drawing from a multivariate normal distribution N(W ⋆, β(Λ+α · I)−1) with β ∼ U [0, λ]
with λ being a hyperparameter controlling the maximum scale of the covariance matrix Λ, to sample
inside the confidence ball uniformly. To avoid storing model parameters in the reply buffer, SAC
updates are performed online by simultaneously simulating batches of trajectories. For this reason,
the neural networks of SAC are extended, including layer normalization as done in PQN Gallici et al.
[2025] to stabilize learning. Model exploration is done by randomly sampling a vector of models
from the confidence ball at each step, with each sampled state evaluated under its corresponding
model. Action exploration is guided not only by SAC but also by enforcing actions that are optimal in
similar models, i.e., taking the optimal actions for the sampled states under different models randomly
sampled from the confidence ball. Finally, we collect the reward, update the policy based on the
SAC algorithm, and update the SINDY model accordingly. This approach can also be parallelized to
reduce computing time, considering the set of random models as a vectorized environment.

4.1 Experiments

In this section, we present the results obtained by adopting our approach over different RL benchmarks.
We conducted experiments using three environments of increasing complexity from the Gymnasium
suite, Acrobot, Continuous Mountain Car [Towers et al., 2024], and the dm_control Swing Up Tassa
et al. [2018]. We evaluate the algorithm by studying the effects of the confidence ball with respect to
classical Soft Actor Critic and model-based Soft Actor Critic with SINDY. In each environment, the
confidence ball dimension is obtained scaling (Λ + α · I)−1 for a fixed hyperparameter λ. All the
results presented are averaged over 10 different seeds. Appendix D provides additional experimental
details. The code to reproduce the experiments is available in the supplementary material.

Swing-Up The Cartpole Swing-Up task involves swinging up and balancing a pole attached to a
cart that moves horizontally. The state includes the cart position x, the cosine and sine of the pole
angle θ, the cart velocity ẋ, and the pole angular velocity θ̇. The reward function incentivizes the
agent to keep the pole up, keeping the cart in a central position. The environment considers episodes
of 1000 time steps. Initially, a single episode of data is collected for SINDY and confidence ball
initialization. Subsequently, for each episode of data collection in the real environment, 4 episodes are
taken in the surrogate one for a total of Nm = 4 · 1000. The batch size b = 256 and the scaling factor
λ = 0.01. We can see in Figure 1a how, among the three approaches presented, OSCAR outperforms
both methods, managing to converge to the optimal policy with significantly fewer iterations.

Acrobot The Acrobot environment consists of two linked pendulum-like arms, with the second joint
actuated. The goal is to swing the free end upward to reach a target height starting from the downward
position. The state is represented by the cosine and sine of the two angles θ1, θ2, considering that
the angle of the second joint is relative to the first one, and their angular velocities θ̇1, θ̇2. The agent
always receives a negative reward unless the target position is reached. Each episode lasts 500 time
steps. Initially, a single episode of data is collected for SINDY and confidence ball initialization.
Then, for each trajectory collected in the real environment, we collect one episode in the surrogate
environment. The batch size is b = 256 and the scaling factor is λ = 1.0. Figure 1b shows the
learning curves for all three approaches. OSCAR clearly outperforms the baselines, converging
faster and reaching the optimal policy.
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0 20 40 60 80
Iterations

