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Figure 1: EgoWorld translates a single exocentric view into an egocentric view. By leveraging rich
multimodal exocentric observations, such as projected point clouds, 3D hand poses, and textual
descriptions, EgoWorld is able to generate high-quality egocentric views, even in unseen scenarios.
Each observed modality provides complementary information that contributes to the accurate and
realistic reconstruction of the egocentric view.

ABSTRACT

Egocentric vision is essential for both human and machine visual understanding,
particularly in capturing the detailed hand-object interactions needed for manip-
ulation tasks. Translating third-person views into first-person views significantly
benefits augmented reality (AR), virtual reality (VR) and robotics applications.
However, current exocentric-to-egocentric translation methods are limited by their
dependence on 2D cues, synchronized multi-view settings, and unrealistic as-
sumptions such as the necessity of an initial egocentric frame and relative camera
poses during inference. To overcome these challenges, we introduce EgoWorld,
a novel two-stage framework that reconstructs an egocentric view from rich ex-
ocentric observations, including projected point clouds, 3D hand poses, and tex-
tual descriptions. Our approach reconstructs a point cloud from estimated exo-
centric depth maps, reprojects it into the egocentric perspective, and then applies
diffusion-based inpainting to produce dense, semantically coherent egocentric im-
ages. Evaluated on 4 datasets (i.e., H2O, TACO, Assembly101, and Ego-Exo4D),
EgoWorld achieves state-of-the-art performance and demonstrates robust general-
ization to new objects, actions, scenes, and subjects. Moreover, EgoWorld exhibits
robustness on in-the-wild examples, underscoring its practical applicability.

1 INTRODUCTION

Egocentric vision plays a crucial role in advancing visual understanding for both humans and in-
telligent systems (Ardeshir & Borji, 2018; Grauman et al., 2024; Kwon et al., 2021; Sener et al.,
2022). Egocentric views are particularly valuable for capturing detailed hand-object interactions,
which are essential in skill-intensive tasks such as cooking, assembling, or playing instruments.
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However, most existing resources are recorded from third-person perspectives, primarily due to the
limited availability of head-mounted cameras and wearable recording devices. Consequently, the
ability to generate or predict egocentric images from exocentric inputs holds significant promise
for enhancing instructional videos and applications in augmented reality (AR), virtual reality (VR),
and robotics, where perception is inherently egocentric. For example, instructional videos are often
recorded from a third-person viewpoint, which can be challenging for viewers to follow due to the
mismatched perspectives. Translating these videos into a first-person view enables more intuitive
guidance by clearly showing detailed finger placements during a task. Moreover, this translation
capability unlocks the development of robust, user-centered world models (Wong et al., 2022; Chen
et al., 2023; Gao et al., 2023) that capture the spatial and temporal details necessary for real-time
perception, planning, and interaction at scale.

Although exocentric-to-egocentric view translation holds great promise, it remains a particularly
difficult challenge in computer vision. The main obstacle stems from the substantial visual and
geometric differences between third-person and first-person views. Egocentric views focus on hands
and objects with the fine detail necessary for precise manipulation, whereas exocentric views offer
a wider context and kinematic cues but lack emphasis on these intricate interactions. Bridging these
views is fundamentally under-constrained and cannot be addressed by geometric alignment alone,
due to factors such as occlusions, restricted fields of view, and appearance changes across different
viewpoints. For instance, elements like the inner pages of a book may be completely obscured in an
exocentric perspective but still need to be realistically inferred in the egocentric output. Moreover,
reconstructing background details in the egocentric view, which are invisible from the exocentric
perspective, is a nontrivial task.

Recently, the impressive achievements of diffusion models (Rombach et al., 2022; Ho et al., 2020)
have opened up new possibilities for applying generative techniques to the task of exocentric-to-
egocentric view translation. However, many existing approaches rely on restrictive input conditions,
such as multi-view images (Liu et al., 2024a), known relative camera pose (Cheng et al., 2024), or a
reference egocentric frame to generate subsequent ones (Xu et al., 2025), making them impractical
for scenarios where only single view images are available. More closely, Exo2Ego (Luo et al.,
2024b) attempts to generate egocentric views from a single exocentric image. Yet, it depends heavily
on accurate 2D hand layout predictions for structure transformation, which can be unreliable in
cases of occlusion, viewpoint ambiguity, or cluttered environments. Furthermore, it struggles to
generalize to novel environments and objects, often overfitting to the training dataset. Overall,
current methods lack the detailed understanding of exocentric observations necessary to synthesize
precise and realistic hand-object interactions from a first-person view.

To address the limitations of current approaches, we propose EgoWorld, a novel framework for
translating exocentric views into egocentric views using rich exocentric observations, as illustrated
in Fig. 1. Our method employs a two-stage pipeline to reconstruct the egocentric view: (1) ex-
tracting diverse observations from the exocentric view, including projected point clouds, 3D hand
poses, and textual descriptions; and (2) reconstructing the egocentric view based on these extracted
cues. In the first stage, we construct a point cloud by combining the input exocentric RGB image
with a scale-aligned estimated exocentric depth map, using the 3D exocentric hand pose for spatial
calibration. This point cloud is then transformed into the egocentric view using a translation ma-
trix computed from the predicted 3D hand poses in both views. After the projection of the point
cloud, a sparse egocentric image is obtained and it is subsequently reconstructed into a dense, high-
quality egocentric image using a diffusion-based model. To further enhance the semantic alignment
and visual fidelity of the hand-object reconstruction, we incorporate the predicted exocentric text
description and estimated egocentric hand pose during the reconstruction process.

