
Robust and Controllable Object-Centric Learning through Energy-based Models

ROBUST AND CONTROLLABLE OBJECT-CENTRIC
LEARNING THROUGH ENERGY-BASED MODELS

Ruixiang Zhang† Tong Che◦ Boris Ivanovic◦ Renhao Wang◦

Marco Pavone◦‡ Yoshua Bengio† Liam Paull†
◦Nvidia Research
‡Stanford University
†Mila, Université de Montréal
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ABSTRACT

Humans are remarkably good at understanding and reasoning about complex vi-
sual scenes. The capability to decompose low-level observations into discrete
objects allows us to build a grounded abstract representation and identify the
compositional structure of the world. Accordingly, it is a crucial step for ma-
chine learning models to be capable of inferring objects and their properties from
visual scenes without explicit supervision. However, existing works on object-
centric representation learning either rely on tailor-made neural network modules
or strong probabilistic assumptions in the underlying generative and inference
processes. In this work, we present EGO, a conceptually simple and general ap-
proach to learning object-centric representations through an energy-based model.
By forming a permutation-invariant energy function using vanilla attention blocks
readily available in Transformers, we can infer object-centric latent variables via
gradient-based MCMC methods where permutation equivariance is automatically
guaranteed. We show that EGO can be easily integrated into existing architectures
and can effectively extract high-quality object-centric representations, leading to
better segmentation accuracy and competitive downstream task performance. Fur-
ther, empirical evaluations show that EGO’s learned representations are robust
against distribution shift. Finally, we demonstrate the effectiveness of EGO in sys-
tematic compositional generalization, by re-composing learned energy functions
for novel scene generation and manipulation.

1 INTRODUCTION

The ability to recognize objects and infer their properties and relations in a scene is a fundamental
capability of human cognition. The central question of how objects are discovered and represented
in the brain has been a subject of intense research for decades, and has prompted the field of cog-
nitive science (Spelke, 1990) to ask how we might develop intelligent machine agents to learn to
represent objects in the same way humans do, without being explicitly taught what those objects
are. Developing artificial agents capable of decomposing complex scenes into discrete objects can
be a crucial step for many applications in robotics, vision, reasoning, and planning. Learning such
object-centric representations can further help to identify the relational and compositional structure
among objects and enables the agent to reason about a novel scene composed of new objects by
leveraging knowledge from previously-learned representations of similar objects.

In recent years, many works have been proposed to learn object-centric representations from visual
scenes without human supervision. A variety of models, in the form of structured generative mod-
els (Greff et al., 2019; Burgess et al., 2019; Engelcke et al., 2020; Lin et al., 2020) or specifically
designed neural network modules (Locatello et al., 2020), have been proposed to tackle the problem
of visual scene decomposition and generation. On the other hand, recent progress in large language
models (Vaswani et al., 2017; Brown et al., 2020) and visual-language models (Radford et al., 2021;
Ramesh et al., 2022) shows the huge potential of training expressive neural network models with
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Figure 1: Architecture of EGO-Attention, the variant of EGO used in experiments. x is the
input image and zi are the object-centric representations. In each block, EGO attends to the latent
variables to refines the hidden scene representation using cross-attention mechanism between x and
zi, to measure the consistency between image input and latent representation.

minimal hand-designed inductive biases. In a similar spirit, we ask whether we can learn object-
centric representations with minimal human assumptions and task-specific architectures.

Contributions In this work, we introduce EGO (EnerGy-based Object-centric learning), a con-
ceptually simple yet effective approach to learning object-centric representations without the need
for specially-tailored neural network architectures or strong (typically parametric) assumptions on
data generating process. Based on the Energy-based Model (EBM) framework, we propose to learn
an energy function that takes as input a visual scene and a set of object-centric latent variables and
outputs a scalar value that measures the consistency between the observation and the latent repre-
sentation (Section 2). We minimally assume permutation invariance among objects and embed this
assumption into the energy function by leveraging the vanilla attention mechanisms from the Trans-
former (Vaswani et al., 2017) architecture (Section 2.1). In essence, our method makes models act as
segmentation annotators, aiming to iteratively improve their annotations by minimizing our energy
function. We use gradient-based Markov chain Monte Carlo (MCMC) sampling to efficiently sam-
ple latent variables from the EBM distribution, which automatically yields a permutation-equivariant
update rule for the latent variables (Section 2.2). This stochastic inference procedure also addresses
the inherent uncertainty in learning object-centric representations; models can learn to represent
scenes containing multiple objects and potential occlusions in a probabilistic and multi-modal man-
ner. We demonstrate the effectiveness of our approach on a variety of unsupervised object discovery
tasks and show both qualitatively and qualitatively that our model can learn to decompose complex
scenes into highly accurate and interpretable objects, outperforming state-of-the-art methods on seg-
mentation performance (Section 4.1). We also show that we can reuse the learned energy functions
for controllable scene generation and manipulation, which enables systematic compositional gen-
eralization to novel scenes (Section 4.2). Finally, we demonstrate the robustness of our model to
various distribution shifts and hyperparameter settings (Section 4.3).

