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Abstract

We developed Foresight-England (Foresight-E), the first national-scale generative1

foundation model of electronic health records (EHRs), to support COVID-19-2

related research. We evaluated its ability to model the direct and indirect effects of3

the COVID-19 pandemic. The 243M-parameter transformer decoder was trained4

from scratch using a cohort of 54.9 million routinely collected, de-identified, longi-5

tudinal EHRs, including primary and secondary care, national death registrations,6

and COVID-19 testing/vaccination data. Foresight-E models patient timelines7

autoregressively to enable zero-shot generative prediction across its vocabulary of8

∼40,000 coded medical events. Our tokenisation scheme preserves the recorded9

clinical granularity of ICD-10, OPCS-4, and SNOMED CT codes, while jointly10

encoding absolute and relative temporal context. We designed and implemented an11

evaluation framework spanning 30-day COVID-19 hospitalisation and mortality12

using Brier scores and the area under the receiver operating characteristic (AU-13

ROC) and precision–recall (AUPRC) curves. We further evaluated the ability to14

model the pandemic’s indirect effects by testing temporal generalisation on the15

held-out year of 2023, simulating prospective deployment. We benchmarked model16

performance against logistic regression and XGBoost baselines using a test set of17

6.1 million patients. Following concerns raised by the British Medical Association18

and Royal College of General Practitioners’ Joint GP IT Committee, NHS England19

has paused access to data for the Foresight project while a review is carried out.20

That pause means quantitative results are not available pending the outcome of21

ongoing discussions. Instead, we share our strategy for tokenisation, model archi-22

tecture, training, inference, and evaluation, as a methodological template and a23

case study in the challenges of building population-scale, EHR foundation models24

and operationalising generative AI for national health systems.25

1 Introduction26

Prognostic clinical risk prediction models have traditionally relied on expert-defined, static features27

from electronic health records (EHRs) [1, 2]. While effective for narrow, well-defined tasks, these28

approaches cannot easily scale to predict the whole range of clinically relevant medical events or adapt29

to shifting dynamics of healthcare, such as the COVID-19 pandemic. They also often underutilise the30

rich temporal information in patients’ longitudinal records.31

Neural network transformer models offer a way to utilise the temporal and longitudinal information32

in EHRs for prediction, drawing on techniques initially developed for modelling language [3], first33
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with masked-token objectives such as BERT [4] and later with autoregressive next-token prediction34

as popularised by GPT-style models [5]. This shift enabled zero- and few-shot performance across35

diverse tasks without task-specific retraining, inspiring analogous efforts in healthcare [6–10]. Gener-36

ative EHR models hold the promise of supporting early detection, risk stratification, and simulation37

of clinical scenarios in a single model, without the need to retrain for each outcome of interest.38

A key barrier to realising this vision has been scale: most prior work is restricted to single institutions39

[9] or population subsets [6, 10], limiting performance [11] and fairness across population subgroups,40

so-called ‘algorithmic bias’ [12]. In England, due to the COVID-19 pandemic, permissions were41

granted to enable COVID-19 research on national-scale de-identified EHR data [13, 14]. This data42

encompasses primary care, secondary care, COVID-19 testing, vaccination, and mortality data [15],43

and is securely stored within the NHS England Secure Data Environment (NHSE SDE) [16]. Despite44

the potential of such a resource for the development and evaluation of AI models for COVID-1945

research, computational restrictions within the NHSE SDE have limited previous projects to small46

cohorts [17, 18].47

In this work, we developed Foresight-England (Foresight-E), a 243-million-parameter transformer48

trained entirely within the NHSE SDE on a national scale, de-identified EHRs. Designed for zero-shot49

prediction of COVID-19 outcomes, Foresight-E targets the whole English GP-registered population,50

enabling research into both direct COVID-19 outcomes (e.g., hospitalisation, mortality) and indirect51

effects on emergency admissions, all-cause mortality, and over 1,400 phenotypes in a temporally52

held-out test set (2023).53

Following concerns raised by the British Medical Association and Royal College of General Practi-54

tioners’ Joint GP IT Committee, NHS England has paused access to data for the Foresight project55

while a review is carried out [19]. That pause means quantitative results are not available pending56

the outcome of ongoing discussions. Therefore, we report here the data pipeline, tokenisation,57

architecture, training, inference, and evaluation framework underpinning the model, assessed against58

the TRIPOD+AI [20] and PROBAST-AI [21] reporting guidelines (see Appendix E and F).59

We contribute the following:60

1. Development of Foresight-E, the first population-scale foundation model of UK EHRs for61

COVID-19 research.62

2. First demonstration of GPU-accelerated foundation model training on national-scale NHS63

data within the NHSE SDE.64

3. A reproducible methodology for longitudinal EHR tokenisation and model development.65

4. A six-million-patient evaluation framework to assess zero-shot prediction of COVID-19’s66

direct and indirect effects.67

Together, these provide both a technical blueprint for future EHR foundation models and a case study68

in the challenges of national-scale generative AI for healthcare.69

2 Methods70

We developed Foresight-E for COVID-19 research using linked, de-identified, routinely collected71

national datasets [22, 14]. All processing, model training, inference, and evaluation occurred entirely72

within the ‘Five Safes’ framework of the NHSE SDE [16].73

Here we outline the datasets, patient timeline construction, tokenisation, model architecture, training74

regime, and our inference and evaluation strategy, including uncertainty estimation and comparative75

baselines. Each step was designed to support robust, generalisable, zero-shot medical event prediction76

for the direct and indirect effects of COVID-19.77

2.1 Data78

We used eight linked national datasets covering 1 November 2018 to 31 December 2023 [22, 14],79

spanning primary care [23], secondary care [24], national death registrations [25], COVID-19 testing80

