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Abstract

Pre-trained large language models (LLMs) can understand and align with human
instructions by supervised fine-tuning (SFT). It is commonly believed that diverse
and complex SFT data are of the essence to enable good instruction-following
abilities. However, such diversity and complexity are obscure and lack quantitative
analyses. In this work, we propose INSTAG, an open-set instruction tagging method,
to identify semantics and intentions of human instructions by tags that provide
access to definitions and quantified analyses of instruction diversity and complexity.
We obtain 6.6K fine-grained tags to describe instructions from popular open-
sourced SFT datasets comprehensively. We find that the abilities of aligned LLMs
benefit from more diverse and complex instructions in SFT data. Based on this
observation, we propose a data sampling procedure based on INSTAG, and select
6K diverse and complex samples from open-source datasets for SFT. The resulting
models, TAGLM, outperform open-source models based on considerably larger
SFT data evaluated by MT-Bench, echoing the importance of instruction diversity
and complexity and the effectiveness of INSTAG. INSTAG has robust potential
to be extended to more applications beyond the data selection as it provides an
effective way to analyze the distribution of instructions. 3

1 Introduction
The contemporary chatbots, such as GPT-4 (OpenAI, 2023), have brought to the forefront of artificial
generative intelligence with their superior and versatile abilities in real-world task solving. Such
abilities are unlocked by fine-tuning pre-trained large language models (LLMs) to align human
preference, and well-aligned LLMs can precisely recognize human intentions and properly formalize
responses expressed in natural languages. There have been proposed various techniques to achieve
such alignment of enabling pre-trained models to comprehend and execute diverse instructions
effectively, including supervised fine-tuning (SFT) (Taori et al., 2023; Chiang et al., 2023), rejection
sampling (Yuan et al., 2023b; Song et al., 2023; Rafailov et al., 2023), and reinforcement learning
with human feedback (RLHF) (Bai et al., 2022a; Ouyang et al., 2022; Touvron et al., 2023b).

Especially, SFT for alignment is widely studied by recent research, which is generally formalized
in a multi-turn utterance manner, and each turn is composed of a human query and a corresponding
response well-aligned with human preference (Wang et al., 2023d). Achieving alignment with human
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preference through SFT necessitates collecting a broad range of training data which is typically
gathered through crowd-sourcing (Ouyang et al., 2022; Bai et al., 2022a; Touvron et al., 2023b) or
by distilling from other LLMs (Taori et al., 2023; Ding et al., 2023). Recent research indicates that
such training data for alignment should be diverse and complex, covering various domains, tasks,
semantics, and formats (Xu et al., 2023a; Mukherjee et al., 2023; Wang et al., 2023b). Such diversity
and complexity are mainly determined by the query formation. Various methods are proposed and
claimed to improve the diversity and complexity of the queries and advance the performance of the
SFT-aligned LLMs (Wang et al. 2023c; Xu et al. 2023a; Ding et al. 2023; inter alia). However, how
to quantify the diversity and complexity of queries is significantly understudied.

To shed light on this topic, we propose using a tagging system to feature and categorize samples in
SFT datasets. Given the versatile tasks that the aligned LLMs are expected to handle, an equally
versatile tag system is necessary to distinguish open-world human queries. However, building an
open, fine-grained tagging system manually is infeasible to scale for large datasets. To this end,
we propose INSTAG, an automatic INStruction TAGging method empowered by proprietary high-
performing chatbot ChatGPT. Leveraging such a well-aligned chatbot, INSTAG designs a framework
to automatically prompt ChatGPT to assign tags to training sample queries. INSTAG achieves the
increased quality of the tag assignment by deliberately prompting ChatGPT to explain each tag
assigned and including a systematic tag normalization procedure. We apply INSTAG to an extensive
collection of open-source SFT datasets and build open-set, fine-grained tags which, as we observed,
can reflect the semantics and intentions beneath human queries in SFT datasets. Through the scope of
tags, we conduct a detailed and quantified analysis of existing open-source datasets, providing insights
into query distributions in terms of diversity and complexity. Such analyses reveal that diverse and
complex queries induce high alignment performance through SFT. Following this insight, we propose
a data selector based on INSTAG, including a complexity-first diverse sampling method that can
extract the most complex queries in a diverse distribution. LLMs fine-tuned with data selected by the
INSTAG selector perform well on the popular benchmark MT-Bench (Zheng et al., 2023), supporting
our previous query distribution insights.

The contributions of this work are mainly three-fold. Firstly, we propose using open-set fine-grained
intention tags as instruction diversity and complexity metrics. To this end, we develop INSTAG, an
automated annotator that leverages the instruction-following abilities of proprietary chatbots and
employs tag normalization methods. Secondly, we analyze existing open-source SFT datasets and
provide insights into query diversity and complexity. Finally, we design a data selector based on
INSTAG and apply it to the latest open-source datasets. The resulting best LLMs, TAGLM-13b-v1.0
and TAGLM-13b-v2.0 respectively based on LLaMA (Touvron et al., 2023a) and LLaMA-2 (Touvron
et al., 2023b), trained with selected data achieve scores of 6.44 and 6.55 on the benchmark MT-Bench,
respectively, surpassing a group of LLMs aligned with considerably more SFT data. Our contributions
are verified with rich experiments and multifaceted analysis. Most notably, INSTAG exhibits its
robust potential to offer deeper insights into LLMs alignment, extending beyond the data selection
introduced in our work.

2 Related Works

LLMs with Human Alignment. Through supervised fine-tuning (SFT), rejection sampling, or
reinforcement learning (Ouyang et al., 2022; Bai et al., 2022a,b; Yuan et al., 2023b; Rafailov
et al., 2023; Song et al., 2023; Touvron et al., 2023b), LLMs can obtain versatile abilities for
understanding and following diversified human queries expressed in natural languages, aligning with
human intentions. Recent research mainly focused on SFT to align LLMs with human intentions
and has contributed essential practices to developing open-sourced well-aligned LLMs, which is
adequately summarized by Zhao et al. (2023). Several prominent works collected SFT data through
human annotated demonstrations (Ouyang et al., 2022; Touvron et al., 2023b), online user logs
of proprietary LLMs (Chiang et al., 2023; Wang et al., 2023a; Köpf et al., 2023), or prompting
proprietary high-performing LLMs (OpenAI, 2023) to generate or rewrite samples (Taori et al. 2023;
Ding et al. 2023; Xu et al. 2023a; Mukherjee et al. 2023; inter alia). Different LLMs fine-tuned on the
datasets have aligned with human preference and exhibited good performance in various real-world
tasks.