We evaluate the effectiveness of EgoWorld through extensive experiments conducted on 4 datasets
(i.e., H2O (Kwon et al., 2021), TACO (Liu et al., 2024b), Assembly101 (Sener et al., 2022), and
Ego-Exo4D (Grauman et al., 2024)), which provide well-annotated exocentric and egocentric video
pairs. Our method achieves state-of-the-art performance on these benchmarks. As a result, thanks
to its end-to-end design, EgoWorld demonstrates strong generalization across various scenarios,
including unseen objects, actions, scenes, and subjects. Furthermore, we conduct experiments on
unlabeled real-world examples, and EgoWorld shows powerful in-the-wild generalization.

Our main contributions can be summarized as follows:
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• We introduce EgoWorld, a novel end-to-end framework that reconstructs high-fidelity ego-
centric views from a single exocentric image by leveraging rich multimodal cues, including
projected point clouds, 3D hand poses, and textual descriptions.

• Our two-stage pipeline uniquely integrates geometric reasoning with semantic information
and diffusion-based inpainting that significantly enhances hand-object interaction fidelity
and semantic alignment in the synthesized egocentric images.

• We demonstrate the strong generalization capability of EgoWorld through extensive ex-
periments on H2O, TACO, Assembly101, and Ego-Exo4D benchmarks. Our approach
achieves state-of-the-art performance across diverse and previously unseen scenarios (i.e.,
unseen objects, actions, scenes, and subjects). Additionally, we show EgoWorld’s real-
world applicability with in-the-wild examples.

2 RELATED WORK

2.1 EXOCENTRIC-EGOCENTRIC TRANSLATION

Egocentric vision has also been scaling up particularly due to the introduction of benchmarks
(Damen et al., 2018; Kwon et al., 2021; Grauman et al., 2022; Damen et al., 2022; Sener et al.,
2022; Grauman et al., 2024). Recently, research on exocentric-to-egocentric (and vice versa) trans-
lation (Luo et al., 2024a;b; Cheng et al., 2024; Liu et al., 2024a; Xu et al., 2025) has also gained
significant attention. Intention-Ego2Exo (Luo et al., 2024a) proposed an intention-driven ego-to-exo
video generation framework that leverages head trajectory and action descriptions to guide content-
consistent and motion-aware video synthesis. Exo2Ego (Luo et al., 2024b) introduced a two-stage
generative framework for exocentric-to-egocentric view translation that leverages structure trans-
formation and diffusion-based hallucination with hand layout priors. 4Diff (Cheng et al., 2024)
proposed a 3D-aware diffusion model for translating exocentric images into egocentric views using
egocentric point cloud rasterization and 3D-aware rotary cross-attention. Exo2Ego-V (Liu et al.,
2024a) presented a diffusion-based method for generating egocentric videos from sparse 360° ex-
ocentric views of skilled daily-life activities, addressing challenges like viewpoint variation and
motion complexity. EgoExo-Gen (Xu et al., 2025) addressed cross-view video prediction by gen-
erating future egocentric frames from an exocentric video, the initial egocentric frame, and textual
instructions, using hand-object interaction dynamics as key guidance. However, these works have
fatal limitations: dependency of 2D layouts, pre-defined relative camera pose, multi-view or consec-
utive sequences inputs, and the challenge of integrating multiple external modalities, such as textual
description and pose map.

2.2 IMAGE COMPLETION

Image completion is a fundamental problem in computer vision, which aims to fill missing regions
with plausible contents (Pathak et al., 2016; Liu et al., 2019; Xiong et al., 2019; Song et al., 2018;
Zhao et al., 2021; Suvorov et al., 2022; Li et al., 2022). For example, MAT (Li et al., 2022) proposed
a transformer-based model for large-hole image inpainting that combines the strengths of transform-
ers and convolutions to efficiently handle high-resolution images. On the other hand, masked image
encoding methods learn representations from images corrupted by masking (Vincent et al., 2010;
Pathak et al., 2016; Chen et al., 2020; Dosovitskiy et al., 2020; Bao et al., 2021; He et al., 2022). For
example, MAE (He et al., 2022) masks random patches of an input image and learns to reconstruct
the missing regions. However, these studies have a limitation that they rely solely on the information
surrounding the pixels to restore missing area. With the advent of foundational diffusion models (Ho
et al., 2020; Song et al., 2020), it has become possible to perform image completion based on vari-
ous types of conditions. Specifically, latent diffusion model (Rombach et al., 2022) supports flexible
conditioning such as text or bounding boxes and enable high-resolution image synthesis, achieving
state-of-the-art results in inpainting, class-conditional generation, and other tasks by incorporating
cross-attention. Furthermore, the value of diffusion-based models has been demonstrated across a
wide range of challenging domains, such as hand-hand or hand-object interaction image generation
(Zhang et al., 2024; Park et al., 2024), and motion generation (Cha et al., 2024; Huang et al., 2025).
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Figure 2: Overall framework of EgoWorld. EgoWorld has a two-stage pipeline : (1) Exocentric
view observation Φexo, which extracts diverse observations from the exocentric view, including pro-
jected point clouds, 3D hand poses, and textual descriptions; and (2) egocentric view reconstruction
Φego, which reconstructs the egocentric view based on cues from the exocentric view observation.

