
Faster Hyperparameter Search on Graphs via
Calibrated Dataset Condensation

Anonymous Author(s)
Affiliation
Address
email

Abstract

Dataset condensation aims to reduce the computational cost of training multiple1

models on a large dataset by condensing the training set into a small synthetic2

one. State-of-the-art approaches rely on matching the gradients between the real3

and synthetic data and are recently applied to condense large-scale graphs for4

node classification tasks. Although dataset condensation may be efficient when5

we need to train multiple models for hyperparameter optimization, there is no6

theoretical guarantee on the generalizability of the condensed data, and it can gen-7

eralize poorly across hyperparameters/architectures in practice; while on graphs,8

we find and prove this overfitting is much more severe. This paper considers a9

different condensation objective specifically for hyperparameter search. We aim10

to generate the synthetic dataset so that the validation-performance ranking of11

different models under different hyperparameters on the condensed and original12

datasets are comparable. We propose a novel hyperparameter-calibrated dataset13

condensation (HCDC) algorithm, which learns the synthetic validation data by14

matching the hyperparameter gradients computed by implicit differentiation and15

efficient inverse Hessian approximation. HCDC employs a supernet with dif-16

ferentiable hyperparameters, making it suitable for modeling GNNs with widely17

different convolution filters. Experiments demonstrate that the proposed framework18

effectively maintains the validation-performance rankings of GNNs and speeds up19

hyperparameter/architecture search on graphs.20

1 Introduction21

Graph neural networks (GNNs) have found remarkable success in tackling a variety of graph-related22

tasks [Hamilton, 2020]. However, the prevalence of large-scale graphs in real-world contexts, such as23

social, information, and biological networks [Hu et al., 2020], which frequently scale up to millions24

of nodes and edges, poses significant computational issues for training GNNs. While training a single25

model can be expensive, designing deep learning models for new tasks require substantially more26

computations, as they involve training multiple models on the same dataset many times to verify the27

design choices, such as architectures and hyperparameters [Elsken et al., 2019]. We ask: how can we28

reduce the computational cost for training multiple models on the same dataset, for hyperparameter29

search/optimization?30

A natural approach is to reduce the training set size through approaches such as graph coreset31

selection [Baker et al., 2020], graph sparsification [Batson et al., 2013], graph coarsening [Loukas,32

2019] and graph sampling [Zeng et al., 2019]. However, these methods are restricted to selecting33

samples from the given ones, limiting their performance upper-bound. A more effective alternative is34

to synthesize informative samples rather than select from given samples. Dataset condensation [Zhao35

et al., 2020] has emerged as a competent data synthesizing mechanism with promising results. It aims36

Submitted to 36th Conference on Neural Information Processing Systems (NeurIPS 2022). Do not distribute.

to learn a small synthetic training set such that a model trained on the synthetic set obtains testing37

accuracy comparable to that trained on the original training set.38

Although dataset condensation achieves the state-of-the-art in terms of the performance for neural39

networks trained on the condensed samples, it is a unreliable and sub-optimal solution to our40

question, the goal of speeding up training for hyperparameter search/optimization: (1) theoretically,41

dataset condensation learns synthetic samples that minimize the performance drop of a specific42

model, and there is no performance guarantee when we train other models; and (2) in practice, we43

rarely compare condensation methods with strong baselines such as various coreset methods, in44

terms of their ability to preserve the outcome of architecture/hyperparameter optimization. In this45

paper, we identify the poor generalizability of the condensed data on graphs [Jin et al., 2021] across46

architectures/hyperparameters, which has been overlooked when applied for image condensation.47

Not only we observe that graph condensation fails to preserve validation-performance ranking of48

GNN architectures, but also we identify and prove two dominant effects causing this failure: (1) most49

GNNs differ from each other by their design of convolution filters, thus the convolution filter used50

during condensation is a single biased point in “the space of convolution filters”; and (2) the learned51

adjacency matrix of the synthetic graph easily overfits the condensation objective, thus fails to52

maintain the characteristics of the original structure and distinguish different architectures.53

We aim to develop a new dataset condensation framework that preserves the outcome of hyperpa-54

rameter search/optimization on the condensed data. In addition, to condense the training data, we55

propose to learn the validation split of synthetic data such that the validation-performance ranking of56

architectures on the condensed and original datasets are comparable. Similar to the standard dataset57

condensation, this new objective can be written as a bi-level optimization problem. Inspired by the58

gradient-matching algorithm in [Zhao et al., 2020], if assuming a continuous hyperparameter space or59

a generic supernet which interpolates all architectures, we find and prove the validation-performance-60

ranking-preserving goal can be realized by matching the hyperparameter-gradients on the synthetic61

and real validation data. The hyperparameter-gradients (or hypergradients for short) can be efficiently62

computed with constant memory overhead by the implicit function theorem (IFT) and the Neumann63

series approximation of inverse Hessian [Lorraine et al., 2020].64

The proposed hyperparameter-calibrated dataset condensation (HCDC) framework assumes con-65

tinuous hyperparameters, which is suitable to model GNNs with different convolution matrices and66

save the problematic generalizability of graph condensation across GNNs. Although beyond the67

scope of this paper, HCDC also has the potential to be combined with the supernets in differentiable68

NAS methods [Liu et al., 2018] to tackle the discrete neural architecture space, which is the primary69

concern of NAS on image and text data. Experiments demonstrate the effectiveness of the proposed70

framework in preserving the performance rankings of GNNs. Our distilled graph can be used as proxy71

data for off-the-shelf graph neural architecture search algorithms to accelerate the search process.72

Our contributions can be summarized as follows: (1) We formulate a new dataset condensation73

objective specifically for hyperparameter optimization and propose the hyperparameter-calibrated74

dataset condensation (HCDC) framework, which learns the synthetic validation data by matching75

the hyperparameter gradients. (2) We prove the hardness of generalizing the condensed graph across76

GNN architectures.(3) Experiments demonstrate the effectiveness of HCDC to speed up architecture77

search on graphs when combined with off-the-shelf graph neural architecture search algorithms.78

2 Preliminaries79

This paper adopts graph learning notations, but HCDC is generally applicable to other data and tasks.80

The typical downstream task on graphs is node classification. Node classification on graph considers81

that we are given a graph T = (A,X,y) with adjacency matrix A ∈ {0, 1}n×n, node features82

X ∈ Rn×d, node class labels y ∈ [K]n, and mutually disjoint node-splits Vtrain
⋃
Vval

⋃
Vtest =83

[n]. Using a GNN model fθ,ψ : Rn×n≥0 × Rn×d → Rn×K , where θ is parameter and ψ is hyper-84

parameter, we aim to find θT = argminθ LtrainT (θ, ψ), with cross-entropy loss LtrainT (θ, ψ) =85 ∑
i∈Vtrain

ℓ
(
[fθ,ψ(A,X)]i, yi

)
. The transductive setting can be easily generalized to the inductive86

setting by assuming only {Aij | i, j ∈ Vtrain} and {Xi | i ∈ Vtrain} are used during training.87

Now, we start from reviewing the standard dataset condensation (SDC) and its natural bilevel88

optimization (BL) formulation [Wang et al., 2018].89

2

Standard Dataset Condensation (SDC) aims to find a synthetic graph S = (A′, X ′,y′) of size90

c ≪ n, with (weighted) adjacency matrix A′ ∈ Rc×c≥0 , node features X ′ ∈ Rc×d, node labels y′ ∈91

[K]c, and (possibly) train/validation1 splits V ′
train

⋃
V ′
val = [c]. The goal of dataset condensation is92

to obtain comparable generalization performance on real graph by training on the condensed graph,93

i.e., LtestT (θT , ψ) ≈ LtestT (θS , ψ) where θS = argminθ LtrainS (θ, ψ) is optimized on the synthetic94

graph. By posing θS as a function of the condensed graph S , dataset condensation can be formulated95

as a bilevel optimization problem,96

S∗ = argmin
S
LtrainT (θS(S), ψ) s.t. θS(S) = argmin

θ
LtrainS (θ, ψ) (SDC-BL)

However, the above problem involves a nested-loop optimization and solving the inner loop for97

θS(S) at each iteration to recover the gradients for S requires a computationally expensive procedure:98

unrolling the recursive computation graph for S over multiple optimization steps of θ.99

Zhao et al. [2020] alleviate the computational issue by its gradient-matching (GM) formulation.100

