EgoWorld:

000

001

002

004

006

021

025

026

027

028 029

031

032

034

038

039

040

041

042

043

044

045

046

047

049

051

052

TRANSLATING EXOCENTRIC VIEW TO EGOCENTRIC VIEW USING RICH EXOCENTRIC OBSERVATIONS

Anonymous authors

Paper under double-blind review

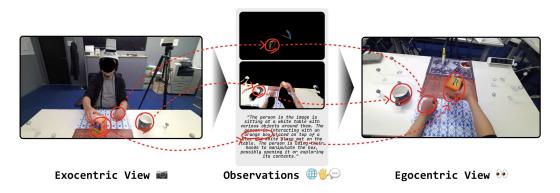


Figure 1: *EgoWorld* translates a single exocentric view into an egocentric view. By leveraging rich multimodal exocentric observations, such as projected point clouds, 3D hand poses, and textual descriptions, *EgoWorld* is able to generate high-quality egocentric views, even in unseen scenarios. Each observed modality provides complementary information that contributes to the accurate and realistic reconstruction of the egocentric view.

ABSTRACT

Egocentric vision is essential for both human and machine visual understanding, particularly in capturing the detailed hand-object interactions needed for manipulation tasks. Translating third-person views into first-person views significantly benefits augmented reality (AR), virtual reality (VR) and robotics applications. However, current exocentric-to-egocentric translation methods are limited by their dependence on 2D cues, synchronized multi-view settings, and unrealistic assumptions such as the necessity of an initial egocentric frame and relative camera poses during inference. To overcome these challenges, we introduce EgoWorld, a novel two-stage framework that reconstructs an egocentric view from rich exocentric observations, including projected point clouds, 3D hand poses, and textual descriptions. Our approach reconstructs a point cloud from estimated exocentric depth maps, reprojects it into the egocentric perspective, and then applies diffusion-based inpainting to produce dense, semantically coherent egocentric images. Evaluated on 4 datasets (i.e., H2O, TACO, Assembly101, and Ego-Exo4D), EgoWorld achieves state-of-the-art performance and demonstrates robust generalization to new objects, actions, scenes, and subjects. Moreover, EgoWorld exhibits robustness on in-the-wild examples, underscoring its practical applicability.

1 Introduction

Egocentric vision plays a crucial role in advancing visual understanding for both humans and intelligent systems (Ardeshir & Borji, 2018; Grauman et al., 2024; Kwon et al., 2021; Sener et al., 2022). Egocentric views are particularly valuable for capturing detailed hand-object interactions, which are essential in skill-intensive tasks such as cooking, assembling, or playing instruments.

However, most existing resources are recorded from third-person perspectives, primarily due to the limited availability of head-mounted cameras and wearable recording devices. Consequently, the ability to generate or predict egocentric images from exocentric inputs holds significant promise for enhancing instructional videos and applications in augmented reality (AR), virtual reality (VR), and robotics, where perception is inherently egocentric. For example, instructional videos are often recorded from a third-person viewpoint, which can be challenging for viewers to follow due to the mismatched perspectives. Translating these videos into a first-person view enables more intuitive guidance by clearly showing detailed finger placements during a task. Moreover, this translation capability unlocks the development of robust, user-centered world models (Wong et al., 2022; Chen et al., 2023; Gao et al., 2023) that capture the spatial and temporal details necessary for real-time perception, planning, and interaction at scale.

Although exocentric-to-egocentric view translation holds great promise, it remains a particularly difficult challenge in computer vision. The main obstacle stems from the substantial visual and geometric differences between third-person and first-person views. Egocentric views focus on hands and objects with the fine detail necessary for precise manipulation, whereas exocentric views offer a wider context and kinematic cues but lack emphasis on these intricate interactions. Bridging these views is fundamentally under-constrained and cannot be addressed by geometric alignment alone, due to factors such as occlusions, restricted fields of view, and appearance changes across different viewpoints. For instance, elements like the inner pages of a book may be completely obscured in an exocentric perspective but still need to be realistically inferred in the egocentric output. Moreover, reconstructing background details in the egocentric view, which are invisible from the exocentric perspective, is a nontrivial task.

Recently, the impressive achievements of diffusion models (Rombach et al., 2022; Ho et al., 2020) have opened up new possibilities for applying generative techniques to the task of exocentric-to-egocentric view translation. However, many existing approaches rely on restrictive input conditions, such as multi-view images (Liu et al., 2024a), known relative camera pose (Cheng et al., 2024), or a reference egocentric frame to generate subsequent ones (Xu et al., 2025), making them impractical for scenarios where only single view images are available. More closely, Exo2Ego (Luo et al., 2024b) attempts to generate egocentric views from a single exocentric image. Yet, it depends heavily on accurate 2D hand layout predictions for structure transformation, which can be unreliable in cases of occlusion, viewpoint ambiguity, or cluttered environments. Furthermore, it struggles to generalize to novel environments and objects, often overfitting to the training dataset. Overall, current methods lack the detailed understanding of exocentric observations necessary to synthesize precise and realistic hand-object interactions from a first-person view.

To address the limitations of current approaches, we propose *EgoWorld*, a novel framework for translating exocentric views into egocentric views using rich exocentric observations, as illustrated in Fig. 1. Our method employs a two-stage pipeline to reconstruct the egocentric view: (1) extracting diverse observations from the exocentric view, including projected point clouds, 3D hand poses, and textual descriptions; and (2) reconstructing the egocentric view based on these extracted cues. In the first stage, we construct a point cloud by combining the input exocentric RGB image with a scale-aligned estimated exocentric depth map, using the 3D exocentric hand pose for spatial calibration. This point cloud is then transformed into the egocentric view using a translation matrix computed from the predicted 3D hand poses in both views. After the projection of the point cloud, a sparse egocentric image is obtained and it is subsequently reconstructed into a dense, high-quality egocentric image using a diffusion-based model. To further enhance the semantic alignment and visual fidelity of the hand-object reconstruction, we incorporate the predicted exocentric text description and estimated egocentric hand pose during the reconstruction process.