3 METHOD

3.1 PROBLEM FORMULATION

EgoWorld consists of two stages: exocentric view observation Φexo and egocentric view recon-
struction Φego, as shown in Fig. 2. First, given a single exocentric image Iexo ∈ RH×W×3, Φexo

predicts a corresponding sparse egocentric RGB map Sego ∈ RH×W×3, 3D egocentric hand pose
Pego ∈ RN×3, and a textual description Texo. H and W indicates height and width of Iexo, and N

indicates the number of keypoints of the hand. Then, in Φego, an egocentric image Îego ∈ RH×W×3

is generated based on the observations predicted in Φexo. Therefore, EgoWorld is formulated as
follows:

Sego, Pego, Texo = Φexo(Iexo), (1)

Îego = Φego(Sego, Pego, Texo). (2)

3.2 EXOCENTRIC VIEW OBSERVATION

Exocentric view observation Φexo takes various real-world observations, such as sparse egocentric
RGB map Sego, 3D egocentric hand pose Pego, and textual description Texo, from the single exo-
centric image Iexo. These observations are essential for the egocentric view reconstruction Φego.

First, with an off-the-shelf depth estimator (Wang et al., 2025), an exocentric depth map Dexo ∈
RH×W is extracted from Iexo. Obtaining Dexo is essential, because in Φego, the reconstruction
process relies on Sego, which serves as a crucial hint. Specifically, when pixel information from an
exocentric view is transformed into an egocentric view, it provides partial observations of the hand,
object, or scene, and this serves as a strong basis for approaching the problem from an inpainting
perspective.

Next, a 3D exocentric hand pose Pexo ∈ RN×3 is extracted from Iexo with an off-the-shelf hand
pose estimator (Yu et al., 2023). As Dexo provides only relative depth and is inherently affected by
scale ambiguity, it is crucial to leverage Pexo for reasonable scale fitting. Specifically, it is possible
to extract a metrically-scaled Pexo and an exocentric hand depth map Dhand ∈ RH×W from the
estimated MANO(Romero et al., 2017)-based mesh of Pexo. We define a hand region Ωhand, which
is a pixel-level valid area determined by Dhand, and compute a global scale factor s∗ by comparing
it with Dexo as follows:

s∗ = median
(u,v)∈Ωhand

Dhand(u, v)

Dexo(u, v) + δ
, (3)

where u, v indicate the pixel coordinate of depth maps, and δ is a small constant to prevent division
by zero. Applying s∗ yields a metrically-calibrated exocentric depth map D′

exo = s∗Dexo. There-
fore, with Iexo and an exocentric camera intrinsic parameter Kexo ∈ R3×3, which is estimated from
the off-the-shelf depth estimator, D′

exo is utilized to obtain a point cloud Cexo ∈ R(H×W )×6.
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To project Cexo in the egocentric view, we need an exocentric-to-egocentric view transformation
matrix X ∈ R4×4, which can be computed through a transformation between Pexo and Pego. How-
ever, to the best of our knowledge, there is no model that predicts Pego directly from Iexo. Thus,
we build a powerful-but-simple 3D egocentric hand pose estimator ϕego, which is designed with a
simple architecture consisting of a ViT(Dosovitskiy et al., 2020)-based backbone ϕbackbone and an
MLP-based regressor ϕreg. Specifically, after extracting an image feature from Iexo with ϕbackbone,
it is fed through ϕreg to obtain Pego. We optimize ϕego with an L2 loss function.

From the obtained Pexo and Pego, we calculate X between them with the Umeyama algorithm
(Umeyama, 1991), which estimates a transformation matrix as follows:

Xego→exo = (s,R, t), such that Pexo ≈ sRPego + t. (4)
Here, s, R, and t are the estimated scale, rotation, and translation matrices. Since both Pexo and
Pego are in metric units, s is expected to be close to 1. The transformation from exocentric to
egocentric view is given by X = (Xego→exo)

−1. Therefore, we translate Cexo with X into Cego,
project it into egocentric view with an egocentric camera intrinsic parameters Kego ∈ R3×3, and
obtain the sparse egocentric RGB map Sego.

Finally, Texo is extracted with an off-the-shelf vision-language model (VLM) (Bai et al., 2023).
For example, when Iexo and a user-provided question (i.e., “Describe in detail about the scene
and the object that the person is interacting with using their hands.”) are given, VLM outputs the
corresponding answer Texo. Since Texo contains both the overall contextual information present
in the exocentric view and specific details about actions and objects, it significantly aids Φego for
reconstructing the faithful egocentric view for unseen scenarios.

3.3 EGOCENTRIC VIEW RECONSTRUCTION

Since Sego only contains partial information observed from the exocentric view, it is necessary
to reconstruct the missing regions. Thus, leveraging the powerful latent diffusion model (LDM)
(Rombach et al., 2022), we exploit exocentric observations Sego, Pego, and Texo for Φego.

