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Abstract

The classification loss functions used in deep neural network classifiers can be1

grouped into two categories based on maximizing the margin in either Euclidean2

or angular spaces. Euclidean distances between sample vectors are used during3

classification for the methods maximizing the margin in Euclidean spaces whereas4

the Cosine similarity distance is used during the testing stage for the methods max-5

imizing margin in the angular spaces. This paper introduces a novel classification6

loss that maximizes the margin in both the Euclidean and angular spaces at the7

same time. This way, the Euclidean and Cosine distances will produce similar8

and consistent results and complement each other, which will in turn improve the9

accuracies. The proposed loss function enforces the samples of classes to cluster10

around the centers that represent them. The centers approximating classes are11

chosen from the boundary of a hypersphere, and the pairwise distances between12

class centers are always equivalent. This restriction corresponds to choosing centers13

from the vertices of a regular simplex. There is not any hyperparameter that must14

be set by the user in the proposed loss function, therefore the use of the proposed15

method is extremely easy for classical classification problems. Moreover, since the16

class samples are compactly clustered around their corresponding means, the pro-17

posed classifier is also very suitable for open set recognition problems where test18

samples can come from the unknown classes that are not seen in the training phase.19

Experimental studies show that the proposed method achieves the state-of-the-art20

accuracies on open set recognition despite its simplicity.21

1 Introduction22

Deep neural network classifiers have been dominating many fields including computer vision by23

achieving state-of-the-art accuracies in many tasks such as visual object, activity, face and scene24

classification. Therefore, new deep neural network architectures and different classification losses25

have been constantly developing. The softmax loss function is the most common function used26

for classification in deep neural network classifiers. Although the softmax loss yields satisfactory27

accuracies for general object classification problems, its performance for discrimination of the28

instances coming from the same class categories (e.g., face recognition) or open set recognition29

(a classification scenario that allows the test samples to come from the unknown classes) is not30

satisfactory. The performance decrease is typically attributed to two factors: there is no mechanism31

for enforcing large-margin between classes and the softmax does not attempt to minimize the within-32

class scatter which is crucial for the success in open set recognition problems.33

To improve the classification accuracies of the deep neural network classifiers, many researchers34

focused on maximizing the margin between classes. The recent methods can be roughly divided into35
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two categories based on maximizing the margin in either Euclidean or angular spaces. The methods36

targeting margin maximization in the Euclidean spaces attempt to minimize the Euclidean distances37

among the samples coming from the same classes and maximize the distances among the samples38

coming from different classes. Euclidean distances are used during testing stage after the network39

is trained. In contrast, the methods that maximize the margin in the angular spaces use the cosine40

distances for classification.41

To maximize the margin in Euclidean space, Wen et al. [1, 2] combined the softmax loss function with42

the center loss for face recognition. Center loss reduces the within-class variations by minimizing43

the distances between the individual face class samples and their corresponding class centers. The44

resulting method significantly improves the accuracies over the method using softmax alone in the45

context of face recognition. A variant of the center loss called the contrastive center loss [3] minimizes46

the Euclidean distances between the samples and their corresponding class centers and maximizes47

the distances between samples and the centers of the rival (non-corresponding) classes. Zhang et48

al. [4] combined the range loss with the softmax loss to maximize the margin in the Euclidean49

spaces. Wei et al. [5] combined softmax loss and center loss functions with the minimum margin50

loss where the minimum margin loss enforces all class center pairs to have a distance larger than a51

specified threshold. Deng et al. [6] introduced a method using softmax loss function with the marginal52

loss to create compact and well separated classes in Euclidean space. Cevikalp et al. [7] proposed53

a deep neural network based open set recognition method that returns compact class acceptance54

regions for each known class. In this framework, hinge loss and polyhedral conic functions are55

used for the between-class separation. The methods using Contrastive loss minimize the Euclidean56

distance of the positive sample pairs and penalize the negative pairs that have a distance smaller than57

a given margin threshold. In a similar manner, [8, 9, 10, 11] employ triplet loss function that used58

a positive sample, a negative sample and an anchor. An anchor is also a positive sample, thus the59

within-class compactness is achieved by minimizing the Euclidean distances between the anchor60

and positive samples whereas the distances between anchor and negative samples are maximized for61

between-class separation. Although methods using both contrastive and triplet loss functions return62

compact decision boundaries, they have limitations in the sense that the number of sample pairs or63

triplets grows quadratically (cubicly) compared to the total number of samples, which results in slow64

convergence and instability. A careful sampling/mining of data is required to avoid this problem.65

Overall, the majority of the methods maximizing margin in the Euclidean spaces have shortcomings66

in a way that they are too complex since the user has to set many weighting and margin parameters.67

This is due to the fact that the main classification loss functions include many terms that needs to be68

properly weighted. Furthermore, many of these methods are not suitable for open set recognition69

problems since they do not return compact acceptance regions for classes.70

The methods that enlarge the margin in the angular spaces typically revise the classical softmax71

loss functions to maximize the angular margins between rival classes, and almost all methods are72

especially proposed for face recognition. To this end, Liu et al. [12, 13] proposed the SphereFace73

method which uses the angular softmax (A-softmax) loss that enables to learn angularly discriminative74

features. Zhao et al. [14] proposed the RegularFace method in which A-softmax term is combined75

with an exclusive regularization term to maximize the between-class separation. Wang et al. [15]76

introduced the CosFace method which imposes an additive angular margin on the learned features. To77

this end, they normalize both the features and the learned weight vectors to remove radial variations78

and then introduce an additive margin term, m, to maximize the decision margin in the angular space.79

