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Figure 1: EgoWorld translates a single exocentric view into an egocentric view. By leveraging rich
multimodal exocentric observations, such as projected point clouds, 3D hand poses, and textual
descriptions, EgoWorld is able to generate high-quality egocentric views, even in unseen scenarios.
Each observed modality provides complementary information that contributes to the accurate and
realistic reconstruction of the egocentric view.

ABSTRACT

Egocentric vision is essential for both human and machine visual understanding,
particularly in capturing the detailed hand-object interactions needed for manip-
ulation tasks. Translating third-person views into first-person views significantly
benefits augmented reality (AR), virtual reality (VR) and robotics applications.
However, current exocentric-to-egocentric translation methods are limited by their
dependence on 2D cues, synchronized multi-view settings, and unrealistic as-
sumptions such as the necessity of an initial egocentric frame and relative camera
poses during inference. To overcome these challenges, we introduce EgoWorld,
a novel two-stage framework that reconstructs an egocentric view from rich ex-
ocentric observations, including projected point clouds, 3D hand poses, and tex-
tual descriptions. Our approach reconstructs a point cloud from estimated exo-
centric depth maps, reprojects it into the egocentric perspective, and then applies
diffusion-based inpainting to produce dense, semantically coherent egocentric im-
ages. Evaluated on 4 datasets (i.e., H20, TACO, Assembly101, and Ego-Ex04D),
EgoWorld achieves state-of-the-art performance and demonstrates robust general-
ization to new objects, actions, scenes, and subjects. Moreover, EgoWorld exhibits
robustness on in-the-wild examples, underscoring its practical applicability.

1 INTRODUCTION

Egocentric vision plays a crucial role in advancing visual understanding for both humans and in-
telligent systems (Ardeshir & Borji, 2018} |(Grauman et al., [2024; [Kwon et al.| 2021} |[Sener et al.,
2022). Egocentric views are particularly valuable for capturing detailed hand-object interactions,
which are essential in skill-intensive tasks such as cooking, assembling, or playing instruments.
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However, most existing resources are recorded from third-person perspectives, primarily due to the
limited availability of head-mounted cameras and wearable recording devices. Consequently, the
ability to generate or predict egocentric images from exocentric inputs holds significant promise
for enhancing instructional videos and applications in augmented reality (AR), virtual reality (VR),
and robotics, where perception is inherently egocentric. For example, instructional videos are often
recorded from a third-person viewpoint, which can be challenging for viewers to follow due to the
mismatched perspectives. Translating these videos into a first-person view enables more intuitive
guidance by clearly showing detailed finger placements during a task. Moreover, this translation
capability unlocks the development of robust, user-centered world models (Wong et al.| [2022; (Chen
et al., 2023}, |Gao et al.l [2023) that capture the spatial and temporal details necessary for real-time
perception, planning, and interaction at scale.

Although exocentric-to-egocentric view translation holds great promise, it remains a particularly
difficult challenge in computer vision. The main obstacle stems from the substantial visual and
geometric differences between third-person and first-person views. Egocentric views focus on hands
and objects with the fine detail necessary for precise manipulation, whereas exocentric views offer
a wider context and kinematic cues but lack emphasis on these intricate interactions. Bridging these
views is fundamentally under-constrained and cannot be addressed by geometric alignment alone,
due to factors such as occlusions, restricted fields of view, and appearance changes across different
viewpoints. For instance, elements like the inner pages of a book may be completely obscured in an
exocentric perspective but still need to be realistically inferred in the egocentric output. Moreover,
reconstructing background details in the egocentric view, which are invisible from the exocentric
perspective, is a nontrivial task.

Recently, the impressive achievements of diffusion models (Rombach et al.| [2022; Ho et al., [2020)
have opened up new possibilities for applying generative techniques to the task of exocentric-to-
egocentric view translation. However, many existing approaches rely on restrictive input conditions,
such as multi-view images (Liu et al., | 2024a)), known relative camera pose (Cheng et al., 2024), or a
reference egocentric frame to generate subsequent ones (Xu et al [2025)), making them impractical
for scenarios where only single view images are available. More closely, Exo2Ego (Luo et al.,
2024b) attempts to generate egocentric views from a single exocentric image. Yet, it depends heavily
on accurate 2D hand layout predictions for structure transformation, which can be unreliable in
cases of occlusion, viewpoint ambiguity, or cluttered environments. Furthermore, it struggles to
generalize to novel environments and objects, often overfitting to the training dataset. Overall,
current methods lack the detailed understanding of exocentric observations necessary to synthesize
precise and realistic hand-object interactions from a first-person view.