2 ENERGY-BASED OBJECT-CENTRIC REPRESENTATION LEARNING

The goal of object-centric representation learning is to learn a mapping from a visual observation
x ∈ RDx to a set of vectors {zk}, where each vector zk ∈ RDz describes an individual object (or
background) in x. In this work, we make use of an EBM E(x, z;θ), parameterized by θ, to learn
a joint energy function which assigns low energy to regions where the visual observation x and the
latent object descriptors z are consistent, where z = {zk}Kk=1 are a set of K object-centric latent
variables. To implement the mapping from a visual scene to its constituting objects, we can sample
from the posterior distribution z ∼ p(z|x;θ) ∝ e−E(x,z;θ) by using any efficient MCMC sampling
algorithm, such as the stochastic gradient Langevin dynamics method (Parisi, 1981; Welling & Teh,
2011) and Hamiltonian Monte Carlo (Duane et al., 1987; Neal et al., 2011). Accordingly, the EBM E
can be used as a generic module for object-centric representation learning, offering great flexibility
in which neural network architectures can be used and the functional form of the energy function.

2.1 PERMUTATION INVARIANT ENERGY FUNCTION

One fundamental inductive bias in object-centric representation learning is encoding the permutation
invariance of a set of objects into model learning. In this section, we introduce two formulations
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of the energy function E(x, z;θ) that are permutation invariant with respect to the order of the
object-centric latent variables {zk}.

EGO by composing individual energy functions First, we consider a simple formulation of the
energy function E(x, z;θ) that is decomposed into a set of individual energy functions E(x, zk;θk),
followed by a permutation invariant aggregation function ϕ as E(x, z) = ϕ ({E(x, zk)}).
The individual energy function E(x, zk;θk) : RDx × RDz 7→ R can be any function that takes
the observation x and a single latent variable zk as input, and outputs a scalar energy value which
quantifies the belief that an object with representation zk is present in the visual scene x. We share
the parameters θk across all the individual energy functions θk = θ ∀k, such that it can generalize
to an arbitrary number of objects without breaking symmetry.

The aggregation function ϕ is a permutation-invariant function with respect to the set {E(x, zk)}.
We can use any function ϕ that is invariant to the order of inputs, such as the sum (Du et al., 2020;
2021), minimum (Parascandolo et al., 2018), or parameterized transformations (Zaheer et al., 2017).
Throughout this work, we use the sum as the aggregation function, which is effective in encouraging
the model to learn to decompose the input into discrete objects and local variations, as explored
in (Du et al., 2021; Zhang et al., 2020). We call the resulting EBM formulation EGO-Sum, given by

E(x, z;θ) =

K∑
k=1

E(x, zk;θ) (1)

EGO from permutation equivariant/invariant transformations We introduce another formu-
lation of the energy function E(x, z;θ) that composes multiple permutation equivariant/invariant
transformations on top of the set {zk} and x. In particular, we use vanilla attention blocks (Vaswani
et al., 2017), such as cross-attention and self-attention, to build up these differentiable mappings.

We first encode the data input x ∈ RDx into a higher-level representation h ∈ RNh×Dh , where
Nh = Widthh × Heighth is the number of vectors in the 2D feature map h when using a convolu-
tional neural network (CNN) as the backbone encoder.

We then use a stack of L standard transformer blocks with a cross-attention layer to fuse the infor-
mation in h and the object-centric latent variables z = {zk}Kk=1. Each block consists of a multi-head
cross-attention layer, followed by a position-wise, fully connected feed-forward network. In each
cross-attention layer, a linear transformation is applied to the image feature map h to produce queries
over the set of latent variables. Cross-attention weights are then computed between the queries and
linearly-projected keys and values from the set of latent variables {zk}. The stacked transformer
blocks allow the model to sufficiently capture information from {zk} by attending to the most rel-
evant subset of latent variables at each image feature location, such that the model can learn to tell
whether the set of latent variables fully explains each object.

We then use an average pooling layer to aggregate the final output of the transformer blocks hL ∈
RNh×Dh , into a single vector, which is then passed through a fully-connected layer to produce the
scalar energy term.

We provide an overview of our architecture in Figure 1, and call the resulting EBM formulation
EGO-Attention, given by:

h0 = Encoder(x) (2)

h′
ℓ = CrossAttention(LayerNorm(hℓ−1),LayerNorm(z)) + hℓ−1 ℓ = 1 . . . L (3)

hℓ = MLP(LayerNorm(h′
ℓ)) + h′

ℓ ℓ = 1 . . . L (4)
E = MLP(AvgPool(hL)) (5)

2.2 LEARNING AND INFERENCE

For tasks requiring a geometric understanding of a visual scene and reasoning over entities, our
model can be used as a plug-and-play module to be integrated into existing architectures for encod-
ing structured object-centric representations. Owing to the great flexibility of EGO’s energy function
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Algorithm 1: Training procedure of EGO for unsupervised object discovery.