Following the LDM, input images are encoded into the latent embedding using a frozen VAE en-
coder (Esser et al., 2021), and the denoised latent embedding is decoded into an output image using
the frozen VAE decoder. Specifically, we encode Sego to a sparse embedding sego ∈ R64×64×4

with VAE encoder. We obtain a 2D egocentric hand pose map P 2D
ego ∈ R512×512×3 by projecting

Pego with Kego, encode P 2D
ego to 4-channels embedding with VAE encoder, and reduce the number

of channels of 4-channels embedding to 1-channel via a channel reduction layer. This layer consists
of one convolutional layer, which inputs 4-channel embedding and outputs 1-channel embedding.
Therefore, we obtain a 1-channel pose embedding pego ∈ R64×64×1.

During training, the ground-truth egocentric image Iego ∈ R512×512×3 is also encoded to a clean
latent z0 ∈ R64×64×4 through the VAE encoder, and the noise ϵt ∈ R64×64×4 is added to z0 to make
a noisy embedding zt ∈ R64×64×4 with timestep t as follows:

zt =
√
ᾱt · z0 +

√
1− ᾱt · ϵ, ϵ ∼ N (0, I), (5)

where ᾱt denotes the noise level of t. By concatenating sego, pego, and zt, we obtain 9-channel latent
embedding z′t ∈ R64×64×9, which is fed into the input of a pre-trained U-Net. Simultaneously, a
textual description Texo is passed through CLIP (Radford et al., 2021) to obtain a text embedding
cexo ∈ R77×768, which serves as guidance for the U-Net of LDM. In this manner, the forward
and reverse processes for the denoising network ϵθ are carried out to predict ϵt with the following
objective:

L = Ez0,sego,pego,t,cexo,ϵt∥ϵt − ϵθ(z
′
t, t, cexo)∥22. (6)

During sampling, we start the denoising process from a random Gaussian noise zT ∼ N (0, I) with
well-trained ϵθ. We concatenate zT ∈ R64×64×4 with sego and pego, and feed to ϵθ to obtain the
predicted latent ẑ0 ∈ R64×64×4 by reversing the schedule in Eq. 5 at each timestep t ∈ [1, T ].
We adopt classifier-free guidance (CFG) (Ho & Salimans, 2022) to strengthen textual guidance as
follows:

ϵt = (1 + w) · ϵθ(zt, t, cexo)− w · ϵθ(zt, t,∅), (7)
where w indicates the scaling factor in CFG, and ∅ means unconditional. To the end, the final
generated egocentric image Îego is obtained from ẑ0 by passing the VAE decoder.
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Table 1: Comparisons with state-of-the-arts on unseen scenarios (i.e., objects, actions, scenes,
and subjects) in H2O (Kwon et al., 2021). Compared to state-of-the-arts (i.e., pix2pixHD (Wang
et al., 2018), pixelNeRF (Yu et al., 2021), and CFLD (Lu et al., 2024)), EgoWorld outperforms for
all unseen scenarios in all metrics (i.e., FID, PSNR, SSIM, and LPIPS).

Scenarios Unseen Objects Unseen Actions Unseen Scenes Unseen Subjects
Methods FID↓ PSNR↑ SSIM↑ LPIPS↓ FID↓ PSNR↑ SSIM↑ LPIPS↓ FID↓ PSNR↑ SSIM↑ LPIPS↓ FID↓ PSNR↑ SSIM↑ LPIPS↓
pix2pixHD (Wang et al., 2018) 436.25 25.012 0.2993 0.6057 211.10 24.420 0.2854 0.6127 490.32 18.567 0.2425 0.7290 452.13 18.172 0.3310 0.7234
pixelNeRF (Yu et al., 2021) 498.23 26.557 0.3887 0.5372 251.76 27.061 0.3950 0.8159 489.13 26.537 0.2574 0.7143 493.13 22.636 0.4135 0.6838
CFLD (Lu et al., 2024) 59.615 25.922 0.4307 0.4539 50.953 28.529 0.4324 0.4593 118.10 29.030 0.3696 0.6841 129.30 21.050 0.4001 0.6269
EgoWorld (Ours) 41.334 31.171 0.4814 0.3476 33.284 31.620 0.4566 0.3780 90.893 31.004 0.4096 0.6519 96.429 24.851 0.4605 0.6188

Table 2: Comparisons with state-of-the-arts on unseen actions in TACO (Liu et al., 2024b),
Assembly101 (Sener et al., 2022), and Ego-Exo4D (Grauman et al., 2024). Compared to state-
of-the-arts (i.e., pix2pixHD (Wang et al., 2018), pixelNeRF (Yu et al., 2021), and CFLD (Lu et al.,
2024)), EgoWorld outperforms for all unseen scenarios in all metrics (i.e., FID, PSNR, SSIM, and
LPIPS).