We evaluate the effectiveness of *EgoWorld* through extensive experiments conducted on 4 datasets (*i.e.*, H2O (Kwon et al., 2021), TACO (Liu et al., 2024b), Assembly101 (Sener et al., 2022), and Ego-Exo4D (Grauman et al., 2024)), which provide well-annotated exocentric and egocentric video pairs. Our method achieves state-of-the-art performance on these benchmarks. As a result, thanks to its end-to-end design, *EgoWorld* demonstrates strong generalization across various scenarios, including unseen objects, actions, scenes, and subjects. Furthermore, we conduct experiments on unlabeled real-world examples, and *EgoWorld* shows powerful in-the-wild generalization.

Our main contributions can be summarized as follows:

- We introduce *EgoWorld*, a novel end-to-end framework that reconstructs high-fidelity egocentric views from a single exocentric image by leveraging rich multimodal cues, including projected point clouds, 3D hand poses, and textual descriptions.
- Our two-stage pipeline uniquely integrates geometric reasoning with semantic information and diffusion-based inpainting that significantly enhances hand-object interaction fidelity and semantic alignment in the synthesized egocentric images.
- We demonstrate the strong generalization capability of *EgoWorld* through extensive experiments on H2O, TACO, Assembly101, and Ego-Exo4D benchmarks. Our approach achieves state-of-the-art performance across diverse and previously unseen scenarios (*i.e.*, unseen objects, actions, scenes, and subjects). Additionally, we show *EgoWorld*'s real-world applicability with in-the-wild examples.

2 RELATED WORK

108

110

111

112

113

114 115

116

117

118

119

120 121

122 123 124

125 126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143 144 145

146 147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

2.1 EXOCENTRIC-EGOCENTRIC TRANSLATION

Egocentric vision has also been scaling up particularly due to the introduction of benchmarks (Damen et al., 2018; Kwon et al., 2021; Grauman et al., 2022; Damen et al., 2022; Sener et al., 2022; Grauman et al., 2024). Recently, research on exocentric-to-egocentric (and vice versa) translation (Luo et al., 2024a;b; Cheng et al., 2024; Liu et al., 2024a; Xu et al., 2025) has also gained significant attention. Intention-Ego2Exo (Luo et al., 2024a) proposed an intention-driven ego-to-exo video generation framework that leverages head trajectory and action descriptions to guide contentconsistent and motion-aware video synthesis. Exo2Ego (Luo et al., 2024b) introduced a two-stage generative framework for exocentric-to-egocentric view translation that leverages structure transformation and diffusion-based hallucination with hand layout priors. 4Diff (Cheng et al., 2024) proposed a 3D-aware diffusion model for translating exocentric images into egocentric views using egocentric point cloud rasterization and 3D-aware rotary cross-attention. Exo2Ego-V (Liu et al., 2024a) presented a diffusion-based method for generating egocentric videos from sparse 360° exocentric views of skilled daily-life activities, addressing challenges like viewpoint variation and motion complexity. EgoExo-Gen (Xu et al., 2025) addressed cross-view video prediction by generating future egocentric frames from an exocentric video, the initial egocentric frame, and textual instructions, using hand-object interaction dynamics as key guidance. However, these works have fatal limitations: dependency of 2D layouts, pre-defined relative camera pose, multi-view or consecutive sequences inputs, and the challenge of integrating multiple external modalities, such as textual description and pose map.

2.2 IMAGE COMPLETION

Image completion is a fundamental problem in computer vision, which aims to fill missing regions with plausible contents (Pathak et al., 2016; Liu et al., 2019; Xiong et al., 2019; Song et al., 2018; Zhao et al., 2021; Suvorov et al., 2022; Li et al., 2022). For example, MAT (Li et al., 2022) proposed a transformer-based model for large-hole image inpainting that combines the strengths of transformers and convolutions to efficiently handle high-resolution images. On the other hand, masked image encoding methods learn representations from images corrupted by masking (Vincent et al., 2010; Pathak et al., 2016; Chen et al., 2020; Dosovitskiy et al., 2020; Bao et al., 2021; He et al., 2022). For example, MAE (He et al., 2022) masks random patches of an input image and learns to reconstruct the missing regions. However, these studies have a limitation that they rely solely on the information surrounding the pixels to restore missing area. With the advent of foundational diffusion models (Ho et al., 2020; Song et al., 2020), it has become possible to perform image completion based on various types of conditions. Specifically, latent diffusion model (Rombach et al., 2022) supports flexible conditioning such as text or bounding boxes and enable high-resolution image synthesis, achieving state-of-the-art results in inpainting, class-conditional generation, and other tasks by incorporating cross-attention. Furthermore, the value of diffusion-based models has been demonstrated across a wide range of challenging domains, such as hand-hand or hand-object interaction image generation (Zhang et al., 2024; Park et al., 2024), and motion generation (Cha et al., 2024; Huang et al., 2025).

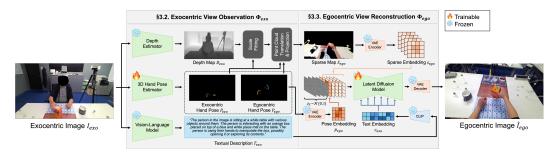


Figure 2: **Overall framework of** *EgoWorld*. *EgoWorld* has a two-stage pipeline: (1) Exocentric view observation Φ_{exo} , which extracts diverse observations from the exocentric view, including projected point clouds, 3D hand poses, and textual descriptions; and (2) egocentric view reconstruction Φ_{ego} , which reconstructs the egocentric view based on cues from the exocentric view observation.