To address the limitations of current approaches, we propose EgoWorld, a novel framework for
translating exocentric views into egocentric views using rich exocentric observations, as illustrated
in Fig. Our method employs a two-stage pipeline to reconstruct the egocentric view: (1) ex-
tracting diverse observations from the exocentric view, including projected point clouds, 3D hand
poses, and textual descriptions; and (2) reconstructing the egocentric view based on these extracted
cues. In the first stage, we construct a point cloud by combining the input exocentric RGB image
with a scale-aligned estimated exocentric depth map, using the 3D exocentric hand pose for spatial
calibration. This point cloud is then transformed into the egocentric view using a translation ma-
trix computed from the predicted 3D hand poses in both views. After the projection of the point
cloud, a sparse egocentric image is obtained and it is subsequently reconstructed into a dense, high-
quality egocentric image using a diffusion-based model. To further enhance the semantic alignment
and visual fidelity of the hand-object reconstruction, we incorporate the predicted exocentric text
description and estimated egocentric hand pose during the reconstruction process.

We evaluate the effectiveness of EgoWorld through extensive experiments conducted on 4 datasets
(i.e., H20 (Kwon et al.l 2021), TACO (Liu et al.l 2024b)), Assembly101 (Sener et al., [2022), and
Ego-Ex04D (Grauman et al.| [2024)), which provide well-annotated exocentric and egocentric video
pairs. Our method achieves state-of-the-art performance on these benchmarks. As a result, thanks
to its end-to-end design, EgoWorld demonstrates strong generalization across various scenarios,
including unseen objects, actions, scenes, and subjects. Furthermore, we conduct experiments on
unlabeled real-world examples, and EgoWorld shows powerful in-the-wild generalization.

Our main contributions can be summarized as follows:
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* We introduce EgoWorld, a novel end-to-end framework that reconstructs high-fidelity ego-
centric views from a single exocentric image by leveraging rich multimodal cues, including
projected point clouds, 3D hand poses, and textual descriptions.

* QOur two-stage pipeline uniquely integrates geometric reasoning with semantic information
and diffusion-based inpainting that significantly enhances hand-object interaction fidelity
and semantic alignment in the synthesized egocentric images.

* We demonstrate the strong generalization capability of EgoWorld through extensive ex-
periments on H20, TACO, Assembly101, and Ego-Exo4D benchmarks. Our approach
achieves state-of-the-art performance across diverse and previously unseen scenarios (i.e.,
unseen objects, actions, scenes, and subjects). Additionally, we show EgoWorld’s real-
world applicability with in-the-wild examples.

2 RELATED WORK

2.1 EXOCENTRIC-EGOCENTRIC TRANSLATION

Egocentric vision has also been scaling up particularly due to the introduction of benchmarks
(Damen et al., 2018 [Kwon et al.l 2021} |Grauman et al., 2022; Damen et al., 2022} |Sener et al.}
2022} |Grauman et al.| 2024). Recently, research on exocentric-to-egocentric (and vice versa) trans-
lation (Luo et al.l 2024a;b; (Cheng et al., 2024; Liu et al.| [2024aj Xu et al.l 2025) has also gained
significant attention. Intention-Ego2Exo (Luo et al.,[2024a)) proposed an intention-driven ego-to-exo
video generation framework that leverages head trajectory and action descriptions to guide content-
consistent and motion-aware video synthesis. Exo2Ego (Luo et al.| [2024b) introduced a two-stage
generative framework for exocentric-to-egocentric view translation that leverages structure trans-
formation and diffusion-based hallucination with hand layout priors. 4Diff (Cheng et al., [2024)
proposed a 3D-aware diffusion model for translating exocentric images into egocentric views using
egocentric point cloud rasterization and 3D-aware rotary cross-attention. Exo2Ego-V (Liu et al.,
2024a)) presented a diffusion-based method for generating egocentric videos from sparse 360° ex-
ocentric views of skilled daily-life activities, addressing challenges like viewpoint variation and
motion complexity. EgoExo-Gen (Xu et al., 2025)) addressed cross-view video prediction by gen-
erating future egocentric frames from an exocentric video, the initial egocentric frame, and textual
instructions, using hand-object interaction dynamics as key guidance. However, these works have
fatal limitations: dependency of 2D layouts, pre-defined relative camera pose, multi-view or consec-
utive sequences inputs, and the challenge of integrating multiple external modalities, such as textual
description and pose map.