A similar method called ArcFace is introduced in [16], where an additive angular margin is added to80

the target angle to maximize the separation in angular space. Liu et al. [17] proposed AdaptiveFace81

method that enables to adjust the margins for different classes adaptively. [18] introduced uniform82

loss function to learn equidistributed representations for face recognition. We would like to point83

out that almost all methods that maximize the margin in the angular space are proposed for face84

recognition. As indicated in [7], these methods work well for face recognition since face class85

samples in specific classes can be approximated by using linear/affine spaces, and the similarities86

can be measured well by using the angles between sample vectors in such cases. Linear subspace87

approximation will work as long as the number of the features is much larger than the number of88

class specific samples which holds for many face recognition problems. However, for many general89

classification problems, the training set size is much larger compared to the dimensionality of the90

learned features and therefore these methods cannot be generalized to the classification applications91

other than face recognition. In addition to this problem, these methods are also complex since they92
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have many parameters that must be set by the user as in the methods that maximize the margin in the93

Euclidean spaces.94

Contributions: The methods that maximize the margin in Euclidean or angular spaces mentioned95

above have the shortcomings in the ways that the objective loss functions include many terms that96

need to be weighted, the class acceptance regions are not compact, or they need additional hard-97

mining algorithms. In this study, we propose a simple yet effective method that does not have these98

limitations. Our proposed method maximizes the margin in both the Euclidean and angular spaces.99

To the best of our knowledge, our proposed method is the first method that maximizes the margin in100

both spaces. To accomplish this goal, we train a deep neural network that enforces the samples to101

gather in the vicinity of the class-specific centers that lie on the boundary of a hypersphere. Each102

class is represented with a single center and the distances between the class centers are equivalent.103

This corresponds to selection of class centers from the vertices of a regular simplex inscribed in a104

hypersphere. Both the Euclidean distances and angular distances between class centers are equivalent105

to each other.106

Our proposed method has many advantages over other margin maximizing deep neural network107

classifiers. These advantages can be summarized as follows:108

• The proposed loss function does not have any hyperparameter that must be fixed for classical109

classification problems, therefore it is extremely easy for the users. For open set recognition,110

the user has to set two parameters if the background class samples are used for learning.111

• The proposed method returns compact and interpretable acceptance regions for each class,112

thus it is very suitable for open set recognition problems.113

• The distances between the samples and their corresponding centers are minimized indepen-114

dently of each other, thus the proposed method also works well for unbalanced datasets.115

In contrast, there is only one limitation of the proposed method: The dimension of the CNN features116

must be larger than or equal to the total number of classes minus 1. To overcome this limitation, we117

introduced Dimension Augmentation Module (DAM) as explained below.118

2 Method119

2.1 Motivation120

In this study, we propose a simple yet effective deep neural network classifier that maximizes the121

margin in both Euclidean and angular spaces. To this end, we introduce a novel classification loss122

function that enforces the samples to compactly cluster around the class-specific centers that are123

selected from the outer boundaries of a hypersphere. The Euclidean distances and angles between124

the centers are equivalent. This is illustrated in Fig. 1. In this figure, the centers representing the125

classes are denoted by the star symbols whereas the class samples are represented with circles having126

different colors based on the class memberships. As seen in the figure, all pair-wise distances between127

the class centers are equivalent, and class centers are located on the boundary of a hypersphere.128

Moreover, if the hypersphere center is set to the origin, then the angles between the class centers129

are also same, and the lengths of the centers are equivalent, i.e, ∥si∥ = u, (u is the length of the130

center vectors). After learning stage, if the class samples are compactly clustered around the centers131

representing them, we can classify the data samples based on the Euclidean or angular distances from132

the class centers. Both distances yield the same results if the hypersphere center is set to the origin.133

At this point, the question of whether enforcing data samples to lie around the simplex vertices is134

appropriate or not comes to mind. In fact, high-dimensional spaces are quite different than the low135

dimensional spaces, and there are many studies showing that the data samples lie on the boundary136

of a hypersphere when the feature dimensionality, d, is high and the number of samples, n, is small.137

For example, Jimenez and Landgrebe [19] theoretically show that the high-dimensional spaces are138

mostly empty and data concentrate on the outside of a shell (on the outer boundary of a hypersphere).139

They also show that as the number of dimensions increases, the shell increases its distance from140

the origin. More precisely, the data samples lie near the outer surface of a growing hypersphere141

in high-dimensional spaces. In a more recent study, Hall et al. explicitly [20] show that the data142

samples lie at the vertices of a regular simplex in high-dimensional spaces. These two studies are143

not contradictory and they support each other since we can always inscribe a regular simplex in144
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Figure 1: In the proposed method, class samples are enforced to lie closer to the class-specific
centers representing them, and the class centers are located on the boundary of a hypersphere. All the
distances between the class centers are equivalent, thus there is no need to tune any margin term. The
class centers form the vertices of a regular simplex inscribed in a hypersphere. Therefore, to separate
C different classes, the dimensionality of the feature space must be at least C − 1. The figure on the
left shows separation of 2 classes in 1-D space, the middle figure depicts the separation of 3 classes
in 2-D space, and the figure on the right illustrates the separation of 4 classes in 3-D space. For all
cases, the centers are chosen from a regular C−simplex.

a hypersphere as seen in Fig. 1. In addition to these studies, [21, 22] show that the eigenvectors145

of the Laplacian matrices (the matrices computed by operating on similarity matrices in spectral146

clustering analysis) form a simplex structure, and they use the vertices of resulting simplex for147

clustering of data samples. In other words, they prove that when the data samples are mapped to148