Datasets TACO (Liu et al., 2024b) Assembly101 (Sener et al., 2022) Ego-Exo4D (Grauman et al., 2024)
Methods FID↓ PSNR↑ SSIM↑ LPIPS↓ FID↓ PSNR↑ SSIM↑ LPIPS↓ FID↓ PSNR↑ SSIM↑ LPIPS↓

pix2pixHD (Wang et al., 2018) 227.87 25.875 0.2806 0.7037 350.97 17.107 0.3587 0.6578 401.48 14.792 0.3065 0.6899
pixelNeRF (Yu et al., 2021) 302.19 26.661 0.3888 0.8543 356.44 19.037 0.3761 0.6019 367.39 17.347 0.3618 0.7134
CFLD (Lu et al., 2024) 61.357 28.769 0.4009 0.5033 53.931 20.998 0.3988 0.5566 70.476 21.578 0.3614 0.5975
EgoWorld (Ours) 37.191 30.155 0.4237 0.4025 50.232 25.365 0.4101 0.5142 61.231 24.985 0.3986 0.5482

4 EXPERIMENTS

4.1 DATASETS

To evaluate exocentric-to-egocentric translation models including our EgoWorld, we select H2O
(Kwon et al., 2021), which contains diverse scenarios such as unseen objects, actions, scenes, and
subjects. Following (Luo et al., 2024b), we split four unseen settings to evaluate generalization as
follows: (1) unseen objects, where we train with 6 objects and test with novel 2 objects, (2) unseen
actions, where we train with first 80% frames and test with last 20% frames, (3) unseen scenes,
where we train with 4 scenes and test with novel 2 scenes, and (4) unseen subjects, where we train
with subject 1 and test with subject 2. To further demonstrate the generalizability of our method, we
also evaluate it on TACO (Liu et al., 2024b), Assembly101 (Sener et al., 2022), and Ego-Exo4D
(Grauman et al., 2024) datasets. Since they provide hand-object interaction sequences involving 15,
1,380, and 689 actions respectively, we adopt them as unseen actions scenario, which allows for a
general and comprehensive evaluation of generalization performance. Note that on H2O, we use the
ground-truth egocentric sparse maps, which are derived directly from the ground-truth exocentric
depth maps and relative camera poses. On TACO, due to its inherent characteristics (i.e., invisible
head motions), reliable estimation of egocentric hand poses is challenging. Thus, we utilize both
the ground-truth hand poses and egocentric sparse maps. On the other hand, since Assembly101
and Ego-Exo4D do not provide ground-truth depth map, we utilize the estimated sparse depth map
obtained solely from the exocentric image using our proposed pipeline.

4.2 EVALUATION METRICS

Following (Luo et al., 2024b; Liu et al., 2024a), we adopt extensive image quality metrics to measure
reconstructed egocentric images: (1) frechet inception distance (FID) (Heusel et al., 2017), which
employs Inception-v3 (Salimans et al., 2016) features to compute the distributions of generated and
real images, (2) peak signal-to-noise ratio (PSNR), which is a pixel-wise fidelity metric that quanti-
fies the ratio between the maximum possible pixel value and the mean squared error (MSE) between
a reconstructed image and its ground truth counterpart, (3) structural similarity index measure
(SSIM) (Wang et al., 2004), which evaluates image similarity by comparing three components, i.e.,
luminance, contrast, and structural information, and is designed to model human visual perception
more closely, and (4) learned perceptual image patch similarity (LPIPS) (Zhang et al., 2018),
which employs a deep neural network (Simonyan & Zisserman, 2014) trained on human judgments
to evaluate reconstruction accuracy within the perceptual domain.
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Figure 3: Comparisons with state-of-the-arts on unseen scenarios (i.e., objects, actions, scenes,
and subjects) in H2O (Kwon et al., 2021). Compared to state-of-the-arts (i.e., pix2pixHD (Wang
et al., 2018), pixelNeRF (Yu et al., 2021), and CFLD (Lu et al., 2024)), EgoWorld outperforms the
image reconstruction quality with respect to hand-object interaction and background regions for all
unseen scenarios.

Figure 4: Comparisons with state-of-the-art on unseen actions scenario in TACO (Liu et al.,
2024b), Assembly101 (Sener et al., 2022), and Ego-Exo4D (Grauman et al., 2024). Compared
to state-of-the-art (i.e., CFLD (Lu et al., 2024)), EgoWorld outperforms the image reconstruction
quality with respect to hand-object interaction and background regions even on more challenging
scenarios than H2O (Kwon et al., 2021).

4.3 RESULTS

4.3.1 COMPARISONS ON BENCHMARKS

To compare EgoWorld with related works, we consider several state-of-the-arts: (1) pix2pixHD
(Wang et al., 2018), a single-view images-to-image translation model, (2) pixelNeRF (Yu et al.,
2021), a generalizable neural rendering method that synthesizes novel views from one or few images
by combining pixel-aligned features with NeRF-style volume rendering, and (3) CFLD (Lu et al.,
2024), a coarse-to-fine latent diffusion framework that decouples pose and appearance information
at different stages of the generation process.