To start with, assuming neural network fθ,ψ is a locally smooth function, and thus similar weights101

θS ≈ θT imply similar mappings in a local neighborhood and thus generalization performance. Then102

one can formulate the condensation objective as matching the optimized parameters (which depends103

on initialization θ0), i.e., finding S∗ = argminS Eθ0∼Pθ0

[
D
(
θS(S, θ0), θT (θ0)

)]
s.t. θS(S, θ0) =104

argminθ LtrainS
(
θ(θ0), ψ

)
where θT (θ0) = argminθ LtrainT

(
θ(θ0), ψ

)
and D(·, ·) is a distance105

function.106

The parameter-matching problem is still a bilevel optimization but can be simplified with several107

approximations. Firstly, θS(S, θ0) is approximated by the output of an incomplete gradient-descent108

optimization, θS(S, θ0) ≈ θSt+1 ← θSt −η∇θLtrainS (θSt , ψ). However, the target parameter θT (θ0) =109

argminθ LtrainT
(
θ(θ0), ψ

)
may be far away from θSt+1. Zhao et al. [2020] propose to match θSt+1 with110

incompletely optimized θTt+1 ← θTt − η∇θLtrainT (θTt , ψ) at each iteration t, and the condensation111

objective is now S∗ = argminS Eθ0∼Pθ0

[∑T−1
t=0 D(θSt , θ

T
t)

]
.112

Starting from the common initialization θ0 and up to iteration t, if θSt can always track θTt113

by optimizing S, i.e., θSt ≈ θTt . For the one step update, we can replace D(θSt+1, θ
T
t+1) by114

D
(
∇θLtrainS (θSt , ψ),∇θLtrainT (θTt , ψ)

)
≈D

(
∇θLtrainS (θSt , ψ),∇θLtrainT (θSt , ψ)

)
. Repeating this115

inductive argument, the condensation objective is approximated by matching the gradients at each116

iteration t,117

S∗ = argmin
S

Eθ0∼Pθ0

[T−1∑
t=0

D
(
∇θLtrainS (θSt , ψ),∇θLtrainT (θSt , ψ)

)]
(SDC-GM)

We now have a single deep network with parameters θ trained on the condensed graph S. While S118

is optimized such that the distance between the gradient vectors of LtrainT and of LtrainS w.r.t. the119

parameters θ is minimized. Cosine distance D(·, ·) = cos(·, ·) works well in practice.120

3 Standard Dataset Condensation Is Problematic Across GNNs121

Despite its success in preserving the model performance when trained on the condensed dataset,122

the gradient-matching algorithm naturally overfits the model fθ,ψ used during condensation and123

generalizes poorly to others. There is no guarantee that the condensed synthetic data S∗ which124

minimizes the objective (Eq. (SDC-GM)) for a specific model fθ,ψ (marked by its hyperparameter ψ)125

can generalize well to other models fθ,ψ′ where ψ′ ̸= ψ.126

We find this overfitting issue could be much more severe on graphs. For the ease of theoretical127

analysis2, we consider the simple linear regression problem with linear convolution models in this128

section, fθ=[θC ,θW](A,X) = C(A, θC)XW (θW), where C(A; θC) is the convolution matrix which129

has the same sizes as the adjacency matrix A and possibly also depends on the parameters θC ∈ Rp,130

and W (θW) is the learnable linear weight matrix which is a reshape of the parameters θW ∈ Rd. The131

loss is now sum of squares L(θ, ψ) = ∥y − CXW∥22 (train-split subscript omitted) where the labels132

y are continuous.133

1The validation split of synthetic data is only required by our HCDC; see Eq. (SDC-BL) vs. Eq. (DCHPO).
2Assuming convex loss and linear models still reflects the general generalization issue; see Appendix A.2.

3

(a) c = 0.2n (b) c = 0.8n

Figure 1: The manifold of GNNs with convolution filters C =

I+α1(L̂)+α2(2L̂−I) (L̂ defined in ChebNet; see Appendix A.3)
projected to the plane of validation accuracy on condensed (x-
axis) and original (y-axis) graphs under two ratios c/n on Cora.
C = I + L̂ (red dot) is a biased point in this model space.

Ratio (c/n) A′ learned A′ = Ic

0.05% 61.3± 0.5 59.2± 1.1
0.25% 64.2± 0.4 63.2± 0.3

(a) Graph condensation with identity ad-
jacency A′ = Ic.

C\T GCN SGC (K = 2) GIN

GCN 60.3± 0.3 59.2± 0.7 42.2± 4.3
SGC 59.2± 1.1 60.5± 0.6 39.0± 7.1
GIN — — 59.1± 1.1

(b) Generalization across GNNs.

Table 1: Empirical results on Ogbn-arxiv
verifying the two effects (Propositions 2
and 3) that hinders the generalization of con-
densed graph across GNNs. (a) Adjacency
overfitting, (b) Convolution mismatch.

This linear convolution model generalizes a wide variety of GNNs [Balcilar et al., 2021, Ding134

et al., 2021]; see Appendix A.3. For example, the convolution matrix of graph convolution network135

(GCN) [Kipf and Welling, 2016] is C(A) = D̃− 1
2 ÃD̃− 1

2 where Ã and D̃ are the self-loop-added136

adjacency and degree matrix. It also generalizes the one-dimensional convolution neural network137

(1D-CNN) (with one channel), where the convolution matrix of kernel size p = (2K + 1) is138

C(θC) =
∑k=K
k=−K [θC]kP

k and P is the cyclic permutation matrix correspond to a unit shift.139

We say the gradient-matching objective is satisfied on a non-degenerate trajectory, if there exists a140

fixed learning trajectory (θSt)
T−1
t=0 which span the whole parameter space, i.e., span(θS0 , . . . , θ

S
T−1) =141

Rp+d, such that the gradient-matching loss on this trajectory (the objective of Eq. (SDC-GM) without142

expectation) is 0. The validity of standard dataset condensation (SDC) can be readily verified;143

see Proposition 4 in Appendix A.1, where we show if the gradient-matching objective is satisfied on144

a non-degenerate trajectory, the optimizer on the condensed dataset S is also optimal on the original145

dataset T .146

However, as on the generalizability of condensed dataset across models, we obtain contrary results147

for 1D-CNNs and GNNs.148

Proposition 1 (Successful Generalization of SDC across 1D-CNNs). Assuming least-square re-149

gression with one-dimensional linear convolution f2K+1
θ=[θC ,θW](X) = (

∑k=K
k=−K [θC]kP

k)XW (θW),150

where kernel size is (2K + 1),K ≥ 0, if the gradient-matching objective is satisfied on a151

non-degenerate trajectory for f2K+1, then the condensed dataset S∗ still satisfies the gradient-152

matching objective on any trajectories (θSt)
T−1
t=0 for any linear convolution f2K

′+1 with kernel size153

(2K ′ + 1),K ≥ K ′ ≥ 0.154

The intuition behind Proposition 1 is that the 1D-CNN of kernel size (2K + 1) is a “supernet” of155

the 1D-CNN of kernel size (2K ′ + 1) if K ′ ≤ K, and the condensed dataset via a bigger model156

can generalize well to smaller ones. This result suggests us to use a sufficiently large model during157

condensation, to enable the generalization of the condensed dataset to a wider range of models.158

However, the story for GNNs is vastly different. We find there are two dominant effects causing the159

condensed graph to fail to generalize across GNNs. Firstly, the learned adjacency A′ of the synthetic160

graph S can easily overfit the condensation objective, thus failing to maintain the characteristics of161

the original structure and distinguish different architectures; see Table 1 for relevant experiments.162

Proposition 2 (Condensed Adjacency Overfits SDC Objective). Assuming least-square regression163

with a linear GNN, fθ(A,X) = C(A)XW (θ). For any synthetic node features X ′ ∈ Rc×d, there164

exists a synthetic adjacency matrix A′ ∈ Rc×c≥0 such that the gradient-matching objective is satisfied165

on any trajectories.166

Secondly, GNNs differ from each other mostly on the design of convolution C(A), i.e., how the con-167

volution weights C depend on the adjacency information A. The convolution filter C(A) used during168

4

condensation is a single biased point in “the space of convolutions”; see Fig. 1 for a visualization,169

thus there is a mismatch of inductive bias when transferring to a different GNN. These two effects170

lead to the following hardness results when transferring the condensed graph across GNNs.171