Laplacian eigenspace, they concentrate on the vertices of a simplex structure. These studies are also149

complementary to the studies showing that the high-dimensional data samples lie on the boundary of150

a growing hypersphere. It is because, as proved in [23], NCuts (Normalized Cuts) [24] clustering151

algorithm, which is presented as a spectral relaxation of a graph cut problem, maps the data samples152

onto an infinite-dimensional feature space. Therefore, these data samples naturally concentrate on the153

vertices of a regular simplex due to the high-dimensionality of the feature space.154

2.2 Maximizing Margin in Euclidean and Angular Spaces155

In the proposed method, we map the class samples to compactly cluster around the class centers156

chosen from the vertices of a regular simplex. All the pair-wise distances between the selected class157

centers are equivalent. Assume that there are C classes in our data set. In this case, we first need to158

create a C-simplex (some researchers call it C − 1 simplex considering the feature dimension, but159

we will prefer C-simplex definition). The vertices of a regular simplex inscribed in a hypersphere160

with radius 1 can be defined as follows:161

vj =

{
(C − 1)−1/21, j = 1,
κ1+ ηej−1, 2 ≤ j ≤ C,

(1)

where,162

κ = − 1 +
√
C

(C − 1)3/2
, η =

√
C

C − 1
. (2)

Here, 1 is an appropriate sized vector whose elements are all 1, ej is the natural basis vector in163

which the j−th entry is 1 and all other entries are 0. Such a C−simplex is in fact a C−dimensional164

polyhedron where the distances between the vertices are equivalent. It must be noted that the distances165

between the vertices do not change even if the simplex is rotated or translated. But, the dimension166

of the feature space must be at least C − 1 in order to define such a regular C−simplex. Next, we167

must define the radius, u, of the hypersphere. This term is similar to the scaling parameter used in168

methods such as ArcFace [16], CosFace [15], etc. that maximize the margin in angular spaces. As169

the dimension increases, it must also increase since the studies [19] show that the hypersphere whose170

outer shells include the data also grows as the dimension is increased. We set u = 64 as in ArcFace171

method. Then, we set the class centers that will represent the classes as,172

sj = uvj , j = 1, ..., C. (3)

The order of selection of centers does not matter since the distances among all centers are equivalent.173

Now, let us consider that the deep neural network features of training samples are given in the form174
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Figure 2: The plug and play module that will be used for increasing feature dimension. It maps
d−dimensional feature vectors onto a much higher (C − 1)− dimensional space.

(fi, yi), i = 1, . . . , n, fi ∈ IRd, yi ∈ {j} where j = 1, ..., C. Here, C is the total number of known175

classes, and we assume that the feature dimension d is larger than or equal to C − 1, i.e., d ≥ C − 1.176

In this case, the loss function of the proposed method can be written as,177

L =
1

n

n∑
i=1

∥fi − syi
∥2 . (4)

The loss function includes a single term that aims to minimize the within-class variations by mini-178

mizing the distances between the samples and their corresponding class centers which are set to the179

vertices of a regular simplex. There is no need another loss term for the between-class separation180

since the selected centers have the maximum possible Euclidean and angular distances among them.181

As a result, there is no hyperparameter that must be fixed, and the proposed method is extremely easy182

for the users. Moreover, the data samples compactly cluster around their class centers, therefore the183

proposed method returns compact acceptance regions for classes, which is crucial for the success of184

the open set recognition. We call the resulting methods as Deep Simplex Classifier (DSC).185

2.3 Including Background Class for Open Set Recognition186

In open set recognition problems, novel classes (ones not seen during training) may occur at test187

time, and the goal is to classify the known class samples correctly while rejecting the unknown188

class samples [25]. Earlier open set recognition methods only used the known class samples during189

training. However, more recent studies [26, 27, 28] revealed that using the background dataset that190

includes the samples that come from the classes that are different from the known classes greatly191

improves the accuracies. Let us represent the deep neural network features of the background samples192

by fk ∈ IRd, k = 1, ...,K. In order to incorporate the background samples, we add an additional loss193

term that pushes the background samples away from the known class centers as follows:194

L =
1

n

n∑
i=1

∥fi − syi
∥2 + λ

n∑
i=1

K∑
k=1

max
(
0,m+ ∥fi − syi

∥2 − ∥fk − syi
∥2
)
, (5)

where m is the selected threshold, and λ is the weighting term. The second loss term enforces the195

distances between the known class samples and their corresponding class centers to be smaller than196

the distances between the background class samples and the known class centers by at least a selected197

margin, m. In contrast to our first proposed loss function, this loss function includes two terms that198

must be set by the users. But, this is necessary only if we use the background class samples.199

2.4 Dimension Augmentation Module (DAM)200

The major limitation of the proposed method is the restriction that the dimension of the feature space201

must be larger than or equal to C − 1, i.e., d ≥ C − 1. The typical feature dimension size returned202

by the classical deep neural network classifiers is 2048 or 4096. In this case, the number of classes in203

our training set cannot exceed 2049 or 4097. However, the number of classes can be larger than these204
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(a) (b) (c)

Figure 3: Learned feature representations of image samples: (a) the embeddings returned by the
proposed method trained with the default loss function given in (4), (b) the embeddings returned
by the proposed method trained with the hinge loss, (c) the embeddings returned by the proposed
method trained with the softmax loss function.

values for some classification tasks, and we cannot use the proposed method in such cases. There are205

basically two procedures to solve this problem. As a first solution, we can use a method similar to206

[29] that returns more centers where the distances between centers are approximately equivalent. In207

this case, the number of centers is increased to 2d+4 for d−dimensional feature spaces. As a second208

and a more complete solution, we introduce a module called Dimension Augmentation Module209