0

50

100

Re
tu

rn

OSCAR
SINDy
SAC

(a) Learning Curve

0 20 40 60 80
Iterations

100

50

0

50

100

Re
tu

rn

= 1.0
= 0.1
= 0.01
= 0.0

(b) Ball dimension analysis

Figure 2: Learning Curves for Mountain Car

Mountain Car The Mountain Car environment objective is to bring a car to the top of the hill
starting from the bottom of a sinusoidal valley. The state is represented by the position of the cart
x and its velocity ẋ. The agent receives positive feedback only if the car reaches the goal position,
making exploration essential to solve the task. The environment considers episodes of 1000 time
steps and terminates if the goal is reached. Initially, a single episode of data is collected for SINDY
and confidence ball initialization. Subsequently, for each episode of data collection in the real
environment, 5 episodes are taken in the surrogate for a total of Nm = 5 · 1000. The batch size
b = 512 and the scaling factor λ = 0.1. We show in Figure 2a the learning curves between the three
proposed methods. We notice that OSCAR is the only approach that manages to reach the goal of
the task. In tasks where the exploration is crucial, the optimistic behavior of OSCAR permits a more
efficient exploration, exploiting the model ensemble. Instead, approaches like SAC or model-based
SAC with SINDY end up in a suboptimal behavior due to a lack of exploration. Furthermore, in
Figure 2b we present an analysis over the λ parameter, which scales the radius of the confidence
ball used. A larger λ corresponds to a more optimistic selection strategy, as the ball includes a wider
range of models. However, we can notice that, while λ = 1.0 incentivizes a broader exploration,
it slows down the learning of the agent due to querying over uncertain models. On the other hand,
λ = 0.01 leads to a conservative behavior that limits exploration, resulting in suboptimal performance.
Eventually, we notice that an intermediate, λ = 0.1 value manages to balance the trade-off between
exploration and model reliability, achieving the optimal performance.

5 Conclusions

We have presented a unified theoretical and practical framework for RL in environments with sparse
nonlinear dynamics. Our key theoretical contribution is algorithm 1 (DPCBE), which is endowed
with a regret bound that scales with sparsity, a more general noise condition and misspecification,
significantly extending existing guarantees for model-based RL. To bridge theory and application,
we introduced algorithm 2 (OSCAR), a practical algorithm that uses SINDY to overcome the
computational burden of DPCBE. Our experiments demonstrate that this approach not only maintains
the theoretical spirit of optimism-driven exploration but also performs competitively or superiorly
across classic continuous control benchmarks, especially in tasks where exploration is key.
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Despite the synergy between model-based RL and continuous control, little work has explored
how SINDy-like sparse assumptions might inform theoretical developments in RL. While some
existing results in RL address linear or factored representations of the transition dynamics, these
models are fundamentally different and not well-suited for physical environments. Seminal papers Jin
et al. [2020], Ayoub et al. [2020], which try, under different assumptions, to enforce linearity of the
transition function with respect to a feature map, do not trivially work under an assumption like (1).
Even if there is a small literature in RL Kakade et al. [2020] that deals with an assumption similar to
equation (1), to the best of our knowledge, there is still no theoretical work that enforces sparsity on
the model parameters. In fact, the only works that study model-based RL under a sparse dynamical
system assumption Arora et al. [2022], Zolman et al. [2024] are very recent, and mostly empirical.

A Related Works

While the majority of RL papers focus on a transition function of the form sh+1 ∼ Ph(·|sh, ah),
there is still a huge literature that, lying at the intersection between RL and control theory, considers
systems where sh+1 = fh(sh, ah)+ηh, as in this paper. Most of these works assume that the additive
noise term ηh is Gaussian, which we do not. This assumption is classical in the control community,
appearing in early works on adaptive control and reinforcement learning for linear systems with
Gaussian disturbances (e.g., Bradtke et al. [1994], Abbasi-Yadkori and Szepesvári [2011]). In the
nonlinear setting, Doya [2000] and Simpkins et al. [2008] model continuous-time systems subject to
Brownian or Gaussian process noise, and derive actor-critic or Bayesian optimal policies accordingly.

From a more practical point of view, although models of this type have been known for a long time
Atkeson and Santamaria [1997], recent model-based RL approaches "re-discovered" this assumption
to capture uncertainty in learned dynamics. For instance, PILCO Deisenroth and Rasmussen [2011]
and PETS Chua et al. [2018] explicitly posit s′ ∼ N (ϕ(s, a),Σ) and exploit the additive structure
to propagate uncertainty during planning. These approaches, however, do not typically impose or
exploit sparsity in the transition model.

SINDy On the point of view of the application, the works that are closer to our paper are the ones
that try to leverage the powerful SINDY algorithms on top of RL methods. The usage of SINDY
has been paired with a classical model-based approach. In Arora et al. [2022], the authors propose a
Dyna-style learning algorithm adopting SINDY as a method to estimate the surrogate environment
paired with the state-of-the-art model-free algorithm. Despite the positive practical results, the authors
have not presented any theoretical guarantee on the approach. A more complex approach has been
proposed in the literature, which involves the usage of Deep Reinforcement Learning (DRL) and
dictionary learning based on the sparse identification provided by SINDY Zolman et al. [2024].
However, unlike the cited methodologies, our approach also provides theoretical guarantees on the
algorithm, paired with competitive practical results.