Proposition 3 (Failed Generalization of SDC across GNNs). Assuming least square regression172

and linear GNN, fCθ (A,X) = C(A)XW (θ), there always exists a condensed graph S∗, such that173

the gradient-matching objective is satisfied on any trajectories for fC . However, if we train a new174

linear GNN fCθ (A,X) with convolution matrix C(A′) on S∗, the relative error between the optimized175

model parameters of fC on the real and condensed graphs is ∥θSC − θTC ∥/∥θTC ∥ ≥ max{σmax(Q)−176

1, 1−σmin(Q)}, where θTC = argminθ ∥y−fCθ (A,X)∥22, θSC = argminθ ∥y′−fCθ (A′, X ′)∥22, and177

Q =
(
X⊤[C(A)]⊤[C(A)]X

)(
X⊤[C(A)]⊤[C(A)]X

)−1
.178

Proposition 3 provides a effective lower-bound on the relative estimation error of optimal model179

parameter, when a different convolution filter C(·) ̸= C(·) is used3. According to the spectral charac-180

terization of convolution filters of GNNs (Table 1 of [Balcilar et al., 2021]), we can approximately181

compute the maximum eigenvalue of Q for some GNNs. For example, if we condense with fC graph182

isomorphism network (GIN-0) [Xu et al., 2018] but train fC GCN on the condensed graph, we have183

∥θSC − θTC ∥/∥θTC ∥ ⪆ deg + 1 where deg is the average node degree of the original graph. This large184

lower bound hints the catastrophic failure when transfer across GIN and GCN; see Table 1.185

Although the results above are obtained for least squares loss and linear convolution model, it still186

reflects the nature of general non-convex losses and non-linear models. Since dataset condensation is187

effectively matching the local minima {θT } of the original loss LtrainT (θ, ψ) with the local minima188

{θS} of the condensed lossLtrainS (θ, ψ), within the small neighborhoods surrounding the pair of local189

minima (θT , θS), we can approximate the non-convex loss and non-linear model with a convex/linear190

one respectively. Hence the generalizability issues with convex loss and liner model may hold.191

4 Hyperparameter-calibrated Dataset Condensation Objective192

Our goal is to develop an optimal and reliable condensation method for architecture/hyperparameter193

search. Standard Dataset Condensation objective (Eq. (SDC-BL)/Eq. (SDC-GM)) does not accom-194

plish this goal since it does not generalize across GNNs, as proven in Section 3. In this section, we195

propose a new condensation objective specifically for preserving the outcome of hyperparameter196

optimization (HPO) on the condensed dataset.197

HPO Objective HPO finds the optimal hyperparameter ψT such that the corresponding model198

fθ,ψT minimizes the validation loss after training, i.e.,199

ψT = argmin
ψ∈Ψ
LvalT (θT (ψ), ψ) s.t. θT (ψ) = argmin

θ
LtrainT (θ, ψ) (HPO)

We see HPO itself is a bilevel optimization, where the optimal parameter θT (ψ) is posed as a function200

of the hyperparameter ψ.201

Dataset Condensation for HPO Objective If both the train and validation splits are defined on the202

condensed dataset S , the optimal hyperparameter ψS is well-defined. Our goal is to find the synthetic203

dataset S such that we can obtain comparable validation performance if the hyperparameters are204

optimized on the condensed dataset, i.e., LvalT (θT (ψT), ψT) ≈ LvalT (θT (ψS), ψS). Clearly, this goal205

looks very similar to the goal of standard dataset condensation, preserving generalization performance206

LtestT (θT , ψ) ≈ LtestT (θS , ψ), which hints us to formulate the new objective as a bilevel optimization207

problem too,208

S∗ = argmin
S
LvalT

(
θT (ψS(S)), ψS(S)

)
s.t. ψS(S) = arg min

ψ∈Ψ
LvalS

(
θS(ψ), ψ

)
(DCHPO)

where θT (ψ) and θS(ψ) are defined following Eq. (HPO).209

However, this formulation (Eq. (DCHPO)) is a nested optimization (for dataset condensation) over210

another nested optimization (for HPO) which necessitates very high order gradients and is challeng-211

ing to solve. Moreover, we have largely overlooked another important factor of hyperparameter212

optimization, the search space/feasible set of hyperparameters Ψ.213

3If C(·) = C(·) Proposition 4 guarantees θSC = θTC and the lower bound in Proposition 3 is 0.

5

In contrast to parameter optimization, where the search space is usually assumed to be the continuous214

and unbounded Euclidean space, the search space of hyperparameters Ψ can be either a discrete215

set Ψ = {ψ1, . . .} = Ψ1 × · · · × Ψp (where each hyperparameter vector ψ ∈ Ψ consists of p216

discrete hyperparameters of various types, for example, neural network type, width, depth, batch217

size, etc) or a small bounded set of continuous hyperparameters around its optimum (for example,218

learning rate, dropout rate, sample weights, etc). Often we face compositions of these discrete- and219

continuous-natured hyperparameters, and we can either model them all as discrete ones and search220

by grid search, Bayesian optimization, and reinforcement learning; or relax the discrete search space221

to a continuous one.222

Hyperparameter-Calibration: A Sufficient Alternative to Dataset Condensation for HPO The223

finiteness/boundedness nature of the search space Ψ cast another challenge to the dataset condensation224

for HPO. To avoid the complex combinatorial/constrained optimization in Eq. (HPO), we ask: Is is225

possible to preserve the outcome of HPO without solving HPO (Eq. (HPO)) directly? In this spirit,226

we consider a sufficient alternative condition to preserve the outcome of HPO on Ψ.227

Definition 1 (Hyperparameter-Calibration). Given original dataset T , generic model fθ,ψ, and228

hyperparameter search space Ψ, we say a condensed dataset S is hyperparameter-calibrated, if for229

any ψ1 ̸= ψ2 ∈ Ψ, it holds that,230 (
LvalT (θT (ψ1), ψ1)− LvalT (θT (ψ2), ψ2)

)(
LvalS (θS(ψ1), ψ1)− LvalS (θS(ψ2), ψ2)

)
> 0 (HC)

that is, changes of validation loss on T and S always have the same sign, where θT (ψ) =231

argminθ LtrainT (θ, ψ) denotes the parameters optimized on the training split of T with hyperparam-232

eter ψ, similar for θS(ψ).233

It is clear that if hyperparameter calibration (HC) is satisfied, HPO on the original and condensed234

datasets yields the same result. Therefore, our mission changes to how to ensure hyperparameter-235

calibration for a single pair of hyperparameters (ψ1, ψ2)?236

HCDC: Hypergradient-alignment Objective To proceed, we make an important extra assumption237

that the (possibly discrete) search space Ψ can be extended to a compact and connected set Ψ′ ⊃ Ψ,238

where we can define continuation of the generic model fθ,ψ on Ψ′ so that fθ,ψ is differentiable239

anywhere in Ψ′. Such a continual extension naturally exists on graphs (see Section 5) or can be240

provided by differentiable NAS approaches; see Section 6.241

Now, if we consider the special case where ψ1 is within the neighborhood of ψ2, i.e., ψ1 ∈ Br(ψ2)242

for some r > 0, and reparameterize ψ1 = ψ + ∆ψ, ψ2 = ψ with r ≥ ∥∆ψ∥2 → 0+. The243

change in validation loss is approximated up to first-order by the hyperparameter-gradients (hy-244

pergradients for short)
(
LvalT (θT (ψ1), ψ1) − LvalT (θT (ψ2), ψ2)

)
≈ ∇ψLvalT (θT (ψ), ψ) ·∆ψ. The245

hyperparameter-calibration condition within this tiny neighborhood Br(ψ) is then simplified to246

∇ψLvalT (θT (ψ), ψ)//∇ψLvalS (θS(ψ), ψ), i.e., the two hypergradient vectors are aligned (i.e., point-247

ing same direction).248

Considering the extended search space Ψ′ can be covered by the union of many small neighborhoods,249

we derive the hypergradient-alignment condition: ∇ψLvalT (θT (ψ), ψ)//∇ψLvalS (θS(ψ), ψ) for any250

ψ ∈ Ψ′. It is not hard to show that the condition above is equivalent to hyperparameter-calibration251

