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Abstract

We developed Foresight-England (Foresight-E), the first national-scale generative
foundation model of electronic health records (EHRs), to support COVID-19-
related research. We evaluated its ability to model the direct and indirect effects of
the COVID-19 pandemic. The 243M-parameter transformer decoder was trained
from scratch using a cohort of 54.9 million routinely collected, de-identified, longi-
tudinal EHRSs, including primary and secondary care, national death registrations,
and COVID-19 testing/vaccination data. Foresight-E models patient timelines
autoregressively to enable zero-shot generative prediction across its vocabulary of
~40,000 coded medical events. Our tokenisation scheme preserves the recorded
clinical granularity of ICD-10, OPCS-4, and SNOMED CT codes, while jointly
encoding absolute and relative temporal context. We designed and implemented an
evaluation framework spanning 30-day COVID-19 hospitalisation and mortality
using Brier scores and the area under the receiver operating characteristic (AU-
ROC) and precision—recall (AUPRC) curves. We further evaluated the ability to
model the pandemic’s indirect effects by testing temporal generalisation on the
held-out year of 2023, simulating prospective deployment. We benchmarked model
performance against logistic regression and XGBoost baselines using a test set of
6.1 million patients. Following concerns raised by the British Medical Association
and Royal College of General Practitioners’ Joint GP IT Committee, NHS England
has paused access to data for the Foresight project while a review is carried out.
That pause means quantitative results are not available pending the outcome of
ongoing discussions. Instead, we share our strategy for tokenisation, model archi-
tecture, training, inference, and evaluation, as a methodological template and a
case study in the challenges of building population-scale, EHR foundation models
and operationalising generative Al for national health systems.

1 Introduction

Prognostic clinical risk prediction models have traditionally relied on expert-defined, static features
from electronic health records (EHRs) [[1} 2]]. While effective for narrow, well-defined tasks, these
approaches cannot easily scale to predict the whole range of clinically relevant medical events or adapt
to shifting dynamics of healthcare, such as the COVID-19 pandemic. They also often underutilise the
rich temporal information in patients’ longitudinal records.

Neural network transformer models offer a way to utilise the temporal and longitudinal information
in EHRs for prediction, drawing on techniques initially developed for modelling language [3], first
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with masked-token objectives such as BERT [4] and later with autoregressive next-token prediction
as popularised by GPT-style models [S)]. This shift enabled zero- and few-shot performance across
diverse tasks without task-specific retraining, inspiring analogous efforts in healthcare [6510]. Gener-
ative EHR models hold the promise of supporting early detection, risk stratification, and simulation
of clinical scenarios in a single model, without the need to retrain for each outcome of interest.

A key barrier to realising this vision has been scale: most prior work is restricted to single institutions
[9] or population subsets |6, [10]], limiting performance [11] and fairness across population subgroups,
so-called ‘algorithmic bias’ [12]]. In England, due to the COVID-19 pandemic, permissions were
granted to enable COVID-19 research on national-scale de-identified EHR data [[13}114]. This data
encompasses primary care, secondary care, COVID-19 testing, vaccination, and mortality data [[15],
and is securely stored within the NHS England Secure Data Environment (NHSE SDE) [16]. Despite
the potential of such a resource for the development and evaluation of Al models for COVID-19
research, computational restrictions within the NHSE SDE have limited previous projects to small
cohorts [[17,[18]].

In this work, we developed Foresight-England (Foresight-E), a 243-million-parameter transformer
trained entirely within the NHSE SDE on a national scale, de-identified EHRs. Designed for zero-shot
prediction of COVID-19 outcomes, Foresight-E targets the whole English GP-registered population,
enabling research into both direct COVID-19 outcomes (e.g., hospitalisation, mortality) and indirect
effects on emergency admissions, all-cause mortality, and over 1,400 phenotypes in a temporally
held-out test set (2023).

Following concerns raised by the British Medical Association and Royal College of General Practi-
tioners’ Joint GP IT Committee, NHS England has paused access to data for the Foresight project
while a review is carried out [[19]. That pause means quantitative results are not available pending
the outcome of ongoing discussions. Therefore, we report here the data pipeline, tokenisation,
architecture, training, inference, and evaluation framework underpinning the model, assessed against
the TRIPOD+AI [20] and PROBAST-AI [21]] reporting guidelines (see Appendix [E] and [F).

We contribute the following:

1. Development of Foresight-E, the first population-scale foundation model of UK EHRs for
COVID-19 research.

2. First demonstration of GPU-accelerated foundation model training on national-scale NHS
data within the NHSE SDE.

3. A reproducible methodology for longitudinal EHR tokenisation and model development.

4. A six-million-patient evaluation framework to assess zero-shot prediction of COVID-19’s
direct and indirect effects.

Together, these provide both a technical blueprint for future EHR foundation models and a case study
in the challenges of national-scale generative Al for healthcare.

2 Methods

We developed Foresight-E for COVID-19 research using linked, de-identified, routinely collected
national datasets [22,[14]. All processing, model training, inference, and evaluation occurred entirely
within the ‘Five Safes’ framework of the NHSE SDE [16].

Here we outline the datasets, patient timeline construction, tokenisation, model architecture, training
regime, and our inference and evaluation strategy, including uncertainty estimation and comparative
baselines. Each step was designed to support robust, generalisable, zero-shot medical event prediction
for the direct and indirect effects of COVID-19.