RL theory with linear function approximation From the point of view of theory, we are the first
paper providing a regret bound in our setting under the sparsity assumption. While regret bounds for
the LQR are already well-known, papers generalizing these results to an arbitrary non-linear feature
map of the state-action pair (like in our case (2)) are relatively novel Kakade et al. [2020]. With
respect to the latter paper, we generalize over three sides: we use a sparsity assumption, we extend the
family of the noise allowed for the model, from Gaussians to any density of bounded variation, and we
allow for model misspecification. Related to the first point, the work of Abbasi-Yadkori et al. [2012] is
worth mentioning, as it solves the problem of sparse linear bandits. The bounded variation assumption
on the density of the noise is, to the best of our knowledge, novel in the RL setting, while this class
of functions plays a central role in variational calculus and partial differential equations Ambrosio
et al. [2000]. Lastly, introducing the misspecification into a linear function approximation scheme for
RL is known to introduce one problem that we briefly mention in subsection 3.1: the influence of
ξ∞ in the regret bound is multiplied by

√
d. As Lattimore et al. [2020] argues, this problem arises

from the fact that, in bandit-RL settings, the agent needs uniform control over the error of the model
on the state-action space, and is not solvable in general. In fact, several recent seminal works in RL
with linear function approximation Zanette et al. [2020] Weisz et al. [2023] Wu et al. [2024] provide
regret bounds that suffer from misspecification amplification. To deal with this problem was the main
goal of multiple papers, like Maran et al. [2024a], which removes the amplification factor in case of a
locally linear feature map, and Dong and Yang [2023], which improves the

√
d amplification in case

13



of sparsity, but just in case of bandits, not in RL. None of these works is able to tackle the problem
in our setting, so that, at the current state-of-the-art, misspecification amplification remains one big
open problem in RL with linear function approximation.

B Notation

In this section, we leave, for the reader’s convenience, a table of the notation used in this paper.

S State space ⊂ RpS

A Action space ⊂ RpA

H Time horizon

fh Transition function S ×A → S at stage h ∈ {1, . . . ,H}
ηh Noise at step h

µh Density function of the noise at step h

rh Reward function S ×A → [0, 1]

K Number of episodes

πk
h Policy played at stage h of episode k

skh state visited at stage h of episode k

akh action played at stage h of episode k

V ∗
h Optimal value function

RK Regret

W ⋆
h System matrix (see equation 2)

ϕh Feature map (see equation 2)

d Dimension of the feature maps ϕh

d0 Sparsity parameter (see assumption 1)

C Proofs

Theorem 3. Fix an error probability δ > 0, ι ∈ {1, . . . pS} and h ∈ {1, . . . H}. Let ŷkh,ι be
the output of SEQSEW for the sequences ϕh(s

k
h, a

k
h), s

k
h+1,ι, that are indexed by k. Define the

confidence balls

Ckh,ι :=

{
θ ∈ Rd :

k∑
τ=1

(ŷτh,ι − ϕh(s
τ
h, a

τ
h)

⊤θ)2 ≤ β(δ) + ∥W ⋆
h,ι∥22

}
, (4)

where W ⋆
h,ι is the ι−th row of matrix W ⋆

h , and β(δ) = 1 + 2ρmax + 32 log
(√

8+
√
1+ρmax

δ

)
=

Õ(ρmax + log(1/δ)) (where ρmax comes from equation 3). Then, P(∃k : W ⋆
h,ι /∈ Ckh,ι) ≤ δ .

Proof. In this proof, we fix h, ι and call

xk = ϕh(s
k
h, a

k
h) ŷk = ŷkh,ι.