3 Method

3.1 PROBLEM FORMULATION

EgoWorld consists of two stages: exocentric view observation Φ_{exo} and egocentric view reconstruction Φ_{ego} , as shown in Fig. 2. First, given a single exocentric image $I_{exo} \in \mathbb{R}^{H \times W \times 3}$, Φ_{exo} predicts a corresponding sparse egocentric RGB map $S_{ego} \in \mathbb{R}^{H \times W \times 3}$, 3D egocentric hand pose $P_{ego} \in \mathbb{R}^{N \times 3}$, and a textual description T_{exo} . H and W indicates height and width of I_{exo} , and N indicates the number of keypoints of the hand. Then, in Φ_{ego} , an egocentric image $\hat{I}_{ego} \in \mathbb{R}^{H \times W \times 3}$ is generated based on the observations predicted in Φ_{exo} . Therefore, EgoWorld is formulated as follows:

$$S_{ego}, P_{ego}, T_{exo} = \Phi_{exo}(I_{exo}), \tag{1}$$

$$\hat{I}_{eqo} = \Phi_{eqo}(S_{eqo}, P_{eqo}, T_{exo}). \tag{2}$$

3.2 EXOCENTRIC VIEW OBSERVATION

Exocentric view observation Φ_{exo} takes various real-world observations, such as sparse egocentric RGB map S_{ego} , 3D egocentric hand pose P_{ego} , and textual description T_{exo} , from the single exocentric image I_{exo} . These observations are essential for the egocentric view reconstruction Φ_{ego} .

First, with an off-the-shelf depth estimator (Wang et al., 2025), an exocentric depth map $D_{exo} \in \mathbb{R}^{H \times W}$ is extracted from I_{exo} . Obtaining D_{exo} is essential, because in Φ_{ego} , the reconstruction process relies on S_{ego} , which serves as a crucial hint. Specifically, when pixel information from an exocentric view is transformed into an egocentric view, it provides partial observations of the hand, object, or scene, and this serves as a strong basis for approaching the problem from an inpainting perspective.

Next, a 3D exocentric hand pose $P_{exo} \in \mathbb{R}^{N \times 3}$ is extracted from I_{exo} with an off-the-shelf hand pose estimator (Yu et al., 2023). As D_{exo} provides only relative depth and is inherently affected by scale ambiguity, it is crucial to leverage P_{exo} for reasonable scale fitting. Specifically, it is possible to extract a metrically-scaled P_{exo} and an exocentric hand depth map $D_{hand} \in \mathbb{R}^{H \times W}$ from the estimated MANO(Romero et al., 2017)-based mesh of P_{exo} . We define a hand region Ω_{hand} , which is a pixel-level valid area determined by D_{hand} , and compute a global scale factor s^* by comparing it with D_{exo} as follows:

$$s^* = \underset{(u,v) \in \Omega_{\text{hand}}}{\operatorname{median}} \frac{D_{hand}(u,v)}{D_{exo}(u,v) + \delta},\tag{3}$$

where u,v indicate the pixel coordinate of depth maps, and δ is a small constant to prevent division by zero. Applying s^* yields a metrically-calibrated exocentric depth map $D'_{exo} = s^*D_{exo}$. Therefore, with I_{exo} and an exocentric camera intrinsic parameter $K_{exo} \in \mathbb{R}^{3\times 3}$, which is estimated from the off-the-shelf depth estimator, D'_{exo} is utilized to obtain a point cloud $C_{exo} \in \mathbb{R}^{(H \times W) \times 6}$.

To project C_{exo} in the egocentric view, we need an exocentric-to-egocentric view transformation matrix $X \in \mathbb{R}^{4 \times 4}$, which can be computed through a transformation between P_{exo} and P_{ego} . However, to the best of our knowledge, there is no model that predicts P_{ego} directly from I_{exo} . Thus, we build a powerful-but-simple 3D egocentric hand pose estimator ϕ_{ego} , which is designed with a simple architecture consisting of a ViT(Dosovitskiy et al., 2020)-based backbone $\phi_{backbone}$ and an MLP-based regressor ϕ_{reg} . Specifically, after extracting an image feature from I_{exo} with $\phi_{backbone}$, it is fed through ϕ_{reg} to obtain P_{ego} . We optimize ϕ_{ego} with an L2 loss function.

From the obtained P_{exo} and P_{ego} , we calculate X between them with the Umeyama algorithm (Umeyama, 1991), which estimates a transformation matrix as follows:

$$X_{ego \to exo} = (s, \mathbf{R}, \mathbf{t}), \text{ such that } P_{exo} \approx s\mathbf{R}P_{ego} + \mathbf{t}.$$
 (4)

Here, s, \mathbf{R} , and \mathbf{t} are the estimated scale, rotation, and translation matrices. Since both P_{exo} and P_{ego} are in metric units, s is expected to be close to 1. The transformation from exocentric to egocentric view is given by $X=(X_{ego\rightarrow exo})^{-1}$. Therefore, we translate C_{exo} with X into C_{ego} , project it into egocentric view with an egocentric camera intrinsic parameters $K_{ego} \in \mathbb{R}^{3\times 3}$, and obtain the sparse egocentric RGB map S_{ego} .

Finally, T_{exo} is extracted with an off-the-shelf vision-language model (VLM) (Bai et al., 2023). For example, when I_{exo} and a user-provided question (i.e., "Describe in detail about the scene and the object that the person is interacting with using their hands.") are given, VLM outputs the corresponding answer T_{exo} . Since T_{exo} contains both the overall contextual information present in the exocentric view and specific details about actions and objects, it significantly aids Φ_{ego} for reconstructing the faithful egocentric view for unseen scenarios.

3.3 EGOCENTRIC VIEW RECONSTRUCTION

Since S_{ego} only contains partial information observed from the exocentric view, it is necessary to reconstruct the missing regions. Thus, leveraging the powerful latent diffusion model (LDM) (Rombach et al., 2022), we exploit exocentric observations S_{ego} , P_{ego} , and T_{exo} for Φ_{ego} .

Following the LDM, input images are encoded into the latent embedding using a frozen VAE encoder (Esser et al., 2021), and the denoised latent embedding is decoded into an output image using the frozen VAE decoder. Specifically, we encode S_{ego} to a sparse embedding $s_{ego} \in \mathbb{R}^{64 \times 64 \times 4}$ with VAE encoder. We obtain a 2D egocentric hand pose map $P_{ego}^{2D} \in \mathbb{R}^{512 \times 512 \times 3}$ by projecting P_{ego} with K_{ego} , encode P_{ego}^{2D} to 4-channels embedding with VAE encoder, and reduce the number of channels of 4-channels embedding to 1-channel via a channel reduction layer. This layer consists of one convolutional layer, which inputs 4-channel embedding and outputs 1-channel embedding. Therefore, we obtain a 1-channel pose embedding $p_{ego} \in \mathbb{R}^{64 \times 64 \times 1}$.