(DAM) that increases the feature dimension size to any desired value. The module is visualized in210

Fig. 2, and it includes two fully connected layers supported with activation functions. The first fully211

connected layer maps the d−dimensional feature space onto a higher C − 1 dimensional space. Then,212

we apply ReLU (Rectified Linear Unit) activation functions followed by the second fully connected213

layer. This is similar to kernel mapping idea used in kernel methods [30, 31] in the spirit with the214

exception that we explicitly map the data to higher dimensional feature space as in [32, 33].215

3 Experiments216

3.1 Illustrations and Ablation Studies217

Here, we first conducted some experiments to visualize the embedding spaces returned by the various218

loss functions using the vertices of the regular simplex. For this illustration experiment, we designed219

a deep neural network where the output of the last hidden layer is set to 2 for visualizing the learned220

features. As training data, we selected 3 classes from the Cifar-10 dataset. We would like to point out221

that we can use different loss functions in addition to our default loss function given in (4) once we222

determine the vertices of the simplex that will represent the classes. To this end, we used two other223

loss functions: The first one is the hinge loss that minimizes the distances between the samples and224

their corresponding class center if the distance is larger than a selected threshold,225

Lhinge =
1

n

n∑
i=1

max
(
0, ∥fi − syi∥

2 −m
)
. (6)

This loss function does not minimize the distances between the samples and their corresponding226

centers if the distances are already smaller than the selected threshold, m. This way class-specific227

samples are collected in a hypersphere with radius, m. For the second loss function, we used the228

variant of the softmax loss function where the weights are fixed to the simplex vertices as in,229

Lsoftmax = − 1

n

n∑
i=1

log
es

⊤
yi

fi+byi∑C
j=1 e

s⊤j fi+bj
(7)

For the softmax loss, we fix the classifier weights to the pre-defined class centers and we only update230

features of the samples by using back-propagation. We set the hypersphere radius to, u = 5, since231

this is a simple dataset.232

The embeddings returned by the deep neural networks using different loss functions are plotted in233

Fig. 3. The first figure on the left is obtained by our default loss function that does not need any234

parameter selection. All data samples are compactly clustered around their class means as expected.235

The second loss function using the hinge loss returns spherical distributions based on the selected236
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margin, m, and the classes are still separable by a margin. In contrast, when the softmax is used with237

the simplex vertices, the data samples are very close and they overlap since there is no margin among238

the classes. Therefore, our default loss function seems to be the best choice among all tested variants239

since it does not need fixing any parameter and returns compact class regions.240

Figure 4: The distance matrix computed by using the centers of the testing classes. The four classes
that are not used in training are closer to their semantically related classes in the learned embedding
space.

We also conducted experiments to see if the proposed method returns meaningful feature embeddings241

where the semantically and visually similar classes lie close to each other in open set recognition242

settings. It should be noted that the semantic relationships are not preserved for the training classes243

since the Euclidean and angular distances between the class centers are equivalent. However, if the244

proposed method returns good CNN features, we expect the samples belonging to classes not used245

in training to lie closer to their semantically related training classes. To verify this, we trained our246

proposed method by using 6 classes from the Cifar-10 dataset: airplane, automobile, bird, cat, deer,247

and frog. Then, we extracted the CNN features of all testing data coming from 10 classes by using the248

trained network. Then, we computed the average CNN feature vector of each class, and computed the249

distances between them. Fig. 4 illustrates the computed distances between the centers. The distances250

between the classes used for training are similar and they change between 5.8 and 6.7. The four251

classes, the dog, horse, ship, and truck classes, that are not used for training are represented with red252

color in the figure. As seen in the figure, the dog class is closest to its semantically similar cat class,253

the truck class is closer to its semantically similar automobile class, the horse class is closest to the254

deer class, and the ship class is closer to the visually similar airplane class (since the backgrounds -255

blue sky and sea - are mostly similar for these two classes). This clearly shows that the proposed256

method returns semantically meaningful embeddings.257

3.2 Open Set Recognition Experiments258

For open set recognition, we need to split the datasets into known and unknown classes. To this259

end, we used the common standard settings that are also applied for testing other recent open set260

recognition methods. The details of each dataset and its open set recognition setting are given below.261

By following the standard protocol, random splitting of each dataset into known and unknown classes262

is repeated 5 times, and the final accuracies are averages of the results obtained in each trial.263

We compared our proposed method, Deep Simplex Classifier (DSC), to other state-of-the-art open264

set recognition methods including Softmax, OpenMax [25], C2AE [34], CAC [27], CPN [35],265

OSRCI [36], CROSR [37], RPL [38], Objecttosphere [39], and Generative-Discriminative Feature266

Representations (GDFRs) [40] methods. We used the same network architecture used in [36] as our267

backbone network for all datasets with the exception of TinyImageNet dataset, where we preferred268

a deeper Resnet-50 architecture for this dataset. We started the training from completely random269

weights (without any fine-tuning). Therefore, our proposed method is directly comparable to the270

published results in [36] for majority of the tested datasets.271
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Table 1: AUC Scores (%) of open set recognition methods on tested datasets (n.r. stands for not
reported).