(Definition 1) on a connected and compact set Ψ′. (1) Necessity proved by contradiction. If252

there exists ψ0 ∈ Ψ′ such that the two gradient vectors are not aligned at ψ0, then there exists253

small perturbation ∆ψ0 such that
(
LvalT (θT (ψ0 + ∆ψ0), ψ0 + ∆ψ0) − LvalT (θT (ψ0), ψ0)

)
and254 (

LvalS (θS(ψ0 +∆ψ0), ψ0 +∆ψ0)−LvalS (θS(ψ0), ψ0)
)

have different signs. (2) Sufficiency proved255

by integration. For any pair ψ1 ̸= ψ2 ∈ Ψ′, if we have a continuous path connecting ψ1 and ψ2, then256

integrating hypergradients∇ψLvalT (θT (ψ), ψ) and∇ψLvalS (θS(ψ), ψ) through the path recovers the257

hyperparameter-calibration condition.258

In this regard, enforcing hypergradient-alignment on Ψ′ is sufficient to hyperparameter calibration on259

Ψ, thus ensuring the outcome of HPO over Ψ is preserved. The hypergradient-alignment objective260

below realizes hyperparameter-calibrated dataset condensation (HCDC).261

S∗ = argmin
S

∑
ψ∈Ψ′

D
(
∇ψLvalT (θT (ψ), ψ),∇ψLvalS (θS(ψ), ψ)

)
(HCDC)

where cosine distance D(·, ·) = cos(·, ·) is used.262

6

(a) train loss (b) validation loss

Figure 2: The parameter-hyperparameter manifolds and
IFT. The blue solid line is the best response θ∗(ψ). The
red dashed line is hypergradients ∇ψLval(θ(ψ), ψ).

(a) Discrete Ψ = {ψi} (b) Cont. Ψ around ψ∗

Figure 3: Where to align the hypergradients in HCDC
(Eq. (HCDC)); see Section 5 for explanations.

5 Implementation of HCDC263

Finally, we work on implementing and simplifying the hyperparameter-calibrated dataset condensa-264

tion (HCDC) objective and apply it to the graph architecture/hyperparameter search problem.265

How is HCDC connected to standard dataset condensation (SDC) (Eq. (SDC-GM))? Theoretically266

speaking, the objective of HCDC, preserving the outcome of hyperparameter optimization (HPO), is267

orthogonal to the objective of SDC, preserving generalization performance. Therefore, we can limit268

the part of the synthetic dataset they optimize to make the two algorithms completely independent.269

While SDC only learns the training split of S , we restrict HCDC to only optimize the validation split270

of S in Eq. (HCDC) and keep the training split fixed4. Nevertheless, we need to find the condensed271

training data Strain before HCDC, and this can be done by all kinds of approaches, from uniform272

sampling to SDC.273

How to compute hypergradients and optimize the hypergradient-alignment loss in Eq. (HCDC)?274

The efficient computation of hypergradients ∇ψLvalT (θT (ψ), ψ) and ∇ψLvalS (θS(ψ), ψ) uses275

the implicit function theorem (IFT) (see Section 4 for visualization), ∇ψLvalT (θT (ψ), ψ) =276

−
[∂2Ltrain

T (θ,ψ)
∂ψ∂θT

][∂2Ltrain
T (θ,ψ)
∂θ∂θT

]−1∇θLvalT (θ, ψ) + ∇ψLvalT (θ, ψ), where ∇ψLvalT (θ, ψ) is the di-277

rect gradient and often identically 0. The first term is the product of inverse training Hes-278

sian
[∂2Ltrain

T (θ,ψ)
∂θ∂θT

]−1
, the training mixed partials

[∂2Ltrain
T (θ,ψ)
∂ψ∂θT

]
and the validation gradients279

∇θLvalT (θ, ψ). While the other parts can be computed by back-propagation, the inverse Hessian280

needs to be approximated. Instead of using conjugate gradient method, Lorraine et al. [2020]281

propose a stable, tractable and efficient Neumann series approximation,
[∂2Ltrain

T (θ,ψ)
∂θ∂θT

]−1
=282

limi→∞
∑i
j=0

[
I − ∂2Ltrain

T (θ,ψ)
∂θ∂θT

]j
with constant memory constraint. To optimize the validation283

part of S w.r.t. the cosine hypergradient-matching loss in Eq. (HCDC), note that we only need to284

take gradients of ∇θLvalS (θ, ψ) and ∇ψLvalS (θ, ψ) w.r.t. Sval. This can be handled by the same285

back-propagation technique in SDC, where we take gradients of∇θLtrainS (θ, ψ) w.r.t Strain.286

Where to align the hypergradients in Eq. (HCDC)? The hypergradient-alignment condition, as a287

sufficient condition for preserving the outcome of HPO, is often too strong. For a discrete search288

space Ψ, we can preserve the order of any ψ1 ̸= ψ2 ∈ Ψ, as long as there exists a continuous289

path connecting ψ1 and ψ2 on which the hypergradients ∇ψLvalT (θT (ψ), ψ) and∇ψLvalS (θS(ψ), ψ)290

are aligned. To further avoid the O(p2) paths, we propose to align the hyperparameters on the p291

continuous-HPO trajectories. The i-th continuous-HPO trajectory starts from ψS
i,0 = ψi ∈ Ψ and292

update through ψS
i,t+1 ← ψS

i,t − η∇ψLvalS (θS(ψS
i,t), ψ

S
i,t). All of the p trajectories will approach the293

optima ψS which form a “connected” path between any pair of hyperparameters ψi ̸= ψj ∈ Ψ. For a294

continuous search space Ψ = Ψ′, since it is often bounded narrowly around the optima ψS , we again295

align the hypergradients along the optimization trajectories (ψS
i,t)

T−1
t=0 despite that the starting points296

ψi ∈ Ψ is now randomly sampled; see Section 4.297

4It is also possible for graph condensation when the train and validation subgraphs are not connected.

7

What graph architecture/hyperparameter search problem can HCDC solve? We illustrate how to298

tackle the two types of search spaces: (1) discrete and finite Ψ and (2) continuous and bounded Ψ with299

two typical examples originating from the problem of searching for the best convolution matrix C(A)300

on a large graph T = (A,X,y). (1) Discrete and finite search space Ψ: often the most important301

question of architecture search on large graphs is what design of convolution filter performs best on the302

given graph? One may simply train the set of p prior-defined GNNs {fCi

[θCi
,θW] | i = 1, . . . , p} whose303

convolution matrices are C = {C1(A; θC1
), . . . , Cp(A; θCp

)} and compare their validation perfor-304

mance. We can formulate this problem as HPO, by defining an “interpolated” model fC[θC ,θW],ψ whose305

convolution matrix is C(A; θC , ψ) = φ1C1(A; θC1
) + · · ·+ φpCp(A; θCp

), where hyperparameters306

ψ = [φ1, . . . , φp] ∈ Ψ and θC = [θC1
, . . . , θCp

]. The feasible set Ψ = {ψ1 = ep1, . . . , ψp = epp} is307

the set of unit vectors in Rp and the extended search space can be defined as Ψ′ = [0, 1]p. (2) Contin-308

uous and bounded search space Ψ: one may also use a continuous generic formula, e.g., truncated309

series, to model a wide-range of convolution filters, i.e., C(A;ψ) =
∑p
i=1 φiCi(A), for example in310

ChebNet [Defferrard et al., 2016] or SGC [Wu et al., 2019] (see Appendix A.3). The only difference311

to the previous case is that the search space Ψ = Ψ′ can be larger than [0, 1]p.312

6 Related Work313

Graph condensation [Jin et al., 2021] achieves the state-of-the-art performance for preserving GNNs’314

performance on the simplified graph. However, Jin et al. [2021] only adapt the gradient-matching315

algorithm of dataset distillation Zhao et al. [2020] to graph data, together with a MLP-based generative316

model for edges [Anand and Huang, 2018, Simonovsky and Komodakis, 2018], leaving out several317

major issues on efficiency, performance, and generalizability (discussed in Section 1). Subsequent318

work aims to apply the more efficient distribution-matching algorithm of dataset distillation [Zhao319

and Bilen, 2021a, Wang et al., 2022] to graph or speed up gradient-matching graph condensation by320

reducing the number of gradient-matching-steps [Jin et al., 2022]. While the efficiency issue of graph321

condensation is mitigated [Jin et al., 2022], the performance degradation on medium- and large-sized322

graphs still renders graph condensation practically meaningless. Our hyperparameter-calibrated graph323

distillation is specifically designed for repeated training in architecture search, which is, in contrast,324

well-motivated.325

Implicit differentiation methods apply the implicit function theorem (IFT) to the nested-optimization326

problems [Ochs et al., 2015, Wang et al., 2019]. The IFT requires inverting the training Hessian327

with respect to the network weights. Lorraine et al. [2020] approximates the inverse Hessian by328

the Neumann series, which is a stable alternative to conjugate gradients [Shaban et al., 2019] and329

successfully scales gradient-based bilevel-optimization to large networks with constant memory330

constraint. It is shown that unrolling differentiation around locally optimal weights for i steps is331

equivalent to approximating the Neumann series inverse approximation up to the first i terms.332