2.1 Data

We used eight linked national datasets covering 1 November 2018 to 31 December 2023 [22, [14],
spanning primary care [23]], secondary care [24], national death registrations [25]], COVID-19 testing
[26]], and vaccination records [27] (full details in Table|I]).
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The base cohort comprised individuals alive on or after 1 November 2019 (primary care dataset
inclusion date), with known age and sex, resident in England, GP-registered, and without conflicting
death dates. We required patients to be at least one year old during training to ensure a minimum
history and avoid immortal-time bias between the start of records (1 November 2018) and the first
observed deaths (1 November 2019). This gave a nationally representative cohort of 61 million
patients [15].

We created training (48.8M patients), validation (6.1M patients), and test sets (6.1M patients)
via disjoint 10% patient samples. All 2023 events were reserved to test temporal generalisation,
mimicking a prospective deployment on future, unseen data. Figure|l|shows temporal coverage and
partitioning of the datasets.

Training Data Start: 2018-11 Training Data End: 2023-12
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(a) Linked primary/secondary care, deaths, testing,
and vaccination datasets (1 Nov 2018-31 Dec 2023).

(b) Disjoint 10% validation/test cohorts; 2023 held out
for temporal generalisation evaluation.

Figure 1: Datasets and cohort splits used in the training and evaluation of Foresight-E.

2.2 Patient Timelines

Each patient’s history was encoded as a chronological sequence of dated, coded events, including
diagnoses, procedures, medications, and other healthcare interactions. Clinical codes followed
standard terminologies: ICD-10 [28] for Hospital Episode Statistics (HES) diagnoses and Office for
National Statistics (ONS) causes of death, OPCS-4 [29] for HES procedures, and SNOMED CT [30]]
for General Practice Extraction Service Data for Pandemic Planning and Research (GDPPR) records
and COVID-19 vaccinations. We supplemented these with custom tokens for events not covered by
standard vocabularies, such as positive SARS-CoV-2 tests, hospital admission indicators, and primary
or secondary diagnosis flags.

Because event timestamps were available only at day-level precision, we applied a consistent within-
day ordering: COVID-19 vaccination; SARS-CoV-2 test; GDPPR events; HES Outpatients (OP);
HES Accident & Emergency (A&E); HES Admitted Patient Care (APC); HES Critical Care (CC);
and, lastly, death. Within each dataset, events were further ordered by admission date, then by primary
diagnoses, secondary diagnoses, procedures, and finally by alphanumeric code.

Geographic (region) and deprivation (Indices of Multiple Deprivation) data were excluded from the
dataset to avoid learning existing biases. Codes deemed sensitive were removed, using a codelist
supplied by NHS England.

2.3 Tokenisation

We converted each patient’s timeline into a sequence of discrete tokens representing clinical codes
and temporal gaps. Each sequence began with static demographic tokens for sex (e.g., SEX_FEMALE)
and ethnicity (e.g., ETHNICITY_ASIAN). We then added the sequence of codes, ordered as described
in Section [2.2] from each patient’s timeline as tokens. If two consecutive events occurred on different
days, we inserted a time-difference token (e.g., TIME_DIFFERENCE_1) to represent the temporal
gap in days; no time-difference token was added between consecutive same-day events. To provide
absolute temporal context, we inserted a YEAR_START token at the beginning of each calendar year,
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followed by an AGE_N token for the patient’s integer age (or AGE_UNBORN if not yet born). These
yearly markers ensured that time gaps never exceeded 366 days and allowed the representation of
age-related and absolute temporal patterns to generalise temporally.

A lookup-based tokeniser mapped all unique tokens in the training data to integer IDs, including
clinical codes, age (integer years and unborn), 1-366 day gaps, and special tokens for padding and
sequence end. The resulting fixed tokeniser vocabulary contained ~40,000 tokens. Unseen codes
at inference time were dropped from the sequence without substitution. During training, sequences
were left-truncated to a maximum length of 1,024 tokens to retain recent context. Truncation was
performed at the event level, with retokenisation, to preserve demographic, year-start, and age tokens,
and to adjust time-difference tokens. Sequences were then right-padded to the batch maximum length.
For inference, the implementation of an on-GPU valid autoregressive truncation strategy was avoided
to reduce complexity. Instead, the input length was constrained to 1,024 — Liorecast, Where Leorecast
denotes the tokens allocated for forecast generation.

2.4 Training

Foresight-E was trained with an autoregressive next-token prediction objective, analogous to the
paradigm used for LLMs [} 8] 9]. All experiments were conducted entirely within the NHSE SDE
[16] on 8 x NVIDIA A10 GPUs (AWS g5.48xlarge instance in region eu-west-2) [31,[32].

2.4.1 Objective

Let N be the batch size, T' the maximum sequence length, and V' the vocabulary size. At each
position ¢, given preceding tokens ¥, ¢, the model outputs a distribution over V. A binary mask
my,+ excludes padding and the initial demographic tokens from loss calculation. Excluding the
initial tokens aims to mitigate the risk of biasing the model by learning to predict based solely on
demographic features. The loss, £, given the model weights, 6 and the true token, y;, ¢, is:

1 N T

L=——>" mui1og P(yns | Yn<t:0) (€]

Zn t mn,t n=1t=1

s

2.4.2 Architecture

We adapted the Llama 2 transformer-decoder [33L|34]] architecture with Rotary Positional Embeddings
(ROPE) [35]] and FlashAttention-2 [36]. Pretrained weights were not imported into the SDE due to
governance restrictions and the custom vocabulary; therefore, training was conducted from scratch.
To train a Llama decoder on NVIDIA A10 GPUs, the model architecture was scaled down to 243
million parameters, comprising 12 layers, a hidden size of 1024, a feed-forward size of 4096, 8
attention heads, and a 1024-token context window. Input/output embeddings were tied.