Input: Image data x ∈ RDx , number of latent variables K, number of MCMC iterations T ,
step size ϵ

Parameters: EGO E(x, z;θ), decoder Decoder(z;ϕ)
Output: Training loss for unsupervised object discovery
#Infer object-centric latent variables by Langevin MCMC sampling

Draw random initialization z0 ∼ N (0, I)
for t = 0 to T − 1 do

#Using permutation-invariant energy functions from Eq. 1 or Eq. 5
ηt ∼ N (0, I)

zt+1 = zt + ϵ∇zE(x, zt;θ) +
√
2ϵηt

#Decode the latent variables to create reconstructions

x̃ = Decoder(zT ;ϕ)
#Compute the reconstruction loss

return Lrec =
1

Dx
∥x̃− x∥2

and learning objective formulation, we can customize the model to adapt to a wide range of task
contexts and learning desiderata.

Among many possible training objective choices (e.g., maximum likelihood training with MCMC
sampling or Contrastive Divergence (Hinton, 2002)) to learn the model as a monolithic generative
model, akin to the family of existing approaches (Engelcke et al., 2020; Greff et al., 2019; Burgess
et al., 2019) for visual scene understanding and generation, we focus on investigating the potential
of EGO as a generic standalone module for extracting object-centric representations, similar to (Lo-
catello et al., 2020). To this end, we adopt an encoder-decoder architecture, with our EGO module
serving as the encoder to transform the unstructured observation into structured object represen-
tations, which are then decoded by a separate decoder into reconstructions or other task-specific
predictions.

Encoding object-centric representations by MCMC sampling To infer the set of object-centric
latent variables z from the input x, we use gradient-based MCMC sampling methods to sample
from the posterior distribution z ∼ p(z|x) ∝ e−E(x,z;θ). Specifically, in this work we utilize the
Langevin MCMC (Parisi, 1981; Welling & Teh, 2011) method. Starting from a random initialization
z0 drawn from a simple prior distribution, we iteratively update the latent variables by simulating
the Langevin diffusion process for T steps, with step size ϵ, as follows:

zt+1 = zt + ϵ∇zE(x, zt;θ) +
√
2ϵηt, t = 0, 1, . . . , T − 1, ηt ∼ N (0, I), z0 ∼ N (0, I) (6)

where zt denotes the latent variables at the t-th iteration. When ϵ → 0 and T → ∞, the sampling
process converges to the true posterior distribution p(z|x) under some regularity conditions.

Though running MCMC sampling until convergence can be computationally expensive, we are sim-
ulating the Langevin dynamics in the latent space z ∈ RK×Dz rather than the high-dimensional
pixel space, in contrast to previous works (Du et al., 2021; Du & Mordatch, 2019). We also only run
Langevin dynamics for a relatively small number of iterations (T < 10) and find that it is sufficient
to produce good latent variable samples zT in our experiments. This allows us to make use of the
gradient-based MCMC sampling in a much more efficient manner, even comparable to amortized
inference methods (Eslami et al., 2016; Greff et al., 2017; 2019; Burgess et al., 2019).

Training procedure We outline the detailed training procedure in Algorithm 1, taking the un-
supervised object discovery task as an example. Given the encoded structured representation
zT ∼ p(z|x;θ) from MCMC sampling, we use a decoder to map the set of latent variables to
task-specific predictions. For unsupervised object discovery, we follow prior approaches and use a
spatial broadcast decoder (Watters et al., 2019; Greff et al., 2019; Locatello et al., 2020) to decode
each latent variable zk separately into an alpha mask αk ∈ [0, 1]Dx and input reconstruction x̃k,
which are then combined to produce the final output x̃ =

∑K
k=1 Softmax(α)kx̃k. The model can

be trained end-to-end to minimize the reconstruction loss. For other tasks, we can use corresponding
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decoders (Kosiorek et al., 2020; Zhang et al., 2019; Zaheer et al., 2017) to map latent variables to
predictions and train the model end-to-end to minimize task-specific losses.

3 RELATED WORK

Object-centric learning Object-centric representation learning (Greff et al., 2015; 2016; Eslami
et al., 2016; Greff et al., 2017; 2019; Lin et al., 2020; Xie et al., 2021) plays an important role
in scene understanding, visual reasoning, and compositional generalization. Many research works
like MONet (Burgess et al., 2019), IODINE (Greff et al., 2019), GENESIS (Engelcke et al., 2020;
2021), and SPACE (Lin et al., 2020) propose various probabilistic models to build a spatial mixture
model of visual scenes and use variational inference to learn object-centric latent variables. Slot
attention (Locatello et al., 2020) proposed a novel inverted attention mechanism to iteratively as-
sign objects to slots, by introducing competition among slots via attention weight normalization.
(Kipf et al., 2021) further applied the slot attention module to video data, and (Chang et al., 2022)
improved the approach by using fixed points as object representations, yielding better stability. Be-
sides reconstruction-based object-centric learning, various works (Racah & Chandar, 2020; Kipf
et al., 2020; Löwe et al., 2020; Pirk et al., 2019; Baldassarre & Azizpour, 2022) tackle the problem
from the perspective of contrastive learning and self-supervised learning. Object-centric represen-
tations are also explored in other tasks such as visual question answering (Huang et al., 2020; Dang
et al., 2021), visual reasoning (Assouel et al., 2022), and neural scene rendering (Guo et al., 2020).

