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ABSTRACT

Large language model (LLM) scaling inference is key to unlocking greater per-
formance, and leveraging diversity has proven an effective way to enhance it.
Motivated by the observed relationship between solution accuracy and meaningful
response diversity, we systematically study the effect of prompt diversity in scaling
inference. We theoretically explain why diversified sampling improves Best-of-N
scaling, showing that responses generated from meaningful diverse prompts after
Best-of-N selection exhibit significantly lower error rates than those produced
from stationary prompts. To promote solution diversity, we analyze perturbation
fidelity and show that moderately relevant perturbations improve performance,
providing guidance for effective perturbation design. Further, we present a set
of effective perturbations, including task-level and query-level ones, and analyze
the conditions under which they succeed. We systematically evaluate diversified
sampling across tasks, finding relative gains of 10.8% in EM@100 for reasoning,
9.6% for mathematics, and 9.5% in Pass@100 for code generation.

1 INTRODUCTION

(a) Direct Sampling (b) Diversified Sampling

Figure 1: A brief sketch of (a) direct sampling without diver-
sification and (b) diversified sampling.

Large language models (LLMs) have
shown impressive performance across di-
verse tasks. As their capabilities grow,
studying and improving their inference
processes becomes increasingly crucial.
LLM scaling inference is known to exhibit
non-determinism, with variability arising
from stochastic decoding, floating-point
precision limits, and system-level concur-
rency (Yuan et al., 2025; Atil et al., 2024).
Recent work has sought to eliminate this
variability: (Yuan et al., 2025) traced accu-
racy drops to precision-induced rounding
differences and advocated higher-precision
inference, while (He et al., 2025) intro-
duced batch-invariant kernels to stabilize GPU scheduling. However, such nondeterminism can
be beneficial for test-time scaling (Wang et al., 2023b; Li et al., 2025; 2023; Mu et al., 2024; Naik
et al., 2023; Zeng et al., 2024; Wu et al., 2024; Nori et al., 2024; Snell et al., 2024; Brown et al., 2024;
Gandhi et al., 2024; Snell et al., 2025; Lee et al., 2025; Wang et al., 2025), where model parameters
remain fixed, and performance improvements must therefore arise from encouraging diverse and
thus non-deterministic exploration. Previous literature has investigated temperature scaling as a
means to increase output diversity and, in turn, improve downstream task performance (Zhang et al.,
2024b; Holtzman et al., 2019), while other studies (Li et al., 2023; Mu et al., 2024; Naik et al., 2023)
have focused on designing diversified prompts to improve inference accuracy in reasoning tasks,
eliciting varied chain-of-thought intermediate steps that guide the model’s reasoning process toward
convergent answers through consensus.

However, Best-of-N sampling (Cobbe et al., 2021; Lightman et al., 2023), as a typical form of
test-time scaling, aims to maximize the utility of pre-trained models by efficiently exploring multiple
responses and selecting the most accurate one. In such cases, sampling solutions from an LLM
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Strategies Pass@100 tf-idf sim. BERT sim. lev. sim. seq. sim.

None 0.8212 0.2152 0.9997 0.2219 0.2244
Role 0.8262 0.2063 0.9996 0.2161 0.2208

Instruction 0.8992 0.1625 0.9968 0.1767 0.1884
Jabberwocky 0.8161 0.2173 0.9997 0.2267 0.2285

Table 1: Effects of different injection strategies. 100 solutions were generated using gpt-4o-mini (OpenAI,
2023b) for each strategy on the MBPP benchmark.

using the same prompt often leads to similar outputs, “trapped” within a local cluster (Figure 1(a)).
The concentrated nature of the trapped solutions might stem from the limited diversity imposed
by post-training objectives, which are typically designed to optimize zero-shot performance and
align LLM as instruction-following chatbots (Xiang et al., 2025). These objectives often prioritize
optimizing the model to produce a single, correct answer, which mismatches with the goal of repeated
sampling. The commonly used distillation technique may also diminish model diversity (Cideron
et al., 2024; DeepSeek-AI et al., 2025). Diverse candidate solutions should span multiple clusters, with
responses distributed across a broader solution space, breaking out of local clusters (Figure 1(b)). An
intuitive strategy is to introduce diversity at the prompt level, which in turn broadens the exploration
space. We conducted fundamental empirical studies within the Best-of-N framework by applying
diversified prompt perturbations, as shown in Table 1. The diversity strategies employed to promote
varied responses include Role and Instruction prompt perturbations, described in Section 4.2 as
task-level approaches. These are compared against direct sampling (None) and Jabberwocky, the
latter introducing a segment of poetry as random textual noise. The Pass@k rate measures the
proportion of correct solutions among k generated attempts in code generation tasks, whereas tf-idf,
BERT, Levenshtein, and token sequence measure the similarity between solutions (see Appendix C
for details). Table 1 shows that the pass rate improves when perturbation strategies produce candidate
solutions with reduced similarity. This observation motivates us to investigate the effect of exploration
diversity on scaling inference.

In this paper, we systematically study the effect of diversified sampling. We first ❶ provide a
theoretical perspective showing why general exploration diversity improves best-of-N performance.
We then ❷ examine the effect of perturbation fidelity, ❸ outline several perturbation styles, and ❹
study their behavior under different conditions. Extensive evaluations on reasoning, mathematics, and
code generation show that the perturbations yeilds relative gains of 10.8% in EM@100 for reasoning,
9.6% for mathematics, and 9.5% in Pass@100 for code generation compared to direct sampling. In
summary, we address our contributions as follows:

★ We theoretically show why exploration diversity, possibly achieved through perturbation-induced
prompt variation, can improve Best-of-N performance. Our theories predict that sampling attempts
from a policy richer in solver mode diversity can improve selection performance, achieving faster
convergence and lower asymptote.

★ We analyzed perturbation fidelity and found that moderately relevant perturbations improve perfor-
mance, while overly similar or irrelevant ones yield no performance gains and can even lead to
degradation. Guided by this, we outline several potentially effective perturbation styles.

★ We analyzed the conditions under which diversified exploration remains effective, finding that it
works across temperatures, with CoT steps, and under LLM-as-Judge verification, but its benefits
depend on thinker model strength, perturbation cardinality, and may vanish under majority-voting.

★ We systematically evaluate the effectiveness of diversified sampling across reasoning, math, and
code-generation tasks. We find that some of the task-level and query-level perturbations, as well as
their combination, consistently improve performance across these tasks.

2 PRELIMINARIES

Task Description. We consider sets of tasks defined by a tuple ⟨p,Q, V ⟩ of an instruction prompt p,
a distribution Q over the question set and a verifier V . For a solver of the task, the prompt p and a
question q sampled from the distribution Q(·) are given, from which the solver predicts an answer
s. This answer is finally judged by the verifier V (s|p, q), which assigns 1 to accepted answers and 0
to rejected answers. In reasoning and math tasks, the prompt p asks the solver to choose answer
s from an answer set A for some question q ∼ Q, and the verifier V checks if the answer exactly
matches the hidden ground truth. In code generation task, the solver is given a prompt and object
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pair ⟨p,o⟩ in natural language with o ∼ Q, which asks the solver to write code for some object
o. The objective is to implement o such that it passes all hidden tests evaluating its correctness. A
solution s′ is deemed correct by the verifier V if it successfully passes all hidden tests.

Best-of-N sampling. Repeatedly sampling i.i.d. responses [s]N := [s1, s2, ..., sN ] ∼ LLM(·|p, q)
given prompt p and question q from the LLM solver. For reasoning and math tasks, a task is
considered to be solved if at least one response exactly matches the ground truth (Wang et al., 2023a);
in this case the proportion of tasks that are solved by the LLM solver with k attempts is called the
EM@k rate. For code generation tasks, a task is solved if at least one attempt passes all hidden tests
(this is equivalent to selecting the answer that passes the highest number of validation tests (Chen
et al., 2024a)); in this case the proportion of tasks that are solved with k attempts is called the Pass@k
rate (Chen et al., 2021). More details on evaluation metrics can be found in Appendix C.

3 WHY SOLUTION DIVERSITY IMPROVES PERFORMANCE: A THEORETICAL
PERSPECTIVE

We provide a theoretical perspective on the importance of solution diversity in this section. For a
more technically rigid description and the proof of our theorem, please refer to Appendix B.

Setting. We use r = [p, q] to denote concatenated inputs to the LLM. To characterize different
sampling strategies, we configure each attempt by a decoding mode ζ ∈ Z (e.g., decoding seed/sam-
pler, temperature, reasoning style), and define a diversity policy ν as a distribution over modes. Given
r and ζ ∼ ν, the solver produces s ∼ LLM(· | r, ζ) and a verifier V assigns a 0/1 correctness score.
We define the per–mode failure log–probability to be

q(r, ζ) := log Ps∼LLM(·|r,ζ)
[
V (s) = 0

]
. (1)

Hybrid diversity. We factor the diversified attempt mode as ζ = (η, ξ), where η ∼ ν0 is the
base decoding randomness configuration following baseline policy (e.g., a fixed sampling strategy
in the simplest case), while ξ ∼ Π is an auxiliary diversity source; we write interchangeably
q(r, η, ξ) = q(r, ζ). The goal is to prove this additional diversity boosts performance.