2.2 IMAGE COMPLETION

Image completion is a fundamental problem in computer vision, which aims to fill missing regions
with plausible contents (Pathak et al., 2016; |Liu et al., 2019; Xiong et al., 2019; |Song et al., 2018;
Zhao et al., 2021;|Suvorov et al.,[2022; L1 et al.,|2022). For example, MAT (Li et al.,[2022) proposed
a transformer-based model for large-hole image inpainting that combines the strengths of transform-
ers and convolutions to efficiently handle high-resolution images. On the other hand, masked image
encoding methods learn representations from images corrupted by masking (Vincent et al., 2010;
Pathak et al.,2016; Chen et al.,2020; Dosovitskiy et al.,|2020; Bao et al.,[2021; |He et al.,[2022)). For
example, MAE (He et al., 2022) masks random patches of an input image and learns to reconstruct
the missing regions. However, these studies have a limitation that they rely solely on the information
surrounding the pixels to restore missing area. With the advent of foundational diffusion models (Ho
et al., | 2020; Song et al., [2020), it has become possible to perform image completion based on vari-
ous types of conditions. Specifically, latent diffusion model (Rombach et al.,[2022) supports flexible
conditioning such as text or bounding boxes and enable high-resolution image synthesis, achieving
state-of-the-art results in inpainting, class-conditional generation, and other tasks by incorporating
cross-attention. Furthermore, the value of diffusion-based models has been demonstrated across a
wide range of challenging domains, such as hand-hand or hand-object interaction image generation
(Zhang et al., 2024; Park et al.,2024)), and motion generation (Cha et al., 2024;|Huang et al., 2025).
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Figure 2: Overall framework of EgoWorld. EgoWorld has a two-stage pipeline : (1) Exocentric
view observation ®.,,, which extracts diverse observations from the exocentric view, including pro-
jected point clouds, 3D hand poses, and textual descriptions; and (2) egocentric view reconstruction
®.40, which reconstructs the egocentric view based on cues from the exocentric view observation.

3 METHOD

3.1 PROBLEM FORMULATION

EgoWorld consists of two stages: exocentric view observation ®.,, and egocentric view recon-
struction ®.g,, as shown in Fig. First, given a single exocentric image I.,, € REXWX3 ¢
predicts a corresponding sparse egocentric RGB map Scq, € RIXWX3 3D egocentric hand pose
Pego € RN >3 and a textual description 7T,,,. H and W indicates height and width of I.,,, and N
indicates the number of keypoints of the hand. Then, in ®.4,, an egocentric image I ego € REXWx3
is generated based on the observations predicted in ®,,. Therefore, EgoWorld is formulated as
follows:

exro

Segoa Pego, Tezo = (bexo(lezo)y (1)

Iego = q)ego(segm egos Tewo)~ (2)

3.2 EXOCENTRIC VIEW OBSERVATION

Exocentric view observation ®.,, takes various real-world observations, such as sparse egocentric
RGB map S.g,, 3D egocentric hand pose P.4,, and textual description T¢,,, from the single exo-
centric image I.;,. These observations are essential for the egocentric view reconstruction ®,.

First, with an off-the-shelf depth estimator (Wang et al.| [2025), an exocentric depth map D¢y, €
RHEXW ig extracted from I.,,. Obtaining D, is essential, because in ®.g4,, the reconstruction
process relies on Se40, Which serves as a crucial hint. Specifically, when pixel information from an
exocentric view is transformed into an egocentric view, it provides partial observations of the hand,
object, or scene, and this serves as a strong basis for approaching the problem from an inpainting
perspective.

Next, a 3D exocentric hand pose P.,, € RV *3 is extracted from I.,, with an off-the-shelf hand
pose estimator (Yu et al.|[2023). As D.,, provides only relative depth and is inherently affected by
scale ambiguity, it is crucial to leverage P,,, for reasonable scale fitting. Specifically, it is possible
to extract a metrically-scaled P., and an exocentric hand depth map Dj,qng € R7*W from the
estimated MANO(Romero et al., 2017)-based mesh of P,,,. We define a hand region 4,4, which
is a pixel-level valid area determined by Dy, 4,4, and compute a global scale factor s* by comparing
it with D.,, as follows:

*

D
s* = median hand (1, V)