Set generation Set generation (Vinyals et al., 2016; Rezatofighi et al., 2018; Zhai et al., 2020;
Rezatofighi et al., 2021) has received much attention in computer vision and natural language
processing tasks in the past few years. (Kosiorek et al., 2020) explored using a cardinality-
conditioned transformer for set prediction. The DETR (Carion et al., 2020) model also adopted
a transformer to predict a set of objects for the object detection task. The Deep Set Prediction
Network (DSPN) (Zhang et al., 2019) proposed a set prediction approach by using a gradient opti-
mization inner-loop with a permutation-invariant encoder to iteratively update the representation of
the target set prediction by minimizing the distance between the input and output in a latent space
induced by the encoder. Though the bi-level optimization framework is similar to ours, the DSPN
model uses the deterministic gradient descent procedure to optimize a pre-defined loss function,
while our formulation uses stochastic MCMC sampling to optimize a learned energy function. Our
formulation brings more flexibility to the optimization process, and the introduced stochasticity also
results in more robustness and diversity in both inference and generation (Section 4.3).

Energy-based models Energy-based models (EBMs) (LeCun et al., 2006) have been widely used
in learning abstract concepts (Du et al., 2020) and controllable generation (Nie et al., 2021; Che
et al., 2020), due to the compositionality nature of the energy function (Andreas, 2019). (Mordatch,
2018) proposed an EBM-based framework for learning abstract concepts from observations, which
enables compositional generalization by test-time optimization. (Zhang et al., 2020) explored the
approach of using EBM to replace the hand-crafted permutation-invariance loss functions which aim
to optimize the prediction output towards observable ground-truth data, it differs from our work in
that we focus on learning the latent object-centric representations from the EBM for unsupervised
object discovery and controllable scene manipulation. (Du et al., 2021) also proposed to use EBM
to learn both local and global factors of variations from image data, where they proposed to train
the model by a nested gradient descent optimization in the high-dimensional pixel space, which can
be much more computationally expensive compared to our model which runs Langevin dynamics in
the lower-dimensional latent space.

4 EXPERIMENTS

4.1 UNSUPERVISED OBJECT DISCOVERY

We quantitatively and qualitatively evaluate our proposed model on the task of unsupervised object
discovery, with the goal of decomposing the visual scene into a set of objects without any human
supervision. As we will show, our approach is able to consistently segment images into highly
interpretable and meaningful object masks.
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Table 1: ARI scores for unsupervised object discovery on CLEVR-6, Multi-dSprites, Tetrominoes
datasets.

CLEVR6 Multi-dSprites Tetrominoes

Slot MLP (Locatello et al., 2020) 60.4± 6.6 60.3± 1.8 25.1± 34.3
MONet (Burgess et al., 2019) 96.2± 0.6 90.4± 0.8 —
Slot-Attention (Locatello et al., 2020) 98.8± 0.3 91.3± 0.3 99.5± 0.2
IODINE (Greff et al., 2019) 98.8± 0.0 76.7± 5.6 99.2± 0.4

EGO-Sum 96.1± 0.4 82.1± 0.7 99.1± 0.3
EGO-Attention 98.9± 0.5 93.8± 0.5 99.6± 0.2

Datasets In line with previous state-of-the-art works on object discovery, we use the follow-
ing three multi-object datasets (Kabra et al., 2019): CLEVR (Johnson et al., 2017), Multi-
dSprites (Matthey et al., 2017), and Tetrominoes (Greff et al., 2019). We also use a variant of the
CLEVR dataset which filters out scenes with more than 6 objects, referred to as CLEVR-6. Same as
IODINE (Greff et al., 2019) and Slot-Attention (Locatello et al., 2020), the first 70K samples from
the CLEVR-6 dataset and the first 60K samples from the Multi-dSprites and Tetrominoes datasets
are used for training. Evaluation is performed on 320 test data examples.