Hypotheses. We posit two hypotheses—dispersion and fidelity—to characterize the basic properties
of diversified sampling, in preparation for our main results.
Hypothesis 3.1 (Variation under auxiliary diversity). Fix an input r for which there exists ζ = (η, ξ)
with q(r, ζ) ̸= 0. Define the first absolute central moment with respect to varying ξ:

M1(r; ν0,Π) := Eη∼ν0
Eξ∼Π

∣∣ q(r, η, ξ) − Eξ∼Πq(r, η, ξ)
∣∣, (2)

then there exists a constant µ̂1 > 0 such that M1(r; ν0,Π) ≥ µ̂1.
Remark 3.2 (Intuition for Hypothesis 3.1). Unless r is truly unsolvable for all (η, ξ), varying the
auxiliary RNG ξ modifies the success probability even when the base randomness η is held to its usual
variability. Averaging over η reflects that we compare attempts under the same baseline stochasticity.
Hypothesis 3.3 (Fidelity with fixed auxiliary RNG). There exist ϵ ∈ [0, 1) such that, when fixed, any
auxiliary setting ξ⋆ used by the diversified policy performs almost as well as the baseline reference
policy ξ0 for Best-of-N pass rate for N ≥ 1:

Er∼R Eη∼ν0

[
exp

{
N q(r, η, ξ⋆)

}]
Er∼R Eη∼ν0

[
exp

{
N q(r, η, ξ0)

}] ≤ 1 + ϵ. (3)

Remark 3.4 (Intuition for Hypothesis 3.3). Here the auxiliary choice ξ is fixed on both sides so that
both policies enjoy the same amount of base variability (η ∼ ν0). Fidelity requires that switching to a
new auxiliary setting ξ⋆ does not globally worsen the response quality compared to a reference ξ0.

Main result. Now we move on to compare the base diversity policy of (η, ξ0) ∼ ν0 × {ξ0} and
hybrid diversity policy of (η, ξ) ∼ ν = ν0 ×Π. We write Best-of-N failure probabilities as

PN
div := P

[
V (sk) = 0, ∀k ∈ [N ]

∣∣∣ sk∼ LLM(· | r, ζk), ζk
i.i.d.∼ ν, r∼R

]
, (4)

PN
reg := P

[
V (sk) = 0, ∀k ∈ [N ]

∣∣∣ sk∼ LLM(· | r, ζ), ζ∼ν0 × {ζ0}, r∼R
]
. (5)

As N →∞, these converge to limits P inf
div and P inf

reg , which reflect the fractions of inputs that remain
unsolved under the respective policies.
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Theorem 3.5 (Diversity improves Best-of-N ). Under Hypotheses 3.1 and 3.3, there exists a positive
sequence CN = Ω

(
µ̂2
1N/(1 + ϵ)

)
, increasing in N , such that

PN
div ≤

(
PN
reg − P inf

reg

)
/(1 + CN ) + P inf

div, with P inf
div ≤ P inf

reg . (6)

This theorem implies two distinct advantages of introducing auxiliary diversity: (i) Lower
asymptote. Diversity shrinks the “blind-spot” set of instances that remain unsolved as N
grows. (ii) Faster convergence. The error reduction factor improves with richer (but faithful)
diversity, yielding steeper Best-of-N gains.

4 TOWARDS ENCOURAGING EXPLORATION DIVERSIFICATION

In this section, following our theoretical insights, we study prompt perturbation as a means to enhance
solution diversity. We begin by analyzing the relationship between perturbation fidelity and inference
effectiveness to identify which perturbations have a positive impact. Building on this guidance, we
further outline several empirical designs of perturbations that are likely to be effective.

4.1 PATTERNS OF PERTURBATION EFFECTS
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Figure 2: Effect of perturbation relevance. Relationship between
perturbation-question similarity and task performance. EM rate (math) and
Pass rate (code) measured from 40 solutions under five perturbation types
(1–5). Results are obtained with GPT-4o-mini and are reported as the mean
and standard deviation over five independent runs.

To explore potentially effec-
tive perturbation patterns,
we begin by considering
their relationship to the
question. Specifically, the
model is prompted to gener-
ate N solution ideas, which
are injected into the origi-
nal prompt as perturbations.
We analyze five perturba-
tion styles that are charac-
terized by varying levels of
fidelity to the question: Per-
turbation 1, ideas entirely
unrelated to the task, for ex-
ample generating baking recipe flavor suggestions even when the task is math or code; Perturbation
2, loosely related ideas that differ in topic from the task domain but still connect to learning or
knowledge; Perturbation 3, directly relevant ideas that align with the question itself; Perturbation 4,
rephrasings of the original question; and Perturbation 5, verbatim repetition of the original question.
The prompts used to obtain these perturbations are provided in Appendix G.1.

We computed the average embedding cosine similarity between these perturbations and the question
content using all-MiniLM-L6-v2 (Reimers & Gurevych, 2019), as well as their EM rate and
Pass rate. As shown in Figure 2, we find that EM and Pass rates vary non-monotonically with
perturbation relevance. Performance exhibits a rise-then-fall pattern: irrelevant ideas (Perturbation 1)
and verbatim repetition (Perturbation 5) fail to improve performance and may even degrade it, while
performance increases with higher relevance, peaks with task-aligned ideas (Perturbation 3), and then
declines again when similarity becomes excessive.

This empirical tradeoff effect is also a direct consequence from our theory: the first-moment µ̂1 from
Hypothesis 3.1 should be low for highly relevant perturbations, thereby yielding a less significant
performance boost; on the other hand, the degradation in response quality measured by ϵ in Hypothe-
sis 3.3 can be large as perturbation relevance decreases, leading to reduced performance. We analyze
this in more detail in Appendix B.5.1.

The relationship between perturbation relevance and scaling inference performance is non-
linear. Moderately relevant perturbations contribute positively, whereas overly low or
excessively high similarity offers no benefit and may even degrade performance.
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4.2 PERTURBATION DESIGN

Section 4.1 tells that only meaningful perturbations are effective. Guided by this, we outline two
categories of perturbations: task-level and query-level. Task-level perturbations are task-dependent
but independent of specific questions, whereas query-level perturbations directly tied to the questions.

Task-level Perturbations. These perturbations are independent of specific question content and
are sampled from a pool of predefined candidates. (1) Role injection samples predefined identity-
descriptive sentences (e.g., “mentor", “optimizer", “innovator") into prompts (Shanahan et al., 2023;
Kong et al., 2024), steering the model to generate outputs aligned with different personas. (2)
Strategical Instruction injection introduces stepwise guidance or problem-solving heuristics (Zhou
et al., 2023b; Cook et al., 2020; Naik et al., 2023), steering the model toward generating logical and
contextually aligned outputs. We refer readers to Appendix G.2 for detailed descriptions.

Query-level Perturbations. To obtain more meaningful perturbations, we consider two strategies:
(1) Random Idea Injection (RandIdeaInj), where an LLM (either the target model or another)
acts as a thinker to propose task-related ideas which are then injected into the original prompt for
perturbation. (2) Random Query Rephraser (RandQReph) restates the input question (Deng
et al., 2023), yielding a modified query q′

k that replaces qk in (p, q′
k). Rephrasing can also be

achieved through back-translation (Beddiar et al., 2021), which produces alternative phrasings while
maintaining contextual consistency. Both strategies support three variants: Single, where the model
itself generates ideas or rephrasings; Dual, where a separate model is used; and Diverse, where a
pool of models each provides varied perturbations in advance, and at each iteration the perturbation
is selected from this perturbation set.

5 WHEN DIVERSIFIED PERTURBATIONS ARE EFFECTIVE

In this section, we analyze whether the diversified exploration remains effective under different
conditions. Specifically, we examine the effects of sampling temperature, thinker model, perturbation
cardinality, the presence of Chain-of-Thought reasoning, and the choice of verifier. For each setting,
we provide analyses and highlight the corresponding takeaways.

5.1 VARYING SAMPLING TEMPERATURES

Sampling temperature is a widely used decoding parameter that directly controls the randomness
of generation, and higher temperatures have been shown to increase output diversity (Holtzman
et al., 2019). We investigate the effectiveness of perturbations across varying sampling temperatures.
Specifically, we evaluate the task-level perturbation Strategical Instruction and the query-level
perturbation Dual under varying temperature settings to assess their performance. Figure 3 shows
the results of sweeping the temperature from 0.0 to 1.2 in increments of 0.2 on the Humaneval
dataset. Our findings show that perturbations and direct sampling all exhibit improvements at higher
temperatures. Instruction attains the highest Pass@100, outperforming the best performance of direct
sampling by 3.9%, while Dual’s best Pass@100 exceeds the direct sampling maximum by 1.9%.
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Figure 3: Sweep over temperature in 0.2 increments from 0.0 to 1.2 on
Humaneval using GPT-4o-mini. Perturbations and direct sampling
improve Pass@k at higher temperatures, though the gains plateau with
further increases in temperature.
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Figure 4: Scaling curves of the Dual
strategy across thinker models, with
stronger models yielding higher per-
formance.

5.2 EFFECT OF THINKER MODELS

We analyze the impact of different thinker models in query-level perturbation. Figure 4 presents
the evaluation of the Dual strategy with various thinker models while using GPT-4o-mini as the
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generator. The results indicate that stronger thinker models, such as DeepSeek-V3 Liu et al. (2024),
raise the scaling curve. We suggest that practitioners choose the thinker model according specific use
cases and resource constraints.
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Figure 5: Scaling curves for the Dual
strategy as injection cardinality in-
creases.
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Figure 6: Perturbations with Chain-of-Thought (CoT). Left. Hu-
manEval results using GPT-4o-mini. Right. APPS results using
Claude-4-Sonnet.

5.3 EFFECT OF PERTURBATION CARDINALITY

We analyze the effect of varying the number of perturbations. Figure 5 shows the Dual strategy
on HumanEval with 1, 50, and 100 distinct injection ideas, where GPT-4o-mini generates the
solutions and GPT-3.5-turbo serves as the thinker. We find that increasing the number of injection
ideas raises the scaling curve, whereas using only a single injection candidate yields a noticeably
lower curve. These findings are in line with our theory: the larger the moment µ̂1 in Assumption 3.1
are, the more significant the improvement of diversified sampling over regular sampling is. We leave
more detailed discussions of this relation to Remark B.6 in Appendix B.