During training, the ground-truth egocentric image $I_{ego} \in \mathbb{R}^{512 \times 512 \times 3}$ is also encoded to a clean latent $z_0 \in \mathbb{R}^{64 \times 64 \times 4}$ through the VAE encoder, and the noise $\epsilon_t \in \mathbb{R}^{64 \times 64 \times 4}$ is added to z_0 to make a noisy embedding $z_t \in \mathbb{R}^{64 \times 64 \times 4}$ with timestep t as follows:

$$z_t = \sqrt{\bar{\alpha}_t} \cdot z_0 + \sqrt{1 - \bar{\alpha}_t} \cdot \epsilon, \epsilon \sim \mathcal{N}(0, \mathbf{I}), \tag{5}$$

where $\bar{\alpha}_t$ denotes the noise level of t. By concatenating s_{ego} , p_{ego} , and z_t , we obtain 9-channel latent embedding $z_t' \in \mathbb{R}^{64 \times 64 \times 9}$, which is fed into the input of a pre-trained U-Net. Simultaneously, a textual description T_{exo} is passed through CLIP (Radford et al., 2021) to obtain a text embedding $c_{exo} \in \mathbb{R}^{77 \times 768}$, which serves as guidance for the U-Net of LDM. In this manner, the forward and reverse processes for the denoising network ϵ_{θ} are carried out to predict ϵ_t with the following objective:

$$\mathcal{L} = \mathbb{E}_{z_0, s_{ego}, p_{ego}, t, c_{exo}, \epsilon_t} \| \epsilon_t - \epsilon_\theta(z_t', t, c_{exo}) \|_2^2.$$
 (6)

During sampling, we start the denoising process from a random Gaussian noise $z_T \sim \mathcal{N}(0,\mathbf{I})$ with well-trained ϵ_{θ} . We concatenate $z_T \in \mathbb{R}^{64 \times 64 \times 4}$ with s_{ego} and p_{ego} , and feed to ϵ_{θ} to obtain the predicted latent $\hat{z}_0 \in \mathbb{R}^{64 \times 64 \times 4}$ by reversing the schedule in Eq. 5 at each timestep $t \in [1,T]$. We adopt classifier-free guidance (CFG) (Ho & Salimans, 2022) to strengthen textual guidance as follows:

$$\epsilon_t = (1+w) \cdot \epsilon_{\theta}(z_t, t, c_{exo}) - w \cdot \epsilon_{\theta}(z_t, t, \varnothing), \tag{7}$$

where w indicates the scaling factor in CFG, and \varnothing means unconditional. To the end, the final generated egocentric image \hat{I}_{eqo} is obtained from \hat{z}_0 by passing the VAE decoder.

Table 1: Comparisons with state-of-the-arts on unseen scenarios (*i.e.*, objects, actions, scenes, and subjects) in H2O (Kwon et al., 2021). Compared to state-of-the-arts (*i.e.*, pix2pixHD (Wang et al., 2018), pixelNeRF (Yu et al., 2021), and CFLD (Lu et al., 2024)), *EgoWorld* outperforms for all unseen scenarios in all metrics (*i.e.*, FID, PSNR, SSIM, and LPIPS).

Scenarios	Unseen Objects				Unseen Actions			Unseen Scenes			Unseen Subjects					
Methods	FID↓	PSNR↑	SSIM↑	LPIPS↓	FID↓	PSNR↑	SSIM↑	LPIPS↓	FID↓	PSNR↑	SSIM↑	LPIPS↓	FID↓	PSNR↑	SSIM↑	LPIPS↓
pix2pixHD (Wang et al., 2018)	436.25	25.012	0.2993	0.6057	211.10	24.420	0.2854	0.6127	490.32	18.567	0.2425	0.7290	452.13	18.172	0.3310	0.7234
pixelNeRF (Yu et al., 2021)	498.23	26.557	0.3887	0.5372	251.76	27.061	0.3950	0.8159	489.13	26.537	0.2574	0.7143	493.13	22.636	0.4135	0.6838
CFLD (Lu et al., 2024)	59.615	25.922	0.4307	0.4539	50.953	28.529	0.4324	0.4593	118.10	29.030	0.3696	0.6841	129.30	21.050	0.4001	0.6269
EgoWorld (Ours)	41.334	31.171	0.4814	0.3476	33.284	31.620	0.4566	0.3780	90.893	31.004	0.4096	0.6519	96.429	24.851	0.4605	0.6188

Table 2: Comparisons with state-of-the-arts on unseen actions in TACO (Liu et al., 2024b), Assembly101 (Sener et al., 2022), and Ego-Exo4D (Grauman et al., 2024). Compared to state-of-the-arts (*i.e.*, pix2pixHD (Wang et al., 2018), pixelNeRF (Yu et al., 2021), and CFLD (Lu et al., 2024)), *EgoWorld* outperforms for all unseen scenarios in all metrics (*i.e.*, FID, PSNR, SSIM, and LPIPS).