Implementation For the EGO model, we first encode the image input x using a CNN backbone.
We use the same CNN architecture from Slot-Attention (Locatello et al., 2020), which is aug-
mented with positional embeddings for all results in this section. To condition our EGO-Sum model
E(x, z;θ) on the latent variables, we use an MLP to project z to a vector, replicating it to match
the spatial dimension of the image features and concatenating it along the channel dimension. We
process the joint features through a set of self-attention layers, followed by a global average pool-
ing layer and a fully-connected layer to produce the final energy value. For the EGO-Attention
model, we obtain the energy value from Equation 5 in Section. 2.1. We do not use dropout in our
self-attention and cross-attention layers. To decode the inferred latent variables into reconstructions,
we apply spatial broadcast decoding and use the same architecture from IODINE (Greff et al., 2019).
We use Dz = 64 for the latent variable dimension, as in baseline methods. We use K = 7 latent
variables for CLEVR-6, K = 6 for Multi-dSprites, and K = 4 for Tetrominoes, which is one more
than the maximum number of objects in the corresponding datasets. In Langevin MCMC sampling,
we set the step size ϵ = 0.1 and the number of Langevin steps T = 5. We train the model using
the Adam optimizer (Kingma & Ba, 2015) with a learning rate of 0.0002 for 500K iterations, with a
batch size of 128. Additional implementation details and results can be found in the Appendix.

Segmentation accuracy Following the evaluation protocol in existing literature, we use the Ad-
justed Rand Index (ARI) (Hubert & Arabie, 1985) metric, which measures how accurately the model
can decompose the scene into discrete objects. We compare our model against a variety of base-
line methods, including Slot Attention (Locatello et al., 2020), IODINE (Greff et al., 2019), and
MONet (Burgess et al., 2019). Similar to IODINE and Slot-Attention, we take the alpha masks
generated by the spatial broadcast decoder for each latent variable, compute the clustering similarity
with the ground truth masks using the ARI metric, and exclude the background in the evaluation. We
report the ARI scores across different datasets in Table 1. As can be seen, EGO consistently outper-
forms the baselines, achieving near-perfect segmentation accuracy on CLEVR-6 and Tetrominoes,
and substantially better results on Multi-dSprites compared to the existing state-of-the-art. Notably,
there are more occlusions among objects presented in Multi-dSprites, which makes the task more
challenging and demonstrates the effectiveness of our model in handling more complex scenes.

Downstream prediction To investigate the usefulness and quality of the learned representations,
We evaluate our learned object-centric model on downstream object property prediction tasks. Sim-
ilar to IODINE, we probe pre-trained models’ learned representations by training a linear model
on top of the latent variables to predict associated object properties, such as color, shape, size, and
position. Thanks to the object-centric nature of baseline methods and our model, where object rep-
resentations share a common format, we can train a single probing model to independently extract
properties from each object-centric latent variable. We train the probing model by using the Hun-
garian algorithm (Kuhn, 1955) to match the latent variables to the ground-truth objects. Following
the same training and evaluation procedure described in (Dittadi et al., 2022), we compare our pre-
trained EGO-Attention model against baseline approaches across different datasets in Figure 2.
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Figure 2: Downstream object property prediction results on CLEVR, Multi-dSprites, and Tetromi-
noes. The metric is accuracy for categorical properties or R2 for numerical properties.

We see that the learned representations from our model are highly informative for predicting object
properties and are comparable to or outperform the competitive baseline methods on all datasets.

4.2 SCENE DECOMPOSITION AND MANIPULATION

We next qualitatively study the learned object-centric representations by inspecting scene decom-
positions and visualizing the inference procedure. We also demonstrate the ability of our model to
manipulate the scene by recomposing learned energy functions to dynamically manipulate scenes.

Scene decomposition We visualize per-latent variable reconstruction results from the trained
EGO-Attention model across different datasets in Figure 3(a). The examples show that our
model is able to decompose the scene into highly-interpretable segmentations, which align well
with the ground-truth objects. Extra latent variables are assigned to the background when there are
more latent variables than the number of objects in the scene. Our model learns to spread objects
across latent variables without explicit supervision, and object properties are also well-preserved
in the inferred representations. Meanwhile, when multiple objects occlude each other, the model
is able to infer the correct parts of objects by leveraging other clues such as shape and color. We
further visualize scene reconstructions at each MCMC sampling step in Figure 3(c), showing that
the inferred scenes are iteratively refined within a few steps. We also plot the energy function values
evaluated at each Langevin dynamics iteration from a trained model with T = 10 steps on the Tetro-
minoes dataset in Figure 3(b). As can be seen, both energy values are monotonically decreasing,
indicating that the model can infer the latent variables by optimizing the energy function efficiently
and stably.