_LPhandlu,v) 3
(u,v) € Qnana Demo(ua U) +4’ o

where u, v indicate the pixel coordinate of depth maps, and ¢ is a small constant to prevent division
by zero. Applying s* yields a metrically-calibrated exocentric depth map D’ ., = $*Deyo. There-
fore, with I, and an exocentric camera intrinsic parameter K., € R3*3, which is estimated from
the off-the-shelf depth estimator, D’ .., is utilized to obtain a point cloud C,,, € REXW)x6,
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To project Ce,, in the egocentric view, we need an exocentric-to-egocentric view transformation
matrix X € R**4, which can be computed through a transformation between P.,,, and Peyo. How-
ever, to the best of our knowledge, there is no model that predicts P4, directly from I.;,. Thus,
we build a powerful-but-simple 3D egocentric hand pose estimator ¢.g4,, Which is designed with a
simple architecture consisting of a ViT(Dosovitskiy et al., [2020)-based backbone ¢pqckbone and an
MLP-based regressor ¢,..4. Specifically, after extracting an image feature from I, With @pcrbones
it is fed through ¢,.4 to obtain P,,4,. We optimize ¢4, with an L2 loss function.

From the obtained P, and F.g4,, we calculate X between them with the Umeyama algorithm
(Umeyama, [1991)), which estimates a transformation matrix as follows:

KXegooezo = (8, R, t), such that Py, &~ sRP.g, + t. ())
Here, s, R, and t are the estimated scale, rotation, and translation matrices. Since both P,,, and
P.g4o are in metric units, s is expected to be close to 1. The transformation from exocentric to
egocentric view is given by X = (Xegoﬁmo)_l. Therefore, we translate C,, with X into C¢g,,
project it into egocentric view with an egocentric camera intrinsic parameters K4, € R3**3, and
obtain the sparse egocentric RGB map Se4o.

Finally, T.,, is extracted with an off-the-shelf vision-language model (VLM) (Bai et al., [2023)).
For example, when I.,, and a user-provided question (i.e., “Describe in detail about the scene
and the object that the person is interacting with using their hands.”) are given, VLM outputs the
corresponding answer T.,,. Since T,., contains both the overall contextual information present
in the exocentric view and specific details about actions and objects, it significantly aids @4, for
reconstructing the faithful egocentric view for unseen scenarios.

3.3 EGOCENTRIC VIEW RECONSTRUCTION

Since Seg, only contains partial information observed from the exocentric view, it is necessary
to reconstruct the missing regions. Thus, leveraging the powerful latent diffusion model (LDM)
(Rombach et al.,|[2022), we exploit exocentric observations Sego, Pego, and Teq, for @eg0.

Following the LDM, input images are encoded into the latent embedding using a frozen VAE en-
coder (Esser et al., 2021}, and the denoised latent embedding is decoded into an output image using
the frozen VAE decoder. Specifically, we encode Scg4, to a sparse embedding scq, € RO4x64x4
with VAE encoder. We obtain a 2D egocentric hand pose map P25 € R>12*512x3 by projecting
Peyo with K g,, encode Pf% to 4-channels embedding with VAE encoder, and reduce the number
of channels of 4-channels embedding to 1-channel via a channel reduction layer. This layer consists
of one convolutional layer, which inputs 4-channel embedding and outputs 1-channel embedding.

Therefore, we obtain a 1-channel pose embedding pe,, € R64*64x1,

During training, the ground-truth egocentric image .4, € R®12X512%3 5 also encoded to a clean

latent zy € R64X64%4 through the VAE encoder, and the noise ¢; € R4*64*4 j5 added to 2y to make
a noisy embedding z; € R64%64%4 with timestep ¢ as follows:

Zt:@'z()+ Vl—O_[t'G,ENN(O7I)7 (5)
where &, denotes the noise level of ¢. By concatenating s¢g0, Pego, and z;, we obtain 9-channel latent
embedding 2, € R64*64X9 which is fed into the input of a pre-trained U-Net. Simultaneously, a
textual description 7., is passed through CLIP (Radford et al.l [2021) to obtain a text embedding
Cezo € R77X768 which serves as guidance for the U-Net of LDM. In this manner, the forward
and reverse processes for the denoising network €y are carried out to predict ¢; with the following
objective:

L=E

ZO;56907PeQO7t;Cem07Et ||€t — €9 (Zlé7 t’ cezo) ||%' (6)