Data for Human Alignment. It has been highlighted that the performance of aligned LLMs is
affected by the quality of the SFT data. Such data quality pertains to the level of responses (Peng et al.,

2



Write flask routes 
for blog posts that 
implement CRUD. Use 
flask-sqlalchemy. 
The incoming and 
outgoing data 
should be in JSON. 
Use appropriate 
error handling and 
return status codes

…

Add the necessary 
try except blocks 
to the above code.

…

Web Development
The instruction is about writing flask routes for 
blog posts, which indicates a web development task.

CRUD operation
The instruction mentions implementing CRUD (Create, 
Read, Update, Delete) operations, which suggests 
managing data in a database.

JSON data format
The instruction requests incoming and outgoing data 
to be in JSON format, indicating the use of JSON 
for data manipulation.

Error Handling
The instruction calls for appropriate error 
handling, suggesting the implementation of error 
handling mechanisms.

Code Modification
The instruction calls for appropriate error 
handling, suggesting the implementation of error 
handling mechanisms.

ShareGPT

Can you also provide 
some examples of 
specific telemedicine 
platforms that 
healthcare providers 
commonly use?

…

Can you please add 
some statistics on 
how many patients 
have utilized 
telemedicine 
services during the 
pandemic and how 
many of them were 
satisfied with it?

…

Information Request
The user is asking for specific examples of 
telemedicine platforms.

Technology
The user is inquiring about the technological aspects 
of telemedicine platforms.

Healthcare
The user wants information specifically related to 
healthcare providers and their use of telemedicine 
platforms.

Statistical Analysis
This tag refers to the intention of requesting the 
addition of statistical information on the 
utilization of telemedicine services during the 
pandemic and the satisfaction levels of patients.

Research Request
This tag indicates the intention of requesting 
specific data or information to support an argument 
or statement.

UltraChat

Open-source Dataset
ShareGPT
UltraChat

WizardLM
Alpaca

Dolly
FLAN

OpenChat
MATH

DMCC
LIMA …

Open Tagging

Tag Normalization

Frequency Filtering

Rule Aggregation

Semantic Aggregation

Association Aggregation

Quality Evaluation

Precision

Consistency

HumanLLM

Annotators Metrics

Figure 1: Overview of INSTAG. We use ChatGPT to annotate fine-grained tags for a series of
open-source datasets. This figure presents two cases of open tagging annotations from ShareGPT
and UltraChat. A tag normalization, including multiple denoising and aggregation methods, is then
applied to the original tagging results. Finally, the quality of the tag set, as shown in the word cloud,
is evaluated by human and LLM annotators, focusing on the tagging precision and consistency.

2023; Chiang et al., 2023), the difficulty of tasks presented (Mukherjee et al., 2023), the complexity
of queries (Xu et al., 2023a), the diversity of semantics (Ding et al., 2023; Taori et al., 2023), and the
scale of sample amounts (Zhou et al., 2023). Taori et al. (2023) used Self-Instruct (Wang et al., 2023c)
to generate diversified queries for SFT and Xu et al. (2023a) proposed Evol-Instruct to complexify
simple queries for better human alignment. Mukherjee et al. (2023) used proprietary high-performing
LLMs to rewrite the queries and responses of samples from FLAN collection (Longpre et al., 2023)
and observed improvement of LLMs in conventional NLP task solving. Ding et al. (2023) proposed
UltraChat using manually designed diverse anchor concepts and entities to generate multi-turn data
by inducing conversations in ChatGPT. OpenChat (Wang et al., 2023a) and Vicuna (Chiang et al.,
2023) are both current open-sourced LLMs with cutting-edge instruction following abilities, and
both models are trained on the user logs of GPT-4 from ShareGPT. As evaluated in Wang et al.
(2023b), the success of fine-tuning on ShareGPT demonstrates that queries from user logs are of
higher diversity and the responses generated from GPT-4 are of better quality, resulting in superior
instruction following the abilities. Zhou et al. (2023) found that a small amount of high-quality data
is sufficient for LLMs to excel at human alignment.

Although current research proposed more diversified and complex SFT data and made significant
progress in developing well-aligned LLMs with human intentions, existing works have yet to discuss
how to quantify the diversity and complexity of queries. Taking advantage of the high-performing
ChatGPT, we annotate existing data samples with tags. We quantify the diversity and complexity of
the training data for the first time and study the data mixture for better alignment.

3 InsTag

This section presents an automatic instruction tagging method INSTAG and its preliminary analyses.
We first define fine-grained intention tags and present the open tagging process with LLMs (§3.1).
Then, we design a systematic normalization method to denoise the raw tags from previous anno-
tations (§3.2). We also fully evaluate the tagging quality to ensure INSTAG generates precise and
consistent intention tags (§3.3). Finally, we use INSTAG to analyze open-source SFT datsets (§3.4).
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Table 1: Inconsistency in intention tagging results from open-set annotations. Inconsistencies can be
addressed with three aggregation methods described in §3.2.

Inconsistency Examples Output

Lexical Noise
Rule Aggregation

Information Retrieval, information_retrieval, in-
fomation retrieve information retrieval

Uncontrolled Granularity
Semantic Aggregation

information request, request for information, re-
quest for additional information, request for
more information, additional information re-
quest, specific information request

information request

Spurious Correlations
Association Aggregation

(mathematics, math problem), (loop, for loop) mathematics, for loop

3.1 Open-set Fine-grained Tagging

Instructions, or queries in prompting modern chatbots, serve as expressions of user intentions, which
can often be multifaceted and highly intricate. To illustrate, we showcase an instruction from the
ShareGPT dataset in Fig. 1, where the user submits a coding request specifying desired output
formats and error-handling methods. To better parse such instructions, employing fine-grained tags to
identify fine-grained intentions rather than relying on generalized, coarse-grained classes is essential.
However, although fine-grained intention tags offer a more detailed understanding of instruction
distribution, they also present challenges in annotation and normalization. Therefore, we propose an
open-set tagging with ChatGPT without providing a predefined ontology of tags and a normalization
technique to address these issues. We prefer an open setting since a closed set is not flexible enough
to cover versatile intentions in open chatting. Our prompt for tagging is shown in Tab. 5. We provide
few-shot examples in the prompt to hint ChatGPT to provide tags in a specific JSON format for
accurate parsing. As shown in Fig. 1, we separately annotate each query in a chat session and require
ChatGPT to explain tags for the convenience of quality evaluation briefly.