Datasets TACO (Liu et al., 2024b)					Assembly101 (Sener et al., 2022)				Ego-Exo4D (Grauman et al., 2024)			
Methods	FID↓	PSNR↑	SSIM↑	LPIPS↓	FID↓	PSNR↑	SSIM↑	LPIPS↓	FID↓	PSNR↑	SSIM↑	LPIPS↓
pix2pixHD (Wang et al., 2018)	227.87	25.875	0.2806	0.7037	350.97	17.107	0.3587	0.6578	401.48	14.792	0.3065	0.6899
pixelNeRF (Yu et al., 2021)	302.19	26.661	0.3888	0.8543	356.44	19.037	0.3761	0.6019	367.39	17.347	0.3618	0.7134
CFLD (Lu et al., 2024)	61.357	28.769	0.4009	0.5033	53.931	20.998	0.3988	0.5566	70.476	21.578	0.3614	0.5975
EgoWorld (Ours)	37.191	30.155	0.4237	0.4025	50.232	25.365	0.4101	0.5142	61.231	24.985	0.3986	0.5482

4 EXPERIMENTS

4.1 Datasets

To evaluate exocentric-to-egocentric translation models including our EgoWorld, we select H2O (Kwon et al., 2021), which contains diverse scenarios such as unseen objects, actions, scenes, and subjects. Following (Luo et al., 2024b), we split four unseen settings to evaluate generalization as follows: (1) **unseen objects**, where we train with 6 objects and test with novel 2 objects, (2) **unseen** actions, where we train with first 80% frames and test with last 20% frames, (3) unseen scenes, where we train with 4 scenes and test with novel 2 scenes, and (4) **unseen subjects**, where we train with subject 1 and test with subject 2. To further demonstrate the generalizability of our method, we also evaluate it on TACO (Liu et al., 2024b), Assembly101 (Sener et al., 2022), and Ego-Exo4D (Grauman et al., 2024) datasets. Since they provide hand-object interaction sequences involving 15, 1,380, and 689 actions respectively, we adopt them as unseen actions scenario, which allows for a general and comprehensive evaluation of generalization performance. Note that on H2O, we use the ground-truth egocentric sparse maps, which are derived directly from the ground-truth exocentric depth maps and relative camera poses. On TACO, due to its inherent characteristics (i.e., invisible head motions), reliable estimation of egocentric hand poses is challenging. Thus, we utilize both the ground-truth hand poses and egocentric sparse maps. On the other hand, since Assembly 101 and Ego-Exo4D do not provide ground-truth depth map, we utilize the estimated sparse depth map obtained solely from the exocentric image using our proposed pipeline.

4.2 EVALUATION METRICS

Following (Luo et al., 2024b; Liu et al., 2024a), we adopt extensive image quality metrics to measure reconstructed egocentric images: (1) **frechet inception distance** (**FID**) (Heusel et al., 2017), which employs Inception-v3 (Salimans et al., 2016) features to compute the distributions of generated and real images, (2) **peak signal-to-noise ratio** (**PSNR**), which is a pixel-wise fidelity metric that quantifies the ratio between the maximum possible pixel value and the mean squared error (MSE) between a reconstructed image and its ground truth counterpart, (3) **structural similarity index measure** (**SSIM**) (Wang et al., 2004), which evaluates image similarity by comparing three components, *i.e.*, luminance, contrast, and structural information, and is designed to model human visual perception more closely, and (4) **learned perceptual image patch similarity** (**LPIPS**) (Zhang et al., 2018), which employs a deep neural network (Simonyan & Zisserman, 2014) trained on human judgments to evaluate reconstruction accuracy within the perceptual domain.

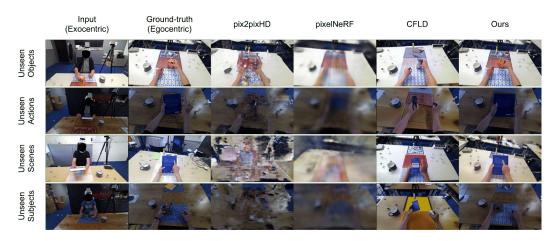


Figure 3: Comparisons with state-of-the-arts on unseen scenarios (*i.e.*, objects, actions, scenes, and subjects) in H2O (Kwon et al., 2021). Compared to state-of-the-arts (*i.e.*, pix2pixHD (Wang et al., 2018), pixelNeRF (Yu et al., 2021), and CFLD (Lu et al., 2024)), *EgoWorld* outperforms the image reconstruction quality with respect to hand-object interaction and background regions for all unseen scenarios.

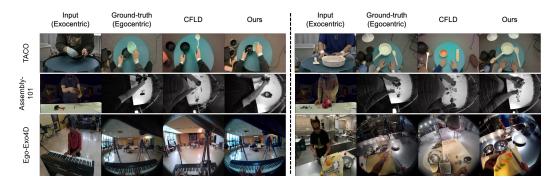


Figure 4: Comparisons with state-of-the-art on unseen actions scenario in TACO (Liu et al., 2024b), Assembly101 (Sener et al., 2022), and Ego-Exo4D (Grauman et al., 2024). Compared to state-of-the-art (*i.e.*, CFLD (Lu et al., 2024)), *EgoWorld* outperforms the image reconstruction quality with respect to hand-object interaction and background regions even on more challenging scenarios than H2O (Kwon et al., 2021).

4.3 RESULTS

4.3.1 Comparisons on Benchmarks

To compare *EgoWorld* with related works, we consider several state-of-the-arts: (1) **pix2pixHD** (Wang et al., 2018), a single-view images-to-image translation model, (2) **pixelNeRF** (Yu et al., 2021), a generalizable neural rendering method that synthesizes novel views from one or few images by combining pixel-aligned features with NeRF-style volume rendering, and (3) **CFLD** (Lu et al., 2024), a coarse-to-fine latent diffusion framework that decouples pose and appearance information at different stages of the generation process.

Based on experiments conducted on H2O across the 4 unseen scenarios, our method achieve state-of-the-art performance across all metrics compared to the baselines. As shown in Tables 1 and 2, pix2pixHD and pixelNeRF show poor performance in all scenarios. CFLD, which generates view-aware person image synthesis based on a given hand pose map, demonstrates stronger performance than pix2pixHD and pixelNeRf under view changes. However, its capability is mostly limited to translating hand regions, and it performs poorly when it comes to reconstructing unseen regions such as objects and scenes. In contrast, our *EgoWorld* successfully reconstructs information

Figure 5: **Real-world comparisons with state-of-the-art.** Compared to state-of-the-art (*i.e.*, CFLD (Lu et al., 2024)), *EgoWorld* significantly outperforms with respect to hand-object interaction and background regions for in-the-wild scenarios.