Based on experiments conducted on H2O across the 4 unseen scenarios, our method achieve state-
of-the-art performance across all metrics compared to the baselines. As shown in Tables 1 and
2, pix2pixHD and pixelNeRF show poor performance in all scenarios. CFLD, which generates
view-aware person image synthesis based on a given hand pose map, demonstrates stronger per-
formance than pix2pixHD and pixelNeRf under view changes. However, its capability is mostly
limited to translating hand regions, and it performs poorly when it comes to reconstructing unseen
regions such as objects and scenes. In contrast, our EgoWorld successfully reconstructs information
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Figure 5: Real-world comparisons with state-of-the-art. Compared to state-of-the-art (i.e., CFLD
(Lu et al., 2024)), EgoWorld significantly outperforms with respect to hand-object interaction and
background regions for in-the-wild scenarios.

Figure 6: Comparisons on conditioning modalities of egocentric view reconstruction. EgoWorld
generates more reasonable images when conditioned on both pose maps and text, compared to using
only one or none.

observed from the exocentric view in a manner that is coherent and natural in the egocentric perspec-
tive, and outperforms all unseen scenarios in all metrics compared to state-of-the-arts. Specifically,
on unseen objects scenario, EgoWorld shows the dramatic performance improvement compared to
CFLD about 30.67%, 16.84%, 10.66%, and 23.42% of FID, PSNR, SSIM, and LPIPS, respec-
tively. On unseen actions scenario, its improvement is about 34.68%, 9.78%, 5.30%, and 17.70% of
FID, PSNR, SSIM, and LPIPS, respectively. On unseen scenes scenario, its improvement is about
23.04%, 6.37%, 9.77%, and 4.71% of FID, PSNR, SSIM, and LPIPS, respectively. On unseen sub-
jects scenario, its improvement is about 25.42%, 15.30%, 13.12%, and 1.29% of FID, PSNR, SSIM,
and LPIPS, respectively. In particular, the notable FID improvement is attributed to our model gen-
erating images that more closely resemble the ground-truth, especially in background regions, which
occupy a large portion of the image. In contrast, the baseline model often produces backgrounds that
differ significantly from the ground-truth.

As illustrated in Fig. 3, pix2pixHD produces egocentric images with noticeable noise, while pix-
elNeRF generates blurry outputs lacking fine details. pix2pixHD, which relies on label map-based
image-to-image translation, appears unsuitable for solving the exocentric-to-egocentric view trans-
lation problem. Similarly, pixelNeRF is designed for novel view synthesis from multiple input
views, making it less appropriate for the single-view to single-view translation task. In contrast,
CFLD effectively reconstructs the hand pose, but fails to translate detailed information about objects
and scenes, often resulting in unrealistic objects or entirely unrelated backgrounds. In comparison,
EgoWorld effectively leverages diverse information from the exocentric view, including pose maps,
textual descriptions, and sparse maps, leading to robust performance even in challenging unseen
scenarios involving complex elements like objects and scenes. More results of comparisons will be
discussed in appendix.

Moreover, as illustrated in Fig. 4, EgoWorld demonstrates strong generalization performance even
on TACO, Assembly101, and Ego-Exo4D, which contain a wide variety of objects and actions
compared to H2O. Specifically, compared to H2O, TACO, Assembly101, and Ego-Exo4D present
increasing challenges for egocentric view generation. TACO is difficult due to diverse hand-object
interactions and frequent occlusions, Assembly101 due to fine-grained assembly tasks and cluttered
backgrounds, and Ego-Exo4D due to real-world variability, multiple subjects, and dynamic environ-
ments. Unlike CFLD, which struggles to reconstruct information beyond the hand region, EgoWorld
shows a remarkable ability to restore not only the hand but also the interacting objects and the sur-
rounding scene. These results confirm that EgoWorld is capable of delivering robust performance
across diverse domains. More results of comparisons will be discussed in the appendix.
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4.3.2 COMPARISONS ON REAL-WORLD EXAMPLES

Furthermore, to evaluate in-the-wild generalization with unlabeled real-world examples, we conduct
experiments on EgoWorld with a state-of-the-art baseline model. We take in-the-wild images of peo-
ple interacting with arbitrary objects using their hands. Note that we rely solely on a single RGB
image captured using a smartphone (iPhone 13 Pro) and apply our complete pipeline as shown in
Fig. 2. No additional information beyond this single exocentric image is used. We use pre-trained
weights from our model trained on unseen action scenarios from H2O and select CFLD as the base-
line, as it significantly outperforms other methods in our main experiments. As shown in Fig. 5,
CFLD produces egocentric images that appear unnatural, overly biased toward training images in
H2O, and are inconsistent with the new interaction scenarios. In contrast, EgoWorld generates
realistic, natural-looking egocentric views by effectively utilizing the sparse map, demonstrating
strong generalization in unseen and real-world settings. These results highlight EgoWorld’s ro-
bustness in in-the-wild scenarios, and with further training on diverse datasets, we believe it holds
strong potential for real-world applications.

4.3.3 ABLATION STUDY FOR CONDITIONING MODALITIES

Table 3: Results for conditioning
modalities of egocentric view recon-
struction. EgoWorld achieves higher
scores when conditioned on both pose
maps and text, compared to using only
one or none.