While scaling curves improve as sampling temperature increases, diversified perturbations
still yield additional gains. Query-level perturbations are influenced by the strength of the
thinker model and the richness of perturbation cardinality; scaling performance improves as
thinker models become stronger and the number of perturbations increases.

5.4 CHAIN-OF-THOUGHT WITH PERTURBATIONS

Chain-of-Thought (CoT) prompting structures reasoning into explicit intermediate steps, help-
ing LLMs arrive at more accurate answers on complex reasoning (Wei et al., 2022; Wang et al.,
2023b). Building on CoT, we introduce perturbations and conduct analyses with GPT-4o-mini and
Claude-4-Sonnet. We evaluate task-level perturbations, Role and Instruction, along with their
combinations with the query-level strategy Dual using the GPT-3.5-turbo thinker. These are
compared against the random perturbation Jabberwocky and direct sampling without perturbations.
All perturbations are applied under the Chain-of-Thought (CoT) setting, with prompt details provided
in Appendix G.4. Results in Figure 6 show that task-level and query-level perturbations improve
performance under CoT, yielding up to a 4.7% relative gain in Pass@100 on HumanEval with
GPT-4o-mini and a 7.4% relative gain on APPS with Claude-4-Sonnet.

Diversified perturbations improves inference performances under the CoT setting.

5.5 EFFECT OF VERIFICATION

Although ground-truth reward is commonly used (Zhong et al.; Lewkowycz et al., 2022; Wang et al.,
2023c), considering a solution correct if it matches the hidden answer set or passes all hidden tests,
outcome reward models (ORMs) offer an alternative by scoring candidate solutions (Zhong et al.;
Lightman et al., 2023). However, this approach relies heavily on the quality of the ORM itself. In
practice, the ORM’s own model performance may introduce biases or errors, and how to train a truly
reliable ORM for the verification phase remains an open question that lies outside the scope of our
study. To avoid potential interference from external ORMs, one alternative verifier is to use the model
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itself to evaluate and select the final solution. We evaluate task-level perturbations on MATH and
HumanEval using GPT-4o-mini. For reasoning and math tasks, the model evaluates and scores
each solution, and the top-10 highest-scoring ones can be selected; the instance is marked correct if
any of them exactly matches the ground truth (Figure 7(a)). For code generation tasks, the model
is prompted to produce 10 unit tests, and a solution is marked correct if it passes at least one of
them (Figure 7(b)). The ORM prompt templates are provided in Appendix G.5. The results show
that perturbations remain effective when using the LLM-as-a-judge verifier. We also analyze the
effectiveness of ORM from our theoretical standpoint: when the ORM has high quality, the ORM
pass@k rate is very close to the oracle pass@k rate. See detailed analyses in Appendix B.5.2.
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Figure 7: Perturbations are evaluated using the LLM-as-a-Judge verifier.
Left. Solutions from MATH are rated and selected by the model. Right.
Solution from Humaneval are evaluated on 10 generated unit tests.
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Figure 8: Perturbations are evaluated
on MATH, with final answers derived
by a majority-voting verifier.

Another verification approach is the majority-voting reward, where the most frequent candidate
solution is treated as the final answer. However, this approach is suitable only for tasks such
as reasoning and mathematics, where the final answers are well-defined. In the context of code
generation, each response is a code snippet that may vary substantially across generations. Even when
multiple functions pass the same test set, they can differ in structure, for example by using different
function names, variable names, or logical sequences. In such cases, majority-voting reward is rarely
used. Figure 8 reports the performance of perturbations under majority-voting reward on the math
task. We find that perturbations do not yield consistent improvements compared to direct sampling.
The key reason lies in the underlying assumption of the evaluation protocol: for Best-of-N inference
without counting majority, diversity is beneficial because it increases the likelihood that at least one
correct solution appears among the N attempts, hence greater divergence is desirable. However, under
majority-voting reward, performance improves when the majority of solution candidates converge
toward the correct solution; thus, solution divergence does not guarantee the benefit. We back this
phenomenon theoretically that majority voting does not produce the same performance boost as
pass@k in Appendix B.5.3, even degrading performance in the worst case.

Diversified sampling appear effective under the LLM-as-a-Judge setting, yet their benefits
may not hold under majority-voting reward as performance gains require convergence toward
the correct solution rather than diversity.

6 HOW EFFECTIVE ARE DIVERSIFIED PERTURBATIONS

In this section, we empirically evaluate how effective are diversified sampling across reasoning,
mathematics, and code generation tasks.

6.1 EVALUATION SETUP

Datasets. We evaluate perturbations across six benchmarks spanning reasoning ( MMLU-Pro (Wang
et al., 2024)), mathematics (GSM-Hard (Gao et al., 2023), MATH (Hendrycks et al., 2021b)), and
code generation (HumanEval (Chen et al., 2021), MBPP (Austin et al., 2021), APPS (Hendrycks
et al., 2021a)). Detailed dataset descriptions and setup are provided in Appendix E.1.

Implementing Details. For simplicity, we configured the models with a temperature of 0.6 for
all datasets. We did not use nucleus sampling across the experiments. Perturbations are evaluated
against direct sampling without perturbation, denoted as None in all experiments. Jabberwocky, a
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Figure 9: EM@k or Pass@k graphs of task-level perturbations versus direct sampling using GPT-4o-mini
across six datasets.
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Figure 10: EM@k or Pass@k graphs of Single, Dual and Diverse variants of RandIdeaInj versus di-
rect sampling on the MMLU-Pro, MATH and Humaneval benchmarks using GPT-4o-mini. In the Dual
strategy, GPT-3.5-turbo OpenAI (2023a) serves as the thinker. The Diverse method utilizes a set of
four models, including GPT-3.5-turbo, GPT-4o-mini, Llama-3.1-8B-Instruct Meta (2024) and
Qwen2.5-7B-Instruct Yang et al. (2024).

random segment of poetry, is used as a reference perturbation. We run experiments on a server with 4
NVIDIA A100 GPUs, each one with 80GB RAM.

6.2 RESULTS OF TASK-LEVEL PERTURBATIONS

We evaluate the task-level perturbations across six benchmarks spanning reasoning, mathematics,
and code generation, comparing them to direct sampling. All method evaluations are allocated
the same search budget of 100 solutions. Figure 9 shows their scaling curves of evaluation on
GPT-4o-mini OpenAI (2023a). We find that injections consistently yield improvements across all
tasks, with the instruction strategy performing the best, achieving notable increases of 6.7% EM@100
on MMLU-Pro, 9.6% EM@100 on MATH, and 9.5% Pass@100 on MBPP, over direct sampling.

6.3 RESULTS OF QUERY-LEVEL PERTURBATIONS

Random Idea Injection. The evaluation involves a range of RandIdeaInj strategies in Section 4.2,
including the Single, Dual and Diverse variants, evaluated across the benchmarks MMLU-Pro,
MATH, and HumanEval. Figure 10 displays the scaling curves of evaluations conducted with the
generative model GPT-4o-mini. Evaluations are allocated the same search budget of 100 solutions.
RandIdeaInj exhibits consistent improvement with idea-injected prompts, achieving a 10.8%
increase in reasoning on MMLU-Pro, a 8.2% increase in the mathematics on MATH, and a 4.7%
increase in coding on the Humaneval dataset, over the direct sampling. Similarities of diversified
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Table 2: Effects of query-level perturbation variants (Single, Dual, and Diverse) on solution diversity compared
to direct sampling.

Dataset Strategy Pass@100 tf-idf sim. BERT sim. Lev. sim. Seq. sim.(EM@100)

MMLU-Pro

None 0.7850 0.6565 0.9959 0.5350 0.6047
Single 0.8350 0.5770 0.9930 0.4933 0.5473
Dual 0.8000 0.6517 0.9959 0.5110 0.5961

Diverse 0.8700 0.5688 0.9916 0.4838 0.5299

MATH

None 0.7300 0.7248 0.9971 0.5801 0.6819
Single 0.7600 0.7188 0.9969 0.5771 0.6756
Dual 0.7400 0.7193 0.9968 0.5782 0.6777

Diverse 0.7900 0.6615 0.9960 0.5493 0.6344

HumanEval

None 0.9085 0.1907 0.9996 0.1941 0.1928
Single 0.9329 0.1717 0.9993 0.1822 0.1846
Dual 0.9451 0.1728 0.9993 0.1820 0.1863

Diverse 0.9512 0.1525 0.9991 0.1582 0.1604

solutions are list in Table 2. Additional results for RandIdeaInj and its combination with task-level
perturbations across models are provided in Appendix E.2.

Random Query Rephraser. Results for RandQReph, including both rephrasing and back-
translation variants, are provided in Appendix E.3.