2.4.3 Training Protocol

We used bfloat16 mixed precision, attention dropout 0.1, gradient clipping (max norm 1.0), and
weight decay 0.1. The Adam optimizer had 5, = 0.9, 52 = 0.95, with a linear warm-up over 3% of
steps to a peak learning rate of 5 x 104, then cosine decay. The global batch size was 128, achieved
via 8-way data parallelism and gradient accumulation (factor 2). Sequences were right-padded to
1024 tokens. The model was trained for one epoch, with validation loss evaluated every 1,000 steps
on 32k sampled sequences. Training was completed in 4 days. We did not conduct hyperparameter
tuning due to resource constraints; instead, training parameters were selected based on standard
defaults from prior literature [8}37].

2.5 Zero-Shot Inference

After training, Foresight-E can predict future clinical events from patient histories without task-
specific fine-tuning (‘zero-shot inference’). At inference, the model is prompted with a tokenised
patient timeline (see Section and outputs a probability distribution for the next token. A token is
sampled and appended to the input. This autoregressive process continues until a stopping condition
is met: a specific event token (e.g., death), a maximum forecast horizon (e.g., 30 days, 1 year), or



162
163

164
165
166
167

168
169
170
171

172

173
174
175

176

177
178
179
180
181
182

183
184
185
186
187
188
189

-

Synthetic Patient Timeline
Ethnicity: Asian
2 Sex: Male
“7 DOB: 1/1/1954
¥ Medical Events:
1. High BMI, 11 Jan 2020
2. SARS-CoV-2 Positive, 6 Nov 2020
A\
/
Transformer Decoder
(S
o 1 f f f f f f I
-||||IITII'"|||l|ll|l||||||||ll|l|||=

Tokens Elhqici!y Sex Male Year Start Age 66 SRS C
Asian Positive

{ {
e () (-0 ) ) ) D) 3D

Figure 2: Illustration of idealized zero-shot inference on a synthetic patient timeline. Foresight-E
receives a history ending with a positive SARS-CoV-2 test and predicts a hospital admission within
the next 30 days. Tokens 2—7 are omitted for clarity.

Time Diff 10] [ High BMI ] [Tlme Diff 300]

 J L

a maximum of newly generated tokens (e.g., 300). Generated tokens are detokenized to output the
predicted event timeline.

Greedy decoding produced repetitive outputs, so stochastic multinomial sampling was adopted to yield
diverse and clinically plausible sequences. We did not use parameter-dependent sampling techniques
such as top-k or temperature, as they would have required additional task-specific hyperparameter
tuning. KV cache was used to increase generation speed.

To estimate prediction uncertainty, critical for safe and reliable clinical decision-making [38]], we
performed S independent rollouts per patient. In our experiments, S = 48, which maximised
the available memory capacity of a single A10 GPU [32]]. To scale inference across patients, we
parallelised inference across the eight available GPUs [31]].

The probability of event ¢ occurring within ¢ days was then calculated as [9]:

Sit

P(Eventu) = ?7 )

where s; ; is the number of samples in which the event appears within the horizon. This formulation
supports probability estimates for any of the ~40,000 medical events seen during training, enabling
probabilistic zero-shot predictions across diverse clinical outcomes.

2.6 Evaluation

We evaluated Foresight-E on two direct COVID-related outcomes: hospitalisation and death within
30 days of a positive SARS-CoV-2 test. Eligible patients in the test set had at least one positive test
between 1 November 2018 and 1 December 2023. Timelines were truncated after the first positive
test, and predictions were generated for the next 30 days. Hospitalisation was defined as an admission
in HES APC (APC token), and death as any Office for National Statistics (ONS) death registry entry
(DEATH token). Inference was completed in 2 days.

Secondary outcomes examined Foresight-E’s potential to model the indirect effects of COVID-19
[39, 40] on: (i) emergency hospitalisation, (ii) all-cause mortality, and (iii) onset of over 1,400
Phecode-defined diseases, in the held-out year of 2023. Here, timelines were truncated after the
2023 year-start token and timelines predicted over a one-year horizon. Emergency admissions were
identified via admission method codes in HES APC, and mortality as above. Phenome-wide disease
onset was defined by the first occurrence of each Phecode, a previously validated collection of over
1,400 groups of ICD-10 codes (example shown in Table[2) [41]. Inference was completed in 15 days.
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2.6.1 Maetrics

For evaluation, each outcome was treated as a binary classification task: given a patient’s history,
estimate the probability of event ¢ occurring within ¢ days, and compare against the observed outcome.
This allowed for the evaluation of single medical event prediction as well as bespoke phenotypes
composed of multiple events or more complex definitions.

Discriminative performance was assessed using the area under the receiver operating characteristic
curve (AUROC) [42] and the area under the precision—recall curve (AUPRC) [43]], the latter being
more commonly used under class imbalance [44} 45]. Overall accuracy and calibration were jointly
measured using the Brier score [46]]. We also generated ROC, precision—recall, and calibration curves
for visual inspection.

Confidence intervals (95%) were obtained via non-parametric patient-level bootstrapping with the
percentile method, using 1,000 resamples for all analyses apart from the Phecode tasks (where 100
were used) due to computational cost. To reflect potential use as a clinical screening tool, we also
evaluated recall at a fixed 10% false-positive rate (FPR10), consistent with prior studies [47] and
representing a hypothetical operational threshold.