Pose Text FID↓ PSNR↑ SSIM↑ LPIPS↓
56.120 27.054 0.4460 0.4454

✓ 55.016 27.544 0.4449 0.4122
✓ 44.240 28.565 0.4573 0.3821

✓ ✓ 41.334 31.171 0.4814 0.3476

EgoWorld reconstructs faithful egocentric images based
on both the pose map and the textual description. To val-
idate the contribution of each observation, we conduct an
ablation study on it. As shown in Table 3, the best perfor-
mance across all metrics is achieved when both pose and
text information are provided. Notably, as illustrated in
Fig. 6, the absence of text leads to incorrect reconstruc-
tions of unseen objects. In contrast, when text is available,
the textual object information predicted from the exocen-
tric image is effectively reflected in the egocentric view
reconstruction, resulting in more plausible outputs. Incor-
porating hand pose information helps EgoWorld generate
more natural and realistic hand configurations, highlight-
ing that its performance is maximized when jointly leveraging both pose and textual observations.

4.3.4 ADDITIONAL RESULTS

To comprehensively analyze our approach, we perform extensive ablation studies spanning multiple
dimensions. We first investigate effective backbones for egocentric view reconstruction and assess a
3D egocentric hand pose estimator derived from exocentric observations to validate its performance.
To examine the role of text guidance, we consider cases with incorrect textual descriptions, and to
evaluate consistency, we generate multiple outputs from the same exocentric input. We also study
the impact of individual sub-modules and direct camera pose regression within exocentric observa-
tions, and extend the analysis to whole-body pose estimation. Furthermore, we compare different
representations of estimated hand poses and test robustness under noisy inputs to measure reliance
on off-the-shelf estimators. Beyond these, we present additional qualitative examples across diverse
scenarios, and conclude with a discussion of limitations supported by failure cases, which point to
promising directions for future improvement. Detailed analyses are provided in the appendix.

5 CONCLUSION

In this work, we introduce EgoWorld, a novel framework that translates exocentric observations into
egocentric views by leveraging rich multi-modal cues. Our two-stage design first extracts informa-
tive exocentric observations and then synthesizes realistic egocentric images from sparse egocentric
maps through a diffusion model conditioned on pose and text. Through extensive experiments on
four benchmarks (H2O, TACO, Assembly101, and Ego-Exo4D), we demonstrate that EgoWorld out-
performs existing methods and proves highly effective. Beyond benchmark performance, EgoWorld
exhibits strong generalization to real-world samples, highlighting its potential for deployment in
diverse and unconstrained scenarios. Furthermore, the flexibility of our framework suggests promis-
ing extensions to tasks such as whole-body egocentric reconstruction, AR/VR content generation,
and human–robot interaction.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Shervin Ardeshir and Ali Borji. An exocentric look at egocentric actions and vice versa. CVIU, 171:
61–68, 2018.

Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang
Zhou, and Jingren Zhou. Qwen-vl: A versatile vision-language model for understanding, local-
ization, text reading, and beyond. arXiv preprint arXiv:2308.12966, 2023.

Hangbo Bao, Li Dong, Songhao Piao, and Furu Wei. Beit: Bert pre-training of image transformers.
arXiv preprint arXiv:2106.08254, 2021.

Junuk Cha, Jihyeon Kim, Jae Shin Yoon, and Seungryul Baek. Text2hoi: Text-guided 3d motion
generation for hand-object interaction. In CVPR, pp. 1577–1585, 2024.

Joya Chen, Difei Gao, Kevin Qinghong Lin, and Mike Zheng Shou. Affordance grounding from
demonstration video to target image. In CVPR, pp. 6799–6808, 2023.

Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David Luan, and Ilya Sutskever.
Generative pretraining from pixels. pp. 1691–1703, 2020.

Feng Cheng, Mi Luo, Huiyu Wang, Alex Dimakis, Lorenzo Torresani, Gedas Bertasius, and Kristen
Grauman. 4diff: 3d-aware diffusion model for third-to-first viewpoint translation. In ECCV, pp.
407–425, 2024.

Dima Damen, Hazel Doughty, Giovanni Maria Farinella, Sanja Fidler, Antonino Furnari, Evangelos
Kazakos, Davide Moltisanti, Jonathan Munro, Toby Perrett, Will Price, et al. Scaling egocentric
vision: The epic-kitchens dataset. In ECCV, pp. 720–736, 2018.

Dima Damen, Hazel Doughty, Giovanni Maria Farinella, Antonino Furnari, Evangelos Kazakos,
Jian Ma, Davide Moltisanti, Jonathan Munro, Toby Perrett, Will Price, et al. Rescaling egocentric
vision: Collection, pipeline and challenges for epic-kitchens-100. IJCV, pp. 1–23, 2022.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, G Heigold, S Gelly, et al. An image is worth
16x16 words: Transformers for image recognition at scale. In ICLR, 2020.

Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming transformers for high-resolution image
synthesis. In CVPR, pp. 12873–12883, 2021.

Difei Gao, Lei Ji, Luowei Zhou, Kevin Qinghong Lin, Joya Chen, Zihan Fan, and Mike Zheng
Shou. Assistgpt: A general multi-modal assistant that can plan, execute, inspect, and learn. arXiv
preprint arXiv:2306.08640, 2023.

Kristen Grauman, Andrew Westbury, Eugene Byrne, Zachary Chavis, Antonino Furnari, Rohit Gird-
har, Jackson Hamburger, Hao Jiang, Miao Liu, Xingyu Liu, et al. Ego4d: Around the world in
3,000 hours of egocentric video. In CVPR, pp. 18995–19012, 2022.