[26], and vaccination records [27] (full details in Table 1).81
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The base cohort comprised individuals alive on or after 1 November 2019 (primary care dataset82

inclusion date), with known age and sex, resident in England, GP-registered, and without conflicting83

death dates. We required patients to be at least one year old during training to ensure a minimum84

history and avoid immortal-time bias between the start of records (1 November 2018) and the first85

observed deaths (1 November 2019). This gave a nationally representative cohort of 61 million86

patients [15].87

We created training (48.8M patients), validation (6.1M patients), and test sets (6.1M patients)88

via disjoint 10% patient samples. All 2023 events were reserved to test temporal generalisation,89

mimicking a prospective deployment on future, unseen data. Figure 1 shows temporal coverage and90

partitioning of the datasets.91

(a) Linked primary/secondary care, deaths, testing,
and vaccination datasets (1 Nov 2018–31 Dec 2023).

(b) Disjoint 10% validation/test cohorts; 2023 held out
for temporal generalisation evaluation.

Figure 1: Datasets and cohort splits used in the training and evaluation of Foresight-E.

2.2 Patient Timelines92

Each patient’s history was encoded as a chronological sequence of dated, coded events, including93

diagnoses, procedures, medications, and other healthcare interactions. Clinical codes followed94

standard terminologies: ICD-10 [28] for Hospital Episode Statistics (HES) diagnoses and Office for95

National Statistics (ONS) causes of death, OPCS-4 [29] for HES procedures, and SNOMED CT [30]96

for General Practice Extraction Service Data for Pandemic Planning and Research (GDPPR) records97

and COVID-19 vaccinations. We supplemented these with custom tokens for events not covered by98

standard vocabularies, such as positive SARS-CoV-2 tests, hospital admission indicators, and primary99

or secondary diagnosis flags.100

Because event timestamps were available only at day-level precision, we applied a consistent within-101

day ordering: COVID-19 vaccination; SARS-CoV-2 test; GDPPR events; HES Outpatients (OP);102

HES Accident & Emergency (A&E); HES Admitted Patient Care (APC); HES Critical Care (CC);103

and, lastly, death. Within each dataset, events were further ordered by admission date, then by primary104

diagnoses, secondary diagnoses, procedures, and finally by alphanumeric code.105

Geographic (region) and deprivation (Indices of Multiple Deprivation) data were excluded from the106

dataset to avoid learning existing biases. Codes deemed sensitive were removed, using a codelist107

supplied by NHS England.108

2.3 Tokenisation109

We converted each patient’s timeline into a sequence of discrete tokens representing clinical codes110

and temporal gaps. Each sequence began with static demographic tokens for sex (e.g., SEX_FEMALE)111

and ethnicity (e.g., ETHNICITY_ASIAN). We then added the sequence of codes, ordered as described112

in Section 2.2, from each patient’s timeline as tokens. If two consecutive events occurred on different113

days, we inserted a time-difference token (e.g., TIME_DIFFERENCE_1) to represent the temporal114

gap in days; no time-difference token was added between consecutive same-day events. To provide115

absolute temporal context, we inserted a YEAR_START token at the beginning of each calendar year,116
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followed by an AGE_N token for the patient’s integer age (or AGE_UNBORN if not yet born). These117

yearly markers ensured that time gaps never exceeded 366 days and allowed the representation of118

age-related and absolute temporal patterns to generalise temporally.119

A lookup-based tokeniser mapped all unique tokens in the training data to integer IDs, including120

clinical codes, age (integer years and unborn), 1–366 day gaps, and special tokens for padding and121

sequence end. The resulting fixed tokeniser vocabulary contained ∼40,000 tokens. Unseen codes122

at inference time were dropped from the sequence without substitution. During training, sequences123

were left-truncated to a maximum length of 1,024 tokens to retain recent context. Truncation was124

performed at the event level, with retokenisation, to preserve demographic, year-start, and age tokens,125

and to adjust time-difference tokens. Sequences were then right-padded to the batch maximum length.126

For inference, the implementation of an on-GPU valid autoregressive truncation strategy was avoided127

to reduce complexity. Instead, the input length was constrained to 1,024−Lforecast, where Lforecast128

denotes the tokens allocated for forecast generation.129

2.4 Training130

Foresight-E was trained with an autoregressive next-token prediction objective, analogous to the131

paradigm used for LLMs [5, 8, 9]. All experiments were conducted entirely within the NHSE SDE132

[16] on 8× NVIDIA A10 GPUs (AWS g5.48xlarge instance in region eu-west-2) [31, 32].133

2.4.1 Objective134

Let N be the batch size, T the maximum sequence length, and V the vocabulary size. At each135

position t, given preceding tokens yn,<t, the model outputs a distribution over V . A binary mask136

mn,t excludes padding and the initial demographic tokens from loss calculation. Excluding the137

initial tokens aims to mitigate the risk of biasing the model by learning to predict based solely on138

demographic features. The loss, L, given the model weights, θ and the true token, yn,t, is:139

L = − 1∑
n,t mn,t

N∑
n=1

T∑
t=1

mn,t logP (yn,t | yn,<t, θ) (1)

2.4.2 Architecture140

We adapted the Llama 2 transformer-decoder [33, 34] architecture with Rotary Positional Embeddings141

(ROPE) [35] and FlashAttention-2 [36]. Pretrained weights were not imported into the SDE due to142

governance restrictions and the custom vocabulary; therefore, training was conducted from scratch.143

To train a Llama decoder on NVIDIA A10 GPUs, the model architecture was scaled down to 243144

million parameters, comprising 12 layers, a hidden size of 1024, a feed-forward size of 4096, 8145

attention heads, and a 1024-token context window. Input/output embeddings were tied.146