Differentiable NAS methods, e.g., DARTS [Liu et al., 2018] explore the possibility of transforming333

the discrete neural architecture space into a continuously differentiable form and further uses gradient334

optimization to search the neural architecture. DARTS follows a cell-based search space [Zoph et al.,335

2018] and continuously relaxes the original discrete search strategy. Differentiable NAS techniques336

have also been applied to graphs to automatically design data-specific GNN architectures [Wang337

et al., 2021, Huan et al., 2021].338

In addition, we summarize graph reduction methods (including graph coreset selection, graph339

sampling, graph sparsification, and graph coarsening), as well as the more dataset condensation and340

coreset selection methods beyond graphs in Appendix B.341

7 Experiments342

In this section we validate the effectiveness of hyperparameter-calibrated dataset condensation343

(HCDC) when applied to speed up graph architecture/hyperparameter search. In this section, correla-344

tion refers to the Spearman’s rank correlation coefficient rs between two rankings of the ordered list of345

hyperparameters on the original and condensed datasets. Please refer to ?? for more implementation346

details.347

8

Hyperpara. Cross Validation
Method Correlation Performance
Random -0.04 84.0

DC 0.68 82.6
DM 0.76 82.8

Early-Stopping 0.11 84.3
HCDC 0.91 84.7

Table 2: The rank correlation and validation perfor-
mance on the real dataset of the M -fold cross vali-
dation ranked/selected on the condensed dataset.

Figure 4: Speed-up to the search process of graph
NAS when combined with HCDC on Ogbn-arxiv,
best test performance so far vs. time spent.

Synthetic experiments on CIFAR-10. We first consider a synthetically created set of hyperpa-348

rameters on image dataset, CIFAR-10. Consider the M -fold cross validation, where a fraction of349

1/M samples are use as the validation split each time. The M -fold cross-validation process can be350

modeled by a set of M hyperparameters {φi ∈ {0, 1} | i = 1, . . . ,M}, where φi = 1 if and only if351

the i-th fold is used for validation. The problem of finding the best validation performance among352

the M results can be modeled as a hyperparameter optimization problem with a discrete search353

space |Ψ| =M . We compare HCDC with the gradient-matching [Zhao et al., 2020] and distribution354

matching [Zhao and Bilen, 2021a] baselines. We also consider a uniform random sampling baseline,355

and an early-stopping baseline where we train only c/n ∗ 500 epochs but on the original dataset. The356

results of M = 20 and c/n = 1% is reported in Table 2, where we see HCDC achieves the highest357

rank correlation.358

Finding best convolution filter on (large) graphs. One easy application of HCDC we analyzed359

in Section 5 is to speed up the selection of the best suited convolution filter design on (large) graphs.360

Following the method discussed in Section 5, we test HCDC against (1) Random: random uniform361

sampling of nodes and find their induced subgraph, (2) GCond-X: graph condensation [Jin et al.,362

2021] but fix the synthetic adjacency to identity, (3) GCond: the graph condensation algorithm in [Jin363

et al., 2021], and (4) Whole Graph: when the model selection is performed on the original dataset.364

We use random uniform sampling to find the training synthetic subgraph before we apply HCDC. For365

the other coreset/condensation methods which does not define the validation split, we random split366

the train and validation nodes according to the original split ratio. We not only report the Spearman’s367

rank correlation, but also the test performance (on real dataset) of model selected by the condensed368

dataset. The results are summarized in Table 3.369

Speeding up off-the-shelf graph architecture search algorithms. Finally we test HCDC on how370

much speed-up it can provides to the off-the-shelf graph architecture search methods. We use graph371

NAS [Gao et al., 2019] on Ogbn-arxiv with a condensation ratio of c/n = 0.5%. The search space of372

architectures is the same as the set used in Table 3 with a focus on graphs with different convolution373

filters. We plot the best test performance of searched architecture (so far) versus the time spent for374

searching (in seconds) in Fig. 4. We see HCDC, as a dataset condensation approach, can further375

speed up the search process of graph NAS and is orthogonal to the efficient search algorithms like376

Bayesian optimization or reinforcement learning used by NAS methods.377

Dataset Ratio Random GCond-X GCond HCDC Whole Graph
Corr. Perf. Corr. Perf. Corr. Perf. Corr. Perf. Perf. (%)

Cora 0.9% 0.29 81.2 0.14 79.5 0.61 81.9 0.80 83.2
83.81.8% 0.40 81.9 0.21 80.3 0.76 83.2 0.89 83.8

3.6% 0.51 82.2 0.22 80.9 0.81 83.2 0.92 83.8

Citeseer
1.3% 0.38 71.9 0.15 70.8 0.68 71.3 0.90 73.1

73.72.6% 0.56 72.2 0.29 70.8 0.79 71.5 0.93 73.7
5.2% 0.71 73.0 0.35 70.2 0.83 71.1 0.97 73.7

Ogbn-arxiv
0.25% 0.59 70.1 0.39 69.8 0.59 70.3 0.77 71.9

73.40.5% 0.63 70.3 0.44 70.1 0.64 70.5 0.85 72.2
1.0% 0.68 70.9 0.47 70.0 0.67 70.1 0.88 72.2

Reddit
0.1% 0.42 92.1 0.39 90.9 0.53 90.9 0.88 92.1

94.30.2% 0.50 93.1 0.41 90.9 0.61 91.2 0.92 92.7
0.4% 0.58 93.1 0.42 91.5 0.66 92.1 0.96 92.7

Table 3: Spearman’s rank correlation and test performance of the convolution filter selected on the condensed
graph.

9

References378

William L Hamilton. Graph Representation Learning. Morgan & Claypool Publishers, 2020.379

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,380

and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. Advances in381

neural information processing systems, 33:22118–22133, 2020.382

Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural architecture search: A survey. The383

Journal of Machine Learning Research, 20(1):1997–2017, 2019.384

Daniel Baker, Vladimir Braverman, Lingxiao Huang, Shaofeng H-C Jiang, Robert Krauthgamer, and385

Xuan Wu. Coresets for clustering in graphs of bounded treewidth. In International Conference on386

Machine Learning, pages 569–579. PMLR, 2020.387

Joshua Batson, Daniel A Spielman, Nikhil Srivastava, and Shang-Hua Teng. Spectral sparsification388

of graphs: theory and algorithms. Communications of the ACM, 56(8):87–94, 2013.389

Andreas Loukas. Graph reduction with spectral and cut guarantees. J. Mach. Learn. Res., 20(116):390

1–42, 2019.391

Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor Prasanna. Graph-392

saint: Graph sampling based inductive learning method. In International Conference on Learning393

Representations, 2019.394

Bo Zhao, Konda Reddy Mopuri, and Hakan Bilen. Dataset condensation with gradient matching. In395

International Conference on Learning Representations, 2020.396

Wei Jin, Lingxiao Zhao, Shichang Zhang, Yozen Liu, Jiliang Tang, and Neil Shah. Graph condensation397

for graph neural networks. In International Conference on Learning Representations, 2021.398

Jonathan Lorraine, Paul Vicol, and David Duvenaud. Optimizing millions of hyperparameters by399

implicit differentiation. In International Conference on Artificial Intelligence and Statistics, pages400

1540–1552. PMLR, 2020.401

Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search. In402

International Conference on Learning Representations, 2018.403

Tongzhou Wang, Jun-Yan Zhu, Antonio Torralba, and Alexei A Efros. Dataset distillation. arXiv404

preprint arXiv:1811.10959, 2018.405

Muhammet Balcilar, Renton Guillaume, Pierre Héroux, Benoit Gaüzère, Sébastien Adam, and Paul406