Methods Mnist Cifar10 SVHN Cifar+10 Cifar+50 TinyImageNet
DSC (Ours) 99.6± 0.1 93.8± 0.3 95.3± 0.8 99.1± 0.2 98.4± 0.3 82.5± 1.8
Softmax 97.8± 0.2 67.7± 3.2 88.6± 0.6 81.6± n.r. 80.5±±n.r. 57.7± n.r.
OpenMax 98.1± 0.2 69.5± 3.2 89.4± 0.8 81.7± n.r. 79.6± n.r. 57.6± n.r.
G-OpenMax 98.4± 0.1 67.5± 3.5 89.6± 0.6 82.7± n.r. 81.9± n.r. 58.0± n.r.
C2AE 98.9± 0.2 89.5± 0.9 92.2± 0.9 95.5± 0.6 93.7± 0.4 74.8± 0.5
CAC 99.1± 0.5 80.1± 3.0 94.1± 0.7 87.7± 1.2 87.0± 0.0 76.0± 1.5
CPN 99.0± 0.2 82.8± 2.1 92.6± 0.6 88.1± n.r. 87.9± n.r. 63.9± n.r.
OSRCI 98.8± 0.1 69.9± 2.9 91.0± 0.6 83.8± n.r. 82.7±− 58.6± n.r.
CROSR 99.1± n.r. 88.3± n.r. 89.9± n.r. 91.2± n.r. 90.5± n.r. 58.9± n.r.
RPL 98.9± 0.1 82.7± 1.4 93.4± 0.5 84.2± 1.0 83.2± 0.7 68.8± 1.4
GDFRs n.r. 83.1± 3.9 95.5± 1.8 92.8± 0.2 92.6± 0.0 64.7± 1.2
Objecttosphere n.r. 94.2± n.r. 91.4± n.r. 94.5± n.r. 94.4± n.r. 75.5± n.r.

3.2.1 Datasets272

Mnist, Cifar10, SVHN: By using the standard setting, Mnist, Cifar10, and SVHN datasets are split273

randomly into 6 known and 4 unknown classes. We used 80 Million Tiny Images dataset [41] as the274

background class.275

Cifar+10, Cifar+50: For Cifar+N experiments, we use 4 randomly selected classes from Cifar10276

dataset for training, and N non-overlapping classes chosen from Cifar100 dataset are used as unknown277

classes as in [35, 27, 37, 38]. We used 80 Million Tiny Images dataset [41] as the background class.278

TinyImageNet: For TinyImageNet [42] experiments, we randomly selected 20 classes as known279

classes and 180 classes as unknown classes by following the standard setting. We used 80 Million280

Tiny Images dataset [41] as the background class.281

3.2.2 Results282

For open set recognition, Area Under the ROC curve (AUC) scores are used for measuring the283

detection of performance of the unknown samples. In addition, we also report the closed-set accuracy284

for measuring the classification performance on known data by ignoring the unknown samples as in285

[35, 36] (these results are given in Appendix). AUC scores are given in Table 1. As seen in the table,286

our proposed method achieves the best accuracies on all datasets with the exception of Cifar 10 and287

SVHN datasets. The performance difference is very significant especially on Cifar+10, Cifar+50 and288

TinyImageNet datasets.289

3.3 Closed Set Recognition Experiments290

3.3.1 Experiments on Moderate Sized Datasets291

Here, we conducted closed set recognition experiments on moderate sized datasets. Our proposed292

method did not need DAM since the feature dimension is much larger than the number of classes in293

the training set for these experiments. We compared our results to the methods that maximize the294

margin in Euclidean or angular spaces. We implemented the compared methods by using provided295

source codes by their authors, and we used the ResNet-18 architecture [43] as backbone for all tested296

methods. Therefore, our results are directly comparable.297

Table 2: Classification accuracies (%) on moderate sized datasets.
Methods Mnist Cifar-10 Cifar-100
DSC (Ours) 99.7 95.9 79.5
Softmax 99.4 94.4 75.3
Center Loss 99.7 94.2 76.1
ArcFace 99.7 94.8 75.7
CosFace 99.7 95.0 75.8
SphereFace 99.7 94.7 75.1
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Classification accuracies are given in Table 2. For Mnist datasets, majority of the tested methods yield298

the same accuracy, but our proposed DSC method outperforms all tested methods on the Cifar-10299

and Cifar-100 datasets. The performance difference is significant especially on the Cifar-100 dataset.300

These results verify the superiority of the margin maximization in both Euclidean and angular spaces.301

Achieving the best accuracies is encouraging, because our proposed method is very simple and does302

not need any parameter tuning, yet it outperforms more complex methods.303

3.3.2 Experiments on Large-Scale Datasets304

For all face verification tests, we used the same network trained on large-scale face dataset by follow-305

ing the standard setting. To this end, we trained the proposed classifier on MS1MV2 dataset [16],306

which is a cleaned version of MS-Celeb-1M dataset [44]. This dataset includes approximately 85.7K307

individuals. We removed the classes including less than 100 samples, which left us approximately308

18.6K individuals for training. The number of classes is much larger than the feature dimension,309

d = 2048, thus we used DAM to increase the CNN feature dimension. The ResNet-101 architecture310

is used as backbone. Once the network is trained, we used the resulting architecture to extract deep311

CNN features of the face images coming from the test datasets.312

As test datasets, we used Labeled Faces in the Wild (LFW) [45], Cross-Age LFW (CALFW) [46],313

Cross-Pose LFW (CPLFW) [47], Celebrities in Frontal-Profile data set (CFP-FP) [48] and AgeDB314

[48]. We evaluated the proposed methods by following the standard protocol of unrestricted with315

labeled outside data [45], and report the results by using 6,000 pair testing images on LFW, CALFW,316

CPLFW, and AgeDB. However, 7,000 pairs of testing images are used for CFP-FP by following the317

standard setting. The results are given in Table 3. As seen in the results, the proposed method using318