Scene manipulation With trained EGO models, learned energy functions can be used to dynami-
cally manipulate a scene’s constituent objects. To show the controllable scene manipulation ability
of EGO, in Figure 4(a), we show that we can combine arbitrary objects from different visual obser-
vations (x1 and x2) together into a novel scene, by sampling the latent variables from the joint EBM
E(x, z;θ) = E(x1, z;θ) + E(x2, z;θ), known as product-of-experts (Hinton, 2002), and recon-
structing the scene from the inferred latent variables. A visualization of the scene reconstructions
and predicted masks associated with each latent variable is also included in the figure, showing that,
starting from the first few iterations, the model captures object components from both images and
combines them across the latent variables to generate the complete scene. We additionally show
another example in Figure 4(b), where we can remove any specific object from the scene by reusing
learned energy functions. As described in (Du et al., 2020), we form a new energy function as
E(x, z;θ) = E(x1, z;θ)−E(x2, z;θ) to remove the objects shown in x2 from the scene x1. Sim-
ilarly, we also illustrate the intermediate results at each sampling step, where we can see that in
the first few steps of the sampling procedure, the model recovers the complete scene from x1, and
then gradually removes the objects in x2 by optimizing the latent representations towards the region
where E(x2, z;θ) is higher. These results clearly demonstrate that the EBM formulation of EGO
allows us to control the scene composition combinatorically, leading to systematic generalization to
unseen object combinations.
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Figure 3: (a) Per-latent variable reconstructions and masks on CLEVR-6 (top), Multi-dSprites (mid-
dle), and Tetrominoes bottom. (b) The progression of energy function evaluations during Langevin
sampling. (c) Scene decomposition and reconstruction visualization at each sampling step.
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Figure 4: (a) Scene manipulation for combining objects, full version in Figure 8. (b) Scene manip-
ulation for removing objects, full version in Figure 9. (c) ARI scores of pre-trained EGO on CLEVR
dataset when generalizing to higher numbers of objects than seen during training. We use ‘C’ to
denote CLEVR for brevity. (d) Model ablation results.

4.3 ROBUSTNESS AND GENERALIZATION EVALUATION

Finally, we evaluate the generalization capability of EGO to out-of-distribution (OOD) visual scenes
and investigate its robustness with respect to model hyperparameters and component choices in an
ablation study.

Unseen object style We first study the generalization capability of our learned object-centric rep-
resentations to unseen object styles by altering the visual styles of objects presented in the test data
distribution, including color, shape, and texture. Following (Dittadi et al., 2022), we apply a random
color jitter transformation to the color of a random object in the scene in CLEVR and Tetrominoes.
Unseen object textures are simulated by applying random neural style transfer (Gatys et al., 2015) to
a random object in CLEVR and Multi-dSprites. We use the previously-trained model from the unsu-
pervised object discovery task and evaluate it on these modified datasets to test whether the learned
representations are able to generalize to unseen object styles. ARI scores of our model and other
baseline methods are shown in Figure 5(a). Our model achieves strong generalization performance
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Figure 5: (a) Segmentation results of pre-trained model on OOD test dataset. (b) Model ablation on
the effect of the noise variable in MCMC sampling.

to unseen object colors, textures, and shapes on CLEVR and Multi-dSprites, consistently providing
high-quality segmentation masks in the presence of OOD object styles. We provide more details
about the datasets and evaluation in the appendix.

Increasing the number of objects To test how our model generalizes when more objects are
present in the scene (compared to the training data), we increase the number of objects at test
time. We construct a sequence of datasets by filtering CLEVR to only contain scenes with at most
[7, 8, 9, 10] objects, referred to as CLEVR-[7-10] respectively. We use EGO-Attention trained on
CLEVR-6 with K = 7 latent variables, and test it on the newly-constructed datasets by increasing
the number of latent variables to one more than the maximum number of objects in the correspond-
ing dataset. We compute the ARI scores for each dataset, and report the results in Figure 4(c).
We use Slot-Attention with 3 iterations (same as T = 3 in our model) as the baseline. As can be
seen, the segmentation quality of our model remains robust to unseen numbers of objects in the test
dataset, and suffers less from the increase in the number of objects than the baseline approach.

Model ablation We perform ablation studies to evaluate the robustness of our approach to different
hyperparameters and study the effect of different components of our model, particularly the number
of MCMC sampling steps T , the step size ϵ, and the noise in Langevin dynamics. We first run
grid search over the hyperparameters, including ϵ ∈ {0.01, 0.05, 0.1}, T ∈ {3, 5, 10}, number
of attention blocks ∈ {1, 2, 3}, and dropout rate ∈ {0.0, 0.1}, and report the ARI scores on the
Multi-dSprites dataset in Figure 4(d). Our model is quite robust to a wide range of the values
of both the step size and the number of sampling steps, and we obtain near-optimal segmentation
performance with each combination of the hyperparameters. We then investigate the role of the
noise used in the Langevin dynamics sampling by introducing a weight term to rescale the noise
variable in Equation 6. We train EGO-Attention variants with different rescaling weights ∈
{1.0, 0.1, 0.0} on the Multi-dSprites dataset and evaluate their ARI scores in both the original dataset
and the modified OOD dataset with unseen object styles. The results in Figure 5(b) demonstrate that
the stochasticity brought by the noise in Langevin dynamics gives our model more robustness and
generalization to novel scene configurations.