During sampling, we start the denoising process from a random Gaussian noise zg ~ N (0, I) with
well-trained €g. We concatenate zp € R4*64%4 with .., and pe,,, and feed to €5 to obtain the
predicted latent 2y € R64%64%4 by reversing the schedule in Eq. || at each timestep ¢t € [1,7].
We adopt classifier-free guidance (CFG) (Ho & Salimans| 2022) to strengthen textual guidance as
follows:

e = (1+w) - ea(2t,t, Cexo) — W - €24, 1, D), (7)
where w indicates the scaling factor in CFG, and & means unconditional. To the end, the final
generated egocentric image I ego 15 obtained from Z, by passing the VAE decoder.
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Table 1: Comparisons with state-of-the-arts on unseen scenarios (i.e., objects, actions, scenes,
and subjects) in H20 (Kwon et al., 2021). Compared to state-of-the-arts (i.e., pix2pixHD (Wang
et al., 2018), pixelNeRF (Yu et al., 2021), and CFLD (Lu et al., 2024)), EgoWorld outperforms for
all unseen scenarios in all metrics (i.e., FID, PSNR, SSIM, and LPIPS).

Scenarios | Unseen Objects | Unseen Actions | Unseen Scenes | Unseen Subjects
Methods | FID,  PSNR{ SSIM{ LPIPS| | FID, PSNR SSIM{ LPIPS| | FID, PSNRT SSIM{ LPIPS| | FID, PSNRT SSIM{ LPIPS|
pix2pixHD (Wang et al.12018] | 436.25 25.012  0.2993  0.6057 | 211.10 24.420 0.2854  0.6127 | 490.32 18.567 0.2425  0.7290 | 452.13 18.172 03310  0.7234
pixelNeRF (Yu et al. 12021 498.23  26.557 0.3887 0.5372 | 251.76  27.061 0.3950 0.8159 | 489.13 26.537 0.2574 0.7143 | 493.13 22.636 0.4135 0.6838
CFLD (Lu et al.{2024] 59.615 25922 04307 04539 | 50.953 28.529 04324 04593 | 118.10 29.030 03696 0.6841 | 129.30 21.050 0.4001  0.6269
EgoWorld (Ours) 41.334 31.171 04814 03476 | 33.284 31.620 0.4566 0.3780 | 90.893 31.004 0.4096 0.6519 96.429 24.851 0.4605 0.6188

Table 2: Comparisons with state-of-the-arts on unseen actions in TACO (Liu et al., [2024b),
Assembly101 (Sener et al., 2022), and Ego-Exo04D (Grauman et al., 2024). Compared to state-
of-the-arts (i.e., pix2pixHD (Wang et al.| 2018)), pixeINeRF (Yu et al.| 2021)), and CFLD (Lu et al.,
2024]))), EgoWorld outperforms for all unseen scenarios in all metrics (i.e., FID, PSNR, SSIM, and
LPIPS).

Datasets | TACO (Liu et al.||2024b} | Assembly101 (Sener et al.;2022) | Ego-Exo4D (Grauman et al.|2024)
Methods | FID, PSNRf SSIMt LPIPS| | FID] PSNRT SSIM{ LPIPS| | FID, PSNRT SSIM{ LPIPS)
pix2pixHD (Wang et al.|[2018) | 227.87 25.875 0.2806 0.7037 | 350.97 17.107 0.3587 0.6578 | 401.48 14.792 0.3065 0.6899
pixelNeRF (Yu et al.[|2021} 302.19 26.661 0.3888 0.8543 | 356.44 19.037 0.3761 0.6019 | 367.39 17.347 0.3618 0.7134
CFLD (Lu et al.|[2024} 61.357 28.769 0.4009 0.5033 | 53.931 20.998 0.3988 0.5566 | 70.476 21.578 0.3614 0.5975
EgoWorld (Ours) 37.191 30.155 0.4237 0.4025 | 50.232 25365 0.4101 0.5142 | 61.231 24.985 0.3986 0.5482