3.2 Tag Normalization

The production of intention tags through ChatGPT in an open setting presents a challenge in ensuring
consistency, as no predefined ontology is provided, resulting in noise in the raw tagging outcomes.
The number of original raw tags for open-sourced datasets is over 12,000, showing ChatGPT can
provide diverse and fine-grained annotations. However, we notice the original tagging results contain
noticeable noises, including inconsistent word format and granularity. Therefore, we design a
systematic method to normalize the open-set tagging results. We have identified three significant
types of noise, detailed in Tab. 1: Lexical Noise, arises from the instability of ChatGPT in adhering
to output format instructions and can be mitigated through stemming as a post-processing step;
Uncontrolled Granularity refers to the potential for ChatGPT to produce overly specific tags;
Spurious Correlations refer to tags that often appear together due to the bias of ChatGPT or data
distributions. Such tag groups should be merged to form an atomic tag. These issues must be
addressed to ensure that intentions are accurately identified and utilized in downstream processes.
Therefore, we normalize open-set tagging results by various aspects, including frequency, format,
semantics, and associations. Specifically, we clean the raw tagging results with the following
normalization procedure:

• Frequency Filtering: We first filter out long-tail tags appearing less than α times in the whole
annotated dataset. α is a hyperparameter related to the scale of the dataset.

• Rule Aggregation: We transform all tags into lower characters to avoid the influence of capitaliza-
tion and replace all special characters with spaces. Finally, we apply stemming to each tag with the
support of NLTK (Bird et al., 2009).

• Semantic Aggregation: We employ text embedding models to obtain the semantics of tags. We
use PHRASEBERT (Wang et al., 2021), a BERT-based model designed explicitly for embed-
ding phrases, such as titles of tags. Other embedding methods, such as OpenAI embeddings or
DENSEPHRASE (Lee et al., 2020), can also be adopted as alternatives. After obtaining the semantic
embeddings of tags, we use DBSCAN algorithm (Hahsler et al., 2019) to cluster tags with a given
threshold t of semantic similarity. Similarly, other density clustering methods can be used instead
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Table 2: Evaluation for the tagging quality of INSTAG. We design two metrics, tagging precision
and consistency, for evaluating INSTAG. Moreover, we also employ three human annotators to
annotate 1% cases and report their majority voting. We report agreement between human annotators
in Fleiss-kappa scores and agreement between majority voting and GPT-4 in Cohen’s kappa scores.

Metric GPT-4 Annotation Human Annotation (1%) Agreement (κ)
Human-Human Human-GPT

Tag Precision 96.1 100 0.47 0.92
Tag Consistency 86.6 100 0.73 0.75

of DBSCAN for the same denoising purpose. Semantic aggregation controls the granularity of
tags in terms of semantic similarities.

• Association Aggregation: We notice ChatGPT tends to provide highly associated tags that are
expected to be considered as an atomic tag as a whole, mainly occurring in mathematics and coding
queries. Therefore, we analyze all raw tagging results and employ the FP-Growth algorithm (Han
et al., 2000) to mine association rules between tags. We then recursively merge associated tags
based on the above association rules and reduce verbosity.

We apply INSTAG on 17 widely-used open-source SFT datasets introduced in Appx. §D. Over 100
thousand original unique tags are generated following the ChatGPT annotation. To filter out long-tail
cases, we implement Frequency Filtering with α = 20, resulting in the retention of 8,541 tags. We
apply the rule aggregation to address lexical noise, which reduces tags to 7,157. Then, semantic
aggregation with a minimum semantic similarity 0.05 reduces the count to 6,587 tags. Finally,
we employed the association aggregation with a minimum support of 40 times and a minimum
confidence of 99%, producing 1,772 association rules to transform tag groups into atomic tags. These
measures were essential in streamlining the tagging process and ensuring the quality of downstream
processes. An overview of frequent tags is in Appx. §B. We also train a local specialized tagging
LLM, INSTAGGER, to distill such annotation abilities into smaller LLMs, shown in §5.

3.3 Quality Evaluation

We employ both GPT-4 and human annotators to provide judgments in tagging quality. The quality
of the normalized tagging dataset is evaluated in precision and consistency:

• Precision Precision is whether tags assigned to a specific query correctly relate to query intentions.
Tag precision is essential since fine-grained tags should be precisely expressed as part of query
intentions. For example, given a case (q, T ) where q is the query and T is tags assigned to it, we
employ annotators to identify any incorrect tags in T . We consider it a negative case if any tag in
T is annotated as incorrect. Otherwise, it is a precise tagging case.

• Consistency To form a consistent tag ontology, we naturally require that the semantics of a specific
tag will not shift across queries. An annotation case in consistency (t, I) contains a tag t and a set
of randomly selected instructions I annotated with such tag. Annotators are required to identify
any semantic changes in tags across all instructions.

Specifically, we randomly sample 4,000 cases for GPT-4 annotation, 2,000 each for precision and
consistency. Then, we hire three annotators to manually label 40 cases (1%) selected from the
above set. Manual annotations provide judgments and reveal confidence of GPT-4 annotation. The
evaluation results are shown in Tab. 2. GPT-4 provides 96.1% and 86.6% accuracy in tag precision
and consistency, respectively. Meanwhile, we also report the majority voting of human annotators,
which suggests a hundred percent correctness among both tasks. We notice the Fleiss-kappa between
human annotators reaches the basic agreement. In contrast, Cohen’s kappa between majority voting
and GPT-4 reaches more than 0.7, suggesting a solid agreement between human and GPT-4 annotators.
To eliminate the possibility that such results contain robust false positive annotations, we specifically
design counterfactual annotation experiments shown in Tab. 9 and proof that both human and GPT-4
are capable of precisely recalling incorrect cases. Therefore, tags provided by INSTAG are of good
quality regarding precision and consistency for downstream analyses.
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Figure 2: Open-source SFT dataset analysis based on tags. Fig. 2a shows diversities and complexities
based on tags, where data scales are marked in sizes, and model performance on AlpacaEval are
marked in colors. Datasets without AlpacaEval scores are marked in circles. Fig. 2b displays
correlations among SFT datasets based on the recalls of tags. Annotations are the ratio using unique
dataset tags in the column that recalls the dataset tags in the row.
3.4 Preliminary Analysis

We present the analysis of open-source datasets through normalized tags in Fig. 2. To start with, we
introduce the diversity and complexity attributes of SFT datasets induced by tagging results:

• Diversity is used to access the range of intentions and semantics covered by queries in a dataset.
According to the tagging results, a dataset is considered more diverse if it covers more individual
tags. The attribute is quantified as the unique tag coverage rate for the overall tag set.