2.6.2 Subgroup Analyses

We conducted subgroup analyses of mortality predictions at both the 30-day post-SARS-CoV-
2—-positive test and one-year horizons, stratifying test-set patients independently by age, sex, ethnicity,
and vaccination status. For each subgroup, we calculated the AUROC and AUPRC in comparison
with the overall cohort. Additionally, we investigated how performance on these metrics varied with
the number of historical patient events provided as model input. Finally, we assessed changes in
AUROC and AUPRC relative to the timing of the COVID-19 test to determine whether the Foresight
model could capture evolving patterns in pandemic dynamics.

2.7 Baseline Methods

We benchmarked Foresight-E against two supervised classifiers trained separately for all-cause
mortality and hospitalisation at 30 days after a positive SARS-CoV-2 test, and for the same outcomes
over a one-year horizon in 2023.

All baselines used the same training split as Foresight-E but were task-specific, in contrast to Foresight-
E’s zero-shot capability. The first was a logistic regression model [48]] using age, sex, and ethnicity
(one-hot encoded), with vaccination status added for the SARS-CoV-2 tasks. The second was an
XGBoost model [49] using one-hot vectors of all medical codes from the Foresight-E vocabulary,
providing equivalent structured clinical data but without temporal ordering.

To allow training outcomes to be observed, input cutoffs were set to 1 December 2022 for the 30-day
tasks and 1 January 2022 for the one-year tasks. This requirement underscores a key advantage of
Foresight-E’s self-supervised learning framework: it does not rely on outcome labels during training,
eliminating the need to reserve training data for labelling temporally. Performance for all models was
evaluated using AUROC, AUPRC, and Brier score, as described in Section@

3 Discussion

Following concerns raised by the British Medical Association and Royal College of General Practi-
tioners’ Joint GP IT Committee, NHS England has paused access to data for the Foresight project
while a review is carried out [19]. That pause means quantitative results are not available pending
the outcome of ongoing discussions. Therefore, we discuss the main methodological strengths and
limitations of Foresight-E, including data sources, modelling approach, inference strategy, evaluation
design, and potential applications.

3.1 Data

Foresight-E’s key strength is its first use of national-scale, routinely collected EHRS spanning primary
care, secondary care, COVID-19, and death registrations. This ensures Foresight is trained on diverse
data representative of the general population [[15], helping to mitigate algorithmic bias [S0], enabling
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prediction of rare diseases [51}52]], and facilitating onward translation through aligning training
data with intended use populations. Given that primary care accounts for most healthcare delivery,
integrating this data provides a more complete representation of an individual’s health, enables
earlier risk stratification, and may ultimately guide preventive interventions to avert disease onset,
complications and costly secondary care.

Despite its breadth, the datasets reflect typical challenges of routinely collected health data: incom-
plete or imprecise coding [S3], historical biases in care [54} I50], and shifts in recording practices
[55]], especially during the COVID-19 pandemic [56]. Notably, the GDPPR primary care dataset
contains only a subset of codes, those deemed relevant for COVID-related research, omitting many
common and rare diseases, as well as signs and symptoms data crucial for understanding disease
presentation and evolution. Furthermore, it only contains those alive on or after 1 November 2019.
This restricts the available joint history, which may limit the model’s ability to capture long-term
trajectories. Expanding the temporal window would be expected to improve performance but require
methods that efficiently handle longer sequences [S7]].

Future enhancements could come from incorporating additional modalities such as clinical notes or
medical imaging. The development of foundational multi-modal transformer models in the general
domain shows how the methods presented here could be extended [58, 159]]. However, such data is
not currently available at a national scale, and provisioning would require appropriate governance,
infrastructure, and technical methods, including de-identification and pre-processing.

3.2 Model

Foresight-E uses a 243-million-parameter Llama-2—style transformer decoder with Rotary Positional
Embeddings (ROPE) and FlashAttention-2 for efficiency. While larger than most prior EHR models
[60] and trained on national scale data, the scale of data, model size, and compute is still orders of
magnitude smaller than the general domain [[61]].

Foresight-E is designed to be data-driven, rather than relying on predefined parametric models
such as exponential hazard—style structures [60, 62]. Although we trained from scratch due to a
custom vocabulary and NHSE SDE import restrictions, smaller-scale studies indicate that fine-tuning
pretrained LLMs for medical-event prediction is beneficial to performance [63]. If future NHSE
SDE policy permits importing pretrained models, initialising from a general model, and adapting
in-domain is a promising direction.

Our tokenisation strategy prioritised clinical and representational fidelity. We retained the recorded
granularity of clinical codes, all event codes, and encoded exact day-level time gaps, rather than
collapsing codes into broader categories, filtering low-occurrence events, or binning time [9]]. This
maximised diagnostic specificity and allowed prediction of rare events often excluded in other models
[52]. However, this enlarged the vocabulary and prediction space and reduced per-token training
frequency. Furthermore, there were no out-of-vocabulary codes during training, so when encountered
during inference, unseen codes had to be dropped, potentially losing patient information. Future
extensions of the tokeniser could leverage hierarchical relations between concepts, as defined by
ontologies, building on evidence that such structure can enhance EHR model performance [64].

We jointly encoded absolute time and patient age, enabling the model to capture temporal shifts in care
patterns; however, this required careful sequence validity constraints (e.g., preserving demographic
and year-start tokens). Sequence truncation was done at the event level during training as a pre-
processing step to avoid invalid timelines. However, this is not possible during GPU inference, so a
fixed maximum input length was used, meaning some long histories were partially discarded, thereby
losing patient information.

Batching was performed per patient, rather than randomly sampling from concatenated EHRs [60, 9]
This prevented spurious cross-patient attention, at the cost of more padding and lower GPU utilisation.
Future work could explore intra-document causal masking [65]] to enable the concatenation of patients’
timelines without information leakage, thereby reducing padding and improving training efficiency.