2.4.3 Training Protocol147

We used bfloat16 mixed precision, attention dropout 0.1, gradient clipping (max norm 1.0), and148

weight decay 0.1. The Adam optimizer had β1 = 0.9, β2 = 0.95, with a linear warm-up over 3% of149

steps to a peak learning rate of 5× 10−4, then cosine decay. The global batch size was 128, achieved150

via 8-way data parallelism and gradient accumulation (factor 2). Sequences were right-padded to151

1024 tokens. The model was trained for one epoch, with validation loss evaluated every 1,000 steps152

on 32k sampled sequences. Training was completed in 4 days. We did not conduct hyperparameter153

tuning due to resource constraints; instead, training parameters were selected based on standard154

defaults from prior literature [8, 37].155

2.5 Zero-Shot Inference156

After training, Foresight-E can predict future clinical events from patient histories without task-157

specific fine-tuning (‘zero-shot inference’). At inference, the model is prompted with a tokenised158

patient timeline (see Section 2.3) and outputs a probability distribution for the next token. A token is159

sampled and appended to the input. This autoregressive process continues until a stopping condition160

is met: a specific event token (e.g., death), a maximum forecast horizon (e.g., 30 days, 1 year), or161
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Figure 2: Illustration of idealized zero-shot inference on a synthetic patient timeline. Foresight-E
receives a history ending with a positive SARS-CoV-2 test and predicts a hospital admission within
the next 30 days. Tokens 2–7 are omitted for clarity.

a maximum of newly generated tokens (e.g., 300). Generated tokens are detokenized to output the162

predicted event timeline.163

Greedy decoding produced repetitive outputs, so stochastic multinomial sampling was adopted to yield164

diverse and clinically plausible sequences. We did not use parameter-dependent sampling techniques165

such as top-k or temperature, as they would have required additional task-specific hyperparameter166

tuning. KV cache was used to increase generation speed.167

To estimate prediction uncertainty, critical for safe and reliable clinical decision-making [38], we168

performed S independent rollouts per patient. In our experiments, S = 48, which maximised169

the available memory capacity of a single A10 GPU [32]. To scale inference across patients, we170

parallelised inference across the eight available GPUs [31].171

The probability of event i occurring within t days was then calculated as [9]:172

P (Eventi,t) =
si,t
S

, (2)

where si,t is the number of samples in which the event appears within the horizon. This formulation173

supports probability estimates for any of the ∼40,000 medical events seen during training, enabling174

probabilistic zero-shot predictions across diverse clinical outcomes.175

2.6 Evaluation176

We evaluated Foresight-E on two direct COVID-related outcomes: hospitalisation and death within177

30 days of a positive SARS-CoV-2 test. Eligible patients in the test set had at least one positive test178

between 1 November 2018 and 1 December 2023. Timelines were truncated after the first positive179

test, and predictions were generated for the next 30 days. Hospitalisation was defined as an admission180

in HES APC (APC token), and death as any Office for National Statistics (ONS) death registry entry181

(DEATH token). Inference was completed in 2 days.182

Secondary outcomes examined Foresight-E’s potential to model the indirect effects of COVID-19183

[39, 40] on: (i) emergency hospitalisation, (ii) all-cause mortality, and (iii) onset of over 1,400184

Phecode-defined diseases, in the held-out year of 2023. Here, timelines were truncated after the185

2023 year-start token and timelines predicted over a one-year horizon. Emergency admissions were186

identified via admission method codes in HES APC, and mortality as above. Phenome-wide disease187

onset was defined by the first occurrence of each Phecode, a previously validated collection of over188

1,400 groups of ICD-10 codes (example shown in Table 2) [41]. Inference was completed in 15 days.189
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2.6.1 Metrics190

For evaluation, each outcome was treated as a binary classification task: given a patient’s history,191

estimate the probability of event i occurring within t days, and compare against the observed outcome.192

This allowed for the evaluation of single medical event prediction as well as bespoke phenotypes193

composed of multiple events or more complex definitions.194

Discriminative performance was assessed using the area under the receiver operating characteristic195

curve (AUROC) [42] and the area under the precision–recall curve (AUPRC) [43], the latter being196

more commonly used under class imbalance [44, 45]. Overall accuracy and calibration were jointly197

measured using the Brier score [46]. We also generated ROC, precision–recall, and calibration curves198

for visual inspection.199

Confidence intervals (95%) were obtained via non-parametric patient-level bootstrapping with the200

percentile method, using 1,000 resamples for all analyses apart from the Phecode tasks (where 100201

were used) due to computational cost. To reflect potential use as a clinical screening tool, we also202

evaluated recall at a fixed 10% false-positive rate (FPR10), consistent with prior studies [47] and203

representing a hypothetical operational threshold.204

2.6.2 Subgroup Analyses205

We conducted subgroup analyses of mortality predictions at both the 30-day post–SARS-CoV-206

2–positive test and one-year horizons, stratifying test-set patients independently by age, sex, ethnicity,207

and vaccination status. For each subgroup, we calculated the AUROC and AUPRC in comparison208

with the overall cohort. Additionally, we investigated how performance on these metrics varied with209

the number of historical patient events provided as model input. Finally, we assessed changes in210

AUROC and AUPRC relative to the timing of the COVID-19 test to determine whether the Foresight211

model could capture evolving patterns in pandemic dynamics.212

2.7 Baseline Methods213

We benchmarked Foresight-E against two supervised classifiers trained separately for all-cause214

mortality and hospitalisation at 30 days after a positive SARS-CoV-2 test, and for the same outcomes215

over a one-year horizon in 2023.216

All baselines used the same training split as Foresight-E but were task-specific, in contrast to Foresight-217

E’s zero-shot capability. The first was a logistic regression model [48] using age, sex, and ethnicity218