4 EXPERIMENTS

4.1 DATASETS

To evaluate exocentric-to-egocentric translation models including our EgoWorld, we select H20
(Kwon et al, [2021), which contains diverse scenarios such as unseen objects, actions, scenes, and
subjects. Following (Luo et al.l [2024b), we split four unseen settings to evaluate generalization as
follows: (1) unseen objects, where we train with 6 objects and test with novel 2 objects, (2) unseen
actions, where we train with first 80% frames and test with last 20% frames, (3) unseen scenes,
where we train with 4 scenes and test with novel 2 scenes, and (4) unseen subjects, where we train
with subject 1 and test with subject 2. To further demonstrate the generalizability of our method, we
also evaluate it on TACO (Liu et al., 2024b), Assembly101 (Sener et al., 2022), and Ego-Exo4D
(Grauman et al., [2024)) datasets. Since they provide hand-object interaction sequences involving 15,
1,380, and 689 actions respectively, we adopt them as unseen actions scenario, which allows for a
general and comprehensive evaluation of generalization performance. Note that on H20, we use the
ground-truth egocentric sparse maps, which are derived directly from the ground-truth exocentric
depth maps and relative camera poses. On TACO, due to its inherent characteristics (i.e., invisible
head motions), reliable estimation of egocentric hand poses is challenging. Thus, we utilize both
the ground-truth hand poses and egocentric sparse maps. On the other hand, since Assembly101
and Ego-Exo04D do not provide ground-truth depth map, we utilize the estimated sparse depth map
obtained solely from the exocentric image using our proposed pipeline.

4.2 EVALUATION METRICS

Following (Luo et al.|[2024b;|Liu et al.| 2024a)), we adopt extensive image quality metrics to measure
reconstructed egocentric images: (1) frechet inception distance (FID) (Heusel et al.,2017)), which
employs Inception-v3 (Salimans et al.,2016)) features to compute the distributions of generated and
real images, (2) peak signal-to-noise ratio (PSNR), which is a pixel-wise fidelity metric that quanti-
fies the ratio between the maximum possible pixel value and the mean squared error (MSE) between
a reconstructed image and its ground truth counterpart, (3) structural similarity index measure
(SSIM) (Wang et al., |2004), which evaluates image similarity by comparing three components, i.e.,
luminance, contrast, and structural information, and is designed to model human visual perception
more closely, and (4) learned perceptual image patch similarity (LPIPS) (Zhang et al.| [2018),
which employs a deep neural network (Simonyan & Zisserman, 2014)) trained on human judgments
to evaluate reconstruction accuracy within the perceptual domain.



Under review as a conference paper at ICLR 2026

Input Ground-truth

(Exocentric) (Egocentric) pix2pixHD pixelNeRF CFLD Ours

Unseen Unseen Unseen
Scenes Actions Objects

Unseen
Subjects

Figure 3: Comparisons with state-of-the-arts on unseen scenarios (i.e., objects, actions, scenes,
and subjects) in H20 (Kwon et al., 2021). Compared to state-of-the-arts (i.e., pix2pixHD
2018), pixelNeRF (Yu et al., [2021), and CFLD (Lu et al.,[2024)), EgoWorld outperforms the

image reconstruction quality with respect to hand-object interaction and background regions for all
unseen scenarios.

Input Ground-truth Input Ground-truth
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Figure 4: Comparisons with state-of-the-art on unseen actions scenario in TACO (Liu et al.|

2024b), Assembly101 (Sener et al., 2022), and Ego-Exo4D (Grauman et al., 2024). Compared
to state-of-the-art (i.e., CFLD (Lu et al., [2024))), EgoWorld outperforms the image reconstruction

quality with respect to hand-object interaction and background regions even on more challenging

scenarios than H20 (Kwon et al.[, 2021)).

4.3 RESULTS

4.3.1 COMPARISONS ON BENCHMARKS

To compare EgoWorld with related works, we consider several state-of-the-arts: (1) pix2pixHD
(Wang et al 2018), a single-view images-to-image translation model, (2) pixelNeRF
2021)), a generalizable neural rendering method that synthesizes novel views from one or few images
by combining pixel-aligned features with NeRF-style volume rendering, and (3) CFLD
[2024), a coarse-to-fine latent diffusion framework that decouples pose and appearance information
at different stages of the generation process.

Based on experiments conducted on H20 across the 4 unseen scenarios, our method achieve state-
of-the-art performance across all metrics compared to the baselines. As shown in Tables [I] and
pix2pixHD and pixelNeRF show poor performance in all scenarios. CFLD, which generates
view-aware person image synthesis based on a given hand pose map, demonstrates stronger per-
formance than pix2pixHD and pixelNeRf under view changes. However, its capability is mostly
limited to translating hand regions, and it performs poorly when it comes to reconstructing unseen
regions such as objects and scenes. In contrast, our EgoWorld successfully reconstructs information
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*A person is sitting at a dining table with a box on the table in front of them. The person is using both their hands to interact with the box. The ung man s sitting at a dining table with a laptop on it. He is interacting with a tall, clear botle of lotion by placing his hands on the table
person's left hand is siightly raised, and their right hand is placed slightly lower on the box. This positioning of the hands gives a sense of side of the bottle. The bottle is in the center of the table and is almost entirely empty, with only a small amount of lotion remaining at
emphasis or emphasis on the box. The person is looking directly at the box as well, which further emphasizes their interaction with it 1 the bottom. The man appears to be sither using the lotion or maybe just placing his hands near it for some reason.”