Under our transition (2)

yk = x⊤
k θ

⋆ + ηk θ⋆ := W ⋆
h,ι.
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At this point applying Theorem 23.4 from Lattimore and Szepesvári [2020] gives, with probability
1− δ, θ⋆ ∈ Ck, at the same time for every k = 1, . . .K

Ck :=

{
θ ∈ Rd : ∥θ∥22 +

k∑
τ=1

(ŷτ − x⊤
τ θ)

2 ≤ β(δ) + ∥θ⋆∥22

}
,

with our definition of β(δ). Erasing ∥θ∥22, which is non-negative, makes only the set bigger. This
ends the proof.

Lemma 1. For every h, k, ι, let Λk
h := I +

∑k
τ=1 ϕh(s

k
h, a

k
h)ϕh(s

k
h, a

k
h)

⊤, where I stands for the
identity matrix of size d. Moreover, let Ŵ k

h,ι := (Λk
h)

−1
∑k

τ=1 ŷ
k
h,ιϕh(s

k
h, a

k
h). Then,

Ckh,ι ⊆
{
θ ∈ Rd : ∥θ − Ŵ k

h,ι∥2Λk
h
≤ β(δ) + ∥W ⋆

h,ι∥22
}
.

Proof. Since, also in this case, h, ι are fixed, we keep calling

xk = ϕh(s
k
h, a

k
h) ŷk = ŷkh,ι,

and

yk = x⊤
k θ

⋆ + ηk θ⋆ = W ⋆
h,ι θ̂k = Ŵ k

h,ι Λk = Λk
h,ι.

In this notation, and using theorem 3, we have

Ck =

{
θ ∈ Rd : ∥θ∥22 +

k∑
τ=1

(ŷτ − x⊤
τ θ)

2 ≤ β(δ) + ∥θ⋆∥22

}
,

and we want to show it is contained in

C̃k =
{
θ ∈ Rd : ∥θ̂k − θ∥2Λk

≤ β(δ) + ∥θ⋆∥22
}
.

This from the identity (see Exercise 23.5 from Lattimore and Szepesvári [2020])

∥θ̂k − θ∥2Λk
+ ∥θ̂k∥22 +

k∑
τ=1

(ŷτ − x⊤
τ θ̂k)

2 = ∥θ∥22 +
k∑

τ=1

(ŷτ − x⊤
τ θ)

2,

as we are adding two terms that are nonnegative to the LHS.

C.1 Regret bound

The regret bound builds on the following fundamental properties of bounded variation noises.
Proposition 9. Let µ(·) ∈ BV(χ). Then, for any x0 ∈ Rp,

TV(µ(·), µ(·+ x0)) ≤ χ∥x0∥.

where TV denotes the total variation distance.

Proof. By definition,

TV(µ(·), µ(·+ x0)) = sup
f∈C(Rp), ∥f∥L∞≤1

∫
Rp

(f(y)− f(y − x0)) µ(y)dy.
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Now, fix a function f . By Lagrange’s theorem,

∫
Rp

(f(y)− f(y − x0)) µ(y)dy ≤ ∥x0∥ sup
x∈Rp

∥∥∥∥∇x

∫
Rp

f(y − x) µ(y)dy

∥∥∥∥ .
At this point, we have

∥x0∥ sup
x∈Rp

∥∥∥∥∇x

∫
Rp

f(y − x) µ(y)dy

∥∥∥∥ = ∥x0∥ sup
x∈Rp

∥∥∥∥∇x

∫
Rp

f(y) µ(y + x)dy

∥∥∥∥
= ∥x0∥ sup

x∈Rp

∥∥∥∥∫
Rp

f(y)∇xµ(y + x)dy

∥∥∥∥
≤ ∥x0∥ sup

x∈Rp

∥∇µ(·)∥M ≤ ∥x0∥χ.

The second passage comes from the fact that, using the weak gradient, we can bring it under the
integral sign under the condition that the integral is finite, which holds since f is bounded µ is a
probability density function.

Theorem 10. Assume 1 and 4 which holds for χh ≤ χ for every h = 1, . . . H − 1. Then, with proba-

bility at least 1− δ, algorithm 1 achieves the following regret bound RK ≤ Õ(H2χpS
√
d0dK) .

Proof. We work under the event defined by theorem 3, which has probability at least 1− δ. Under
this even, the true matrix W ⋆

h,ι of the transition at step h (component ι) belongs to Ckh,ι at any episode.
Since algorithm 1 chooses its policy by maximizing over the possible transitions in Ckh,ι. We the
following bound on the estimated value function at each episode

V ∗
1 (s) ≤ V k

1 (s) ∀s1 ∈ S.