• Complexity aims to measure the number of intentions complicating queries. We assume a more
complex query would be assigned more tags. The attribute is quantified as the average tag number
assigned to queries in a dataset.

We first depict the overall assessments regarding the axis of diversity and complexity as shown
in Fig. 2a. Each dataset is represented as a dot whose size indicates the sample size, and color
indicates the performance of LLMs fine-tuned thereon and tested on AlpacaEval (Li et al., 2023).
As shown, (1) Tag-based metrics well presents diversity and complexity. WizardLM (Alpaca)
is created by complicating the queries from Alpaca datasets using Evol-Instrcut (Xu et al., 2023a).
We can see that WizardLM (Alpaca) has a larger coverage rate and average tag number than the
Alpaca dataset. This observation demonstrates the complexity and diversity of an SFT dataset can
be well quantified by tags. (2) The larger size, the more diverse and more complex. On both
axes, the larger datasets naturally contain human queries of higher diversity and complexity, except
for mathematical reasoning and code generation. (3) Math and Code show different trends. The
datasets for mathematical reasoning (MATH (Hendrycks et al., 2021), GSM8K (Cobbe et al., 2021))
and code generation (DMCC (Li et al., 2022), MBPP (Austin et al., 2021), DrRepair (Yasunaga &
Liang, 2020)) focus on specific downstream abilities and result in low diversity, while such datasets
have relatively high complexity. (4) Diverse and complex data induces higher performance.
ShareGPT, UltraChat (Ding et al., 2023), and OpenChat-v1 (Wang et al., 2023a) datasets lay at the
upper-right corner of Fig. 2a, having both high diversity and complexity. Vicuna (Chiang et al., 2023),
UltraChat, and Openchat, respectively fine-tuned on the datasets, achieve cutting-edge performance
among open-sourced models aligning with human preference, as evaluated by public leaderboards
(e.g., AlpacaEval). This scenario verifies that LLMs can benefit from fine-tuning more diverse and
complex data for alignment.

We display the correlations between datasets regarding tag recalls to understand the correlations
between open-source SFT datasets. As depicted in Fig. 2b, we use the tag sets of the datasets on
each column to calculate the recall to the tag sets of the datasets on each row. We can conclude
from the figure that (1) Tags can identify different tasks. Datasets for mathematical reasoning and
code generation tasks exhibit higher tag recalls within the tasks. This demonstrates that the tags
can identify the uniqueness of mathematical reasoning and code generation datasets compared to
more general-purpose datasets. (2) Few cover all. WizardLM (Alpaca), WizardLM (ShareGPT),
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UltraChat, and ShareGPT have higher tag recalls for other datasets. These four datasets contain more
diversified queries and cover other datasets, consistent with the results in Fig. 2a.

Overall, INSTAG provides a tool for analyzing SFT datasets through the perspective of tagging.
Existing SFT datasets differ in diversity and complexity as evaluated by the tagging results. However,
we also notice two outliers in these figures. The dataset for Alpaca seems to have a large data size
while resulting inferior performance and low complexity. The dataset for OpenChat-v1 is filtered
from ShareGPT, resulting in high query diversity and complexity while having only 8K multi-turn
conversations, which suggests a considerably small data scale with high query complexity and
diversity can potentially result in better performance. We give more analysis on data size in §4.3.

4 INSTAG for Data Selection

As analyses in §3.4, we notice fine-tuning LLMs on more diverse and complex datasets may benefit
alignment performance. Therefore, we present a data selection method supported by INSTAG in this
section and align LLMs with selected data to show the effectiveness of INSTAG. We introduced
experimental setup (§4.1), results (§4.2), and analyses related to query diversity and complexity (§4.3).

4.1 Experimental Setup

Data Pool. Based on the normalized tagging results and the preliminary analyses of open-source
datasets as presented in Figure 2, we conduct fine-grained experiments to discuss the impact of data
complexity and diversity through controlling-for-a-variable methods. Under the correlation analyses
in Figure 2b, each dataset of WizardLM(Alpaca), WizardLM(ShareGPT), UltraChat, and ShareGPT
maintains large tag recalls regarding other datasets. The four datasets also have the largest average
tag numbers shown in Figure 2a. These results indicate that the four datasets have high coverage for
other datasets regarding tags. Therefore, we pool the four datasets and create different subsets for
data complexity and diversity analysis. The pooled dataset contains 306,044 samples with a tag set
size 6,398 and an average tag number of 4.48. Detailed datasets are in Appx. §D.

Table 3: Main results of TAGLM. Standard deviations are
derived under three GPT-4 judgments and obtain results
for other baselines from the official MT-Bench leaderboard.
Dashes in the data column denote unknown data sizes. De-
tailed results are presented in Tab. 8.