"The person is holding an orange box, which appears to be a small and rectangular in shape. The box is made of a sturdy material, possibly cardboard, and has a bright orange color. The person is interacting with the box by holding it in their hands, possibly preparing to open it or examine its contents. The way the box is being held suggests that it might be slightly larger than the person's hand and has a weight to it, indicating that it is not too filmsy or lightweight. The person's interaction with the box suggests that they are either unboxing it or examining its contents, which could be related to product review, demonstration, or some other type of content creation."

Figure 6: Comparisons on conditioning modalities of egocentric view reconstruction. *EgoWorld* generates more reasonable images when conditioned on both pose maps and text, compared to using only one or none.

observed from the exocentric view in a manner that is coherent and natural in the egocentric perspective, and outperforms all unseen scenarios in all metrics compared to state-of-the-arts. Specifically, on unseen objects scenario, EgoWorld shows the dramatic performance improvement compared to CFLD about 30.67%, 16.84%, 10.66%, and 23.42% of FID, PSNR, SSIM, and LPIPS, respectively. On unseen actions scenario, its improvement is about 34.68%, 9.78%, 5.30%, and 17.70% of FID, PSNR, SSIM, and LPIPS, respectively. On unseen scenes scenario, its improvement is about 23.04%, 6.37%, 9.77%, and 4.71% of FID, PSNR, SSIM, and LPIPS, respectively. On unseen subjects scenario, its improvement is about 25.42%, 15.30%, 13.12%, and 1.29% of FID, PSNR, SSIM, and LPIPS, respectively. In particular, the notable FID improvement is attributed to our model generating images that more closely resemble the ground-truth, especially in background regions, which occupy a large portion of the image. In contrast, the baseline model often produces backgrounds that differ significantly from the ground-truth.

As illustrated in Fig. 3, pix2pixHD produces egocentric images with noticeable noise, while pixelNeRF generates blurry outputs lacking fine details. pix2pixHD, which relies on label map-based image-to-image translation, appears unsuitable for solving the exocentric-to-egocentric view translation problem. Similarly, pixelNeRF is designed for novel view synthesis from multiple input views, making it less appropriate for the single-view to single-view translation task. In contrast, CFLD effectively reconstructs the hand pose, but fails to translate detailed information about objects and scenes, often resulting in unrealistic objects or entirely unrelated backgrounds. In comparison, *EgoWorld* effectively leverages diverse information from the exocentric view, including pose maps, textual descriptions, and sparse maps, leading to robust performance even in challenging unseen scenarios involving complex elements like objects and scenes. More results of comparisons will be discussed in appendix.

Moreover, as illustrated in Fig. 4, *EgoWorld* demonstrates strong generalization performance even on TACO, Assembly101, and Ego-Exo4D, which contain a wide variety of objects and actions compared to H2O. Specifically, compared to H2O, TACO, Assembly101, and Ego-Exo4D present increasing challenges for egocentric view generation. TACO is difficult due to diverse hand-object interactions and frequent occlusions, Assembly101 due to fine-grained assembly tasks and cluttered backgrounds, and Ego-Exo4D due to real-world variability, multiple subjects, and dynamic environments. Unlike CFLD, which struggles to reconstruct information beyond the hand region, *EgoWorld* shows a remarkable ability to restore not only the hand but also the interacting objects and the surrounding scene. These results confirm that *EgoWorld* is capable of delivering robust performance across diverse domains. More results of comparisons will be discussed in the appendix.

4.3.2 COMPARISONS ON REAL-WORLD EXAMPLES

Furthermore, to evaluate in-the-wild generalization with unlabeled real-world examples, we conduct experiments on *EgoWorld* with a state-of-the-art baseline model. We take in-the-wild images of people interacting with arbitrary objects using their hands. *Note that we rely solely on a single RGB image captured using a smartphone (iPhone 13 Pro) and apply our complete pipeline as shown in <i>Fig. 2. No additional information beyond this single exocentric image is used.* We use pre-trained weights from our model trained on unseen action scenarios from H2O and select CFLD as the baseline, as it significantly outperforms other methods in our main experiments. As shown in Fig. 5, CFLD produces egocentric images that appear unnatural, overly biased toward training images in H2O, and are inconsistent with the new interaction scenarios. *In contrast, EgoWorld generates realistic, natural-looking egocentric views by effectively utilizing the sparse map, demonstrating strong generalization in unseen and real-world settings.* These results highlight *EgoWorld*'s robustness in in-the-wild scenarios, and with further training on diverse datasets, we believe it holds strong potential for real-world applications.

4.3.3 Ablation Study for Conditioning Modalities

EgoWorld reconstructs faithful egocentric images based on both the pose map and the textual description. To validate the contribution of each observation, we conduct an ablation study on it. As shown in Table 3, the best performance across all metrics is achieved when both pose and text information are provided. Notably, as illustrated in Fig. 6, the absence of text leads to incorrect reconstructions of unseen objects. In contrast, when text is available, the textual object information predicted from the exocentric image is effectively reflected in the egocentric view reconstruction, resulting in more plausible outputs. Incorporating hand pose information helps EgoWorld generate more natural and realistic hand configurations, highlight-

Table 3: **Results for conditioning modalities of egocentric view reconstruction.** *EgoWorld* achieves higher scores when conditioned on both pose maps and text, compared to using only one or none.

Pose	Text	FID↓	PSNR↑	SSIM↑	LPIPS↓
		56.120	27.054	0.4460	0.4454
✓		55.016	27.544	0.4449	0.4122
	✓	44.240	28.565	0.4573	0.3821
\checkmark	✓	41.334	31.171	0.4814	0.3476

ing that its performance is maximized when jointly leveraging both pose and textual observations.