Thus, the regret can be written in the following form

RK =

K∑
k=1

V ∗
1 (s

k
1)− V πk

1 (sk1) (6)

≤
K∑

k=1

V k
1 (sk1)− V πk

1 (sk1) (7)

≤
K∑

k=1

H∑
h=1

Eskh,a
k
h
[(P̂ k

h (·|skh, akh)− Ph(·|skh, akh))(V
πk

h )], (8)

where step 8 comes from the performance difference lemma and we have defined P̂ k
h (·|s, a)/Ph(·|s, a)

to be the estimated/true distribution of s′ following s, a. Indeed, by equation 2, these correspond to

µh(· −W ⋆
hϕh(s, a)) µh(· − Ŵ k

hϕh(s, a)).

Using the fact that V πk

h is bounded by H , we can proceed as follows.

R.H.S. ≤ H

K∑
k=1

H∑
h=1

Eskh,a
k
h
[TV((P̂ k

h (·|skh, akh)− Ph(·|skh, akh))]

≤ H

K∑
k=1

H∑
h=1

pS∑
ι=1

2 ∧ Eskh,a
k
h
[|W ⋆

h,ιϕh(s
k
h, a

k
h))− Ŵ k

h,ιϕh(s
k
h, a

k
h)|],
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where in the second passage we have used proposition 9, dividing the norm into the pS component of
the state (indeed ∥x∥ ≤ ∥x∥1 ≤ |x1| + |x2| + . . . ). The presence of 2 takes into account that the
total variation distance can never exceed 2. We then proceed as follows:

R.H.S. ≤ H

K∑
k=1

H∑
h=1

pS∑
ι=1

2 ∧ Eskh,a
k
h
[∥W ⋆

h,ι − Ŵ k
h,ι∥Λk

h,ι
∥ϕh(s

k
h, a

k
h)∥(Λk

h,ι)
−1 ] (9)

≤ H2E

[
K∑

k=1

pS∑
ι=1

2 ∧ ∥W ⋆
h,ι − Ŵ k

h,ι∥Λk
h,ι
∥ϕh(s

k
h, a

k
h)∥(Λk

h,ι)
−1

]
(10)

= H2E

[
pS∑
ι=1

K∑
k=1

2 ∧ ∥W ⋆
h,ι − Ŵ k

h,ι∥Λk
h,ι
∥ϕh(s

k
h, a

k
h)∥(Λk

h,ι)
−1

]
(11)

≤ H2E

 pS∑
ι=1

√
K

√√√√ K∑
k=1

4 ∧ ∥W ⋆
h,ι − Ŵ k

h,ι∥2Λk
h,ι

∥ϕh(skh, a
k
h)∥2(Λk

h,ι)
−1

 (12)

≤ H2E

 pS∑
ι=1

√
K

√√√√ K∑
k=1

4(βT (δ) +m2)
(
1 ∧ ∥ϕh(skh, a

k
h)∥2(Λk

h,ι)
−1

) (13)

= H2E

 pS∑
ι=1

√
4K(βK(δ) +m2)

√√√√ K∑
k=1

(
1 ∧ ∥ϕh(skh, a

k
h)∥2(Λk

h,ι)
−1

) (14)

≲ H2pS
√
(βK(δ) +m2)K

√
d log(K). (15)

In the previous derivation, we have used the shortcut m2 = maxh,ι ∥W ⋆
h,ι∥22. Step 12 comes from

the Cauchy-Schwartz inequality. Step 13 comes from our lemma 1. Step 15 comes from the elliptical
potential lemma (Lemma 11 in Abbasi-Yadkori and Szepesvári [2011]). Replacing the definition of
βK(δ) ends the proof.

Theorem 8. Assume 7 and 4 which holds for χh ≤ χ for every h = 1, . . . H − 1. Let us modify
the construction of the confidence sets in equation 4 by using as confidence radius β′(δ) = β(δ) +
Kξ2∞ log(1/δ). Then, with probability at least 1− δ, algorithm 1 achieves the following regret bound

RK ≤ Õ
(
H2χpS

√
d0dK +H2pS

√
dKξ∞

)
.