(one-hot encoded), with vaccination status added for the SARS-CoV-2 tasks. The second was an219

XGBoost model [49] using one-hot vectors of all medical codes from the Foresight-E vocabulary,220

providing equivalent structured clinical data but without temporal ordering.221

To allow training outcomes to be observed, input cutoffs were set to 1 December 2022 for the 30-day222

tasks and 1 January 2022 for the one-year tasks. This requirement underscores a key advantage of223

Foresight-E’s self-supervised learning framework: it does not rely on outcome labels during training,224

eliminating the need to reserve training data for labelling temporally. Performance for all models was225

evaluated using AUROC, AUPRC, and Brier score, as described in Section 2.6.1.226

3 Discussion227

Following concerns raised by the British Medical Association and Royal College of General Practi-228

tioners’ Joint GP IT Committee, NHS England has paused access to data for the Foresight project229

while a review is carried out [19]. That pause means quantitative results are not available pending230

the outcome of ongoing discussions. Therefore, we discuss the main methodological strengths and231

limitations of Foresight-E, including data sources, modelling approach, inference strategy, evaluation232

design, and potential applications.233

3.1 Data234

Foresight-E’s key strength is its first use of national-scale, routinely collected EHRs spanning primary235

care, secondary care, COVID-19, and death registrations. This ensures Foresight is trained on diverse236

data representative of the general population [15], helping to mitigate algorithmic bias [50], enabling237
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prediction of rare diseases [51, 52], and facilitating onward translation through aligning training238

data with intended use populations. Given that primary care accounts for most healthcare delivery,239

integrating this data provides a more complete representation of an individual’s health, enables240

earlier risk stratification, and may ultimately guide preventive interventions to avert disease onset,241

complications and costly secondary care.242

Despite its breadth, the datasets reflect typical challenges of routinely collected health data: incom-243

plete or imprecise coding [53], historical biases in care [54, 50], and shifts in recording practices244

[55], especially during the COVID-19 pandemic [56]. Notably, the GDPPR primary care dataset245

contains only a subset of codes, those deemed relevant for COVID-related research, omitting many246

common and rare diseases, as well as signs and symptoms data crucial for understanding disease247

presentation and evolution. Furthermore, it only contains those alive on or after 1 November 2019.248

This restricts the available joint history, which may limit the model’s ability to capture long-term249

trajectories. Expanding the temporal window would be expected to improve performance but require250

methods that efficiently handle longer sequences [57].251

Future enhancements could come from incorporating additional modalities such as clinical notes or252

medical imaging. The development of foundational multi-modal transformer models in the general253

domain shows how the methods presented here could be extended [58, 59]. However, such data is254

not currently available at a national scale, and provisioning would require appropriate governance,255

infrastructure, and technical methods, including de-identification and pre-processing.256

3.2 Model257

Foresight-E uses a 243-million-parameter Llama-2–style transformer decoder with Rotary Positional258

Embeddings (ROPE) and FlashAttention-2 for efficiency. While larger than most prior EHR models259

[60] and trained on national scale data, the scale of data, model size, and compute is still orders of260

magnitude smaller than the general domain [61].261

Foresight-E is designed to be data-driven, rather than relying on predefined parametric models262

such as exponential hazard–style structures [60, 62]. Although we trained from scratch due to a263

custom vocabulary and NHSE SDE import restrictions, smaller-scale studies indicate that fine-tuning264

pretrained LLMs for medical-event prediction is beneficial to performance [63]. If future NHSE265

SDE policy permits importing pretrained models, initialising from a general model, and adapting266

in-domain is a promising direction.267

Our tokenisation strategy prioritised clinical and representational fidelity. We retained the recorded268

granularity of clinical codes, all event codes, and encoded exact day-level time gaps, rather than269

collapsing codes into broader categories, filtering low-occurrence events, or binning time [9]. This270

maximised diagnostic specificity and allowed prediction of rare events often excluded in other models271

[52]. However, this enlarged the vocabulary and prediction space and reduced per-token training272

frequency. Furthermore, there were no out-of-vocabulary codes during training, so when encountered273

during inference, unseen codes had to be dropped, potentially losing patient information. Future274

extensions of the tokeniser could leverage hierarchical relations between concepts, as defined by275

ontologies, building on evidence that such structure can enhance EHR model performance [64].276

We jointly encoded absolute time and patient age, enabling the model to capture temporal shifts in care277

patterns; however, this required careful sequence validity constraints (e.g., preserving demographic278

and year-start tokens). Sequence truncation was done at the event level during training as a pre-279

processing step to avoid invalid timelines. However, this is not possible during GPU inference, so a280

fixed maximum input length was used, meaning some long histories were partially discarded, thereby281

losing patient information.282

Batching was performed per patient, rather than randomly sampling from concatenated EHRs [60, 9].283

This prevented spurious cross-patient attention, at the cost of more padding and lower GPU utilisation.284

Future work could explore intra-document causal masking [65] to enable the concatenation of patients’285

timelines without information leakage, thereby reducing padding and improving training efficiency.286

3.3 Inference287

We extended prior probabilistic patient-trajectory approaches [9], applying Foresight-E in a zero-shot288

setting to forecast ∼40,000 medical events, across 30-day and 1-year time horizons relevant to289
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COVID-19 outcomes. This offers the broad ability to predict differential diagnoses and clinical290

trajectories, rather than single outcomes, but is computationally intensive, particularly at a population291

scale. Comparative studies with task-specific fine-tuning are needed to clarify efficiency–flexibility292

trade-offs.293

Our current setup generates 48 trajectories per patient, constrained practically by the NVIDIA A10294