DAM outperforms the classifiers using softmax and Center loss, but accuracies are lower than the319

recent state-of-the-art methods. These results indicate that the DAM solves the dimension problem320

partially, but it must be revised for obtaining better accuracies.321

Table 3: Verification rates (%) on different datasets.
Method LFW CALFW CPLFW CFP AgeDB
DSC 99.6 91.3 90.3 94.3 96.0

VGGFace2 99.4 90.6 84.0 −− −−
Center Loss 99.3 85.5 77.5 −− −−
ArcFace (ResNet-101) 99.8 95.5 92.1 95.6 −−
CosFace 99.7 93.3 92.1 −− 97.7

SphereFace 99.4 93.3 92.1 94.4 97.7

4 Summary and Conclusion322

In this paper, we proposed a simple and effective deep neural network classifier that maximizes the323

margin in both the Euclidean and angular spaces. The proposed method returns embeddings where324

the class-specific samples lie in the vicinity of the class centers chosen from the vertices of a regular325

simplex. The proposed method is very simple in the sense that there is no parameter that must be fixed326

for classical closed set recognition settings. Despite its simplicity, the proposed method achieves the327

state-of-the-art accuracies on open set recognition problems since the samples of unknown classes328

are easily rejected by using the distances from the class-specific centers. Moreover, our proposed329

method also outperformed other state-of-the-art classification methods on closed set recognition330

setting when moderate sized datasets are used. The proposed method has a limitation regarding331

learning in large-scale datasets. We introduced DAM in order to solve this problem. Although DAM332

partially solved the existing problem, we could not get state-of-the-art accuracies on large-scale333

face recognition problems. As a future work, we are planning to improve DAM by changing its334

architecture and activation functions.335

9



References336

[1] Y. Wen, K. Zhang, Z. Li, and Y. Qiao. A comprehensive study on center loss for deep face337

recognition. International Journal of Computer Vision, 127:668–683, 2019.338

[2] Y. Wen, K. Zhang, Z. Li, and Y. Qiao. A discriminative feature learning approach for deep face339

recognition. In European Conference on Computer Vision, 2016.340

[3] C. Qi and F. Su. Contrastive-center loss for deep neural networks. In IEEE International341

Conference on Image Processing (ICIP), 2017.342

[4] X. Zhang, Z. Fang, Y. Wen, Z. Li, and Y. Qiao. Range loss for deep face recognition with343

long-tailed training data. In International Conference on Computer Vision, 2017.344

[5] X. Wei, H. Wang, B. Scotney, and H. Wan. Minimum margin loss for deep face recognition.345

Pattern Recognition, 97:1–9, 2020.346

[6] J. Deng, Y. Zhou, and S. Zafeiriou. Marginal loss for deep face recognition. In IEEE Society347

Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, 2017.348

[7] H. Cevikalp, B. Uzun, O. Kopuklu, and G. Ozturk. Deep compact polyhedral conic classifier349

for open and closed set recognition. Pattern Recognition, 119(108080):1–12, 2021.350

[8] F. Schroff, D. Kalenichenko, and J. Philbin. Facenet: A unified embedding for face recognition351

and clustering. In IEEE Society Conference on Computer Vision and Pattern Recognition352

(CVPR), 2015.353

[9] E. Hoffer and N. Ailon. Deep metric learning using triplet network. In International Conference354

on Learning and Recognition (ICLR) Workshops, 2015.355

[10] K. Sohn. Improved deep metric learning with multi-class n-pair loss objective. In Neural356

Information Processing Systems (NIPS), 2016.357

[11] S. K. Roy, M. Harandi, R. Nock, and R. Hartley. Siamese networks: The tale of two manifolds.358

In International Conference on Computer Vision, 2019.359

[12] W. Liu, Y. Wen, Z. Yu, M. Li, B. Raj, and L. Song. Sphereface: Deep hypersphere embedding360

for face recognition. In IEEE Society Conference on Computer Vision and Pattern Recognition361

(CVPR), 2017.362

[13] W. Liu, Y. Wen, Z. Yu, and M. Yang. Large-margin softmax loss for convolutional neural363

networks. In International Conference on Machine Learning (ICML), 2016.364

[14] K. Zhao, J. Xu, and M.-M. Cheng. Regularface: Deep face recognition via exclusive regular-365

ization. In IEEE Society Conference on Computer Vision and Pattern Recognition (CVPR),366

2019.367

[15] H. Wang, Y. Wang Z. Zhou, X. Ji, D. Gong, J. Zhou, Z. Li, and W. Liu. Cosface: Large margin368

cosine loss for deep face recognition. In IEEE Society Conference on Computer Vision and369

Pattern Recognition (CVPR), 2018.370

[16] J. Deng, J. Guo, N. Xue, and S. Zafeiriou. Arcface: Additive angular margin loss for deep face371

recognition. In IEEE Society Conference on Computer Vision and Pattern Recognition (CVPR),372

2019.373

[17] Hao Liu, Xiangyu Zhu, Zhen Lei, and Stan Z. Li. Adaptiveface: Adaptive margin and sampling374

for face recognition. In IEEE Society Conference on Computer Vision and Pattern Recognition375

(CVPR), 2019.376

[18] Yueqi Duan, Jiwen Lu, and Jie Zhou. Uniformface: Learning deep equidistributed represen-377

tations for face recognition. In IEEE Society Conference on Computer Vision and Pattern378

Recognition (CVPR), 2019.379

[19] L. O. Jimenez and D. A. Landgrebe. Supervised classification in high dimensional space:380

geometrical, statistical, and asymptotical properties of multivariate data. IEEE Transactions on381

Systems, Man, and Cybernetics-Part C: Applications and Reviews, 28(1):39–54, 1998.382