Proof. The proof of this result is very similar to the one of the previous theorem 10. First, we
have to show that, letting β′(δ) = β(δ) + Kξ2∞ log(1/δ), the optimism is maintained, even with
misspecification. This time, we cannot use directly the result by Lattimore and Szepesvári [2020] and
we need to derive the result from theorem 2, assuming that the samples take the form

yt = x⊤
t θ + ξ(xt) + ηt,

where ηt is an i.i.d. noise. Our goal is to bound

QT :=

T∑
t=1

(x⊤
t θ − ŷt)

2, (16)

so that, for θ = θ⋆, we can use this bound to build a confidence ball. Indeed, theorem 2, (which
makes no assumptions of yt being well-specified), gives, for each θ ∈ Rd

ρT (θ) :=

T∑
t=1

(yt − ŷt)
2 − (yt − x⊤

t θ)
2 ≤ ρmax.
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We have, by definition, calling ζt := ηt + ξ(xt),
T∑

t=1

(x⊤
t θ − ŷt)

2 = ρT (θ) +

T∑
t=1

(x⊤
t θ − ŷt)

2 − (yt − ŷt)
2 + (yt − x⊤

t θ)
2

= ρT (θ) +

T∑
t=1

x⊤
t θ

2 + ŷ2t − 2x⊤
t θŷt − y2t − ŷ2t + 2ŷtyt + x⊤

t θ
2 − 2ytx

⊤
t θ + y2t

= ρT (θ) +

T∑
t=1

2x⊤
t θ

2 − 2x⊤
t θŷt + 2ŷtyt − 2ytx

⊤
t θ

= ρT (θ) +

T∑
t=1

2x⊤
t θ

2 − 2x⊤
t θŷt + 2ŷt(x

⊤
t θ + ζt)− 2(x⊤

t θ + ζt)x
⊤
t θ

= ρT (θ) +

T∑
t=1

2ŷtζt − 2ζtx
⊤
t θ

= ρT (θ) +

T∑
t=1

2(ŷt − x⊤
t θ)ζt.

We can rearrange the last result as follows:

T∑
t=1

2(ŷt − x⊤
t θ)ζt =

T∑
t=1

2(ŷt − x⊤
t θ)ξ(xt) +

T∑
t=1

2(ŷt − x⊤
t θ)ηt.

These two terms can be bounded by means of QT (equation (16)), as follows: i) the random variable∑T
t=1 2(ŷt − x⊤

t θ)ηt is σ−subgaussian with σ =
√
Qt. Therefore, by Hoeffding’s inequality, w.p.

1− δ,

T∑
t=1

2(ŷt − x⊤
t θ)ηt ≤ 2

√
QT log(T/δ).

ii) By Cauchy-Schwartz inequality:

T∑
t=1

(ŷt − x⊤
t θ)ξ(xt) ≤

√√√√QT

T∑
t=1

ξ(xt)2 ≤
√

QTTξ2∞.

Putting everything together, we have shown the following bound on QT (eq. 16):

QT ≤ ρmax +
√
QT (2 log(T/δ) + Tξ2∞),

which is satisfied by QT = β′(δ) = β(δ)+Tξ2∞ log(1/δ) = Õ(ρmax+Tξ2∞ log(1/δ)). This proves
that

T∑
t=1

(x⊤
t θ

⋆ − ŷt)
2 ≤ β′(δ).

Replacing back xt = ϕh(s
k
h, a

k
h), yt = skh+1,ι, θ

⋆ = W ⋆
h,ι, and following the same passages of the

proofs of theorem 3 and lemma 1, this leads to

Ckh,ι ⊆
{
θ ∈ Rd : ∥θ − Ŵ k

h,ι∥2Λk
h
≤ β′(δ) + ∥W ⋆

h,ι∥22
}
,

with probability 1− δ. This proves the optimism, and allows us to bound the regret as
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RK =

K∑
k=1

V ∗
1 (s

k
1)− V πk

1 (sk1).