3.3 Inference

We extended prior probabilistic patient-trajectory approaches [9], applying Foresight-E in a zero-shot
setting to forecast ~40,000 medical events, across 30-day and 1-year time horizons relevant to
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COVID-19 outcomes. This offers the broad ability to predict differential diagnoses and clinical
trajectories, rather than single outcomes, but is computationally intensive, particularly at a population
scale. Comparative studies with task-specific fine-tuning are needed to clarify efficiency—flexibility
trade-offs.

Our current setup generates 48 trajectories per patient, constrained practically by the NVIDIA A10
GPU’s memory. Exploring convergence dynamics and alternative decoding strategies (beam search,
top-k, temperature) may yield gains in efficiency, accuracy, and calibration, but would require tuning.
Furthermore, quantifying the temporal horizon over which Foresight-E can reliably forecast patient
outcomes, both in absolute time and in terms of tokens, requires further study.

Finally, enhancing interpretability through techniques such as attention-weighted visualisation,
gradient-based saliency, or counterfactual generation could help clinicians understand the model’s
forecasts by scrutinising learned associations for known and novel patterns, as well as the presence of
spurious correlations, such as shortcut learning. Such methods could support safe adoption in practice
by explaining why the model anticipates particular outcomes, as well as identifying potentially
modifiable risk factors as targets for intervention to optimise health.

3.4 Evaluation

We evaluated Foresight-E’s ability to predict COVID-19 outcomes in two settings designed to reflect
real-world deployment challenges.

First, we assessed its ability to predict direct COVID-19 outcomes during the pandemic, a period
marked by shifting conditions such as emerging viral variants, changing testing protocols, public
health interventions and population immunity. Unlike earlier models [9], Foresight-E explicitly
encodes both absolute time and patient age, enabling it to adapt to these temporal shifts. Forecast-
ing future novel threats, outside the current training data and vocabulary, could be supported by
continually retraining on the latest batches of routinely collected data.

Second, we sought to predict the indirect effects of COVID-19 and simulate a prospective deployment
by predicting events in 2023, one year beyond the training period, on over 1,400 Phecodes, emergency
hospitalisation, and all-cause mortality. COVID-19 highlights the challenges of temporal data shifts.
Foresight-E was trained during the height of the COVID-19 pandemic, a period of profound healthcare
system disruption and excess all-cause mortality, which left an enduring and evolving legacy in the
evaluation period of 2023, encompassing the indirect effects the pandemic exerted on individuals,
healthcare systems, and society at large [40].

This represents, to our knowledge, the broadest zero-shot evaluation of an EHR foundation model
to date. Working at the population level meant facing low prevalence for many acute outcomes, in
contrast to models trained solely on high-acuity inpatient cohorts (e.g., MIMIC-IV [66]). While this
sparsity poses challenges, it also demonstrates Foresight-E’s potential utility for population screening
as well as high-risk patient monitoring, by training on both healthy and acutely ill patient timelines.
In order to critically evaluate Foresight-E’s performance in population screening we additionally
reported recall at a fixed 10% false-positive rate, consistent with prior studies [47] and representing a
hypothetical operational threshold.

Due to NHSE SDE constraints, external pretrained models could not be imported for direct com-
parison, and compute limits restricted the number of baseline models trained. Moreover, framing
each patient trajectory as thousands of binary prediction tasks provided established metrics (AUROC,
AUPRGC, Brier score) but did not capture the overall fidelity of generated trajectories, an important
direction for future work.

A key limitation of this work is the inability to benchmark against commonly used clinical risk
prediction tools, due to a lack of required data (e.g. physiological measurements and test results [67]]),
limited data duration (e.g. QRisk measures 10-year cardiovascular disease risk [[1]) and the fact that
where risk scores were recorded the resulting outcomes were then conditioned on resultant clinical
decision making [68]].
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3.5 Future Directions and Considerations

Foresight-E was developed as a research pilot strictly for COVID-19-related research and is not a
validated clinical tool. The model is therefore confined to this scope, and any future directions for the
methodology are entirely contingent on navigating the significant governance challenges outlined
below.

The generative, zero-shot forecasting of models like Foresight-E offers broad potential, including
forecasting population health demands, stratifying groups at increased risk of adverse outcomes, and
enabling personalised risk prediction to guide preventive interventions. Beyond direct clinical care,
potential applications include improving clinical trial efficiency through prognostic enrichment or
advancing drug discovery by better modelling disease trajectories. A priority area for research is
validating the model’s capacity for counterfactual generation, a crucial step toward creating robust
digital twins and enabling trustworthy in-silico trials.

However, moving from research to application would require secure, real-time model deployment,
a capability beyond current NHSE SDE infrastructure. This gap is particularly critical for large
generative models, which can inadvertently memorise and expose sensitive training data [69]. A
potential mitigation strategy is to deploy such models within a secure environment behind narrowly
scoped APIs. These would provide only predefined, validated outcomes, such as calibrated risk
scores, rather than open-ended generative trajectories, thereby constraining vectors for data extraction
and mitigating privacy risks [70]].

However, these ambitions are secondary to the fundamental governance hurdles. The most significant
barrier is that any extension of this work is contingent on securing new data access approvals under a
transparent framework with a clear public benefit beyond COVID-19 research. This would require
establishing a new social license through deep and sustained engagement with patients, the public,
and professional bodies. Furthermore, the path from a research model to a trustworthy clinical tool
would necessitate additional rigorous evaluation and a clear route to regulatory approval as a medical
device. Addressing these socio-technical challenges is the central prerequisite for future progress in
this domain.