GPU’s memory. Exploring convergence dynamics and alternative decoding strategies (beam search,295

top-k, temperature) may yield gains in efficiency, accuracy, and calibration, but would require tuning.296

Furthermore, quantifying the temporal horizon over which Foresight-E can reliably forecast patient297

outcomes, both in absolute time and in terms of tokens, requires further study.298

Finally, enhancing interpretability through techniques such as attention-weighted visualisation,299

gradient-based saliency, or counterfactual generation could help clinicians understand the model’s300

forecasts by scrutinising learned associations for known and novel patterns, as well as the presence of301

spurious correlations, such as shortcut learning. Such methods could support safe adoption in practice302

by explaining why the model anticipates particular outcomes, as well as identifying potentially303

modifiable risk factors as targets for intervention to optimise health.304

3.4 Evaluation305

We evaluated Foresight-E’s ability to predict COVID-19 outcomes in two settings designed to reflect306

real-world deployment challenges.307

First, we assessed its ability to predict direct COVID-19 outcomes during the pandemic, a period308

marked by shifting conditions such as emerging viral variants, changing testing protocols, public309

health interventions and population immunity. Unlike earlier models [9], Foresight-E explicitly310

encodes both absolute time and patient age, enabling it to adapt to these temporal shifts. Forecast-311

ing future novel threats, outside the current training data and vocabulary, could be supported by312

continually retraining on the latest batches of routinely collected data.313

Second, we sought to predict the indirect effects of COVID-19 and simulate a prospective deployment314

by predicting events in 2023, one year beyond the training period, on over 1,400 Phecodes, emergency315

hospitalisation, and all-cause mortality. COVID-19 highlights the challenges of temporal data shifts.316

Foresight-E was trained during the height of the COVID-19 pandemic, a period of profound healthcare317

system disruption and excess all-cause mortality, which left an enduring and evolving legacy in the318

evaluation period of 2023, encompassing the indirect effects the pandemic exerted on individuals,319

healthcare systems, and society at large [40].320

This represents, to our knowledge, the broadest zero-shot evaluation of an EHR foundation model321

to date. Working at the population level meant facing low prevalence for many acute outcomes, in322

contrast to models trained solely on high-acuity inpatient cohorts (e.g., MIMIC-IV [66]). While this323

sparsity poses challenges, it also demonstrates Foresight-E’s potential utility for population screening324

as well as high-risk patient monitoring, by training on both healthy and acutely ill patient timelines.325

In order to critically evaluate Foresight-E’s performance in population screening we additionally326

reported recall at a fixed 10% false-positive rate, consistent with prior studies [47] and representing a327

hypothetical operational threshold.328

Due to NHSE SDE constraints, external pretrained models could not be imported for direct com-329

parison, and compute limits restricted the number of baseline models trained. Moreover, framing330

each patient trajectory as thousands of binary prediction tasks provided established metrics (AUROC,331

AUPRC, Brier score) but did not capture the overall fidelity of generated trajectories, an important332

direction for future work.333

A key limitation of this work is the inability to benchmark against commonly used clinical risk334

prediction tools, due to a lack of required data (e.g. physiological measurements and test results [67]),335

limited data duration (e.g. QRisk measures 10-year cardiovascular disease risk [1]) and the fact that336

where risk scores were recorded the resulting outcomes were then conditioned on resultant clinical337

decision making [68].338
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3.5 Future Directions and Considerations339

Foresight-E was developed as a research pilot strictly for COVID-19-related research and is not a340

validated clinical tool. The model is therefore confined to this scope, and any future directions for the341

methodology are entirely contingent on navigating the significant governance challenges outlined342

below.343

The generative, zero-shot forecasting of models like Foresight-E offers broad potential, including344

forecasting population health demands, stratifying groups at increased risk of adverse outcomes, and345

enabling personalised risk prediction to guide preventive interventions. Beyond direct clinical care,346

potential applications include improving clinical trial efficiency through prognostic enrichment or347

advancing drug discovery by better modelling disease trajectories. A priority area for research is348

validating the model’s capacity for counterfactual generation, a crucial step toward creating robust349

digital twins and enabling trustworthy in-silico trials.350

However, moving from research to application would require secure, real-time model deployment,351

a capability beyond current NHSE SDE infrastructure. This gap is particularly critical for large352

generative models, which can inadvertently memorise and expose sensitive training data [69]. A353

potential mitigation strategy is to deploy such models within a secure environment behind narrowly354

scoped APIs. These would provide only predefined, validated outcomes, such as calibrated risk355

scores, rather than open-ended generative trajectories, thereby constraining vectors for data extraction356

and mitigating privacy risks [70].357

However, these ambitions are secondary to the fundamental governance hurdles. The most significant358

barrier is that any extension of this work is contingent on securing new data access approvals under a359

transparent framework with a clear public benefit beyond COVID-19 research. This would require360

establishing a new social license through deep and sustained engagement with patients, the public,361

and professional bodies. Furthermore, the path from a research model to a trustworthy clinical tool362

would necessitate additional rigorous evaluation and a clear route to regulatory approval as a medical363

device. Addressing these socio-technical challenges is the central prerequisite for future progress in364

this domain.365

4 Conclusion366

We have presented Foresight-E, a 243-million-parameter transformer trained on national-scale EHR367

data from 54.9 million NHS patients and evaluated on its ability to perform zero-shot prediction368

across ∼1.4k medical outcomes for a 6.1-million-patient test set. Within the constraints of COVID-19369

governance, we outlined the data integration pipeline, tokenisation strategy, model architecture,370

training procedure, and inference and evaluation framework.371

Although quantitative results are currently withheld pending ongoing discussions, this work demon-372

strates that it is technically feasible to develop a foundation model for healthcare entirely within373

existing NHS infrastructure. By combining routinely collected population-scale de-identified EHRs374

with modern generative modelling, Foresight-E offers a blueprint for zero-shot healthcare AI systems.375