The sequent passages follow as in the proof of theorem 10, until we get

H

K∑
k=1

H∑
h=1

Eskh,a
k
h
[TV((P̂ k

h (·|skh, akh)− Ph(·|skh, akh))].

This term is bounded by

H

K∑
k=1

H∑
h=1

pS∑
ι=1

(
2 ∧ Eskh,a

k
h
[|W ⋆

h,ιϕh(s
k
h, a

k
h))− Ŵ k

h,ιϕh(s
k
h, a

k
h)|] + 2ξ∞

)
,

where the first part is bounded as in the previous theorem, giving
H2pS

√
(β′

K(δ) +m2)K
√

d log(K), and the second one gives

H

K∑
k=1

H∑
h=1

pS∑
ι=1

2ξ∞ ≤ 2H2KpSξ∞.

Since β′
K(δ) = Õ(ρmax +Kξ2∞), we get the statement.

D Experimental Settings and Additional Results

In this appendix, we discuss the experimental setting for the simulations provided in the main paper,
and we provide further results.

D.1 Experimental setting

Algorithm Setting For each test, the policy adopted is parametrized using a neural network with 2
hidden layers and 256 nodes per layer for both the actor and the critic using a ReLu as a non-linear
layer. The model-based SINDY version adopts two different reply buffers, one filled with data
collected from the real environment and one filled with data from the surrogate one. Differently, for
our implementation, a single reply buffer is employed since data generated using the confidence ball is
consumed directly from the network for a gradient step. We use PySINDy’s E-SINDy [de Silva et al.,
2020, Kaptanoglu et al., 2022] implementation with an ensemble of 20 models with STLRidge and
the coefficients of all the models are ensembled, taking the median of the coefficients. All the trained
models use a threshold of 1× 10−3 and RIDGE regularization of 1× 10−3 for all the experiments.

Experiments have been conduced with a discount factor γ = 0.99 and a learning rate of ηa = 3 ·10−4

for the actor and ηc = 1 · 10−3 for the critic except for the Acrobot environment where the learning
rate of the critic is lowered to ηc = 3 × 10−4. Since the model error accumulates at each step the
horizon of trajectories in the surrogate environment needs to be tuned in relation to the quality of
the model. Following [Zolman et al., 2024, Appendix D], rollouts in the surrogate environment
are truncated, and the surrogate environment is reset every time the predicted state exceeds certain
thresholds. We assume that physical limitations of the environment are well known a priori, i.e.,
limits that could damage the physical assets, and we used those as boundaries, as shown in Table 1.

Computational Resources. All the experiments are run on a server equipped as follows:

• CPU: Intel Xeon Gold 6238R (112 cores, 2.20 GHz);
• RAM: 256GB GB;

In particular, N = 300 trajectories for each environments with H = 1000 scored ≈ 58.82 iterations
per second for SAC and ≈ 12.71 iterations per second with model-based SINDY, while ≈ 8.92
iterations per second for OSCAR. All the performance are run over a single CPU core.
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Environment Threshold
Swing-up |x| < 5 |ẋ| < 10 | cos θ| < 1.1 | sin θ| < 1.1 |θ̇| < 10

Mountain Car x < 0.45 x > −1.2 |ẋ| < 0.07

Acrobot | cos θ1| < 1.1 | sin θ1| < 1.1 | cos θ2| < 1.1| sin θ2| < 1.1 |θ̇1| < 4π |θ̇2| < 9π

Table 1: Model Thresholds

Additional Results In Figure 3 we present an analysis of the performance of OSCAR w.r.t. the
scale factor λ in the Swing-Up and Acrobot environment. In Figure 3a, we can notice how small
values of λ manage to converge to the optimal behavior, while forcing a broader exploration (λ = 1)
leads us to a suboptimal solution. Since the environment provides dense reward that incentivizes
keeping the pole upright and the cart centered, policies that focus their exploration around the optimal
region (i.e., the upright position) receive more consistent learning signals. An excessive exploration
can thus lead to policies that swing the pole but fail to stabilize it. On the other hand, in environments
like Acrobot, with sparse reward signals, wider exploration helps find the optimal solution. We can,
in fact, notice, in Figure 3b, how with higher values of λ we manage to converge faster to the optimal
solution.
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Figure 3: Ball Dimension Analysis
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