4 Conclusion

We have presented Foresight-E, a 243-million-parameter transformer trained on national-scale EHR
data from 54.9 million NHS patients and evaluated on its ability to perform zero-shot prediction
across ~ 1.4k medical outcomes for a 6.1-million-patient test set. Within the constraints of COVID-19
governance, we outlined the data integration pipeline, tokenisation strategy, model architecture,
training procedure, and inference and evaluation framework.

Although quantitative results are currently withheld pending ongoing discussions, this work demon-
strates that it is technically feasible to develop a foundation model for healthcare entirely within
existing NHS infrastructure. By combining routinely collected population-scale de-identified EHRs
with modern generative modelling, Foresight-E offers a blueprint for zero-shot healthcare Al systems.

Expanding access to broader clinical modalities, extending beyond COVID-restricted datasets,
and developing safe deployment pathways could enable models like Foresight-E to support both
population-level planning and individualised care. Realising this potential will require not only
technical advances but also transparent governance, sustained public and professional engagement,
and rigorous evaluation in real-world clinical settings to generate evidence for regulatory approval.

5 Ethics approval

The North East - Newcastle and North Tyneside 2 research ethics committee provided ethical
approval for the CVD-COVID-UK/COVID-IMPACT research program (REC No 20/NE/0161) to
access, within secure trusted research environments, unconsented, whole-population, de-identified
data from EHRs collected as part of patients’ routine healthcare.

Patient and public involvement was included in the approvals process and has continued to shape the
research through Patient and Public Involvement and Engagement sessions organised via BHF Data
Science Centre [71]].
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A Data availability

The data used in this study are available in the NHSE SDE service for England, but as restrictions
apply, they are not publicly available [16].

The CVD-COVID-UK/COVID-IMPACT programme, led by the BHF Data Science Centre [72],
received approval to access data in the NHSE SDE service for England from the Independent Group
Advising on the Release of Data (IGARD) [73] via an application made in the Data Access Request
Service (DARS) Online system (ref. DARS-NIC-381078-Y9C5K) [[74].

The CVD-COVID-UK/COVID-IMPACT Approvals & Oversight Board [71] subsequently granted
approval to this project to access the data within the NHSE SDE service for England. The de-identified
data used in this study were made available to accredited researchers only. Those wishing to gain
access to the data should contact bhfdsc @hdruk.ac.uk!in the first instance.

B Code availability

All data preparation, model training, and evaluation code will be released on GitHub (pending
regulatory review and NHSE SDE output review) at: https://github.com/BHFDSC/CCUO78_
01_Foresight-SDE. The repository will include a requirements.txt specifying all package
versions.

Due to data restrictions, trained model weights and artefacts are only accessible to a subset of
approved consortium researchers on a dedicated Foresight cluster within the NHSE SDE. Those
wishing to gain access to the data should contact bhfdsc @hdruk.ac.uklin the first instance.

All analyses were executed within the NHSE SDE [16] using Databricks Runtime 14.3 LTS for ML
[75]; training/evaluation used an AWS g5.48xlarge instance with eight NVIDIA A10 GPUs [311 32].

C Datasets

Table 1: Summary of datasets used in the study, including 4 separate secondary care datasets.

Domain Datasets Citation

Primary care General Practice Extraction Service (GPES) Data for Pan-  [23]]
demic Planning and Research (GDPPR)

Secondary care Hospital Episode Statistics (HES): Outpatients (OP), Acci- [24]
dent & Emergency (A&E), Admitted Patient Care (APC)
and Critical Care (CC)

Mortality Office for National Statistics (ONS) Civil Registration of  [25]]
Deaths

COVID-19 testing UK Health Security Agency (UK HSA), formerly Pub- [26]

lic Health England (PHE), COVID-19 Second Generation
Surveillance System (SGSS)

COVID-19 vaccination NHS England COVID-19 Vaccination Status 1271
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s2 D Endpoint to Token Mapping

Table 2: Mapping of evaluation endpoints and associated figures to timeline tokens. An example
phecode definition is shown.

Endpoint Tokens
Mortality DEATH
Hospitalisation APC
Emergency Hospitalisation APC_ADMIMETH_21, APC_ADMIMETH_22,
APC_ADMIMETH_23, APC_ADMIMETH_24,
APC_ADMIMETH_25, APC_ADMIMETH_28,
APC_ADMIMETH_2A, APC_ADMIMETH_2B,

APC_ADMIMETH_2C, APC_ADMIMETH_2D

Phecode 8.0 - Intestinal Infection ICD10_A000, ICD10_A009, ICD10_A0O11, ICD10_A012,
ICD10_A013, ICD10_A0O14, ICD10_A059, ICD10_AO060,
ICD10_A062, ICD10_A063, ICD10_A064, ICD10_AO065,
ICD10_A067, ICD10_A068, ICD10_A069, ICD10_A079
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sss E TRIPOD+AI Checklist

Table 3: Assessment of Foresight against the Transparent Reporting of a multivariable prediction
model for Individual Prognosis Or Diagnosis (TRIPOD)+AI Checklist [20]]. The results section is
excluded as not included in this paper.