Figure 5: Real-world comparisons with state-of-the-art. Compared to state-of-the-art (i.e., CFLD
(Lu et al., 2024)), EgoWorld significantly outperforms with respect to hand-object interaction and
background regions for in-the-wild scenarios.

Input Ground-truth Ours Ours Ours Ours
(Exocentric) (Egocentric) Sparse Map Pose Map w/o Pose w/ Pose w/o Pose w/ Pose

w/o Text w/o Text w/ Text w/ Text

“The person is interacting with a small orange box, which appears to be a game piece or a toy. The box is rectangular in shape and has a slightly curved surface. It is made of a sturdy material, possibly
cardboard or plastic, and has a simple design with no visible markings or graphics. The person is holding the box in their left hand and appears to be about to open it or place it on a surface. The box is
being held securely and appears to be in good condition.”

“The person i holding an orange box, which appears to be a small and rectangular in shape. The box is made of a sturdy material, possibly cardboard, and has a bright orange color. The person is
interacting with the box by holding it in their hands, possibly preparing to open it or examine its contents. The way the box is being held suggests that it might be slightly larger than the person's hand
and has a weight to it, indicating that it is not too flimsy or lightweight. The person’s interaction with the box suggests that they are either unboxing it or examining its contents, which could be related to a
product review, demonstration, or some other type of content creation.”

Figure 6: Comparisons on conditioning modalities of egocentric view reconstruction. EgoWorld
generates more reasonable images when conditioned on both pose maps and text, compared to using
only one or none.

observed from the exocentric view in a manner that is coherent and natural in the egocentric perspec-
tive, and outperforms all unseen scenarios in all metrics compared to state-of-the-arts. Specifically,
on unseen objects scenario, EgoWorld shows the dramatic performance improvement compared to
CFLD about 30.67%, 16.84%, 10.66%, and 23.42% of FID, PSNR, SSIM, and LPIPS, respec-
tively. On unseen actions scenario, its improvement is about 34.68%, 9.78%, 5.30%, and 17.70% of
FID, PSNR, SSIM, and LPIPS, respectively. On unseen scenes scenario, its improvement is about
23.04%, 6.37%, 9.77%, and 4.71% of FID, PSNR, SSIM, and LPIPS, respectively. On unseen sub-
jects scenario, its improvement is about 25.42%, 15.30%, 13.12%, and 1.29% of FID, PSNR, SSIM,
and LPIPS, respectively. In particular, the notable FID improvement is attributed to our model gen-
erating images that more closely resemble the ground-truth, especially in background regions, which
occupy a large portion of the image. In contrast, the baseline model often produces backgrounds that
differ significantly from the ground-truth.

As illustrated in Fig. [3] pix2pixHD produces egocentric images with noticeable noise, while pix-
elNeRF generates blurry outputs lacking fine details. pix2pixHD, which relies on label map-based
image-to-image translation, appears unsuitable for solving the exocentric-to-egocentric view trans-
lation problem. Similarly, pixelNeRF is designed for novel view synthesis from multiple input
views, making it less appropriate for the single-view to single-view translation task. In contrast,
CFLD effectively reconstructs the hand pose, but fails to translate detailed information about objects
and scenes, often resulting in unrealistic objects or entirely unrelated backgrounds. In comparison,
EgoWorld effectively leverages diverse information from the exocentric view, including pose maps,
textual descriptions, and sparse maps, leading to robust performance even in challenging unseen
scenarios involving complex elements like objects and scenes. More results of comparisons will be
discussed in appendix.

Moreover, as illustrated in Fig. @} EgoWorld demonstrates strong generalization performance even
on TACO, Assemblyl101, and Ego-Exo4D, which contain a wide variety of objects and actions
compared to H20. Specifically, compared to H20, TACO, Assembly101, and Ego-Exo4D present
increasing challenges for egocentric view generation. TACO is difficult due to diverse hand-object
interactions and frequent occlusions, Assembly101 due to fine-grained assembly tasks and cluttered
backgrounds, and Ego-Exo4D due to real-world variability, multiple subjects, and dynamic environ-
ments. Unlike CFLD, which struggles to reconstruct information beyond the hand region, EgoWorld
shows a remarkable ability to restore not only the hand but also the interacting objects and the sur-
rounding scene. These results confirm that EgoWorld is capable of delivering robust performance
across diverse domains. More results of comparisons will be discussed in the appendix.