Expanding access to broader clinical modalities, extending beyond COVID-restricted datasets,376

and developing safe deployment pathways could enable models like Foresight-E to support both377

population-level planning and individualised care. Realising this potential will require not only378

technical advances but also transparent governance, sustained public and professional engagement,379

and rigorous evaluation in real-world clinical settings to generate evidence for regulatory approval.380

5 Ethics approval381

The North East - Newcastle and North Tyneside 2 research ethics committee provided ethical382

approval for the CVD-COVID-UK/COVID-IMPACT research program (REC No 20/NE/0161) to383

access, within secure trusted research environments, unconsented, whole-population, de-identified384

data from EHRs collected as part of patients’ routine healthcare.385

Patient and public involvement was included in the approvals process and has continued to shape the386

research through Patient and Public Involvement and Engagement sessions organised via BHF Data387

Science Centre [71].388
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A Data availability620

The data used in this study are available in the NHSE SDE service for England, but as restrictions621

apply, they are not publicly available [16].622

The CVD-COVID-UK/COVID-IMPACT programme, led by the BHF Data Science Centre [72],623

received approval to access data in the NHSE SDE service for England from the Independent Group624

Advising on the Release of Data (IGARD) [73] via an application made in the Data Access Request625

Service (DARS) Online system (ref. DARS-NIC-381078-Y9C5K) [74].626

The CVD-COVID-UK/COVID-IMPACT Approvals & Oversight Board [71] subsequently granted627

approval to this project to access the data within the NHSE SDE service for England. The de-identified628

data used in this study were made available to accredited researchers only. Those wishing to gain629

access to the data should contact bhfdsc@hdruk.ac.uk in the first instance.630

B Code availability631

All data preparation, model training, and evaluation code will be released on GitHub (pending632

regulatory review and NHSE SDE output review) at: https://github.com/BHFDSC/CCU078_633

01_Foresight-SDE. The repository will include a requirements.txt specifying all package634

versions.635

Due to data restrictions, trained model weights and artefacts are only accessible to a subset of636

approved consortium researchers on a dedicated Foresight cluster within the NHSE SDE. Those637

wishing to gain access to the data should contact bhfdsc@hdruk.ac.uk in the first instance.638

All analyses were executed within the NHSE SDE [16] using Databricks Runtime 14.3 LTS for ML639

[75]; training/evaluation used an AWS g5.48xlarge instance with eight NVIDIA A10 GPUs [31, 32].640

C Datasets641

Table 1: Summary of datasets used in the study, including 4 separate secondary care datasets.

Domain Datasets Citation
Primary care General Practice Extraction Service (GPES) Data for Pan-

demic Planning and Research (GDPPR)
[23]

Secondary care Hospital Episode Statistics (HES): Outpatients (OP), Acci-
dent & Emergency (A&E), Admitted Patient Care (APC)
and Critical Care (CC)

[24]

Mortality Office for National Statistics (ONS) Civil Registration of
Deaths

[25]

COVID-19 testing UK Health Security Agency (UK HSA), formerly Pub-
lic Health England (PHE), COVID-19 Second Generation
Surveillance System (SGSS)

[26]

COVID-19 vaccination NHS England COVID-19 Vaccination Status [27]
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D Endpoint to Token Mapping642

Table 2: Mapping of evaluation endpoints and associated figures to timeline tokens. An example
phecode definition is shown.

Endpoint Tokens
Mortality DEATH

Hospitalisation APC
Emergency Hospitalisation APC_ADMIMETH_21, APC_ADMIMETH_22,

APC_ADMIMETH_23, APC_ADMIMETH_24,
APC_ADMIMETH_25, APC_ADMIMETH_28,
APC_ADMIMETH_2A, APC_ADMIMETH_2B,
APC_ADMIMETH_2C, APC_ADMIMETH_2D

Phecode 8.0 - Intestinal Infection ICD10_A000, ICD10_A009, ICD10_A011, ICD10_A012,
ICD10_A013, ICD10_A014, ICD10_A059, ICD10_A060,
ICD10_A062, ICD10_A063, ICD10_A064, ICD10_A065,
ICD10_A067, ICD10_A068, ICD10_A069, ICD10_A079
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E TRIPOD+AI Checklist643

Table 3: Assessment of Foresight against the Transparent Reporting of a multivariable prediction
model for Individual Prognosis Or Diagnosis (TRIPOD)+AI Checklist [20]. The results section is
excluded as not included in this paper.

Item Checklist item Section
Title
Title Identify the study as developing or evaluating

the performance of a multivariable prediction
model, the target population, and the outcome
to be predicted

Title

Abstract
Title Identify the study as developing or evaluating

the performance of a multivariable prediction
model, the target population, and the outcome
to be predicted

Title

Background Provide a brief explanation of the healthcare
context and rationale for developing or evalu-
ating the performance of all models

Abstract

Objectives Specify the study objectives, including
whether the study describes model develop-
ment, evaluation, or both

Abstract

Methods Describe the sources of data Abstract
Describe the eligibility criteria and setting
where the data were collected

Abstract

Specify the outcome to be predicted by the
model, including time horizon of predictions
in case of prognostic models

Abstract

Specify the type of model, a summary of the
model-building steps, and the method for in-
ternal validation

Abstract

Specify the measures used to assess model
performance (eg, discrimination, calibration,
clinical utility)

Abstract

Results Report the number of participants and out-
come events

Pending

Summarise the predictors in the final model Pending
Report model performance estimates (with
confidence intervals)