Item

ChecKklist item

Section

Title

Title

Identify the study as developing or evaluating
the performance of a multivariable prediction
model, the target population, and the outcome
to be predicted

Title

Abstract

Title

Background

Objectives

Methods

Results

Discussion

Registration

Identify the study as developing or evaluating
the performance of a multivariable prediction
model, the target population, and the outcome
to be predicted

Provide a brief explanation of the healthcare
context and rationale for developing or evalu-
ating the performance of all models

Specify the study objectives, including
whether the study describes model develop-
ment, evaluation, or both

Describe the sources of data

Describe the eligibility criteria and setting
where the data were collected

Specify the outcome to be predicted by the
model, including time horizon of predictions
in case of prognostic models

Specify the type of model, a summary of the
model-building steps, and the method for in-
ternal validation

Specify the measures used to assess model
performance (eg, discrimination, calibration,
clinical utility)

Report the number of participants and out-
come events

Summarise the predictors in the final model
Report model performance estimates (with
confidence intervals)

Give an overall interpretation of the main re-
sults

Give the registration number and name of the
registry or repository

Title

Abstract

Abstract

Abstract
Abstract

Abstract

Abstract

Abstract

Pending

Pending
Pending

Pending

None

Introduction

Background

Explain the healthcare context (including
whether diagnostic or prognostic) and ratio-
nale for developing or evaluating the predic-
tion model, including references to existing
models

Describe the target population and the in-
tended purpose of the prediction model in the
context of the care pathway, including its in-
tended users (eg, healthcare professionals, pa-
tients, public)
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Objectives

Describe any known health inequalities be-
tween sociodemographic groups

Specify the study objectives, including
whether the study describes the development
or validation of a prediction model (or both)

Methods

Data

Participants

Data prepara-
tion

Outcome

Predictors

Sample size

Missing data

Describe the sources of data separately for the
development and evaluation datasets (eg, ran-
domised trial, cohort, routine care or registry
data), the rationale for using these data, and
representativeness of the data

Specify the dates of the collected participant
data, including start and end of participant
accrual; and, if applicable, end of follow-up
Specify key elements of the study setting (eg,
primary care, secondary care, general popu-
lation) including the number and location of
centres

Describe the eligibility criteria for study par-
ticipants

Give details of any treatments received, and
how they were handled during model develop-
ment or evaluation, if relevant

Describe any data pre-processing and quality
checking, including whether this was similar
across relevant sociodemographic groups
Clearly define the outcome that is being pre-
dicted and the time horizon, including how
and when assessed, the rationale for choos-
ing this outcome, and whether the method of
outcome assessment is consistent across so-
ciodemographic groups

If outcome assessment requires subjective in-
terpretation, describe the qualifications and
demographic characteristics of the outcome
assessors

Report any actions to blind assessment of the
outcome to be predicted

Describe the choice of initial predictors (eg,
literature, previous models, all available pre-
dictors) and any pre-selection of predictors
before model building

Clearly define all predictors, including how
and when they were measured (and any ac-
tions to blind assessment of predictors for the
outcome and other predictors)

If predictor measurement requires subjective
interpretation, describe the qualifications and
demographic characteristics of the predictor
assessors

Explain how the study size was arrived at (sep-
arately for development and evaluation), and
justify that the study size was sufficient to an-
swer the research question. Include details of
any sample size calculation

Describe how missing data were handled. Pro-
vide reasons for omitting any data
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Analytical
methods

Class 1imbal-
ance
Fairness

Model output

Training ver-
sus evaluation

Ethical  ap-
proval

Describe how the data were used (eg, for de-
velopment and evaluation of model perfor-
mance) in the analysis, including whether the
data were partitioned, considering any sample
size requirements

Depending on the type of model, describe how
predictors were handled in the analyses (func-
tional form, rescaling, transformation, or any
standardisation)

Specify the type of model, rationalet, all
model-building steps, including any hyperpa-
rameter tuning, and method for internal vali-
dation

Describe if and how any heterogeneity in
estimates of model parameter values and
model performance was handled and quan-
tified across clusters (eg, hospitals, countries).
See TRIPOD-Cluster for additional consider-
ations

Specify all measures and plots used (and their
rationale) to evaluate model performance (eg,
discrimination, calibration, clinical utility)
and, if relevant, to compare multiple models
Specify all measures and plots used (and their
rationale) to evaluate model performance (eg,
discrimination, calibration, clinical utility)
and, if relevant, to compare multiple models
Describe any model updating (eg, recalibra-
tion) arising from the model evaluation, either
overall or for particular sociodemographic
groups or settings

For model evaluation, describe how the model
predictions were calculated (eg, formula, code,
object, application programming interface)

If class imbalance methods were used, state
why and how this was done, and any subse-
quent methods to recalibrate the model or the
model predictions

Describe any approaches that were used to
address model fairness and their rationale
Specify the output of the prediction model (eg,
probabilities, classification). Provide details
and rationale for any classification and how
the thresholds were identified

Identify any differences between the develop-
ment and evaluation data in healthcare setting,
eligibility criteria, outcome, and predictors
Name the institutional research board or ethics
committee that approved the study and de-
scribe the participant informed consent or the
ethics committee waiver of informed consent

None

2.6.1L[2.7

one

2.6.1

Open Science

Funding

Conflicts of in-
terest

Give the source of funding and the role of the
funders for the present study

Declare any conflicts of interest and financial
disclosures for all authors
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Protocol Indicate where the study protocol can be ac- Currently not publicly released
cessed or state that a protocol was not pre-
pared
Registration Provide registration information for the study, Not registered
including register name and registration num-
ber, or state that the study was not registered -
Data sharing Provide details of the availability of the study A
data
Code sharing  Provide details of the availability of the ana- B|
Iytical code
Patient and public involvement
Patient and Provide details of any patient and public in- 5
public involve-  volvement during the design, conduct, report-
ment ing, interpretation, or dissemination of the
study or state no involvement
Discussion
Interpretation ~ Give an overall interpretation of the main re- Pending
sults, including issues of fairness in the con-
text of the objectives and previous studies
Limitations Discuss any limitations of the study (such as a 3.1
non-representative sample, sample size, over-
fitting, missing data) and their effects on any
biases, statistical uncertainty, and generalis-
ability
Usability of Describe how poor quality or unavailable in- N/A
the model in put data (eg, predictor values) should be as-
the context of sessed and handled when implementing the
current care prediction model
Specify whether users will be required to in- 3.5

teract in the handling of the input data or use
of the model, and what level of expertise is
required of users