Model Data Size MT-Bench

Proprietary Models

GPT-4 − 8.99
GPT-3.5-turbo − 7.94
Claude-v1 − 7.90

LLaMA-2 Based Open-source Models

Llama-2-13b-chat (Touvron et al., 2023b) − 6.65
TAGLM-13b-v2.0 6K 6.55±0.02

LLaMA Based Open-source Models

Alpaca-13b (Taori et al., 2023) 52K 4.53
OpenChat-13b-v1 (Wang et al., 2023a) 8K 5.22
Baize-v2-13b (Xu et al., 2023b) 56K 5.75
Vicuna-13b-v1.1 (Chiang et al., 2023) 70K 6.31
WizardLM-13b (Xu et al., 2023a) 70K 6.35
Vicuna-13b-v1.3 (Chiang et al., 2023) 125K 6.39
TAGLM-13b-v1.0 6K 6.44±0.04

Configuration. We use the dataset of
6K samples to align the 13B version
of LLaMA (Touvron et al., 2023a)
and LLaMA-2 (Touvron et al., 2023b)
with human preference via SFT, and
dub both aligned LLMs TAGLM-13b-
v1.0 and TAGLM-13b-v2.0 respec-
tively. All the models fine-tuned in
the following analyses are based on
13B version LLMs of either LLaMA
(Touvron et al., 2023a) or LLaMA-2
(Touvron et al., 2023b). If not speci-
fied otherwise, we fine-tune the model
for five epochs with the batch size
set to 128 and the learning rate set to
2× 10−5. The Vicuna-style template
is applied to concatenate queries and
responses during fine-tuning. We eval-
uate each fine-tuned model on MT-
Bench (Zheng et al., 2023) strictly
following its recipe using GPT4 as a
judge to demonstrate the alignment
performance, set comparison to other
LLMs, and conduct analyses.

Data Sampling. LLMs can benefit from datasets with higher diversity and complexity according
to the analyses in §3.4. We sample a data subset of 6K samples from the pooled dataset with the
highest sample complexity of an average tag number 16.56 and tag coverage of 100%. We propose
Complexity-first Diverse Sampling (Cf-D, Alg. 1) to obtain the datasets.
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Figure 3: Analysis results of model performance in terms of different tag complexities and diversities.
Fig. 3a shows MT-Bench scores over different tag complexities defined as an average number of tags
per session. Fig. 3b shows scores over different tag diversities defined as coverage rates over all tags.
We include a random baseline in both figures as shown in red triangles.

Baselines. We compare our models to two sets of baselines. We first use proprietary GPT-4, GPT-3.5,
and Claude-V1 as strong state-of-the-art baselines, and then include strong cutting-edge open-sourced
aligned LLMs, Vicuna (Chiang et al., 2023), WizardLM (Xu et al., 2023a), Baize (Xu et al., 2023b),
OpenChat (Wang et al., 2023a), and Alpaca (Taori et al., 2023). Detailed introductions to baselines
are left to Appx. §E.

4.2 Results

As shown in Tab. 3, TAGLM-13b-v1.0 outperforms all the open-sourced aligned LLMs, achieving a
6.44 average score on MT-Bench, although it is only fine-tuned based on LLaMA on 6K samples,
far less than those of other LLMs. We report the average of three GPT-4 judgments and provide the
standard deviation of scores as we notice randomness in GPT-4 judgments. This result illustrates
that diversity and complexity matter in human alignment by SFT. Our INSTAG provides a decent
tool for accessing and quantifying both attributes. TAGLM-13b-v2.0 fine-tuned based on LLaMA-2
achieves even higher results while lagging behind LLaMA-2-chat by only 0.1, which is aligned with
human preference via RLHF. Compared to proprietary high-performing LLMs, especially GPT-4, the
performance falls behind on MT-Bench. We also present more detailed results on MT-Bench in terms
of eight tasks in Appx. §F.

4.3 Decoupled Analysis

Table 4: Results for different SFT data
sizes and sampling procedures. Cf-D
represents the complexity-first diverse
sampling in Alg. 1.

Selection Data Size MT-Bench

Cf-D

3K 5.92
5K 6.33
6K 6.44

10K 6.34
16K 6.31

Random
6K 5.76

10K 6.27
153K(half) 6.23

- 306K(all) 6.21

We primarily discuss how SFT data size relates to the
alignment performance and give an ablation study on the
sampling procedure according to tags. The results are
shown in Tab. 4. Using the sampling procedure in Alg. 1,
the alignment performance achieves the best score with 6K
data, and the performance degrades when the data size in-
creases to 10K and 16K. As compared to SFT with all and
half of the whole pooled data, the performance remains
superior. These results empirically verified there exists a
small-scale subset with high diversity and complexity that
can lead to excellent alignment performance. The finding
is consistent with LIMA (Zhou et al., 2023). Comparing
Alg. 1 to random sampling with the same 6K samples, the
proposed sampling procedure results in significantly better
performance than random sampling, largely surpassing by
0.68 on MT-Bench.

We then provide decoupled analyses of complexity and diversity to demonstrate how they influence
alignment performance given the same SFT data size.
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Complexity. To decouple and focus on the data complexity, we sample different data subsets of
diverse averaged tag numbers. Different sampled subsets share the same sample size of 6k and have
the same tag coverage of 100%, implying the largest data diversity. In the sampling procedure, all the
data samples are first sorted by the tag numbers in descending order. Then for each data subset, we
start from the sample in the whole dataset with the largest tag number. The sample that can expand
the tag set size of the current sampled data will be extracted and removed from the whole dataset.
If the tag set of the current sampled subset covers the whole tag set and the sample number is still
less than 6k, we repeat the sampling procedure until the sample numbers reach 6k. This sampling
procedure is similar to Alg. 1. We leave the detailed sampling algorithm for complexity analysis in
Appx. §G.

We sample 10 different data subsets, and the average tag numbers of the subsets range from 6.7
to 16.6. As shown in Figure 3a, the overall performance trend on MT-Bench is increasing along
with the growth of average tag numbers. This trend may not be significant on the fine-grained level
of average tag numbers where the number difference between subsets is small. Compared to the
randomly sampled datasets, the average tag number of around 4.5, all the 10 data subsets can lead to
superior fine-tuned model performance than the randomly sampled subset baseline. To summarize,
on a coarse-grained level of data complexity, the downstream performance is positively correlated
to the average tag number, while on a fine-grained level, such a phenomenon becomes less evident.
This may be partly because ChatGPT does not recall all the possible tags for each query, or some tags
are filtered out during the tag normalization procedure, resulting in a less accurate tag number.

Diversity. For diversity, we sample different data subsets spanning various tag coverage rates
regarding the whole tag set. Different subsets share the same sample scale of 6k and the same average
tag number, implying the same data complexity. The average tag number is set to 5.0. For data subset
sampling, we first draw samples that can expand the tag set size of the current sampled data until the
target tag coverage rate. Then, we traverse the remaining samples and extract samples that do not
expand the tag coverage and can keep the current average tag number of the subset around 5.0. We
leave the detailed sampling algorithm for diversity analysis in Appx. §G.