Honeine. Analyzing the expressive power of graph neural networks in a spectral perspective. In407

Proceedings of the International Conference on Learning Representations (ICLR), 2021.408

Mucong Ding, Kezhi Kong, Jingling Li, Chen Zhu, John Dickerson, Furong Huang, and Tom409

Goldstein. Vq-gnn: A universal framework to scale up graph neural networks using vector410

quantization. Advances in Neural Information Processing Systems, 34:6733–6746, 2021.411

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.412

In International Conference on Learning Representations, 2016.413

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural414

networks? In International Conference on Learning Representations, 2018.415

Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on416

graphs with fast localized spectral filtering. In Advances in neural information processing systems,417

volume 29, 2016.418

Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger. Sim-419

plifying graph convolutional networks. In International conference on machine learning, pages420

6861–6871. PMLR, 2019.421

Namrata Anand and Possu Huang. Generative modeling for protein structures. Advances in neural422

information processing systems, 31, 2018.423

10

Martin Simonovsky and Nikos Komodakis. Graphvae: Towards generation of small graphs using424

variational autoencoders. In International conference on artificial neural networks, pages 412–422.425

Springer, 2018.426

Bo Zhao and Hakan Bilen. Dataset condensation with distribution matching. arXiv preprint427

arXiv:2110.04181, 2021a.428

Kai Wang, Bo Zhao, Xiangyu Peng, Zheng Zhu, Shuo Yang, Shuo Wang, Guan Huang, Hakan429

Bilen, Xinchao Wang, and Yang You. Cafe: Learning to condense dataset by aligning features. In430

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages431

12196–12205, 2022.432

Wei Jin, Xianfeng Tang, Haoming Jiang, Zheng Li, Danqing Zhang, Jiliang Tang, and Bing Yin.433

Condensing graphs via one-step gradient matching. In Proceedings of the 28th ACM SIGKDD434

Conference on Knowledge Discovery and Data Mining, pages 720–730, 2022.435

Peter Ochs, René Ranftl, Thomas Brox, and Thomas Pock. Bilevel optimization with nonsmooth436

lower level problems. In International Conference on Scale Space and Variational Methods in437

Computer Vision, pages 654–665. Springer, 2015.438

Yuanhao Wang, Guodong Zhang, and Jimmy Ba. On solving minimax optimization locally: A439

follow-the-ridge approach. In International Conference on Learning Representations, 2019.440

Amirreza Shaban, Ching-An Cheng, Nathan Hatch, and Byron Boots. Truncated back-propagation441

for bilevel optimization. In The 22nd International Conference on Artificial Intelligence and442

Statistics, pages 1723–1732. PMLR, 2019.443

Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. Learning transferable architectures444

for scalable image recognition. In Proceedings of the IEEE conference on computer vision and445

pattern recognition, pages 8697–8710, 2018.446

Zhili Wang, Shimin Di, and Lei Chen. Autogel: An automated graph neural network with explicit447

link information. Advances in Neural Information Processing Systems, 34:24509–24522, 2021.448

ZHAO Huan, YAO Quanming, and TU Weiwei. Search to aggregate neighborhood for graph neural449

network. In 2021 IEEE 37th International Conference on Data Engineering (ICDE), pages450

552–563. IEEE, 2021.451

Yang Gao, Hong Yang, Peng Zhang, Chuan Zhou, and Yue Hu. Graphnas: Graph neural architecture452

search with reinforcement learning. arXiv preprint arXiv:1904.09981, 2019.453

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.454

Advances in neural information processing systems, 30, 2017.455

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua456

Bengio. Graph attention networks. In International Conference on Learning Representations,457

2018.458

Johannes Klicpera, Stefan Weißenberger, and Stephan Günnemann. Diffusion improves graph459

learning. In Advances in neural information processing systems. PMLR, 2019.460

Yu Rong, Yatao Bian, Tingyang Xu, Weiyang Xie, Ying Wei, Wenbing Huang, and Junzhou Huang.461

Self-supervised graph transformer on large-scale molecular data. In Advances in neural information462

processing systems, volume 33, 2020.463

Omri Puny, Heli Ben-Hamu, and Yaron Lipman. From graph low-rank global attention to 2-fwl464

approximation. In International Conference on Machine Learning. PMLR, 2020.465

Jiawei Zhang, Haopeng Zhang, Congying Xia, and Li Sun. Graph-bert: Only attention is needed for466

learning graph representations. arXiv preprint arXiv:2001.05140, 2020.467

Ondrej Bohdal, Yongxin Yang, and Timothy Hospedales. Flexible dataset distillation: Learn labels468

instead of images. arXiv preprint arXiv:2006.08572, 2020.469

11

Timothy Nguyen, Zhourong Chen, and Jaehoon Lee. Dataset meta-learning from kernel ridge-470

regression. In International Conference on Learning Representations, 2020.471

Timothy Nguyen, Roman Novak, Lechao Xiao, and Jaehoon Lee. Dataset distillation with infinitely472

wide convolutional networks. Advances in Neural Information Processing Systems, 34:5186–5198,473

2021.474

Felipe Petroski Such, Aditya Rawal, Joel Lehman, Kenneth Stanley, and Jeffrey Clune. Generative475

teaching networks: Accelerating neural architecture search by learning to generate synthetic476

training data. In International Conference on Machine Learning, pages 9206–9216. PMLR, 2020.477

Bo Zhao and Hakan Bilen. Dataset condensation with differentiable siamese augmentation. In478

International Conference on Machine Learning, pages 12674–12685. PMLR, 2021b.479

Jang-Hyun Kim, Jinuk Kim, Seong Joon Oh, Sangdoo Yun, Hwanjun Song, Joonhyun Jeong, Jung-480

Woo Ha, and Hyun Oh Song. Dataset condensation via efficient synthetic-data parameterization.481

In International Conference on Machine Learning, pages 11102–11118. PMLR, 2022.482

Yutian Chen, Max Welling, and Alex Smola. Super-samples from kernel herding. In Proceedings of483

the Twenty-Sixth Conference on Uncertainty in Artificial Intelligence, pages 109–116, 2010.484

Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H Lampert. icarl:485

Incremental classifier and representation learning. In Proceedings of the IEEE conference on486

Computer Vision and Pattern Recognition, pages 2001–2010, 2017.487

Rahaf Aljundi, Min Lin, Baptiste Goujaud, and Yoshua Bengio. Gradient based sample selection for488

online continual learning. Advances in neural information processing systems, 32, 2019.489

Ozan Sener and Silvio Savarese. Active learning for convolutional neural networks: A core-set490

approach. In International Conference on Learning Representations, 2018.491

Zalán Borsos, Mojmir Mutny, and Andreas Krause. Coresets via bilevel optimization for continual492

learning and streaming. Advances in Neural Information Processing Systems, 33:14879–14890,493

2020.494

Mariya Toneva, Alessandro Sordoni, Remi Tachet des Combes, Adam Trischler, Yoshua Bengio, and495

Geoffrey J Gordon. An empirical study of example forgetting during deep neural network learning.496

In International Conference on Learning Representations, 2018.497

Mansheej Paul, Surya Ganguli, and Gintare Karolina Dziugaite. Deep learning on a data diet: Finding498

important examples early in training. Advances in Neural Information Processing Systems, 34:499

20596–20607, 2021.500

Suraj Kothawade, Vishal Kaushal, Ganesh Ramakrishnan, Jeff Bilmes, and Rishabh Iyer. Prism: A501

rich class of parameterized submodular information measures for guided data subset selection. In502

Proceedings of the AAAI Conference on Artificial Intelligence, volume 36, pages 10238–10246,503

2022.504

Rishabh Iyer, Ninad Khargoankar, Jeff Bilmes, and Himanshu Asanani. Submodular combinatorial505

information measures with applications in machine learning. In Algorithmic Learning Theory,506

pages 722–754. PMLR, 2021.507

Chengcheng Guo, Bo Zhao, and Yanbing Bai. Deepcore: A comprehensive library for coreset508

selection in deep learning. arXiv preprint arXiv:2204.08499, 2022.509

Vladimir Braverman, Shaofeng H-C Jiang, Robert Krauthgamer, and Xuan Wu. Coresets for clustering510

in excluded-minor graphs and beyond. In Proceedings of the 2021 ACM-SIAM Symposium on511