Discuss any next steps for future research,
with a specific view to applicability and gen-
eralisability of the model
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ees F PROBAST+AI Assessment

Table 4: Assessment of Foresight-E against Risk Of Bias ASsessment Tool (PROBAST) + Al tool
(21]

Section/

Item Description Comment

Step 1: PICOTS guidance

Population Define the target population (e.g., patients) in whom the [2.]]
assessed prediction models are to be applied. The target
population not only directs search strings and in/exclusion
criteria of prediction models or prediction model studies in
case of a systematic literature review, but also directs the
applicability assessment.

Index Model Define the targeted prediction models to be assessed, which
may be a single prediction model (the index model) of which
the predictive accuracy is meta-analysed across multiple
external evaluation studies of that index model but may also
address multiple prediction models (developed or evaluated)
for the targeted population, outcome or setting, depending
on the assessor’s or prediction model review focus.

Comparator model(s) Define the other prediction models whose predictive ability
is compared to that of the index model.

Outcome(s) Define the outcomes or endpoints that are predicted by the
index (and possibly comparator) prediction models in the
target population.

Timing Define the moment or time-point (e.g., in the patient work-
up) at which the prediction with the prediction models is
made (i.e., the start point or TO of the use of the models).
Define the time or follow-up period in which the outcomes
are being predicted by the prediction models in the targeted
population (prediction horizon).

Setting and intended Define the healthcare setting or context to which the index

use of the prediction prediction models apply. The prediction ability of models

model may change across healthcare settings or contexts.

X

— I ¥ 99

Step 2: Classify the type of prediction model assessment

Development only Prediction model development only, i.e., without evaluation v
of its performance.

Evaluation only External validation of one or more existing models in new
data

Combination Prediction model development combined in the same
study(publication) with the evaluation of its apparent per-
formance, internal validation performance, or external vali-
dation performance.

Step 3: Assess quality and applicability or risk of bias and applicability

Participants and data Describe the sources of data and criteria for participant

sources selection
Were appropriate data sources used? Yes
Was an appropriate study design used? Yes

Did the in- and exclusions of study participants resultina  Yes
representative dataset?

Concern regarding quality of selection of participants and Low
data sources

Concern that the (data of the) included participants do not Low
match the review question or the assessor’s intended use of

the prediction model
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Predictors List and describe predictors included in the final prediction [2.1}[2.3
model, how they were defined and assessed, and their timing
of assessment
Were predictors defined and assessed in a similar way for
all participants?

Was any pre-processing of predictors similar for all partici- Yes

pants?

Were predictor assessments made without knowledge of  Yes

outcome data?

Were the predictors included in the model available at the  Yes

time the model was intended to be used?

Concern regarding the quality of the predictors or their Low
assessment

Concern that the definition, pre-processing, assessment, or ~ Low
timing of assessment of the predictors in the model do not
match the review question or the assessor’s intended use

Outcome Describe the outcome, how it was defined and determined,
and the time interval between predictor assessment and
outcome determination
At what time point was the outcome determined? If a
composite outcome was used, describe the relative fre-
quency/distribution of each contributing outcome?

Were outcomes defined and assessed appropriately? Yes
Were outcomes defined and assessed in a similar way for  Yes
all participants?

Were outcome assessments made without use or knowledge  Yes
of predictor data?

Was the time interval between predictor assessment and  Yes
outcome assessment appropriate?

Concern regarding quality of the outcome or its determina- Low
tion

Concern that the outcome, its definition, assessment, or Low
timing of assessment do not match the review question or

the assessor’s intended use

Analysis Describe the numbers of participants, number of candidate [2.1}[2.6
predictors, number of outcome events
.6.1

€S

N
o))

Describe how the prediction model was developed (e.g.,
with respect to modelling technique, predictor selection,
and classification or risk group definition)

Describe the performance measures of the prediction model,
e.g., (re)calibration, discrimination, (re)classification, net
benefit, and whether they were adjusted for optimism
Describe missing data on predictors and outcomes as well ﬁ

as methods used for handling these missing data

Was there evidence that the sample size was reasonable? Yes
Were continuous and categorical predictors handled appro- Yes
priately?

Were participants with missing or censored data handled N/A
appropriately in the analysis?

If methods to address class imbalance were used, was the N/A
model or the model predictions recalibrated?

Were methods used to address potential model overfitting?  Yes

Concern regarding quality of the analysis Low

Step 4: Assess the overall concerns regarding quality, risk of bias and applicability of the prediction model

Overall concern re- Low concern regarding quality- If all four domains were v’
garding quality of the rated low concern regarding quality.

prediction model de-

velopment
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Overall concern re-
garding applicability
of the prediction
model development

High concern regarding quality- If at least one domain was
rated high concern regarding quality.

Unclear concern regarding quality- If at least one domain
was rated unclear concern regarding quality and no domains
were rated high concern.

Low concern for applicability- If all three domains were
rated low concern for applicability.

High concern for applicability- If at least one domain was
rated high concern for applicability.

Unclear concern for applicability- If at least one domain
was rated unclear concern for applicability and no domains
were rated high concern.

v
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