Pending

Discussion Give an overall interpretation of the main re-
sults

Pending

Registration Give the registration number and name of the
registry or repository

None

Introduction
Background Explain the healthcare context (including

whether diagnostic or prognostic) and ratio-
nale for developing or evaluating the predic-
tion model, including references to existing
models

1

Describe the target population and the in-
tended purpose of the prediction model in the
context of the care pathway, including its in-
tended users (eg, healthcare professionals, pa-
tients, public)

1
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Describe any known health inequalities be-
tween sociodemographic groups

1

Objectives Specify the study objectives, including
whether the study describes the development
or validation of a prediction model (or both)

1

Methods
Data Describe the sources of data separately for the

development and evaluation datasets (eg, ran-
domised trial, cohort, routine care or registry
data), the rationale for using these data, and
representativeness of the data

2.1

Specify the dates of the collected participant
data, including start and end of participant
accrual; and, if applicable, end of follow-up

2.1

Participants Specify key elements of the study setting (eg,
primary care, secondary care, general popu-
lation) including the number and location of
centres

2.1

Describe the eligibility criteria for study par-
ticipants

2.1

Give details of any treatments received, and
how they were handled during model develop-
ment or evaluation, if relevant

2.2

Data prepara-
tion

Describe any data pre-processing and quality
checking, including whether this was similar
across relevant sociodemographic groups

2.1, 2.2

Outcome Clearly define the outcome that is being pre-
dicted and the time horizon, including how
and when assessed, the rationale for choos-
ing this outcome, and whether the method of
outcome assessment is consistent across so-
ciodemographic groups

2.6

If outcome assessment requires subjective in-
terpretation, describe the qualifications and
demographic characteristics of the outcome
assessors

N/A

Report any actions to blind assessment of the
outcome to be predicted

None

Predictors Describe the choice of initial predictors (eg,
literature, previous models, all available pre-
dictors) and any pre-selection of predictors
before model building

2.1, 2.2

Clearly define all predictors, including how
and when they were measured (and any ac-
tions to blind assessment of predictors for the
outcome and other predictors)

2.1, 2.3

If predictor measurement requires subjective
interpretation, describe the qualifications and
demographic characteristics of the predictor
assessors

N/A

Sample size Explain how the study size was arrived at (sep-
arately for development and evaluation), and
justify that the study size was sufficient to an-
swer the research question. Include details of
any sample size calculation

2.1

Missing data Describe how missing data were handled. Pro-
vide reasons for omitting any data

2.3
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Analytical
methods

Describe how the data were used (eg, for de-
velopment and evaluation of model perfor-
mance) in the analysis, including whether the
data were partitioned, considering any sample
size requirements

2.1

Depending on the type of model, describe how
predictors were handled in the analyses (func-
tional form, rescaling, transformation, or any
standardisation)

2.1, 2.2, 2.3

Specify the type of model, rationale†, all
model-building steps, including any hyperpa-
rameter tuning, and method for internal vali-
dation

2.4

Describe if and how any heterogeneity in
estimates of model parameter values and
model performance was handled and quan-
tified across clusters (eg, hospitals, countries).
See TRIPOD-Cluster for additional consider-
ations

None

Specify all measures and plots used (and their
rationale) to evaluate model performance (eg,
discrimination, calibration, clinical utility)
and, if relevant, to compare multiple models

2.6.1, 2.7

Specify all measures and plots used (and their
rationale) to evaluate model performance (eg,
discrimination, calibration, clinical utility)
and, if relevant, to compare multiple models

2.6.1

Describe any model updating (eg, recalibra-
tion) arising from the model evaluation, either
overall or for particular sociodemographic
groups or settings

None

For model evaluation, describe how the model
predictions were calculated (eg, formula, code,
object, application programming interface)

2.5

Class imbal-
ance

If class imbalance methods were used, state
why and how this was done, and any subse-
quent methods to recalibrate the model or the
model predictions

None

Fairness Describe any approaches that were used to
address model fairness and their rationale

2.1, 2.4.1

Model output Specify the output of the prediction model (eg,
probabilities, classification). Provide details
and rationale for any classification and how
the thresholds were identified

2.5, 2.6.1

Training ver-
sus evaluation

Identify any differences between the develop-
ment and evaluation data in healthcare setting,
eligibility criteria, outcome, and predictors

2.1, 2.3,2.6.1

Ethical ap-
proval

Name the institutional research board or ethics
committee that approved the study and de-
scribe the participant informed consent or the
ethics committee waiver of informed consent

5

Open Science
Funding Give the source of funding and the role of the

funders for the present study
Blinded for review

Conflicts of in-
terest

Declare any conflicts of interest and financial
disclosures for all authors

Blinded for review
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Protocol Indicate where the study protocol can be ac-
cessed or state that a protocol was not pre-
pared

Currently not publicly released

Registration Provide registration information for the study,
including register name and registration num-
ber, or state that the study was not registered

Not registered

Data sharing Provide details of the availability of the study
data

A

Code sharing Provide details of the availability of the ana-
lytical code

B

Patient and public involvement
Patient and
public involve-
ment

Provide details of any patient and public in-
volvement during the design, conduct, report-
ing, interpretation, or dissemination of the
study or state no involvement

5

Discussion
Interpretation Give an overall interpretation of the main re-

sults, including issues of fairness in the con-
text of the objectives and previous studies

Pending

Limitations Discuss any limitations of the study (such as a
non-representative sample, sample size, over-
fitting, missing data) and their effects on any
biases, statistical uncertainty, and generalis-
ability

3.1

Usability of
the model in
the context of
current care

Describe how poor quality or unavailable in-
put data (eg, predictor values) should be as-
sessed and handled when implementing the
prediction model

N/A

Specify whether users will be required to in-
teract in the handling of the input data or use
of the model, and what level of expertise is
required of users

3.5

Discuss any next steps for future research,
with a specific view to applicability and gen-
eralisability of the model

3
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F PROBAST+AI Assessment644

Table 4: Assessment of Foresight-E against Risk Of Bias ASsessment Tool (PROBAST) + AI tool
[21]

Item Description Section/
Comment

Step 1: PICOTS guidance
Population Define the target population (e.g., patients) in whom the

assessed prediction models are to be applied. The target
population not only directs search strings and in/exclusion
criteria of prediction models or prediction model studies in
case of a systematic literature review, but also directs the
applicability assessment.