5 CONCLUSION

In this work we present EGO, a novel energy-based object-centric learning model. EGO successfully
combines three essential ingredients of object-centric learning: (i) flexible energy-based models
without strong assumptions on data generating process , (ii) minimal usage of potentially unexpres-
sive specifically-designed neural modules, and (iii) explicitly modeling randomness to allow one-to-
many mappings to reason about occluded or partially-observed objects. We empirically demonstrate
that EGO can achieve state-of-the-art performance on various unsupervised object discovery tasks
and excels at generalizing to OOD scenes. Meanwhile, controllable scene generation and manipu-
lation are also feasible by reusing learned energy functions. These advantages make EGO a strong
candidate for scaling unsupervised object-centric learning to real-world datasets, as a promising next
step for future investigation.
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REPRODUCIBILITY STATEMENT

In order to make the experimental results easily reproducible, we made following efforts: i) Source
code necessary to reproduce results of our model is made available in the supplementary material.
ii) We provided the detailed training procedure in Algorithm 1, and described all model architectures
and hyperparameters in main text (Section 4) and appendix (Section A).
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International Conference on Machine Learning, ICML 2022, 17-23 July 2022, Baltimore, Mary-
land, USA, volume 162 of Proceedings of Machine Learning Research, pp. 5221–5285. PMLR,
2022. URL https://proceedings.mlr.press/v162/dittadi22a.html. (Cited
on 6, 8, 16, 17)

Yilun Du and Igor Mordatch. Implicit generation and modeling with energy based
models. In Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer, Florence
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A IMPLEMENTATION DETAILS

A.1 DATASETS AND PREPROCESSING

We describe more details about the datasets used in our experiments, and the preprocessing steps we
applied during training and evaluation.

CLEVR We use the CLEVR (Johnson et al., 2017) dataset from the Multi-Object Datasets li-
brary (Kabra et al., 2019)1. Each data example in the CLEVR dataset contains a rendered image
of a scene with a set of up to 10 objects. The multiple objects in the scene can possibly occlude
each other, and each object can be rendered with different shapes (e.g., cube, sphere, cylinder), col-
ors (Red, Cyan, Green, Blue, Brown, Gray, Purple, Yello), sizes (small, large), materials (rubber,
metal), and positions (x and y coordinates). Following (Greff et al., 2019; Locatello et al., 2020), a
center crop of the image followed by resizing to 128 × 128 is applied first, then we transform the
RGB values to the range [−1, 1].

Multi-dSprites We use the Multi-dSprites dataset from the dSprites (Matthey et al., 2017) dataset.
More specifically, we use the variant with grayscale background and colored sprites as done in (Greff
et al., 2019; Locatello et al., 2020). Each data example in the Multi-dSprites dataset contains a scene
with up to 5 objects, and each object can be rendered with different shapes (ellipse, square, hear),
colors (HSV space), scales (in [0.5, 1]), positions (x and y coordinates, in [0, 1]) and orientations.
Following (Greff et al., 2019; Locatello et al., 2020), we keep the resolution at 64×64 and transform
the RGB values to the range [−1, 1].

Tetrominoes We use the Tetrominoes dataset from the Multi-Object Datasets library (Kabra et al.,
2019). Each data example in the Tetrominoes dataset contains a scene with exactly 3 tetris pieces
with a black background. The tetris pieces can be rendered with different shapes (19 different
shapes), colors (Yellow, Purple, Red, Blue, Green, Cyan), and positions (x and y coordinates).
Following (Greff et al., 2019; Locatello et al., 2020), we keep the resolution at 35×35 and transform
the RGB values to the range [−1, 1].

OOD dataset variants For the evaluation of our model on constructed OOD datasets
with unseen object styles and colors, we use the library2 from the benchmark (Dit-
tadi et al., 2022). To apply the random color transformation to the data exam-
ples, a color jittering torchvision.transforms.ColorJitter(brightness=0.5,
contrast=0.5, saturation=0.5, hue=0.5) is applied to a randomly selected object
in the scene. To apply the random style transformation, neural style transfer is used to transfer the
first 100K samples from all datasets. Please refer to Figure.11 in (Dittadi et al., 2022) for qualitative
evaluation of the introduced visual effects of object style and color. For more detailed descriptions
of the transformations used for constructing the OOD dataset variants, please refer to (Dittadi et al.,
2022).

A.2 EGO MODEL ARCHITECTURE

We introduced the detailed neural network architecture of our model used in our experiments here.

Image Encoder We use the same CNN backbone in the Slot-Attention work (Locatello et al.,
2020) to encode the visual scene input into a spatial feature map. For CLEVR dataset, the CNN net-
work consists of 4 convolutional layers with 5 × 5 kernel size, [64, 64, 64, 64] channels, [1, 1, 1, 1]
zero-padding size respectively, and each convolutional layer is followed by a ReLU activation func-
tion. Positional encoding is applied to the encoded feature map to provide the representation with
positional information for better modeling the consistency between images and latent variables.
More details about the CNN backbone architecture on Multi-dSprites and Tetrominoes datasets can
be found in (Locatello et al., 2020).