Discrete Algorithms (SODA), pages 2679–2696. SIAM, 2021.512

Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui Hsieh. Cluster-gcn: An513

efficient algorithm for training deep and large graph convolutional networks. In Proceedings of514

the 25th ACM SIGKDD international conference on knowledge discovery & data mining, pages515

257–266, 2019.516

12

Venu Satuluri, Srinivasan Parthasarathy, and Yiye Ruan. Local graph sparsification for scalable517

clustering. In Proceedings of the 2011 ACM SIGMOD International Conference on Management518

of data, pages 721–732, 2011.519

Andreas Loukas and Pierre Vandergheynst. Spectrally approximating large graphs with smaller520

graphs. In International Conference on Machine Learning, pages 3237–3246. PMLR, 2018.521

Zengfeng Huang, Shengzhong Zhang, Chong Xi, Tang Liu, and Min Zhou. Scaling up graph522

neural networks via graph coarsening. In Proceedings of the 27th ACM SIGKDD Conference on523

Knowledge Discovery & Data Mining, pages 675–684, 2021.524

Chen Cai, Dingkang Wang, and Yusu Wang. Graph coarsening with neural networks. In International525

Conference on Learning Representations, 2020.526

Yoshua Bengio. Gradient-based optimization of hyperparameters. Neural computation, 12(8):527

1889–1900, 2000.528

Jan Larsen, Lars Kai Hansen, Claus Svarer, and M Ohlsson. Design and regularization of neural529

networks: the optimal use of a validation set. In Neural Networks for Signal Processing VI.530

Proceedings of the 1996 IEEE Signal Processing Society Workshop, pages 62–71. IEEE, 1996.531

Jelena Luketina, Mathias Berglund, Klaus Greff, and Tapani Raiko. Scalable gradient-based tuning532

of continuous regularization hyperparameters. In International conference on machine learning,533

pages 2952–2960. PMLR, 2016.534

Fabian Pedregosa. Hyperparameter optimization with approximate gradient. In International535

conference on machine learning, pages 737–746. PMLR, 2016.536

James Martens and Roger Grosse. Optimizing neural networks with kronecker-factored approximate537

curvature. In International conference on machine learning, pages 2408–2417. PMLR, 2015.538

Liam Li and Ameet Talwalkar. Random search and reproducibility for neural architecture search. In539

Uncertainty in artificial intelligence, pages 367–377. PMLR, 2020.540

Arber Zela, Thomas Elsken, Tonmoy Saikia, Yassine Marrakchi, Thomas Brox, and Frank Hutter.541

Understanding and robustifying differentiable architecture search. In International Conference on542

Learning Representations, 2019.543

Sirui Xie, Hehui Zheng, Chunxiao Liu, and Liang Lin. Snas: stochastic neural architecture search. In544

International Conference on Learning Representations, 2018.545

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. In546

International Conference on Learning Representations, 2017.547

Chris J Maddison, Andriy Mnih, and Yee Whye Teh. The concrete distribution: A continuous548

relaxation of discrete random variables. In International Conference on Learning Representations,549

2017.550

13

Supplementary Material551

A Proofs and Extended Theoretical Results552

Recall we consider the linear regression problem with linear convolution model fθ=[θC ,θW](A,X) =553

C(A, θC)XW (θW), where C(A; θC) is the convolution matrix which has the same sizes as the554

adjacency matrix A and possibly also depends on the parameters θC ∈ Rp, and W (θW) is the555

learnable linear weight matrix which is a reshape of the parameters θW ∈ Rd. The loss is now sum of556

squares L(θ, ψ) = ∥y − CXW∥22 (train-split subscript omitted) where the labels y are continuous.557

Recall that we say the gradient-matching objective is satisfied for a non-degenerate trajectory,558

if there exists a fixed learning trajectory (θSt)
T−1
t=0 which span the whole parameter space, i.e.,559

span(θS0 , . . . , θ
S
T−1) = Rp+d, such that the gradient-matching loss on this trajectory (objective of560

Eq. (SDC-GM) without expectation) is 0.561

A.1 Validity of Standard Dataset Condensation562

Proposition 4. (Validity of SDC) Assuming least square regression with linear convolution model,563

if gradient-matching objective is satisfied for a non-degenerate trajectory, then the optimizer on564

the condensed dataset S, i.e., θS = argminθ LS(θ, ψ) is also optimal for the original dataset, i.e.,565

LT (θ
S , ψ) = minθ LT (θ, ψ).566

Proof. If the gradient-matching objective is satisfied for a non-degenerate trajectory, one can derive567

(X⊤C⊤CX) = (X ′⊤C ′⊤C ′X ′) and X⊤C⊤y = X ′⊤C ′⊤y′. These directly least to that the568

optimizer θSW = θTW and thus LT (θ
S , ψ) = minθ LT (θ, ψ).569

A.2 Generalization Issue of Standard Dataset Condensation570

Proof of Proposition 1: If the gradient-matching objective is satisfied for a non-degenerate trajectory,571

similarly, one can derive (X⊤P k⊤P kX) = (X ′⊤P k⊤P kX ′) and X⊤P k⊤y = X ′⊤P k⊤y′ for any572

k = −K, . . . , 0, . . . ,K. Thus for a 1D-CNN with smaller K ′ ≤ K, the equations above readily lead573

to the gradient-matching objective for the new model. □574

Proof of Proposition 2: This proposition easily follow form the fact that the gradient-575

matching objective is minimized for any trajectory if the optimized parameter matches θS =576

(X ′⊤C ′⊤C ′X ′)X ′⊤C ′⊤y′ = (X⊤C⊤CX)X⊤C⊤y. From which we see we only require the577

product C ′X ′ to match CX . □578

Proof of Proposition 3: The lower bound follows from the optimized parameter θSW and θTW with the579

new GNN with convolution filter C and the inequality ∥AB∥F ≤ σmax(A)∥B∥F . □580

Although the results above are obtained for least squares loss and linear convolution model, it still581

reflects the nature of general non-convex losses and non-linear models. Since dataset condensation is582

effectively matching the local minima {θT } of the original loss LtrainT (θ, ψ) with the local minima583

{θS} of the condensed lossLtrainS (θ, ψ), within the small neighborhoods surrounding the pair of local584

minima (θT , θS), we can approximate the non-convex loss and non-linear model with a convex/linear585

one respectively. And hence the generalizability issues with convex loss and liner model may hold.586

A.3 Convolution Filters of GNNs587

The convolution formulation of many popular GNNs [Balcilar et al., 2021] is summarized in Table 4.588

B Extended Related Work589

B.1 Dataset Condensation and Coreset Selection590

Firstly, we review the two main approaches to reducing the training set size while preserving model591

performance.592

14

Model Name Design Idea Conv. Matrix Type # of Conv. Convolution Matrix

GCN1 [Kipf and Welling, 2016] Spatial Conv. Fixed 1 C = D̃−1/2ÃD̃−1/2

SAGE-Mean2 [Hamilton et al., 2017] Message Passing Fixed 2

{
C(1) = In

C(2) = D−1A

GAT3 [Veličković et al., 2018] Self-Attention Learnable # of heads


C(s) = A+ In and

h
(s)

a(l,s)(X
(l)
i,: , X

(l)
j,:) = exp

(
LeakyReLU(

(X
(l)
i,: W

(l,s) ∥ X(l)
j,:W

(l,s)) · a(l,s))
)

GIN1 [Xu et al., 2018] WL-Test
Fixed +

Learnable
2

{
C(1) = A

C(2) = In and h
(2)

ϵ(l)
= 1 + ϵ(l)

SGC!!2 [Defferrard et al., 2016] Spectral Conv. Learnable order of poly.


C(1) = In, C(2) = 2L/λmax − In,

C(s) = 2C(2)C(s−1) − C(s−2)

and h
(s)

θ(s)
= θ(s)

ChebNet2 [Defferrard et al., 2016] Spectral Conv. Learnable order of poly.