Kristen Grauman, Andrew Westbury, Lorenzo Torresani, Kris Kitani, Jitendra Malik, Triantafyllos
Afouras, Kumar Ashutosh, Vijay Baiyya, Siddhant Bansal, Bikram Boote, et al. Ego-exo4d:
Understanding skilled human activity from first-and third-person perspectives. In CVPR, pp.
19383–19400, 2024.

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked
autoencoders are scalable vision learners. In CVPR, pp. 16000–16009, 2022.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
Gans trained by a two time-scale update rule converge to a local nash equilibrium. NeurIPS, 30:
6626–6637, 2017.

Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. arXiv preprint
arXiv:2207.12598, 2022.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. NeurIPS, 33:
6840–6851, 2020.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Mingzhen Huang, Fu-Jen Chu, Bugra Tekin, Kevin J Liang, Haoyu Ma, Weiyao Wang, Xingyu
Chen, Pierre Gleize, Hongfei Xue, Siwei Lyu, et al. Hoigpt: Learning long-sequence hand-object
interaction with language models. In CVPR, pp. 7136–7146, 2025.

Taein Kwon, Bugra Tekin, Jan Stühmer, Federica Bogo, and Marc Pollefeys. H2o: Two hands
manipulating objects for first person interaction recognition. In CVPR, pp. 10138–10148, 2021.

Wenbo Li, Zhe Lin, Kun Zhou, Lu Qi, Yi Wang, and Jiaya Jia. Mat: Mask-aware transformer for
large hole image inpainting. In CVPR, pp. 10758–10768, 2022.

Hongyu Liu, Bin Jiang, Yi Xiao, and Chao Yang. Coherent semantic attention for image inpainting.
In ICCV, pp. 4170–4179, 2019.

Jia-Wei Liu, Weijia Mao, Zhongcong Xu, Jussi Keppo, and Mike Zheng Shou. Exocentric-to-
egocentric video generation. NeurIPS, 37:136149–136172, 2024a.

Yun Liu, Haolin Yang, Xu Si, Ling Liu, Zipeng Li, Yuxiang Zhang, Yebin Liu, and Li Yi. Taco:
Benchmarking generalizable bimanual tool-action-object understanding. In CVPR, pp. 21740–
21751, 2024b.

Yanzuo Lu, Manlin Zhang, Andy J Ma, Xiaohua Xie, and Jianhuang Lai. Coarse-to-fine latent
diffusion for pose-guided person image synthesis. In CVPR, pp. 6420–6429, 2024.

Hongchen Luo, Kai Zhu, Wei Zhai, and Yang Cao. Intention-driven ego-to-exo video generation.
arXiv preprint arXiv:2403.09194, 2024a.

Mi Luo, Zihui Xue, Alex Dimakis, and Kristen Grauman. Put myself in your shoes: Lifting the
egocentric perspective from exocentric videos. In ECCV, pp. 407–425, 2024b.

Junho Park, Kyeongbo Kong, and Suk-Ju Kang. Attentionhand: Text-driven controllable hand image
generation for 3d hand reconstruction in the wild. In ECCV, 2024.

Deepak Pathak, Philipp Krahenbuhl, Jeff Donahue, Trevor Darrell, and Alexei A Efros. Context
encoders: Feature learning by inpainting. In CVPR, pp. 2536–2544, 2016.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agar-
wal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya
Sutskever. Learning transferable visual models from natural language supervision. pp. 8748–
8763, 2021.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In CVPR, pp. 10684–10695, 2022.

Javier Romero, Dimitris Tzionas, and Michael J Black. Embodied hands: Modeling and capturing
hands and bodies together. ACM TOG, 36(6), 2017.

Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen.
Improved techniques for training gans. NeurIPS, 29, 2016.

Fadime Sener, Dibyadip Chatterjee, Daniel Shelepov, Kun He, Dipika Singhania, Robert Wang, and
Angela Yao. Assembly101: A large-scale multi-view video dataset for understanding procedural
activities. In CVPR, pp. 21096–21106, 2022.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. arXiv
preprint arXiv:2010.02502, 2020.

Yuhang Song, Chao Yang, Yeji Shen, Peng Wang, Qin Huang, and C-C Jay Kuo. Spg-net: Segmen-
tation prediction and guidance network for image inpainting. arXiv preprint arXiv:1805.03356,
2018.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Roman Suvorov, Elizaveta Logacheva, Anton Mashikhin, Anastasia Remizova, Arsenii Ashukha,
Aleksei Silvestrov, Naejin Kong, Harshith Goka, Kiwoong Park, and Victor Lempitsky.
Resolution-robust large mask inpainting with fourier convolutions. In Proceedings of the
IEEE/CVF winter conference on applications of computer vision, pp. 2149–2159, 2022.

Shinji Umeyama. Least-squares estimation of transformation parameters between two point patterns.
IEEE TPAMI, 13(04):376–380, 1991.

Pascal Vincent, Hugo Larochelle, Isabelle Lajoie, Yoshua Bengio, Pierre-Antoine Manzagol, and
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