4.3.4 Additional Results

To comprehensively analyze our approach, we perform extensive ablation studies spanning multiple dimensions. We first investigate effective backbones for egocentric view reconstruction and assess a 3D egocentric hand pose estimator derived from exocentric observations to validate its performance. To examine the role of text guidance, we consider cases with incorrect textual descriptions, and to evaluate consistency, we generate multiple outputs from the same exocentric input. We also study the impact of individual sub-modules and direct camera pose regression within exocentric observations, and extend the analysis to whole-body pose estimation. Furthermore, we compare different representations of estimated hand poses and test robustness under noisy inputs to measure reliance on off-the-shelf estimators. Beyond these, we present additional qualitative examples across diverse scenarios, and conclude with a discussion of limitations supported by failure cases, which point to promising directions for future improvement. Detailed analyses are provided in the appendix.

5 CONCLUSION

In this work, we introduce *EgoWorld*, a novel framework that translates exocentric observations into egocentric views by leveraging rich multi-modal cues. Our two-stage design first extracts informative exocentric observations and then synthesizes realistic egocentric images from sparse egocentric maps through a diffusion model conditioned on pose and text. Through extensive experiments on four benchmarks (H2O, TACO, Assembly101, and Ego-Exo4D), we demonstrate that *EgoWorld* outperforms existing methods and proves highly effective. Beyond benchmark performance, *EgoWorld* exhibits strong generalization to real-world samples, highlighting its potential for deployment in diverse and unconstrained scenarios. Furthermore, the flexibility of our framework suggests promising extensions to tasks such as whole-body egocentric reconstruction, AR/VR content generation, and human–robot interaction.

REFERENCES

- Shervin Ardeshir and Ali Borji. An exocentric look at egocentric actions and vice versa. *CVIU*, 171: 61–68, 2018.
 - Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang Zhou, and Jingren Zhou. Qwen-vl: A versatile vision-language model for understanding, localization, text reading, and beyond. *arXiv preprint arXiv:2308.12966*, 2023.
 - Hangbo Bao, Li Dong, Songhao Piao, and Furu Wei. Beit: Bert pre-training of image transformers. *arXiv preprint arXiv:2106.08254*, 2021.
 - Junuk Cha, Jihyeon Kim, Jae Shin Yoon, and Seungryul Baek. Text2hoi: Text-guided 3d motion generation for hand-object interaction. In *CVPR*, pp. 1577–1585, 2024.
 - Joya Chen, Difei Gao, Kevin Qinghong Lin, and Mike Zheng Shou. Affordance grounding from demonstration video to target image. In *CVPR*, pp. 6799–6808, 2023.
 - Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David Luan, and Ilya Sutskever. Generative pretraining from pixels. pp. 1691–1703, 2020.
 - Feng Cheng, Mi Luo, Huiyu Wang, Alex Dimakis, Lorenzo Torresani, Gedas Bertasius, and Kristen Grauman. 4diff: 3d-aware diffusion model for third-to-first viewpoint translation. In *ECCV*, pp. 407–425, 2024.
 - Dima Damen, Hazel Doughty, Giovanni Maria Farinella, Sanja Fidler, Antonino Furnari, Evangelos Kazakos, Davide Moltisanti, Jonathan Munro, Toby Perrett, Will Price, et al. Scaling egocentric vision: The epic-kitchens dataset. In *ECCV*, pp. 720–736, 2018.
 - Dima Damen, Hazel Doughty, Giovanni Maria Farinella, Antonino Furnari, Evangelos Kazakos, Jian Ma, Davide Moltisanti, Jonathan Munro, Toby Perrett, Will Price, et al. Rescaling egocentric vision: Collection, pipeline and challenges for epic-kitchens-100. *IJCV*, pp. 1–23, 2022.
 - Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, G Heigold, S Gelly, et al. An image is worth 16x16 words: Transformers for image recognition at scale. In *ICLR*, 2020.
 - Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming transformers for high-resolution image synthesis. In *CVPR*, pp. 12873–12883, 2021.
 - Difei Gao, Lei Ji, Luowei Zhou, Kevin Qinghong Lin, Joya Chen, Zihan Fan, and Mike Zheng Shou. Assistgpt: A general multi-modal assistant that can plan, execute, inspect, and learn. *arXiv* preprint arXiv:2306.08640, 2023.
 - Kristen Grauman, Andrew Westbury, Eugene Byrne, Zachary Chavis, Antonino Furnari, Rohit Girdhar, Jackson Hamburger, Hao Jiang, Miao Liu, Xingyu Liu, et al. Ego4d: Around the world in 3,000 hours of egocentric video. In *CVPR*, pp. 18995–19012, 2022.
 - Kristen Grauman, Andrew Westbury, Lorenzo Torresani, Kris Kitani, Jitendra Malik, Triantafyllos Afouras, Kumar Ashutosh, Vijay Baiyya, Siddhant Bansal, Bikram Boote, et al. Ego-exo4d: Understanding skilled human activity from first-and third-person perspectives. In *CVPR*, pp. 19383–19400, 2024.
 - Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked autoencoders are scalable vision learners. In *CVPR*, pp. 16000–16009, 2022.
- Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans trained by a two time-scale update rule converge to a local nash equilibrium. *NeurIPS*, 30: 6626–6637, 2017.
 - Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. *arXiv preprint* arXiv:2207.12598, 2022.
 - Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *NeurIPS*, 33: 6840–6851, 2020.