C(1) = In, C(2) = 2L/λmax − In,

C(s) = 2C(2)C(s−1) − C(s−2)

and h
(s)

θ(s)
= θ(s)

GDC3 [Klicpera et al., 2019] Diffusion Fixed 1 C = S

Graph Transformers4 [Rong et al., 2020] Self-Attention Learnable # of heads


C
(s)
i,j = 1 and h

(s)

(W
(l,s)
Q ,W

(l,s)
K)

(X
(l)
i,: , X

(l)
j,:)

= exp
(

1√
dk,l

(X
(l)
i,: W

(l,s)
Q)(X

(l)
j,:W

(l,s)
K)T

)
1 Where Ã = A + In, D̃ = D + In. 2 C(2) represents mean aggregator. Weight matrix in [Hamilton et al., 2017] is
W (l) = W (l,1) ∥ W (l,2). 3 Need row-wise normalization. C(l,s)

i,j is non-zero if and only if Ai,j = 1, thus GAT follows
direct-neighbor aggregation. 4 The weight matrices of the two convolution supports are the same, W (l,1) = W (l,2).
5 Where normalized Laplacian L = In −D−1/2AD−1/2 and λmax is its largest eigenvalue, which can be approximated as
2 for a large graph. 6 Where S is the diffusion matrix S =

∑∞
k=0 θkT

k, for example, decaying weights θk = e−t tk

k!
and

transition matrix T = D̃−1/2ÃD̃−1/2. 7 Need row-wise normalization. Only describes the global self-attention layer,
where W

(l,s)
Q ,W

(l,s)
Q ∈ Rfl,dk,l are weight matrices which compute the queries and keys vectors. In contrast to GAT, all

entries of C(l,s)
i,j are non-zero. Different design of Graph Transformers [Puny et al., 2020, Rong et al., 2020, Zhang et al.,

2020] use graph adjacency information in different ways, and is not characterized here, see the original papers for details.

Table 4: Summary of GNNs formulated as generalized graph convolution.

Dataset condensation (or distillation) is first proposed in [Wang et al., 2018] as a learning-to-learn593

problem by formulating the network parameters as a function of synthetic data and learning them594

through the network parameters to minimize the training loss over the original data. However, the595

nested-loop optimization precludes it scaling up to large-scale in-the-wild datasets. Zhao et al. [2020]596

alleviate this issue by enforcing the gradients of the synthetic samples w.r.t. the network weights597

to approach those of the original data, which successfully alleviates the expensive unrolling of598

the computational graph. Based on the meta-learning formulation in [Wang et al., 2018], Bohdal599

et al. [2020] and Nguyen et al. [2020, 2021] propose to simplify the inner-loop optimization of a600

classification model by training with ridge regression which has a closed-form solution, while Such601

et al. [2020] model the synthetic data using a generative network. To improve the data efficiency602

of synthetic samples in gradient-matching algorithm, Zhao and Bilen [2021b] apply differentiable603

Siamese augmentation, and Kim et al. [2022] introduce efficient synthetic-data parametrization.604

Recently, a new distribution-matching framework [Zhao and Bilen, 2021a] proposes to match the605

hidden features rather than the gradients for fast optimization, but may suffer from performance606

degradation compared to gradient-matching [Zhao and Bilen, 2021a], where Kim et al. [2022] provide607

some interpretation.608

Coreset selection methods choose samples that are important for training based on heuristic criteria,609

for example, minimizing the distance between coreset and whole-dataset centers [Chen et al., 2010,610

Rebuffi et al., 2017], maximizing the diversity of selected samples in the gradient space [Aljundi611

et al., 2019], discovering cluster centers [Sener and Savarese, 2018], and choosing samples with the612

largest negative implicit gradient [Borsos et al., 2020]. Forgetting [Toneva et al., 2018] measures613

the forgetfulness of trained samples and drops those that are not easy to forget. GraNd [Paul et al.,614

2021] selects the training samples that contribute most to the training loss in the first few epochs.615

Prism [Kothawade et al., 2022] select samples to maximize submodular set-functions which are616

combinatorial generalizations of entropy measures [Iyer et al., 2021]. Recent benchmark [Guo et al.,617

2022] of a variety of coreset selection methods for image classification indicates Forgetting, GraNd,618

and Prism are among the best performing corset methods but still evidently underperform the dataset619

15

condensation baselines. Although coreset selection can be very efficient, most of the methods above620

suffer from three major limitations: (1) their performance is upper-bounded by the information in621

the selected samples; (2) most of them do not directly optimize the synthetic samples to preserve622

the model performance; and (3) most of them select samples incrementally and greedily, which are623

short-sighted.624

B.2 Graph Reduction625

Secondly, we summarize the traditional graph reduction method for graph neural network training.626

Graph coreset selection is a non-trivial generalization of the above method coreset methods given627

the non-iid nature of graph nodes and the non-linearity nature of GNNs. The very few off-the-shelf628

graph coreset algorithms are designed for graph clustering [Baker et al., 2020, Braverman et al.,629

2021] and are not optimal for the training of GNNs.630

Graph sampling methods [Chiang et al., 2019, Zeng et al., 2019] can be as simple as uniformly631

sampling a set of nodes and finding their induced subgraph, which is understood as a graph-counterpart632

of uniform sampling of iid samples. However, most of the present graph sampling algorithms (e.g.,633

ClusterGCN [Chiang et al., 2019] and GraphSAINT [Zeng et al., 2019]) are designed for sampling634

multiple subgraphs (mini-batches), which forms a cover of the original graph for training GNNs635

with memory constraint. Therefore those graph mini-batch sampling algorithms are effectively graph636

partitioning algorithms and not optimized to find just one representative subgraph.637

Graph sparsification [Batson et al., 2013, Satuluri et al., 2011] and graph coarsening [Loukas638

and Vandergheynst, 2018, Loukas, 2019, Huang et al., 2021, Cai et al., 2020] algorithms are usually639

designed to preserve specific graph properties like graph spectrum and graph clustering. Such640

objectives are often not aligned with the optimization of downstream GNNs and are shown to be641

sub-optimal in preserving the information to train GNNs well [Jin et al., 2021].642

B.3 Other Related Areas643

Lastly, we list several important relevant areas.644

Implicit differentiation methods apply the implicit function theorem (IFT) to the nested-optimization645

problems [Ochs et al., 2015, Wang et al., 2019]. The IFT requires inverting the training Hessian with646

respect to the network weights, where early work either computes the inverse explicitly [Bengio,647

2000, Larsen et al., 1996] or approximates it as the identity matrix [Luketina et al., 2016]. Conjugate648

gradient (CG) is applied to invert the Hessian approximately [Pedregosa, 2016], but is difficult to649

scale to deep networks. Several methods have been proposed to efficiently approximate Hessian650

inverse, for example, 1-step unrolled differentiation [Luketina et al., 2016], Fisher information651

matrix [Larsen et al., 1996], NN-structure aided Kronecker-factored inversion [Martens and Grosse,652

2015]. Lorraine et al. [2020] use the Neumann inverse approximation, which is a stable alternative to653

CG [Shaban et al., 2019] and successfully scale gradient-based bilevel-optimization to large networks654

with constant memory constraint. It is shown that unrolling differentiation around locally optimal655

weights for i steps is equivalent to approximating the Neumann series inverse approximation up to656

the first i terms.657

Differentiable NAS methods, e.g., DARTS [Liu et al., 2018] explore the possibility of transforming658

the discrete neural architecture space into a continuously differentiable form and further uses gradient659

optimization to search the neural architecture. DARTS follows a cell-based search space [Zoph660

et al., 2018] and continuously relaxes the original discrete search strategy. Despite its simplicity,661

several work cast double on the effectiveness of DARTS [Li and Talwalkar, 2020, Zela et al., 2019].662

SNAS [Xie et al., 2018] points out that DARTS suffers from the unbounded bias issue towards663

its objective, and it remodels the NAS and leverages the Gumbel-softmax trick [Jang et al., 2017,664

Maddison et al., 2017] to learn the exact architecture parameter. Differentiable NAS techniques have665

also been applied to graphs to automatically design data-specific GNN architectures [Wang et al.,666

2021, Huan et al., 2021].667

16

	Introduction
	Preliminaries
	Standard Dataset Condensation Is Problematic Across GNNs
	Hyperparameter-calibrated Dataset Condensation Objective
	Implementation of HCDC
	Related Work
	Experiments
	Proofs and Extended Theoretical Results
	Validity of Standard Dataset Condensation
	Generalization Issue of Standard Dataset Condensation
	Convolution Filters of GNNs

	Extended Related Work
	Dataset Condensation and Coreset Selection
	Graph Reduction
	Other Related Areas