10



[20] P. Hall, J. S. Marron, and A. Neeman. Geometric representation of high dimension, low sample383

size data. Journal of the Royal Statistical Society Series B, 67:427–444, 2005.384

[21] P. Kumar, L. Niveditha, and B. Ravindran. Spectral clustering as mapping to a simplex. In385

ICML Workshops, 2013.386

[22] M. Weber. Clustering by using a simplex structure. Technical report, Konrad-Zuse-Zentrum fur387

Informationstechnik Berlin, 2003.388

[23] Ali Rahimi and Benjamin Recht. Clustering with normalized cuts is clustering with a hyperplane.389

In Statistical Learning in Computer Vision, 2004.390

[24] J. Shi and J. Malik. Normalized cuts and image segmentation. IEEE Transactions on Pattern391

Analysis and Machine Intelligence, 22:888–905, 2000.392

[25] W. J. Scheirer, A. Rocha, A. Sapkota, and T. E. Boult. Towards open set recognition. IEEE393

Transactions on Pattern Analysis and Machine Intelligence, 35:1757–1772, 2013.394

[26] A. R. Dhamija, M. Gunther, and T. E. Boult. Reducing network agnostophobia. In Neural395

Information Processing Systems (NeurIPS), 2018.396

[27] D. Miller, N. Sunderhauf, M. Milford, and F. Dayoub. Class anchor clustering: A loss for397

distance-based open set recognition. In WACV, 2021.398

[28] Chuanxing Geng, Sheng-Jun Huang, and Songcan Chen. Recent advances in open set recogni-399

tion: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43(10):3614–400

3631, 2021.401

[29] M. Balko, A. Por, M. Scheucher, K. Swanepoel, and P. Valtr. Almost-equidistant sets. Graphs402

and Combinatorics, 36:729–754, 2020.403

[30] C. Cortes and V. Vapnik. Support vector networks. Machine Learning, 20:273–297, 1995.404

[31] S. Mika, G. Ratsch, J. Weston, B. Scholkopf, and K.R. Mullers. Fisher discriminant analysis405

with kernels. In Neural Networks for Signal Processing IX: Proceedings of the 1999 IEEE406

Signal Processing Society Workshop, pages 41–48, 1999.407

[32] A. Vedaldi and A. Zisserman. Efficient additive kernels via explicit feature maps. IEEE408

Transactions on Pattern Analysis and Machine Intelligence, 34:480–492, 2012.409

[33] A. Rahimi and B. Recht. Random features for large-scale kernel machines. In NIPS, 2007.410

[34] Poojan Oza and Vishal M. Patel. C2ae: Class conditioned auto-encoder for open-set recognition.411

In CVPR, 2019.412

[35] Hong-Ming Yang, Xu-Yao Zhang, Fei Yin, Qing Yang, and Cheng-Lin Liu. Convolutional413

prototype network for open set recognition. IEEE Transactions on Pattern Analysis and Machine414

Intelligence, pages 1–1, 2020.415

[36] Lawrence Neal, Matthew Olson, Xiaoli Fern, Weng-Keen Wong, and Fuxin Li. Open set416

learning with counterfactual images. In ECCV, 2018.417

[37] R. Yoshihashi, W. Shao, R. Kawakami, S. You, M. Iida, and T. Naemura. Classification-418

reconstruction learning for open-set recognition. In CVPR, 2019.419

[38] G. Chen, L. Qiao, Y. Shi, P. Peng, J. Li, T. Huang, S. Pu, and Y. Tian. Learning open set network420

with discriminative reciprocal points. In ECCV, 2020.421

[39] Abhijit Bendale and Terrance E. Boult. Towards open set deep networks. In CVPR, 2016.422

[40] P. Perera, V. I. Morariu, R. Jain, V. Manjunatha, C. Wigington, V. Ordonez, and V. M. Patel.423

Generative-discriminative feature representations for open-set recognition. In CVPR, 2020.424

[41] Antonio Torralba, Rob Fergus, and William T. Freeman. 80 million tiny images: A large data425

set for nonparametric object and scene recognition. IEEE Transactions on Pattern Analysis and426

Machine Intelligence, 30(11):1958–1970, 2008.427

11



[42] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy,428

A. Khosla, and M. Bernstein. Imagenet large scale visual recognition challenge. International429

Journal of Computer Vision, 115:201–252, 2015.430

[43] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In CVPR,431

2016.432

[44] Yandong Guo, Lei Zhang, Yuxiao Hu, Xiaodong He, and Jianfeng Gao. Ms-celeb-1m: A dataset433

and benchmark for large-scale face recognition. In European conference on computer vision,434

pages 87–102. Springer, 2016.435

[45] Gary B Huang, Marwan Mattar, Tamara Berg, and Eric Learned-Miller. Labeled faces in the436

wild: A database forstudying face recognition in unconstrained environments. In Workshop on437

faces in’Real-Life’Images: detection, alignment, and recognition, 2008.438

[46] Tianyue Zheng, Weihong Deng, and Jiani Hu. Cross-age LFW: A database for studying439

cross-age face recognition in unconstrained environments. CoRR, abs/1708.08197, 2017.440

[47] Tianyue Zheng and Weihong Deng. Cross-pose lfw: A database for studying cross-pose face441

recognition in unconstrained environments. Technical report, Beijing University of Posts and442

Telecommunications, 2018.443

[48] Stylianos Moschoglou, Athanasios Papaioannou, Christos Sagonas, Jiankang Deng, Irene Kotsia,444

and Stefanos Zafeiriou. Agedb: The first manually collected, in-the-wild age database. In 2017445

IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pages446

1997–2005, 2017.447

Checklist448

The checklist follows the references. Please read the checklist guidelines carefully for information on449

how to answer these questions. For each question, change the default [TODO] to [Yes] , [No] , or450

[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing451

the appropriate section of your paper or providing a brief inline description. For example:452

• Did you include the license to the code and datasets? [Yes] See Section ??.453

• Did you include the license to the code and datasets? [No] The code and the data are454

proprietary.455

• Did you include the license to the code and datasets? [N/A]456

Please do not modify the questions and only use the provided macros for your answers. Note that the457

Checklist section does not count towards the page limit. In your paper, please delete this instructions458

block and only keep the Checklist section heading above along with the questions/answers below.459

1. For all authors...460

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s461

contributions and scope? [Yes] We added a Contributions subsection to the Introduction462

describing our contributions and scope.463

(b) Did you describe the limitations of your work? [Yes] Limitations of the proposed464

method are discussed in Section 2. titled "‘Dimension Augmentation Module (DAM)"’.465

(c) Did you discuss any potential negative societal impacts of your work? [N/A]466

(d) Have you read the ethics review guidelines and ensured that your paper conforms to467

them? [Yes] We ensured that our paper conforms to ethics.468

2. If you are including theoretical results...469

(a) Did you state the full set of assumptions of all theoretical results? [N/A]470

(b) Did you include complete proofs of all theoretical results? [N/A]471

3. If you ran experiments...472
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(a) Did you include the code, data, and instructions needed to reproduce the main exper-473

imental results (either in the supplemental material or as a URL)? [Yes] We did not474

include source codes as supplementary material, but both our codes and trained models475

will be shared in our GitHub page.476

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they477

were chosen)? [Yes] We followed the common settings in the literature for data splits478

and briefly described them. In Appendix, we explained hyperparameter selection479

process for the used architectures. We do not need any parameter fixing for classical480

classification problems, but we need two parameters for open set recognition. We481

reported the used parameter values.482

(c) Did you report error bars (e.g., with respect to the random seed after running experi-483

ments multiple times)? [No] Some experiments are conducted several times and we484

reported the means and standard deviations for these. But for the remaining datasets,485

the test sets are fixed, thus experiments are run only once.486

(d) Did you include the total amount of compute and the type of resources used (e.g., type487

of GPUs, internal cluster, or cloud provider)? [No]488

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...489

(a) If your work uses existing assets, did you cite the creators? [Yes] We used some490

well-known CNN architectures and cited the corresponding papers.491

(b) Did you mention the license of the assets? [N/A]492

(c) Did you include any new assets either in the supplemental material or as a URL? [No]493

(d) Did you discuss whether and how consent was obtained from people whose data you’re494

using/curating? [N/A]495

(e) Did you discuss whether the data you are using/curating contains personally identifiable496

information or offensive content? [N/A]497

5. If you used crowdsourcing or conducted research with human subjects...498

(a) Did you include the full text of instructions given to participants and screenshots, if499

applicable? [N/A]500

(b) Did you describe any potential participant risks, with links to Institutional Review501

Board (IRB) approvals, if applicable? [N/A]502

(c) Did you include the estimated hourly wage paid to participants and the total amount503

spent on participant compensation? [N/A]504

A Appendix505

Here, we first explain the implementation details of the proposed deep neural network classifier,506

and give the parameters used for the utilized deep neural network classifier architecture. Then, we507

reported the closed-set accuracies of tested methods on open set recognition datasets.508

A.1 Implementation Details509

For open set recognition, we used the same network architecture used in [36] as our backbone network510

for all datasets with the exception of TinyImageNet dataset, where we preferred a deeper Resnet-50511

architecture for this dataset. The learning rate is set to 0.1. For open set recognition experiments, we512

set λ = 1
2×batch_size2 , and m = u/2, where u is the hypersphere radius.513

We do not need these parameters for closed set recognition. For closed-set recognition experiments,514

we used the ResNet-18 architecture as backbone for moderate sized datasets, and the ResNet-101515

architecture is used for large-scale face recognition dataset. For updating network weights, we516

used Adam optimization strategy for large-scale face recognition whereas SGD (stochastic gradient517

descent) is used for moderate size datasets. The learning rate is set to 10−3 for face recognition and518

to 0.5 for moderate sized datasets.519

A.2 Closed-Set Accuracies on Open Set Recognition Datasets520

Closed-set accuracies of the open-set recognition methods are given in Table 4. Our proposed method521

also obtains the best closed-set accuracies among the tested methods with the exception of SVHN522
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dataset. This clearly shows that the proposed method is very successful both at the rejection of the523

unknown samples and classification of the known samples correctly.524

Table 4: Closed-Set accuracies (%) of open set recognition methods on tested datasets.
Methods Mnist Cifar10 SVHN Cifar+10 Cifar+50 TinyImageNet
DSC (Ours) 99.8± 0.1 96.1± 1.4 96.5± 0.3 97.6± 0.5 97.9± 0.5 83.3± 2.2
Softmax 99.5± 0.2 80.1± 3.2 94.7± 0.6 n.r. n.r. n.r.
OpenMax 99.5± 0.2 80.1± 3.2 94.7± 0.6 n.r. n.r. n.r.
G-OpenMax 99.6± 0.1 81.6± 3.5 94.8± 0.8 n.r. n.r. n.r.
CPN 99.7± 0.1 92.9± 1.2 96.7± 0.4 n.r. n.r. n.r.
OSRCI 99.6± 0.1 82.1± 2.9 95.1± 0.6 n.r. n.r. n.r.
CROSR 99.2± 0.1 93.0± 2.5 94.5± 0.5 n.r. n.r. n.r.
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