We can observe in Figure 3b that as the tag coverage increases, the fine-tuned model can achieve
higher MT-Bench scores. Randomly sampled data subsets of tag coverage 71.9% result in similar
model performance with the sampled subset of tag coverage 70%. This demonstrates that the fine-
tuned models may benefit from the more diverse datasets through the scope of tags. The trend is not
strictly linear, and there seems to be a plateau ranging from 50% to 90% coverage. This could be
due to the tags assigned may not share the sample importance for diversity; for example, the tags
software development may be semantically closer with C programming than information retrieval.

5 INSTAGGER: Local Tagger by Distillation

As fine-grained tags benefit SFT data selection and other downstream applications, we naturally
propose INSTAGGER, which is equipped with the tagging ability of these high-performing chatbots
by distillation of denoised tagging results. Distilling is an effective method to inject a smaller model
with specialized abilities, which has been applied to mathematical reasoning abilities recently (Fu
et al., 2023). We use our INSTAG results on open-sourced SFT datasets to fine-tune a 7B version
LLaMA-2 model. We use the following template to concatenate queries to tag and tagging results:

You are a helpful assistant. Please identify tags of user intentions in the following user query and explain
each tag. Please respond in the JSON format {“tag”: str, “explanation”: str}. Query: <query-to-tag>
Assistant: <tagging-results>

We also include the explanation in the tagging results to make the fine-tuned model obtain better
tagging performance. The overall sample size for fine-tuning is 773,511, where we randomly sample
1,000 samples for validation. The model is fine-tuned with 512 batch size for one epoch since we
empirically find that training for more than one epoch will lead to over-fitting.

We validate the model on our validation set. The tag-level F1 score based on exact match (EM)
and semantic-based fuzzy match are 31.8% and 73.4%. As this is an unconstrained open-generated
tagging, EM is a rigorous metric for annotating over six thousand tags. Therefore, we also calculate

9



the fuzzy match by PhraseBERT, which considers a predicted tag is correct if it has over 0.8 cosine
similarity in semantics with any gold tag.

6 Conclusion
In this paper, we introduced INSTAG, an open-set tagging method leveraging the instruction-following
ability of ChatGPT for SFT data analysis. We apply INSTAG on open-source SFT datasets, showing
diverse and complex data leads to better alignment performance. We designed a complexity-first
diverse sampling method to select 6K samples, and TAGLM fine-tuned on this selected dataset
outperforms other open-source models aligned with considerably more data. Moreover, further
decoupled analyses revealed that model performance increases with fine-tuning on more diverse
and complex SFT data, respectively. In summary, our proposed INSTAG provides a novel aspect
for a deeper understanding of query distribution in the alignment of LLMs. It has robust potential
to be extended to more applications beyond the data selection shown in this work, such as creating
comprehensive evaluations and tag-based self-instruct.
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Figure 4: The sunburst plot of all tags. We plot with the first two words of each tag and the size is
proportional to the frequency of the tag.

Appendix

A Limitations

Our conclusions mainly rely on MT-Bench for model evaluations, which may miss some influence
caused by SFT data. Besides, we notice MT-Bench shows instabilities in terms of the randomness
of GPT-4 judgments, so we provide random ablations as comprehensive as possible to show the
statistical significance of our results, including reporting standard variance of MT-Bench scores.
Furthermore, our analysis of SFT datasets is mainly focused on English, so our claims may not be
directly extended to multi-lingual scenarios.

B Tag Review

We present a sunburst plot of all tags in Fig. 4 showing the most frequent tags is about information-
related, data manipulations, and coding queries. We plot with the first two words of each tag and the
size is proportional to the frequency of the tag. We only plot with tags that have frequencies larger
than 2000 in our data pool.

C Prompt templates for ChatGPT

We preset our prompt for ChatGPT for annotation (Tab. 5), precision evaluation (Tab. 6), and
consistency evaluation (Tab. 7).

D Datasets

We apply INSTAG to 17 open-source SFT datasets for intention tagging:
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Table 5: ChatGPT prompt template for annotating intention tags of given queries.
You are a tagging system that provides useful tags for instruction intentions to
distinguish instructions for a helpful AI assistant. Below is an instruction:
[begin]
{instruction}
[end]
Please provide coarse-grained tags, such as “Spelling and Grammar Check”
and “Cosplay”, to identify main intentions of above instruction. Your answer
should be a list including titles of tags and a brief explanation of each tag. Your
response have to strictly follow this JSON format: [{“tag”: str, “explanation”:
str}]. Please response in English.

Table 6: GPT-4 prompt template for evaluating tagging precision.
You are an experienced judge for intention tags of instructions. You will be
provided a query and a list of tags describing intentions of the query as followed:
[query]: {query}
{tags}
Please provide feedback about whether all tags precisely describe an intention
of the instruction. Please identify all incorrect tags and provide their indices in
the JSON format as your response. The JSON format for your response is a list
of JSON dictionary and the JSON dictionary has only one key to identify the
index of each incorrect tag: [{“idx”: int}]. For example, if [tag 0] and [tag 2] are
incorrect, you should response as [{“idx”: 0}, {“idx”, 2}]. If all tags are correct,
please response an empty list as [].

• ShareGPT4 refers to the multi-turn chatting histories used by VICUNA (Chiang et al., 2023).
ShareGPT includes human-written queries and responses from ChatGPT and other chatbots.

• OpenChat (Wang et al., 2023a) is a subset of ShareGPT containing only chat histories with GPT-4
responses.5

• UltraChat (Ding et al., 2023) is a systematically designed, diverse, informative, large-scale dataset
of multi-turn instructional conversations without involving human queries.6

• Alpaca (Taori et al., 2023) is a dataset generated by the modified SELF-INSTRUCT method (Wang
et al., 2022), containing 52,000 instruction-following demonstrations generated from OpenAI’s
text-davinci-003 model.7

• WizardLM (Xu et al., 2023a) is an instruction dataset built with the EVOL-INSTRUCT method.
EVOL-INSTRUCT utilizes ChatGPT to augment the complexity of the same queries in Alpaca and
ShareGPT. We denote these two subsets as WizardLM(Alpaca) and WizardLM(ShareGPT) for
clarification.8

• FLAN (Wei et al.) is a series of data from NLP tasks formatted in instruction tuning. The queries
in FLAN are generated by templates for each NLP task.