7 ADDITIONAL RELATED WORK

Scaling inference has explored diverse strategies for enhancing LLM capabilities through adaptive
test-time compute allocation (Snell et al., 2024; Brown et al., 2024; Manvi et al., 2024; Guan et al.,
2025; Chen et al., 2024b). Typically, LLM inference involves decomposing complex questions into
sequential intermediate steps that lead to the final answer, exemplified by chain-of-thought (CoT)
prompting (Wei et al., 2022; Sprague et al., 2024; Wang & Zhou, 2024) and its variants (Kojima
et al., 2022; Zhou et al., 2023a; Wang et al., 2023c; Li et al., 2023). With the increasing number of
steps in a single chain, these methods often suffer from error propagation and struggle with complex
computations (Chen et al., 2023). To address the limitation, CoT (Li et al., 2024) has been improved
with search-based methods (Zhang et al., 2024c; Yao et al., 2024b; Luo et al., 2024; Light et al.,
2025), such as beam search (Xie et al., 2024b) and Best-of-N (Snell et al., 2024). Subsequently,
tree search algorithms including MCTS and A* (Yao et al., 2024b; Luo et al., 2024; Zhang et al.,
2024a; Hao et al., 2023; Zhou et al., 2024; Choi et al., 2023; Yao et al., 2024a; Chen et al., 2024c; Xie
et al., 2024a; Zhang et al., 2025) further introduced diversity into inference computation by exploring
multiple reasoning paths at different levels. In parallel, diverse prompting strategies (Li et al., 2023;
Mu et al., 2024; Naik et al., 2023) have been developed to elicit multiple CoT reasoning trajectories,
which ultimately converge to more accurate solutions for complex reasoning tasks. While these
methods show that extended inference-time search improves performance, they do not systematically
examine the effect of exploration diversity in scaling inference. In this paper, we study why sampling
diversity benefits Best-of-N , how to promote it through perturbations, when diversified sampling
succeeds, and how effective it is across tasks. See Appendix F for extended discussion of literature.

8 CONCLUSION

This work provides a systematic study of exploration diversity in scaling inference. We offered a
theoretical perspective on why exploration diversity enhances Best-of-N performance, analyzed how
to encourage diversity through meaningful perturbations and conditions under which diversification
succeeds. We empirically show how effective are diversified sampling across reasoning, math
and code generation tasks. Our findings highlight exploration diversity as an effective approach
for improving test-time scaling in most cases. Future research will focus on designing adaptive
perturbation strategies and integrating diversity into broader inference frameworks.
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All authors of this paper confirm that they have read and pledged to uphold the ICLR Code of Ethics.
This study focuses on evaluating the effect of diversified sampling in LLM inference, with the goal of
advancing the understanding of test-time scaling. Our experiments are conducted solely on publicly
available benchmarks for reasoning, mathematics, and code generation, without involving human
subjects or sensitive data. We aim to contribute to the responsible development of advanced AI
technologies by analyzing techniques that enhance inference efficiency and reliability.

REPRODUCIBILITY STATEMENT

For detailed reproducibility information, including full implementation details, hyperparameters,
and evaluation protocols, please refer to the main text and the appendix. All proofs are presented
in the main text and appendix with detailed explanations and assumptions. We carefully report
implementation details to facilitate verification, with the aim of ensuring that all results can be reliably
reproduced and extended by the community. All source code, data, and configuration files will be
released to ensure the full reproducibility of our results.
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APPENDIX

A THE USE OF LLMS

We use LLMs as general-purpose assistants for language editing and refinement of manuscript drafts.

B THEORETICAL DETAILS

B.1 PRELIMINARIES AND NOTATION

In this entire section, we use upper case letters K for the number of attempts in the analysis below
and lower case letters k for attempt indices. Inputs are r = [p, q] with r ∼ R := {p} × Q and
support R. Each attempt is configured by a hybrid mode ζ = (η, ξ), where

• η ∼ ν0 is the base decoding randomness/configuration (e.g., seed, sampler, temperature,
CoT style);

• ξ ∼ Π is an auxiliary diversity source (to be instantiated later).

Given (r, η, ξ), the solver draws s ∼ LLM(· | r, η, ξ) and the verifier V returns 0/1. Define the
per–mode failure log–probability

q(r, η, ξ) := log Ps∼LLM(·|r,η,ξ)
[
V (s) = 0

]
. (7)

Unsolvable sets. Let
R0 :=

{
r ∈ R : P[V (s) = 0 | r, η, ξ0] = 1 for η ∼ ν0

}
, (8)

R⋆
0 :=

{
r ∈ R : P[V (s) = 0 | r, η, ξ] = 1 for all η, ξ

}
. (9)

Here ξ0 is a fixed auxiliary reference used by the baseline policy; clearly R⋆
0 ⊆ R0. We denote by

µR the probability measure induced byR on R.

Best-of-K failure. For a policy that samples K i.i.d. modes (ηk, ξk) and produces sk ∼ LLM(· |
r, ηk, ξk), the failure probability is

PK := P
[
V (sk) = 0, ∀k ∈ [K]

∣∣∣ r ∼ R, (ηk, ξk) i.i.d.
]
. (10)

We write PK
reg for the baseline where (ηk, ξk) = (ηk, ξ

0) with ηk
i.i.d.∼ ν0, and PK

div for the hybrid

diversified case (ηk, ξk)
i.i.d.∼ ν0 × Π. Their limits as K → ∞ are P inf

reg = µR(R0) and P inf
div =

µR(R⋆
0).

B.2 HYPOTHESIS 1: DISPERSION UNDER AUXILIARY DIVERSITY

We formalize the dispersion contributed by the auxiliary source while keeping the base randomness.
Assumption B.1 (Dispersion first moment). There exists µ̂1 > 0 such that for all r /∈ R⋆

0,

M1(r; ν0,Π) := Eη∼ν0
Eξ∼Π

∣∣∣ q(r, η, ξ) − Eξ∼Πq(r, η, ξ)
∣∣∣ ≥ µ̂1. (11)

Optionally, one may also posit a (weaker) second-moment lower bound Eη,ξ

(
q − Eξq

)2 ≥ µ̂2 > 0;
our bounds only require the first moment.
Remark B.2. Intuitively, unless r is genuinely unsolvable for all (η, ξ), varying the auxiliary ξ
changes the failure likelihood while the base randomness η remains at its usual variability.

Variance decomposition (used implicitly). By the law of total variance applied to q(r, η, ξ) with
independent η ∼ ν0, ξ ∼ Π,

Varη,ξ
(
q(r, η, ξ)

)
= Eη

[
Varξ

(
q(r, η, ξ)

)]
+ Varη

(
Eξ[q(r, η, ξ)]

)
≥ Eη

[
Varξ

(
q(r, η, ξ)

)]
.

(12)
Assumption B.1 ensures the absolute first central moment over ξ is uniformly bounded away from
zero after averaging over η, hence dispersion is nontrivial.
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B.3 HYPOTHESIS 2: FIDELITY WITH FIXED AUXILIARY SETTING

We compare policies under the same base randomness, and with auxiliary fixed on both sides.
Assumption B.3 (Localized fidelity). There exist ϵ ∈ [0, 1) and auxiliary settings ξ⋆, ξ0 such that for
all K ≥ 1,

Er∼R Eη∼ν0

[
exp{K q(r, η, ξ⋆)}

]
Er∼R Eη∼ν0

[
exp{K q(r, η, ξ0)}

] ≤ 1 + ϵ. (13)

Remark B.4. The auxiliary choice is fixed on both sides so that both policies share the same base
variability (η ∼ ν0). This guards against conflating auxiliary gains with changes in base decoding.

B.4 MAIN THEOREM AND PROOF

We restate the main comparison bound in the hybrid framework and prove it.
Theorem B.5 (Hybrid diversity improves Best-of-K). Under Assumptions B.1 and B.3, there exists
a sequence CK = Ω

(
µ̂2
1 K/(1 + ϵ)

)
, positive and increasing in K, such that

NK
div ≤

NK
reg −N inf

reg

1 + CK
+ N inf

div, with N inf
div ≤ N inf

reg. (14)

Proof. Write qk := q(r, ηk, ξk), where (ηk, ξk)
i.i.d.∼ ν0 ×Π for the diversified policy. By indepen-

dence of attempts,

NK
div = Er∼R E(ηk,ξk)

[
exp

{ K∑
k=1

qk

}]
. (15)

Introduce the sample mean q̄ := 1
K

∑K
k=1 qk and the mixed mean q̄Π(r) := Eη,ξ q(r, η, ξ) (distinct

from q̄). For g(x) = ex − x− 1 ≥ min{0.25x2, 0.5|x|},

1
K

∑K
k=1 exp{Kqk}

exp{
∑K

k=1 qk}
=

1

K

K∑
k=1

exp{K(qk− q̄)} = 1

K

K∑
k=1

(
1+K(qk− q̄)+g(K(qk− q̄))

)
. (16)

Hence

1
K

∑K
k=1 exp{Kqk}

exp{
∑K

k=1 qk}
≥ 1 + min

{
0.5

K∑
k=1

|qk − q̄| , 0.25K
K∑

k=1

(qk − q̄)2
}
. (17)

By Hoeffding (or Bernstein) and Assumption B.1, with probability at least 1 − δ (over draws of
(ηk, ξk)) we have, uniformly for r /∈ R⋆

0,

K∑
k=1

|qk − q̄| ≥ µ̂1K − C
√

K log(1/δ), (18)

K∑
k=1

(qk − q̄)2 ≥ 1

K

( K∑
k=1

|qk − q̄|
)2

≥ µ̂2
1K − C ′

√
K log(1/δ). (19)

Plugging equation 18–equation 19 into equation 17, and absorbing deviations into constants C1, C2

independent of r, yields

1
K

∑K
k=1 exp{Kqk}

exp{
∑K

k=1 qk}
≥ 1 + C1K − C2

√
K. (20)

Hence, conditioning on r /∈ R⋆
0 and taking expectations,

E
[
exp

{ K∑
k=1

qk

} ∣∣∣ r] ≤ 1

1 + C1K − C2

√
K
· 1

K

K∑
k=1

E
[
exp{Kqk}

∣∣ r]. (21)

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Now apply Assumption B.3 with (ηk, ξk) ∼ ν0 × Π versus baseline (ηk, ξ
0), and average over

r ∼ R:

1

K

K∑
k=1

ErEη,ξ

[
exp{Kq(r, η, ξ)}

]
≤ (1 + ϵ) ErEη

[
exp{Kq(r, η, ξ0)}

]
. (22)

Combining equation 15, equation 21, equation 22, and then splitting the expectation over R into
R \ R⋆

0 and R⋆
0 (where exp{

∑
qk} ≡ 1), we obtain

NK
div −N inf

div ≤
1 + ϵ

1 + C1K − C2

√
K

(
NK

reg −N inf
reg

)
. (23)

Letting CK := (C1K − C2

√
K − ϵ)/(1 + ϵ), which is Ω(µ̂2

1K/(1 + ϵ)) by construction of C1

through equation 18–equation 19, yields equation 14. Finally, N inf
div = µR(R⋆

0) ≤ µR(R0) = N inf
reg

by equation 8.