Under review as a conference paper at ICLR 2026

4.3.2 COMPARISONS ON REAL-WORLD EXAMPLES

Furthermore, to evaluate in-the-wild generalization with unlabeled real-world examples, we conduct
experiments on EgoWorld with a state-of-the-art baseline model. We take in-the-wild images of peo-
ple interacting with arbitrary objects using their hands. Note that we rely solely on a single RGB
image captured using a smartphone (iPhone 13 Pro) and apply our complete pipeline as shown in
Fig. 2| No additional information beyond this single exocentric image is used. We use pre-trained
weights from our model trained on unseen action scenarios from H20 and select CFLD as the base-
line, as it significantly outperforms other methods in our main experiments. As shown in Fig. [5}
CFLD produces egocentric images that appear unnatural, overly biased toward training images in
H20, and are inconsistent with the new interaction scenarios. In contrast, EgoWorld generates
realistic, natural-looking egocentric views by effectively utilizing the sparse map, demonstrating
strong generalization in unseen and real-world settings. These results highlight EgoWorld’s ro-
bustness in in-the-wild scenarios, and with further training on diverse datasets, we believe it holds
strong potential for real-world applications.

4.3.3 ABLATION STUDY FOR CONDITIONING MODALITIES

EgoWorld reconstructs faithful egocentric images based
on both the pose map and the textual description. To val-  Taple 3: Results for conditioning
idate the contribution of each observation, we conduct an  odalities of egocentric view recon-
ablation study on it. As shown in Table[3] the best perfor-  gtruction. EgoWorld achieves higher
mance across all metrics is achieved when both pose and  scores when conditioned on both pose
text information are provided. Notably, as illustrated in  maps and text, compared to using only
Fig. [6] the absence of text leads to incorrect reconstruc-  gpe or none.

tions of unseen objects. In contrast, when text is available,
the textual object information predicted from the exocen-

Pose Text | FID) PSNRT SSIMf LPIPS|
56.120 27.054 04460 0.4454

tric image is effectively reflected in the egocentric view v 55016 27544 04449 04122
reconstruction, resulting in more plausible outputs. Incor- v | 44240 28565 04573  0.3821
v v 41334 31171 04814 0.3476

porating hand pose information helps EgoWorld generate
more natural and realistic hand configurations, highlight-
ing that its performance is maximized when jointly leveraging both pose and textual observations.

4.3.4 ADDITIONAL RESULTS

To comprehensively analyze our approach, we perform extensive ablation studies spanning multiple
dimensions. We first investigate effective backbones for egocentric view reconstruction and assess a
3D egocentric hand pose estimator derived from exocentric observations to validate its performance.
To examine the role of text guidance, we consider cases with incorrect textual descriptions, and to
evaluate consistency, we generate multiple outputs from the same exocentric input. We also study
the impact of individual sub-modules and direct camera pose regression within exocentric observa-
tions, and extend the analysis to whole-body pose estimation. Furthermore, we compare different
representations of estimated hand poses and test robustness under noisy inputs to measure reliance
on off-the-shelf estimators. Beyond these, we present additional qualitative examples across diverse
scenarios, and conclude with a discussion of limitations supported by failure cases, which point to
promising directions for future improvement. Detailed analyses are provided in the appendix.

5 CONCLUSION

In this work, we introduce EgoWorld, a novel framework that translates exocentric observations into
egocentric views by leveraging rich multi-modal cues. Our two-stage design first extracts informa-
tive exocentric observations and then synthesizes realistic egocentric images from sparse egocentric
maps through a diffusion model conditioned on pose and text. Through extensive experiments on
four benchmarks (H20, TACO, Assembly101, and Ego-Ex04D), we demonstrate that EgoWorld out-
performs existing methods and proves highly effective. Beyond benchmark performance, EgoWorld
exhibits strong generalization to real-world samples, highlighting its potential for deployment in
diverse and unconstrained scenarios. Furthermore, the flexibility of our framework suggests promis-
ing extensions to tasks such as whole-body egocentric reconstruction, AR/VR content generation,
and human-robot interaction.
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