2.1

Index Model Define the targeted prediction models to be assessed, which
may be a single prediction model (the index model) of which
the predictive accuracy is meta-analysed across multiple
external evaluation studies of that index model but may also
address multiple prediction models (developed or evaluated)
for the targeted population, outcome or setting, depending
on the assessor’s or prediction model review focus.

2.4

Comparator model(s) Define the other prediction models whose predictive ability
is compared to that of the index model.

2.7

Outcome(s) Define the outcomes or endpoints that are predicted by the
index (and possibly comparator) prediction models in the
target population.

2.6

Timing Define the moment or time-point (e.g., in the patient work-
up) at which the prediction with the prediction models is
made (i.e., the start point or T0 of the use of the models).

2.6

Define the time or follow-up period in which the outcomes
are being predicted by the prediction models in the targeted
population (prediction horizon).

2.6

Setting and intended
use of the prediction
model

Define the healthcare setting or context to which the index
prediction models apply. The prediction ability of models
may change across healthcare settings or contexts.

1

Step 2: Classify the type of prediction model assessment
Development only Prediction model development only, i.e., without evaluation

of its performance.
✓

Evaluation only External validation of one or more existing models in new
data

Combination Prediction model development combined in the same
study(publication) with the evaluation of its apparent per-
formance, internal validation performance, or external vali-
dation performance.

Step 3: Assess quality and applicability or risk of bias and applicability
Participants and data
sources

Describe the sources of data and criteria for participant
selection

2.1

Were appropriate data sources used? Yes
Was an appropriate study design used? Yes
Did the in- and exclusions of study participants result in a
representative dataset?

Yes

Concern regarding quality of selection of participants and
data sources

Low

Concern that the (data of the) included participants do not
match the review question or the assessor’s intended use of
the prediction model

Low
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Predictors List and describe predictors included in the final prediction
model, how they were defined and assessed, and their timing
of assessment

2.1, 2.3

Were predictors defined and assessed in a similar way for
all participants?

Yes

Was any pre-processing of predictors similar for all partici-
pants?

Yes

Were predictor assessments made without knowledge of
outcome data?

Yes

Were the predictors included in the model available at the
time the model was intended to be used?

Yes

Concern regarding the quality of the predictors or their
assessment

Low

Concern that the definition, pre-processing, assessment, or
timing of assessment of the predictors in the model do not
match the review question or the assessor’s intended use

Low

Outcome Describe the outcome, how it was defined and determined,
and the time interval between predictor assessment and
outcome determination

2.6

At what time point was the outcome determined? If a
composite outcome was used, describe the relative fre-
quency/distribution of each contributing outcome?

2.6

Were outcomes defined and assessed appropriately? Yes
Were outcomes defined and assessed in a similar way for
all participants?

Yes

Were outcome assessments made without use or knowledge
of predictor data?

Yes

Was the time interval between predictor assessment and
outcome assessment appropriate?

Yes

Concern regarding quality of the outcome or its determina-
tion

Low

Concern that the outcome, its definition, assessment, or
timing of assessment do not match the review question or
the assessor’s intended use

Low

Analysis Describe the numbers of participants, number of candidate
predictors, number of outcome events

2.1, 2.6

Describe how the prediction model was developed (e.g.,
with respect to modelling technique, predictor selection,
and classification or risk group definition)

2.4

Describe the performance measures of the prediction model,
e.g., (re)calibration, discrimination, (re)classification, net
benefit, and whether they were adjusted for optimism

2.6.1

Describe missing data on predictors and outcomes as well
as methods used for handling these missing data

2.3

Was there evidence that the sample size was reasonable? Yes
Were continuous and categorical predictors handled appro-
priately?

Yes

Were participants with missing or censored data handled
appropriately in the analysis?

N/A

If methods to address class imbalance were used, was the
model or the model predictions recalibrated?

N/A

Were methods used to address potential model overfitting? Yes
Concern regarding quality of the analysis Low

Step 4: Assess the overall concerns regarding quality, risk of bias and applicability of the prediction model
Overall concern re-
garding quality of the
prediction model de-
velopment

Low concern regarding quality- If all four domains were
rated low concern regarding quality.

✓
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High concern regarding quality- If at least one domain was
rated high concern regarding quality.
Unclear concern regarding quality- If at least one domain
was rated unclear concern regarding quality and no domains
were rated high concern.

Overall concern re-
garding applicability
of the prediction
model development

Low concern for applicability- If all three domains were
rated low concern for applicability.

✓

High concern for applicability- If at least one domain was
rated high concern for applicability.
Unclear concern for applicability- If at least one domain
was rated unclear concern for applicability and no domains
were rated high concern.

23


	Introduction
	Methods
	Data
	Patient Timelines
	Tokenisation
	Training
	Objective
	Architecture
	Training Protocol

	Zero-Shot Inference
	Evaluation
	Metrics
	Subgroup Analyses

	Baseline Methods

	Discussion
	Data
	Model
	Inference
	Evaluation
	Future Directions and Considerations

	Conclusion
	Ethics approval
	Data availability
	Code availability
	Datasets
	Endpoint to Token Mapping
	TRIPOD+AI Checklist
	PROBAST+AI Assessment