Remark B.6 (Moment effect and asymptote). The leading term of CK scales as Θ
(
µ̂2
1K/(1 + ϵ)

)
:

richer (but faithful) auxiliary diversity increases the dispersion (larger µ̂1), which steepens the Best-
of-K contraction; simultaneously, the unsolvable set shrinks from R0 to R⋆

0 so the limiting failure
N inf

div decreases.

B.5 ADDITIONAL THEORETICAL DISCUSSIONS

With our theory at the ready, we now discuss several aspects of diversified sampling to support some
of our empirical findings.

B.5.1 PERTURBATION–QUESTION SIMILARITY AND THE DIVERSITY–FIDELITY TRADEOFF

Empirically (Fig. 2), EM/Pass improve as perturbations become more relevant to the question, peak
around task-aligned ideas, then drop when relevance becomes excessive (rephrasings/verbatim). This
matches our theory through the two quantities already in the main text:

(A) Dispersion M1 shrinks when relevance is too high. When perturbations are near rephrasings
or verbatim repeats, they induce very similar solver behavior across attempts, so the failure log-
probability barely moves. Hence the first-moment M1 is small, the convergence factor

CN ∝
M2

1 N

1 + ϵ

is small, and Best-of-N gains vanish. This explains the decline from Perturbation 4 (rephrasing) to
Perturbation 5 (verbatim).

(B) Fidelity ϵ worsens when relevance is too low. When perturbations are off-topic or loosely
related, single-attempt quality degrades. In our bound this appears as a larger ϵ, which divides the gain:
even if diversity increases, the (1 + ϵ) penalty suppresses CN and reduces overall improvement. This
explains the weak performance of Perturbation 1 (irrelevant) and the partial recovery at Perturbation 2
(loosely related).

(C) The sweet spot is task-aligned ideas. At intermediate relevance, perturbations are different
enough to move the model into alternative solution modes (so M1 is substantial) while still faithful to
the task (so ϵ remains modest). This maximizes the effective gain M2

1 /(1 + ϵ), producing the peak at
Perturbation 3.

Design takeaway. Concentrate perturbations in a moderate relevance band: different enough to
create exploration (boost M1), but faithful enough to avoid harming single-attempt quality (control ϵ).
This is exactly where our experiments see the maximum Best-of-N improvement.
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B.5.2 OUTCOME REWARD MODELS (ORM) AND WHY TOP-k CAPTURES THE BEST

Let a single instance produce N candidate solutions S = {s1, . . . , sN}. The oracle (ground truth)
verifier V labels a solution correct if it matches the hidden answer (or passes hidden tests). An
outcome reward model (ORM) assigns a real score R(s) to each s, used to rank candidates; the top-k
by R are selected.

We analyze the event that the best correct solution s⋆ (if one exists) appears in the top-k by R. Write
a simple low-error model for the ORM:

R(s) = µ(s) + εs, εs i.i.d. sub-Gaussian with variance proxy σ2, (24)

and assume a margin γ > 0 between s⋆ and every incorrect solution s̃ in the latent score:

µ(s⋆) ≥ max
s̃:V (s̃)=0

µ(s̃) + γ. (25)

Theorem B.7 (ORM top-k recall under a margin). Under the model above, for any incorrect s̃,

Pr
[
R(s̃) ≥ R(s⋆)

]
≤ pγ := exp

(
− γ2

4σ2

)
. (26)

Let X be the number of incorrect solutions that outrank s⋆. Then E[X] ≤ (N − 1) pγ and, by
Markov,

Pr
[
s⋆ /∈ Top-k

]
= Pr[X ≥ k] ≤ (N − 1) pγ

k
. (27)

In particular, with k = 10,

Pr
[
s⋆ ∈ Top-10

]
≥ 1 − (N − 1)

10
exp

(
− γ2

4σ2

)
. (28)

Proof of Theorem B.7. Let s⋆ be a correct solution and suppose the latent scores satisfy the margin

µ(s⋆) ≥ max
s̃:V (s̃)=0

µ(s̃) + γ, (29)

for some γ > 0. For any incorrect s̃, consider the difference

R(s̃)−R(s⋆) =
(
µ(s̃)− µ(s⋆)

)
+

(
εs̃ − εs⋆

)
≤ −γ + Zs̃, (30)

where Zs̃ := εs̃ − εs⋆ is sub-Gaussian with variance proxy 2σ2 (since the ε’s are i.i.d. sub-Gaussian
with proxy σ2).

By the standard sub-Gaussian tail bound, for any t > 0,

Pr
[
Zs̃ ≥ t

]
≤ exp

(
− t2

4σ2

)
. (31)

Setting t = γ yields
Pr

[
R(s̃) ≥ R(s⋆)

]
≤ exp

(
− γ2

4σ2

)
:= pγ . (32)

Let Is̃ := 1{R(s̃) ≥ R(s⋆)} and X :=
∑

s̃:V (s̃)=0 Is̃ be the number of incorrect solutions that
outrank s⋆. By linearity of expectation and equation 32,

E[X] =
∑

s̃:V (s̃)=0

E[Is̃] ≤ (N − 1) pγ , (33)

where we crudely upper bound the number of competitors by N − 1. By Markov’s inequality,

Pr
[
X ≥ k

]
≤ E[X]

k
≤ (N − 1) pγ

k
. (34)

The event {s⋆ /∈ Top-k} implies that at least k candidates outrank s⋆, hence

Pr
[
s⋆ /∈ Top-k

]
≤ Pr[X ≥ k] ≤ (N − 1) pγ

k
, (35)

which proves the stated bound. For k = 10 this gives

Pr
[
s⋆ ∈ Top-10

]
≥ 1 − (N − 1)

10
exp

(
− γ2

4σ2

)
. (36)

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Multiple correct solutions. If there are several correct solutions {s⋆j}mj=1 each separated by the
same (or larger) margin γ from all incorrect solutions, define Xj as the number of incorrect solutions
outranking s⋆j . Then by the same argument,

Pr
[
∀j, s⋆j /∈ Top-k

]
≤ Pr

[
min
j

Xj ≥ k
]
≤ min

j
Pr[Xj ≥ k] ≤ (N − 1) pγ

k
, (37)

so the probability that none of the correct solutions appears in top-k is no larger than in the single-best
case. Consequently, the ORM pass@k differs from oracle pass@k only when all correct solutions
are excluded from the ORM’s top-k, an event controlled by the bound above.

Implications. If the ORM is high quality (small σ) and the correct solution is reasonably separated
(moderate γ), the chance that top-k by R misses s⋆ decays rapidly—in particular, top-10 typically
contains the best solution. Consequently, the ORM pass@k closely tracks the oracle pass@k (they
differ only when the oracle-best is excluded from the ORM’s top-k). With multiple correct solutions,
the probability that none appear in top-k is even smaller (union bound), further tightening alignment
between ORM and oracle pass@k.

B.5.3 WHY MAJORITY VOTING DOES NOT MIRROR BEST-OF-N GAINS

Set-up. Fix an instance with a discrete answer space Y (e.g., final numbers in math). Under a
sampling policy π (e.g., baseline or a diversified hybrid), let

pπ(y) := Pr
s∼π

[final answer of s = y], y ∈ Y, (38)

and denote the ground-truth answer by y⋆. Majority voting over N i.i.d. samples chooses the label
with the largest empirical frequency.

Asymptotics of majority vote. By the law of large numbers, empirical frequencies converge to
{pπ(y)}y . Hence the majority-vote output converges almost surely to

argmax
y∈Y

pπ(y). (39)

Therefore, the asymptotic majority-vote accuracy equals

lim
N→∞

Pr[MVN = y⋆] = 1

{
pπ(y

⋆) = max
y

pπ(y)

}
, (40)

i.e., it is 1 if and only if the correct answer is already the most probable single-sample outcome under
π, and 0 otherwise.

Contrast with Best-of-N . Best-of-N success is

Pr[BoNN hits y⋆] = 1− (1− pπ(y
⋆))N , (41)

which increases monotonically to 1 whenever pπ(y⋆) > 0. Thus, BoN rewards diversity of attempts
(any nonzero mass on y⋆ helps), whereas majority vote rewards mass concentration (the correct label
must be the single most likely).

Implication for diversified sampling. Diversification typically spreads probability mass across
multiple solution modes. Unless it also raises pπ(y⋆) above all competitors, majority voting has no
systematic reason to improve—and can degrade if the spread lowers the rank of y⋆. This explains the
inconsistent gains in Fig. 8.

A simple bound. Let Xy be the count of label y among N i.i.d. draws. Then

Pr[MVN = y⋆] = Pr
[
Xy⋆ ≥ max

y ̸=y⋆
Xy

]
. (42)

When pπ(y
⋆) ≤ maxy ̸=y⋆ pπ(y), concentration of measure implies Pr[MVN = y⋆]→ 0 as N →∞;

when pπ(y
⋆) is uniquely maximal, the probability→ 1. In contrast, Pr[BoNN hits y⋆]→ 1 whenever

pπ(y
⋆) > 0.
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Relation to fidelity (Hypothesis 3.3). For fixed auxiliary settings, Hypothesis 3.3 controls the
single-attempt failure via a factor (1 + ϵ) across policies. Majority voting asymptotically reduces to a
best@1 decision (choosing the MAP label), so it inherits this limitation: switching to a diversified
auxiliary setting cannot guarantee improvement and may even inflate error by up to a (1 + ϵ) factor
relative to baseline, whereas Best-of-N benefits strictly from added dispersion.