• Dolly (Conover et al., 2023) contains 15,000 high-quality human-generated prompt and response
pairs for instruction tuning of LLMs.

• OAssist (Köpf et al., 2023) is a crowdsourced human-annotated dataset about multi-lingual
conversations.

• Unnatural (Honovich et al., 2022) contains queries generated by prompting DAVINCI-002.
• Lima (Zhou et al., 2023) contains only 1,000 carefully human-curated prompts and responses.

4Exact dataset of ShareGPT (https://sharegpt.com/) has not been released. We instead use a
reproduced version from https://huggingface.co/datasets/anon8231489123/ShareGPT_
Vicuna_unfiltered/tree/main/HTML_cleaned_raw_dataset, and follow Vicuna preprocess.

5We use the dataset with 8,000 GPT-4 responses denoting as OpenChat v1.0 in https://huggingface.
co/datasets/openchat/openchat_sharegpt4_dataset

6https://huggingface.co/datasets/stingning/ultrachat
7We collect the Alpaca dataset along with Dolly, OAssist, and Unnatural from the sharing of Wang et al.

(2023b)https://github.com/allenai/open-instruct.
8We use the V2 version of WizardLM in https://huggingface.co/datasets/WizardLM/

WizardLM_evol_instruct_V2_196k.
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Table 7: GPT-4 prompt template for evaluating tagging consistency.
You are an experienced judge for consistency of intention tags for instructions.
You will be provided a tag and a list of instructions labeled with this tag as
followed:
[tag]: {tag}
{instructions}
Please provide feedback about whether the meaning of this tag is consistent
among all instructions. Please identify all inconsistent instructions and provide
their indices in the JSON format as your response. The JSON format for your
response is a list of JSON dictionary: [{“idx”: int}]. For example, if the meaning
of tags in [instruction 0] and [instruction 2] are inconsistent, you should response
as [{“idx”: 0}, {“idx”: 2}]. If the meaning of tag is consistent in all instructions,
please response an empty list as [].

• Math Collections: We involve a set of math datasets including GSM8K (Cobbe et al., 2021) and
MATH (Hendrycks et al., 2021) to prompt INSTAG generating fine-grained mathemetical tags.

• Code Collections: We also involve a set of code datasets including DMCC (Li et al., 2022),
MBPP (Austin et al., 2021), and DrRepair (Yasunaga & Liang, 2020) for the same purpose as
introducing mathematical datasets.

E Baseline LLMs

We give introductions to the LLM baselines for human alignment.

• Alpaca (Taori et al., 2023) is the first open-resourced LLM aligned with human preference. Alpaca
is fine-tuned on SFT data of 52K samples generated from text-davince-003 using Self-Instruct
(Wang et al., 2023c).

• WizardLM (Xu et al., 2023a) is fine-tuned on the SFT data enhanced with a novel technique
named Evol-Instruct. It complexifies the Alpaca SFT data using ChatGPT and achieves better
alignment performance.

• Vicuna (Chiang et al., 2023) is an aligned LLM fine-tuned on collected user chatting logs of
proprietary high-performing chatbots on ShareGPT.

• OpenChat (Wang et al., 2023a) is fine-tuned on a subset of ShareGPT with only the chatting logs
with GPT-4.

• Baize (Xu et al., 2023b) uses 100K dialogues generated by self-chatting of ChatGPT. It also
includes Alpaca’s data for SFT.

• LLaMA-2 Chat (Touvron et al., 2023b) differs from the above-mentioned LLMs in (1) being
based on per-trained LLaMA-2 instead of LLaMA (Touvron et al., 2023a); (2) being aligned with
human preference by both SFT and RLHF.

F Detailed MT-Bench Scores in Categories

As shown in Fig. 5 (we present our detailed number results in Tab. 8), TAGLM-13b-v1 outperforms
all other baselines on stem and extraction, and achieves comparable performances on humanities with
Vicuna, suggesting these tasks may rely on few data for alignment. TAGLM-13b-v1 ranks the second
on math, coding, and writing, but falls short on roleplay and reasoning. These detailed results show
that some tasks may require diverse but only a few alignment data, while tasks about reasoning and
writing may continually benefit from large-scale data.

G Sampling Algorithm For Decoupled Analysis

We calculate complexity and diversity with tag-based metrics described in §3.4. We first sort all
samples by the query complexity (the query tag number) and then pick distinct queries according to
tags to achieve high sample diversity (tag coverage). The selection criterion at each time is to select a
query with large tag numbers and can increase the tag set of the selected subset data. The algorithm
is detailed in Alg. 1.
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Figure 5: Radar plot showing detailed scores of TAGLM-13b-v1.0 and major baselines on eight
subtasks of MT-Bench. Detailed numbers can be viewed in Tab. 8.

Algorithm 1: Complexity-first Diverse Sampling
Data: The Whole Pooled Dataset D, Sub-Dataset Size N
Result: The Sampled Sub-Dataset Ds

1 Initialize Empty Ds;
2 Sorting Queries in D by tag number in descending;
3 while |Ds| < N do
4 Tag Set T B

s ← ∅;
5 foreach Query q ∈ D do
6 if Query Tags Tq : |T B

s ∪ Tq| > |T B
s | then

7 Ds ← Ds ∪ {q};
8 T B

s ← T B
s ∪ Tq;

9 D ← D \ {q};
10 if |Ds| equals to N then
11 Break;

12 return Ds

We present our sampling algorithm for decoupled analysis of complexity and diversity in Alg. 2 and
Alg. 3, respectively.

H Counterfactual Evaluation

To test how well annotators can evaluate tag quality, we created counterfactual cases for two tasks. In
the tag precision task, we substituted some tags with similar ones in terms of semantics. In the tag
consistency task, we used inconsistent instructions to replace the original instructions. Both humans
and GPT-4 are able to recognize most of the counterfactual cases. And humans are better at tag
precision, while GPT-4 is better at tag consistency. This analysis shows that annotators have low false
positive rates and proof confidence of their judgments in the original tagging results.
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Table 8: Main results of INSTAG. We present MT-Bench scores of both proprietary and open-source
baselines in similar scales. We also provide average scores overall categories and categories without
code and math (w/o C&M). Dashes in the data column denote unknown data scales. Parentheses
mark the three different rounds of GPT-4 judgments.