1https://github.com/deepmind/multi_object_datasets
2https://github.com/addtt/object-centric-library
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EGO Module As illustrated in Figure 1, our model consists of several vanilla attention blocks.
For CLEVR and Multi-dSprites datasets, we use L = 3 cross-attention blocks, T = 3 sampling
steps, ϵ = 0.1 step size and K = 7 latent variables. We use 1 attention head, and do not use any
dropout in the attention layer or the MLP layer. For Tetrominoes dataset, we found using L = 1
cross-attention block would also lead to near-perfect results. We optionally learn the parameters of
the initial Gaussian distribution of z0, and found it helps in Tetrominoes dataset. We use Dz = 64
for all models across datasets, and all MLP layers have the same number of hidden units with ReLU
activation function.

Image Decoder We use the spatial broadcast decoder to decode the inferred latent variables into
scene reconstruction. The decoder consists of several deconvolutional layers, augmented with po-
sitional encoding. For detailed description of the deconvolutional layers, please refer to (Locatello
et al., 2020).

A.3 MODEL TRAINING AND EVALUATION

We implemented our model in Jax (Bradbury et al., 2018) and Flax (Heek et al., 2020). We train
all models with batch size 128 using the Adam optimizer (Kingma & Ba, 2015) with a learning rate
0.0002 for 500K steps. We use the cosine learning rate schedule (Loshchilov & Hutter, 2016) with
warmup steps 2500. We clip the gradients to maximum global norm 1, though we generally found
that the training process is quite stable without gradient clipping. We train our models on 8 Nvidia
A100 GPUs, and the training time on CLEVR dataset is about 1 day, and within a few hours on
Multi-dSprites and Tetrominoes datasets.

B ADDITIONAL EXPERIMENTS

We provide additional experimental results on scene decomposition, scene manipulation, and model
ablation.

B.1 SCENE DECOMPOSITION

We illustrate more examples of visualizing the scene decomposition and reconstruction results at
each sampling step across datasets in Figure 6, 7, accompanying the results shown in Figure 3.

We additionally consider visualizing the per-step decomposition results in a more extreme case when
we have much more sampling steps T . In doing so, we train a model with T = 10 on Tetrominoes
dataset and visualize the per-iteration reconstruction results in Figure 13. We can see from the figure
that after 6 iterations, the model already reconstructed the almost complete scene, which can be seen
as qualitative evidence for the sufficiency of using a small number of sampling steps in the latent
space.

Besides the ARI scores for evaluating the segmentation performance in unsupervised object dis-
covery task, we additionally evaluate our model in terms of other metrics, mean squared error in
reconstruction (MSE) and mean segmentation covering (mSC). Detailed description of the metrics
are introduced in (Dittadi et al., 2022). We report the results in Figure. 10. We see that EGO achieves
comparable performance in terms of the reconstruction quality compared to other methods, and the
segmentation accuracy in terms of mSC remains across different datasets are consistent with the
observation on ARI scores, where EGO shows competative or superior performance.

B.2 SCENE MANIPULATION

We also show the per-iteration reconstruction results for the examples shown in Figure 4(a,b). In the
first few iterations, the model recovers the global scene and then seeks for the updates to satisfy the
constraints of latent representation given by the joint energy function.

B.3 MULTI-MODALITY AND MULTI-STABILITY

We present qualitative visualization of the multi-modal posterior in EGO. Similar to (Greff et al.,
2019), we construct a visual scene input with multiple possible explanations, and display the per-
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Figure 6: Scene decomposition and reconstruction results at each sampling step on CLEVR.

latent variable reconstructions in Figure. 11. We can see that without distinguishable clues like color
and position, we can sample a set of different segmentation configurations to explain the ambiguous
visual scene input, showing the multi-modality in the learned posterior.

B.4 MODEL ABLATION

We include more model ablation results, studying the effects of magnitude of noise in sampling,
number of attention blocks L, dropout rate in EGO MLP, dropout rate in EGO attention layer, and
gradient clipping norm on Tetrominoes. We plot the distribution of the ARI scores for each configu-
ration of the considered hyperparameters, grouped by the number of sampling steps T in x-axis. We
show the results in Figure 12. As can seen from the results, our proposed model is robust to almost
any configurations of the hyperparameters, where near-optimal performance can be attained in each
setup.
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Figure 7: Scene decomposition and reconstruction results at each sampling step on Multi-dSprites.
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Figure 8: Scene manipulation: Combining objects from different images into a novel scene using
learned energy function.
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Figure 9: Scene manipulation: Removing specific object from a scene using learned energy function.
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Figure 10: Evaluation of reconstruction quality in MSE and segmentation accuracy in mSC.

Figure 11: Visualization of samples from multi-modal posterior from EGO on Tetrominoes.
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Figure 12: Model ablation results: ARI scores by varying individual hyperparameter choices,
grouped by the number of sampling steps.
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Figure 13: Scene decomposition and reconstruction results at each sampling step on Tetrominoes.
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