C DETAILS OF METRICS

For each of our metrics, the solver is allowed k submissions for each, denoted by [s]k ∼ LLM(·|r, k)
given input r. We consider testing the model on a set of tasks consisting of prompts and questions
X = {r = [p, q]}.
EM@k Rate. For reasoning and math tasks, if at least one submission s′ ∈ [s]k matches the ground
truth, the task is considered solved. The EM@k rate is defined as the proportion of tasks solved as

EM@k =
1

|X |
∑
r∈X

1
(
∃s ∈ [s]k, s.t., s = H

∣∣[s]k ∼ LLM(·|r, k)
)
,

where 1(·) is the indicator function and H is the ground truth.

Pass@k Rate. For code generation tasks, if at least one submission s′ ∈ [s]k passes all hidden tests
Hc, the task is considered solved. The Pass@k rate is defined as

Pass@k =
1

|X |
∑
r∈X

1
(
∃s′ ∈ [s]k, s.t., s′ passes all Hc

∣∣[s]k ∼ LLM(·|r, k)
)
.

TF-IDF Similarity measures the importance of terms in a document relative to a collection of
documents, which computes the average cosine similarity between TF-IDF representations of solution
pairs:

tf-idf sim. =
1

|X |
∑
x∈X

1

k (k − 1)

∑
s,s′∈[s]k

s ̸=s′

tf-idf(s) · tf-idf (s′)
∥ tf-idf(s)∥ ∥tf-idf (s′)∥

.

BERT Cosine Similarity is an average cosine score between the embeddings of candidate solution
pairs, where embeddings are performed using CodeBERT (Feng et al., 2020), a pre-trained model for
understanding code semantically:

BERT sim. =
1

|X |
∑
x∈X

1

k (k − 1)

∑
s,s′∈[s]k

s ̸=s′

CodeBERT(s) · CodeBERT (s′)

∥CodeBERT(s)∥ ∥CodeBERT (s′)∥
.

Levenshtein Similarity is based on the Levenshtein distance, which measures the minimum number
of single-character edits (insertions, deletions, or substitutions) required to transform one string into
another:

lev. sim. =
1

|X |
∑
x∈X

1

k (k − 1)

∑
s,s′∈[s]k

s ̸=s′

LevenshteinDistance(s, s′)

max(|s|, |s′|)
.

Token Sequence Similarity measures the overlap between two sequences of tokens (e.g., program-
ming language tokens), denoted by T (s) for output s:

seq. sim. =
1

|X |
∑
x∈X

1

k (k − 1)

∑
s,s′∈[s]k

s ̸=s′

|T (s) ∩ T (s′)|
|T (s) ∪ T (s′)|

.

D ALGORITHMS OF QUERY-LEVEL PERTURBATIONS

Algorithm 1 describes query-level perturbations in their Single and Dual variants. The procedure
begins by prompting a thinker to generate N solution ideas for a given question in a single pass.
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In the prompt injection step, each idea is incorporated into the original prompt together with the
question to construct a perturbed prompt.

Algorithm 1 Query-level Perturbations (Single & Dual).

1: Input: The sampling LLM, a prompt p, question q, verifier V , repeated sampling times N , and
the thinker

2: S← ∅
3: r = [p, q]
4: i1, i2, ...iN ←thinker(r)
5: for k ← 1 to N do
6: ▷ Step 1: Prompt Injection.
7: rk ← r ⊕ ik
8: ▷ Step 2: Repeated Sampling.
9: sk ← LLM(·|rk)

10: S ← S ∪ {sk}
11: end for
12: ▷ Step 3: Verification.
13: Sample s∗ ∼ { sk | V (sk) = 1, sk ∈ S }
14: Return: The best answer s∗

Algorithm 2 presents the Diverse variant. In this perturbation style, each thinker model in the pool is
prompted once to generate a set of solution ideas for the given question. During each iteration of
repeated sampling, one perturbation is randomly drawn from this set and injected into the original
prompt together with the question to form a perturbed prompt.

Algorithm 2 Query-level Perturbations (Diverse)

1: Input: The sampling LLM, a prompt p, question q, verifier V , repeated sampling times N , and
a set of thinkers T

2: S← ∅
3: r = [p, q]
4: ▷ Step 0: Generate perturbations from thinkers.
5: I ← ∅
6: for t ∈ T do
7: I ← I ∪ { t(r) }
8: end for
9: for k ← 1 to N do

10: ▷ Step 1: Prompt Injection.
11: Sample ik ∼ I
12: rk ← r ⊕ ik
13: ▷ Step 2: Repeated Sampling.
14: sk ← LLM(·|rk)
15: S ← S ∪ {sk}
16: end for
17: ▷ Step 3: Verification.
18: Sample s∗ ∼ { sk | V (sk) = 1, sk ∈ S }
19: Return: The best answer s∗

E ADDITIONAL EFFECTIVENESS EVALUATION

E.1 DATASET DESCRIPTIONS

We evaluate the perturbations across six benchmarks including reason, math and coding: (a) Multiple
choice questions-answering on MMLU-Pro (Wang et al., 2024), a dataset curated by eliminating
some trivial and noisy questions from MMLU (Hendrycks et al., 2020) while incorporating more
reasoning-focused problems. For evaluation, we randomly select 200 samples from the dataset. (b)
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Math problem-solving on GSM-hard (Gao et al., 2023) and MATH (Hendrycks et al., 2021b). GSM-
Hard increases the computational complexity of GSM8K (Cobbe et al., 2021) by replacing numerical
values with larger numbers. MATH consists of competitive-level mathematical problems requiring
high levels of reasoning ability and mathematical knowledge. We randomly sample 100 problems
from both GSM-Hard and MATH for evaluation. (c) Code generation on Humaneval (Chen et al.,
2021), MBPP (Austin et al., 2021) and APPS (Hendrycks et al., 2021a). HumanEval includes 164
human-generated Python problems, while MBPP consists of 399 problems covering basic algorithmic
and functional programming tasks. APPS features challenging code competition problems. Due to
budget constraints, we randomly sample 200 problems from the 10,000 available problems in APPS
for evaluation.

E.2 RESULTS OF PERTURBATION COMBINATIONS

We show the Pass@k results for combining Role, Instruction, and Jabberwocky injections with
three RandIdeaInj strategies on the Humaneval dataset, using GPT-4o-mini, as shown in
Figure 11. Evaluations are allocated the same search budget of 10 solutions. We find that combining
the injections enhances performance, achieving maximum relative improvements in Pass@10 of
5.7%, 7.8%, and 5.0% over the direct sampling.
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Figure 11: Pass@k graphs of Role, Instruction, and Jabberwocky, along with their combinations with
RandIdeaInj on Humaneval using GPT-4o-mini. GPT-3.5-turbo serves as the thinker model in
each combination of the Dual strategy. Under the Diverse strategy, a perturbation is randomly selected from
those generated by a set of models: GPT-3.5-turbo, GPT-4o-mini, Llama-3.1-8B-Instruct, and
Qwen2.5-7B-Instruct.

We extend our evaluation of the combined Instruction and Dual perturbations to additional
models, presenting the resulting scaling curves in Figure 12. The relative improvements in
Pass@10 are 7.0% for GPT-3.5-turbo, 4.8% for Llama-3.1-8B-Instruct, 9.9% for
Qwen2.5-7B-Instruct, and 3.4% for Claude-3.5-Sonnet (Anthropic, 2024).
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Figure 12: Expanded Pass@k graphs of Instruction, along with its combination with Dual strategy in
RandIdeaInj using various models. In each Dual strategy combination, GPT-3.5-turbo serves as
the thinker.

E.3 RESULTS OF RANDOM QUERY REPHRASER

Rephrasing. We present the Pass@k performance of the three RandQReph rephrasing variants
(Section 4.2) across multiple models on HumanEval in Figure 13. Evaluations are allocated the same
search budget of 10 solutions. The best-performing strategy exhibits an relative improvement in
Pass@10 over direct sampling, achieving 7.0% for GPT-3.5-turbo, 8.5% for GPT-4o-mini,
6.5% for Llama-3.1-8B-Instruct, and 13.7% for Qwen2.5-7B-Instruct.

Back-Translation. We evaluate the back-translation on Humaneval using GPT-4o-mini under
the Single, Dual and Diverse styles. For each run, the translator rewrites the question by translating
it from English to Chinese and back to English, producing a perturbed prompt that the LLM then
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Figure 13: Pass@k graphs on Humaneval using the models GPT-3.5-turbo, GPT-4o-mini,
Llama-3.1-8B-Instruct, and Qwen2.5-7B-Instruct. The Dual method employs GPT-4o-mini
as the rephraser for GPT-3.5-turbo; otherwise, GPT-3.5-turbo acts as the rephraser. The Diverse
method has a set of 4 models: GPT-3.5-turbo, GPT-4o-mini, Llama-3.1-8B-Instruct and
Qwen2.5-7B-Instruct.

solves. As shown in Figure 14, this back-translation approach yields a 5.7% relative gain in Pass@10
over direct sampling.
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Figure 14: Pass@k graph of back-translations on Humaneval using GPT-4o-mini. A GPT-3.5-turbo
serves as the translator in the Dual strategy. The Diverse method has a set of translator models:
GPT-3.5-turbo, GPT-4o-mini, Llama-3.1-8B-Instruct, and Qwen2.5-7B-Instruct.