Model Data MT-Bench Scores Average
code extraction humanities math reason roleplay stem writing all w/o C&M

gpt-4 − 8.55 9.38 9.95 6.8 9.0 8.9 9.7 9.65 8.99 9.43
gpt-3.5-turbo − 6.9 8.85 9.55 6.3 5.65 8.4 8.7 9.2 7.94 8.39
claude-v1 − 6.25 8.8 9.7 4.8 5.95 8.5 9.7 9.5 7.9 8.69

Llama-2-13b-chat - 3.0 6.92 9.75 3.45 5.1 7.5 8.62 8.85 6.65 7.79
TAGLM-13b-v2.0 (1) 6K 3.75 6.5 9.55 2.1 5.3 7.95 8.5 8.75 6.55 7.76
TAGLM-13b-v2.0 (2) 6K 3.7 6.2 9.52 2.15 5.35 8.1 8.4 8.95 6.55 7.75
TAGLM-13b-v2.0 (3) 6K 3.4 7.35 9.6 2.15 5.9 7.45 8.28 8.0 6.52 7.76

TAGLM-v1.0-13b (1) 6K 3.8 6.45 9.55 3.0 4.9 6.9 8.75 8.55 6.49 7.52
TAGLM-v1.0-13b (2) 6K 3.45 6.35 9.65 2.95 4.95 7.15 8.65 8.5 6.46 7.54
TAGLM-v1.0-13b (3) 6K 3.4 6.45 9.45 2.85 5.05 7.05 8.43 8.4 6.38 7.47
vicuna-13b-v1.3 125K 3.25 5.55 9.45 2.6 5.85 7.18 7.98 9.25 6.39 7.54
vicuna-13b-v1.1 70K 2.95 6.4 9.45 2.9 4.65 7.5 8.55 8.05 6.31 7.43
wizardlm-13b 70K 4.0 4.9 9.7 3.75 5.25 7.4 7.7 8.12 6.35 7.18
baize-v2-13b 56K 3.0 4.6 9.02 1.8 5.4 6.8 7.72 7.65 5.75 6.87
nous-hermes-13b 300K 2.45 5.05 9.0 2.65 3.8 6.38 7.02 7.75 5.51 6.5
gpt4all-13b-snoozy 900K 3.0 4.8 8.85 1.2 4.2 7.0 6.9 7.35 5.41 6.52
koala-13b 472K 2.9 4.15 8.45 1.9 4.0 6.85 7.2 7.35 5.35 6.33
openchat-13b-v1 8K 2.35 3.3 9.07 2.0 2.75 7.55 7.7 7.05 5.22 6.24
alpaca-13b 52K 2.35 4.15 7.85 1.05 3.5 5.45 5.2 6.7 4.53 5.48

I Case from INSTAG

We present a sample case in Tab. 10 to illustrate the behavior of INSTAG.
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Algorithm 2: Data Sampling for Complexity Analysis
Data: The Whole Pooled Dataset D

1 , Subset Size N Result: The Sampled Sub-Dataset of Different Complexity
D = {Di

c|i = 1, . . . , n}
2 Sorting Queries in D by tag number in descending;
3 Initialize D = list();
4 foreach i in {1, . . . , n} do
5 Initialize Empty Di

c;
6 while |Di

c| < N do
7 Tag Set T B

c ← ∅;
8 foreach Query q ∈ D do
9 if Query Tags Tq : |T B

c ∪ Tq| > |T B
c | then

10 Di
c ← Di

c ∪ {q};
11 T B

c ← T B
c ∪ Tq;

12 D ← D \ {q};
13 if |Di

c| = N then
14 D← D appends Di

c;
15 Break;

16 return D

Algorithm 3: Data Sampling for Diversity Analysis

Data: The Whole Pooled Dataset D, Preset Coverage RateR = {ri|i = 1, . . . , n}
1 , Subset Size N Result: The Sampled Sub-Dataset of Different Diversity

D = {Dri
d |i = 1, . . . , n}

2 Initialize D = list();
3 foreach i in {1, . . . , n} do
4 Initialize Empty Dri

d ← ∅;
5 Tag Set Td ← ∅;
6 foreach Query q ∈ D do
7 if Query Tags Tq : |Td ∪ Tq| > |Td| then
8 Dri

d ← D
ri
d ∪ {q};

9 Td ← Td ∪ Tq;
10 D ← D \ {q};
11 if |Td|/|T | > ri then
12 Break;

13 while |Dri
d | < N do

14 foreach Query q ∈ D do
15 if Query Tags Tq : |Td ∪ Tq| = |Td| then
16 Dri

d ← D
ri
d ∪ {q};

17 D ← D \ {q};
18 if |Dri

d | = N then
19 Break;

20 D← D appends Dri
d ;

21 return D
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Table 9: Evaluation for the tagging quality of INSTAG. We design two metrics, tagging precision and
consistency, for evaluating INSTAG. We employ GPT-4 to label 4,000 tagging results. And we also
employ three human annotators to annotate 1% cases and report their majority voting. We also create
counterfactual cases to probe the judgment abilities of different annotators.

Metric GPT-4 Annotation Human Annotation (1%)
Original Counterfactual Original Counterfactual

Tag Precision 96.1 6.1 100 0
Tag Consistency 86.6 7.8 100 14.3

Table 10: One case from SFT data of WizardLM tagged by INSTAG. INSTAG accurately captures the
semantics (food, health) and intentions (recommendation, quantity) in the human query.

Sample Case
Utterance

Human: List 3 breakfast foods that are healthy.
LLM: 1.Oatmeal - it’s high in fiber, protein, and antioxidants, and can lower

cholesterol levels.
2.Greek yogurt - it’s packed with protein, calcium, and probiotics, which
support gut health.
3.Eggs - they’re rich in protein, vitamins D and B12, and minerals like
selenium, and can help you feel full longer.

INSTAG Results
Tag Explanation

food recommendation The instruction asks for a list of breakfast foods that are healthy.
quantity The instruction specifies that the list should include three breakfast foods.
health The instruction emphasizes the need for the breakfast foods to be healthy.
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