- Mingzhen Huang, Fu-Jen Chu, Bugra Tekin, Kevin J Liang, Haoyu Ma, Weiyao Wang, Xingyu
 Chen, Pierre Gleize, Hongfei Xue, Siwei Lyu, et al. Hoigpt: Learning long-sequence hand-object interaction with language models. In CVPR, pp. 7136–7146, 2025.
- Taein Kwon, Bugra Tekin, Jan Stühmer, Federica Bogo, and Marc Pollefeys. H2o: Two hands manipulating objects for first person interaction recognition. In *CVPR*, pp. 10138–10148, 2021.
 - Wenbo Li, Zhe Lin, Kun Zhou, Lu Qi, Yi Wang, and Jiaya Jia. Mat: Mask-aware transformer for large hole image inpainting. In *CVPR*, pp. 10758–10768, 2022.
 - Hongyu Liu, Bin Jiang, Yi Xiao, and Chao Yang. Coherent semantic attention for image inpainting. In *ICCV*, pp. 4170–4179, 2019.
 - Jia-Wei Liu, Weijia Mao, Zhongcong Xu, Jussi Keppo, and Mike Zheng Shou. Exocentric-to-egocentric video generation. *NeurIPS*, 37:136149–136172, 2024a.
 - Yun Liu, Haolin Yang, Xu Si, Ling Liu, Zipeng Li, Yuxiang Zhang, Yebin Liu, and Li Yi. Taco: Benchmarking generalizable bimanual tool-action-object understanding. In *CVPR*, pp. 21740–21751, 2024b.
 - Yanzuo Lu, Manlin Zhang, Andy J Ma, Xiaohua Xie, and Jianhuang Lai. Coarse-to-fine latent diffusion for pose-guided person image synthesis. In *CVPR*, pp. 6420–6429, 2024.
 - Hongchen Luo, Kai Zhu, Wei Zhai, and Yang Cao. Intention-driven ego-to-exo video generation. *arXiv preprint arXiv:2403.09194*, 2024a.
 - Mi Luo, Zihui Xue, Alex Dimakis, and Kristen Grauman. Put myself in your shoes: Lifting the egocentric perspective from exocentric videos. In *ECCV*, pp. 407–425, 2024b.
 - Junho Park, Kyeongbo Kong, and Suk-Ju Kang. Attentionhand: Text-driven controllable hand image generation for 3d hand reconstruction in the wild. In *ECCV*, 2024.
 - Deepak Pathak, Philipp Krahenbuhl, Jeff Donahue, Trevor Darrell, and Alexei A Efros. Context encoders: Feature learning by inpainting. In *CVPR*, pp. 2536–2544, 2016.
 - Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever. Learning transferable visual models from natural language supervision. pp. 8748–8763, 2021.
 - Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-resolution image synthesis with latent diffusion models. In *CVPR*, pp. 10684–10695, 2022.
 - Javier Romero, Dimitris Tzionas, and Michael J Black. Embodied hands: Modeling and capturing hands and bodies together. *ACM TOG*, 36(6), 2017.
 - Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen. Improved techniques for training gans. *NeurIPS*, 29, 2016.
 - Fadime Sener, Dibyadip Chatterjee, Daniel Shelepov, Kun He, Dipika Singhania, Robert Wang, and Angela Yao. Assembly101: A large-scale multi-view video dataset for understanding procedural activities. In *CVPR*, pp. 21096–21106, 2022.
 - Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recognition. *arXiv preprint arXiv:1409.1556*, 2014.
 - Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. *arXiv* preprint arXiv:2010.02502, 2020.
 - Yuhang Song, Chao Yang, Yeji Shen, Peng Wang, Qin Huang, and C-C Jay Kuo. Spg-net: Segmentation prediction and guidance network for image inpainting. *arXiv preprint arXiv:1805.03356*, 2018.

- Roman Suvorov, Elizaveta Logacheva, Anton Mashikhin, Anastasia Remizova, Arsenii Ashukha, Aleksei Silvestrov, Naejin Kong, Harshith Goka, Kiwoong Park, and Victor Lempitsky. Resolution-robust large mask inpainting with fourier convolutions. In *Proceedings of the IEEE/CVF winter conference on applications of computer vision*, pp. 2149–2159, 2022.
- Shinji Umeyama. Least-squares estimation of transformation parameters between two point patterns. *IEEE TPAMI*, 13(04):376–380, 1991.
- Pascal Vincent, Hugo Larochelle, Isabelle Lajoie, Yoshua Bengio, Pierre-Antoine Manzagol, and Léon Bottou. Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion. *Journal of machine learning research*, 11(12), 2010.
- Jianyuan Wang, Minghao Chen, Nikita Karaev, Andrea Vedaldi, Christian Rupprecht, and David Novotny. Vggt: Visual geometry grounded transformer. *arXiv preprint arXiv:2503.11651*, 2025.
- Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Andrew Tao, Jan Kautz, and Bryan Catanzaro. High-resolution image synthesis and semantic manipulation with conditional gans. In *CVPR*, pp. 8798–8807, 2018.
- Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment: From error visibility to structural similarity. *IEEE TIP*, 13(4):600–612, 2004.
- Benita Wong, Joya Chen, You Wu, Stan Weixian Lei, Dongxing Mao, Difei Gao, and Mike Zheng Shou. Assistq: Affordance-centric question-driven task completion for egocentric assistant. In *ECCV*, pp. 485–501, 2022.
- Wei Xiong, Jiahui Yu, Zhe Lin, Jimei Yang, Xin Lu, Connelly Barnes, and Jiebo Luo. Foreground-aware image inpainting. In *CVPR*, pp. 5840–5848, 2019.
- Jilan Xu, Yifei Huang, Baoqi Pei, Junlin Hou, Qingqiu Li, Guo Chen, Yuejie Zhang, Rui Feng, and Weidi Xie. Egoexo-gen: Ego-centric video prediction by watching exo-centric videos. In ICLR, 2025.
- Alex Yu, Vickie Ye, Matthew Tancik, and Angjoo Kanazawa. pixelnerf: Neural radiance fields from one or few images. In *CVPR*, pp. 4578–4587, 2021.
- Zhengdi Yu, Shaoli Huang, Fang Chen, Toby P. Breckon, and Jue Wang. Acr: Attention collaboration-based regressor for arbitrary two-hand reconstruction. In *CVPR*, June 2023.
- Mengqi Zhang, Yang Fu, Zheng Ding, Sifei Liu, Zhuowen Tu, and Xiaolong Wang. Hoidiffusion: Generating realistic 3d hand-object interaction data. In *CVPR*, pp. 8521–8531, 2024.
- Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable effectiveness of deep features as a perceptual metric. In *CVPR*, pp. 586–595, 2018.
- Shengyu Zhao, Jonathan Cui, Yilun Sheng, Yue Dong, Xiao Liang, Eric I Chang, and Yan Xu. Large scale image completion via co-modulated generative adversarial networks. *arXiv preprint arXiv:2103.10428*, 2021.