E.4 SCALABILITY
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Figure 15: Proportion of problems solved vs.
number of tokens used.

Multi-round Debate (Du et al., 2023) is a strategy that re-
lies on an additional model or agent to provide a reference
answer. In literature, debating also shows effectiveness in
improve LLM performance. Intuitively, debating is also
one kind of diversity injection in prompt. In the Multi-
round Debate, the primary model updates its response in
the following round based on that reference, ultimately
producing a refined answer. We assess the scalability of
our method versus Debate by comparing the proportion
of problems solved when both approaches use the same
number of output tokens. The evaluation is performed on
Humaneval, with GPT-4o-mini serving as the genera-
tive model. GPT-3.5-turbo is employed as the thinker model for idea generation in the Dual
perturbation and as the reference model in the Debate strategy. The results in Figure 15 show that the
query-level perturbation Dual outperforms the Debate strategy when using the same amount of output
tokens and is a more scalable alternative. This is because to obtain N solutions, the Debate strategy
prompts the LLM 2N times (two per round), while Dual perturbation prompts once to generate N
ideas and then N additional attempts, totaling N + 1 prompts.

F EXTENDED DISCUSSION OF EXISTING WORK

Scaling Inference has explored diverse strategies for enhancing LLM capabilities through adaptive
test-time compute allocation (Snell et al., 2024; Brown et al., 2024; Manvi et al., 2024; Guan et al.,
2025; Chen et al., 2024b). Typically, LLM inference involves decomposing complex questions into
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sequential intermediate steps that lead to the final answer, exemplified by chain-of-thought (CoT)
prompting (Wei et al., 2022; Sprague et al., 2024; Wang & Zhou, 2024) and its variants (Kojima
et al., 2022; Zhou et al., 2023a; Wang et al., 2023c; Li et al., 2023). However, with the increasing
number of steps in a single chain, these methods often suffer from error propagation and struggle with
complex computations (Chen et al., 2023). To overcome the limitation, CoT (Li et al., 2024) has been
improved with search methods (Zhang et al., 2024c; Yao et al., 2024b; Luo et al., 2024; Light et al.,
2025), such as beam search (Xie et al., 2024b) and Best-of-N (Snell et al., 2024; Brown et al., 2024),
which leverage reward models to select the most promising candidates. Later, tree search-based
algorithms, such as MCTS and A* (Yao et al., 2024b; Luo et al., 2024; Zhang et al., 2024a; Hao
et al., 2023; Zhou et al., 2024; Choi et al., 2023; Yao et al., 2024a; Chen et al., 2024c; Xie et al.,
2024a; Zhang et al., 2025) produce diversity paths in inference computation, allowing for exploration
at different levels. While these methods show that inference-time techniques with extended search
improve performance on a range of tasks, they do not offer a systematic investigation into the effect
of exploration diversity on scaling inference. In this paper, we investigate why sampling diversity
enhances Best-of-N performance, how to encourage diversity through effective perturbations, the
conditions under which diversified sampling succeeds, and how effective these perturbations are
across reasoning, math, and coding tasks.

Diverse Prompting is a strategy that introduces variations into prompts and is often used to improve
CoT reasoning performance. Self-consistency (Wang et al., 2023b) improve CoT prompting by
sampling multiple diverse reasoning paths and finding the most consistent answers through majority
voting. DiVeRSe (Li et al., 2023) builds on step-wise reasoning paths by using diverse prompts to
elicit different reasoning paths from the LLM. It relies on a fine-tuned albert-v3-large model as a
step-wise verifier, scoring each step and applying weighted voting to determine the final answer.
DDPrompt (Mu et al., 2024) is a two-step approach built on Chain-of-Thought (CoT) prompting.
It introduces prompting diversity by using a predefined set of CoT prompts to guide the LLM in
generating multiple rationales, which are then used as inputs for a second round of answer generation.
Final answers are selected via majority voting. DIVSE (Naik et al., 2023) improves CoT by fostering
prompt diversity, constructing ensembles from predefined personas and reasoning approaches. The
method selects effective persona–approach combinations via GPT-3.5-turbo on a small validation set,
and integrates them into the few-shot context. The final diversified prompt set is thus composed of
questions paired with these selected persona–approach pairs. The majority of prior studies build on
CoT self-consistency (Wang et al., 2023b), typically adopting a fixed prompt template (e.g., “Let’s
think step by step.”) and introducing diversity by varying the prompts to generate multiple CoT
reasoning paths. These paths converge to more accurate answers in reasoning tasks with a single
correct solution, and the final answer is determined by majority voting. However, these approaches
do not extend well to coding tasks, where programs are typically long strings that vary widely
across solutions, lack a unique correct answer, and require validation through hidden test cases.
Furthermore, these diverse prompting are designed to promote convergent answers for consensus,
whereas Best-of-N aims to encourage divergent responses to broaden the solution space.

G CASE STUDY

G.1 PROMPTS FOR VARYING RELEVANT PERTURBATIONS

We show prompts that produce perturbations of varying relevance, which are then used to generate
solution ideas for the question. The prompts for mathematics are as follows:

Prompts for Variedly Relevant Perturbations in Mathematics

Perturbation 1: You are a helpful cooking tutor with expertise in baking. Your ONLY task is to
provide one suggestion for flavor enhancement in baking recipes. If the user input is not a recipe about
baking or cooking (for example, a programming challenge, technical question, or anything unrelated),
you must ignore its content completely and still give a baking flavor suggestion, such as “Add a dash of
cinnamon for warmth” or “Try lemon zest to brighten flavor.” You are strictly forbidden from solving,
analyzing, or even mentioning programming, code, algorithms, or technical concepts. Always assume
the user only wants a new baking flavor idea, never anything else.

Perturbation 2: You are a helpful study skills tutor with expertise in learning strategies.
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Your ONLY task is to provide one idea for how to approach a learning task. If the input is not related
to study methods (for example, a math problem, calculation, or subject-specific question), you must
ignore its content completely and still give a study strategy suggestion, such as “Break down the task
into smaller steps,” or “Create a concept map to connect key ideas.” You are strictly forbidden from
solving, analyzing, or even mentioning mathematics, numbers, equations, or calculations. Always
assume the user only wants a new study method idea, never anything else. Each response must present
a different study approach than before.

Perturbation 3: You are a helpful math tutor with expertise in problem-solving. When
given a math question, provide one solution idea needed to solve it. Do not write out every detailed step
or final numeric answer. Instead, focus on the method or strategy (like “First, consider the Pythagorean
theorem...” or “We can solve by factoring out common terms...”).

Perturbation 4: You are a narrator. You are articulate, precise, and focused on detail. Your
thoroughly analyze the given question description, grasp its essential requirements, and restate it in
your own words while retaining all critical information. Please restate the following:

The prompts for code generation tasks used to generate perturbations of varying relevance are similar
to those for mathematics, except for perturbation 2 and 3:

Prompts for Variedly Relevant Perturbations in Code Generation

Perturbation 2: You are a helpful problem-solving mentor with expertise in general approaches to
tackling challenges. Your ONLY task is to provide one broad method that could help someone think
through a complex task in any field. If the input is a subject-specific question (for example, a coding
challenge), you must ignore its details and respond with a general approach, such as “Break the task
into smaller steps,” or “Try to identify repeating patterns.” You are strictly forbidden from writing or
analyzing code directly.

Perturbation 3: You are an expert programming mentor with a knack for code synthesis.
When given a programming challenge, only provide a concise explanation of the coding approach or
concept needed to solve it. Do not write out the complete code or final implementation. Instead, focus
on the method or strategy (like ’First, consider using a recursive function...’ or ’We can handle this by
implementing a hash table...’).

G.2 EXAMPLES OF TASK-LEVEL PERTURBATIONS

The Roles and Strategical Instructions were generated from ChatGPT. We show the full list of
Role, Instruction and Jabberwocky injections used in code generation task. For the reasoning and
mathematics tasks, we applied the same prompting approach to have ChatGPT generate similar Roles
and Instructions.

Roles

Prompt: What are the different possible roles that a software engineer can have, and what
are the characteristics of each role?

• You are a problem solver. You are analytical, logical, detail-oriented. You thrive on tackling complex
problems and finding efficient solutions, enjoy the challenge of debugging and often see issues as
puzzles to be solved, and are methodical in your approach and persistent in your efforts to overcome
obstacles.

• You are an innovator. You are creative, visionary, adaptable. You are always looking for new ways
to apply technology. You are not just interested in how things work but also in how they can be
improved or transformed. You enjoy pioneering new techniques and technologies and are comfortable
with experimentation and risk-taking.

• You are a communicator. You are interpersonal, collaborative, empathetic. You excel in environments
where teamwork and collaboration are key. You are skilled at explaining complex technical details in
simpler terms and bridging the gap between technical teams and non-technical stakeholders. You
value relationships and work well in roles that require negotiation and coordination.
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• You are a builder. You are hands-on, practical, resourceful. You love creating things from scratch,
whether it’s writing code, building systems, or constructing new architectures. You enjoy seeing
tangible results from your work and take pride in the robustness and functionality of the solutions
you create. You are a maker at heart, always eager to bring ideas to life.

• You are a learner. You are curious, knowledge-seeking, self-motivated. You thrive in environments
that challenge you to grow and learn new things. Whether it’s mastering a new programming language,
exploring the latest frameworks, or diving into a new domain, you are always eager to expand your
skillset. You are proactive in seeking out opportunities to improve and are passionate about staying at
the cutting edge of technology.

• You are a perfectionist. You are meticulous, quality-focused, diligent. You have a keen eye for detail
and a deep commitment to producing flawless work. You often double-check your code, ensuring that
every line meets your high standards. You believe in the importance of precision and are driven by a
desire to deliver the best possible product, often going the extra mile to polish and refine your work.

• You are a strategist. You are strategic, big-picture, foresighted. You excel at thinking ahead and
planning for the future. You are skilled at breaking down complex projects into manageable parts,
prioritizing tasks, and developing long-term plans. You enjoy aligning technology with business goals,
ensuring that your work not only solves immediate problems but also supports broader objectives.

• You are an optimizer. You are efficiency-driven, process-focused, systematic. You are always looking
for ways to improve existing systems, whether it’s by optimizing code, streamlining processes, or
automating repetitive tasks. You have a knack for identifying inefficiencies and finding ways to
eliminate them. You enjoy refining and enhancing systems to make them more effective and efficient,
and you take satisfaction in making things work better.

• You are a disruptor. You are bold, fearless, unconventional. You are not afraid to challenge the
status quo and think outside the box. You are constantly looking for ways to innovate and disrupt
traditional approaches. You thrive in environments where change is the norm and are excited by the
possibility of redefining how things are done. You are comfortable with ambiguity and enjoy pushing
the boundaries of what’s possible.

• You are a craftsman. You are passionate, detail-oriented, proud of your work. You see software
development as a craft, and you take great pride in the quality of your code. You value elegance,
simplicity, and maintainability, and you strive to create software that is not only functional but also
beautiful in its structure. You are always looking for ways to improve your skills and elevate your
work to the next level.

• You are a pragmatist. You are practical, results-oriented, efficient. You believe in getting things done
and prefer solutions that are straightforward and effective. You are less concerned with perfection and
more focused on delivering functional, reliable software. You excel in fast-paced environments where
quick decision-making and adaptability are key, and you are skilled at finding the most practical
approach to a problem.

• You are a mentor. You are supportive, knowledgeable, approachable. You enjoy sharing your expertise
and helping others grow in their careers. You find fulfillment in guiding junior engineers, offering
advice, and providing constructive feedback. You have a natural ability to explain complex concepts
in a way that others can understand, and you take pride in the success of those you mentor.

• You are a collaborator. You are team-oriented, inclusive, supportive. You thrive in collaborative
environments where teamwork is key. You believe in the power of diverse perspectives and enjoy
working closely with others to achieve a common goal. You are skilled at communicating and
coordinating with different stakeholders, and you value the input and ideas of others. You work well
in roles that require cooperation and collective effort.

Instructions

Prompt: What are ten different possible instructions you can give to a software engineer
before they write code, instructing them to write code in three different styles?

• Write the code in a highly modular way, breaking down functionality into small, reusable components.
Each function or class should have a single responsibility, and avoid large monolithic structures.
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• Use an object-oriented approach where each concept is modeled as a class. Leverage inheritance,
encapsulation, and polymorphism to create a flexible, scalable design.

• Write the code in a functional programming style, avoiding mutable state and side effects. Use pure
functions, higher-order functions, and recursion where appropriate.

• Focus on brevity and clarity, minimizing boilerplate code. Use shorthand syntax and built-in functions
whenever possible to achieve a minimalist codebase without sacrificing readability.

• Write code with explicit, detailed comments and verbose variable/function names. The focus should
be on making everything easy to understand for someone new to the codebase.

• Optimize the code for performance. Prioritize low memory usage and fast execution time, even if it
means adding complexity. Avoid unnecessary computations and data structures.

• Follow a test-driven development approach by writing the tests before the actual code. Ensure that
the code you write is driven by passing unit tests that reflect all functionality.

• Follow the principles of clean code. Prioritize readability, maintainability, and simplicity. Ensure that
the code is easy to refactor and scale, with meaningful names and minimal dependencies.

• Focus on rapid prototyping. Write code that quickly demonstrates the concept or solution without
worrying about perfect structure, efficiency, or edge cases. Optimization can come later.

• Use concise, readable expressions, and rely on built-in Python idioms. Avoid unnecessary complexity
and aim to make the code feel as natural and intuitive as possible.

Jabberwocky by Lewis Carroll

• ’Twas brillig, and the slithy toves. Did gyre and gimble in the wabe:

• All mimsy were the borogoves, And the mome raths outgrabe.

• Beware the Jabberwock, my son! The jaws that bite, the claws that catch!

• Beware the Jubjub bird, and shun The frumious Bandersnatch!

• He took his vorpal sword in hand: Long time the manxome foe he sought –

• So rested he by the Tumtum tree, And stood awhile in thought.

• And as in uffish thought he stood, The Jabberwock, with eyes of flame,

• Came whiffling through the tulgey wood, And burbled as it came!

• One, two! One, two! And through and through The vorpal blade went snicker-snack!

• He left it dead, and with its head He went galumphing back.

• ’And hast thou slain the Jabberwock? Come to my arms my beamish boy!

• O frabjous day! Callooh! Callay!’ He chortled in his joy.

• ’Twas brillig, and the slithy toves. Did gyre and gimble in the wabe:

• All mimsy were the borogoves, And the mome raths outgrabe.

G.3 EXAMPLES OF QUERY-LEVEL PERTURBATIONS

We show examples of solution ideas generated by the thinker model in response to questions for code
generation:
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Example Prompt and Solution Ideas for a Code Generation

Prompt:

You are an expert programming mentor with a knack for code synthesis. When given a
programming challenge, only provide a concise explanation of the coding approach or
concept needed to solve it. Do not write out the complete code or final implementation.
Instead, focus on the method or strategy (like ’First, consider using a recursive
function...’ or ’We can handle this by implementing a hash table...’).
Please provide {num} disinct solution ideas as a list, formatting:["","",....,""].
Ensure that every solution idea is written in at least 5 full sentences; do not produce
any idea shorter than 5 sentences. Do not include introductory or concluding sentences.

Question:

[object name]: separate_paren_groups

[object description]: from typing import List

def separate_paren_groups(paren_string: str) -> List[str]:
Input to this function is a string containing multiple groups of nested parentheses.
Your goal is to separate those group into separate strings and return the list of
those. Separate groups are balanced (each open brace is properly closed) and not
nested within each other. Ignore any spaces in the input string.

Solution Idea 1: To solve this problem, first, iterate through the characters of the input string while maintaining a counter for the
balance of parentheses. You’ll use a list to collect the groups. Initialize an empty string to build each group. As you encounter an
opening parenthesis ’(’, increase the counter, and when you encounter a closing parenthesis ’)’, decrease it. If the counter reaches
zero, it indicates a complete group, and you can store it in the list. Don’t forget to handle spaces by skipping them during the iteration.

Solution Idea 2: To solve this problem, you can use a stack-based approach to track the opening and closing parentheses. Here’s a
concise strategy:
1. **Initialize a Stack**: Use a stack to keep track of the positions of open parentheses.
2. **Iterate Through the String**: Loop through each character in the input string, ignoring spaces.
3. **Track Groups**: - When you encounter an opening parenthesis ’(’, push its index onto the stack. - When you encounter a
closing parenthesis ’)’, pop from the stack and check if it empties out the stack (indicating a complete group). - Use indices to extract
the substring corresponding to each complete group of parentheses.
4. **Store Results**: Append each balanced group to a result list.
5. **Return the List**: Once the iteration is complete, return the list of separated parentheses groups.
This approach efficiently processes the input string in a single pass and ensures that you correctly identify and separate the groups.

G.4 CHAIN-OF-THOUGHT PROMPT

All evaluations in Section 5.4, including direct sampling, are conducted under the Chain-of-Thought
(CoT) setting. Perturbations are applied on top of the CoT prompt, which guides the model to
generate solutions in a step-by-step manner:

Example CoT Prompt

Prompt: When you receive a problem description, methodically break down the implementation into
distinct, logical steps within the Python code itself. Use comments within your code to clearly delineate
these steps, focusing exclusively on the logic and structure necessary to solve the problem as described.
Make sure each part of your solution is self-contained within a Python code block, illustrating the
solution’s development in a step-by-step manner...

G.5 PROMPT TEMPLATE FOR ORM VERIFICATION

For ORM verification, solutions in math problem-solving tasks are rated and selected with the
following prompt:
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Prompt Template for Math Solution Selection

You are a math evaluator. I will give you a math problem and a set of candidate solutions.

Your tasks are:
1. For each candidate solution:

- Check whether the reasoning is mathematically valid.
- Check whether the final answer is correct.
- Assign a score from 0 to 10 (0 = completely wrong, 10 = fully correct with
sound reasoning).

2. After scoring all solutions, rank them from highest to lowest.

Math problem:
{QUESTION}

Candidate solutions:
<SOL_0> {SOLUTION_0}
<SOL_1> {SOLUTION_1}
...
<SOL_n> {SOLUTION_n}

Please output in the following strict format:

Evaluation:
<SOL_i> - score = X - short evaluation

Then provide a sorted list of "<SOL_i>: score" (highest first).

For the coding task, we use the following template to generate validation tests, structured as:

Prompt Template for Code Test Generation

You are an AI coding assistant that can write unique, diverse, and comprehensive unit
tests for Python objects given the description of the object. The format of test cases
should be:
"’python
assert function_name(input_1) == expected_output_1, "Test case 1 description"
assert function_name(input_2) == expected_output_2, "Test case 2 description"
"’
DO NOT use pytest or unittest frameworks for this task.
Stick to small inputs that you can easily verify the output for.

The following are examples of generated validation tests:

Example generated validation tests

Question:

Write a function greatest_common_divisor(a, b) that returns the GCD of two integers a and
b.

Generated validation tests:

assert (greatest_common_divisor(3, 5) == 1)
assert (greatest_common_divisor(25, 15) == 5)
assert (greatest_common_divisor(0, 3) == 3)
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