
RobotKeyframing: Learning Locomotion with
High-Level Objectives via Mixture of

Dense and Sparse Rewards

Fatemeh Zargarbashi1,2 Jin Cheng1 Dongho Kang1 Robert Sumner2 Stelian Coros1
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Abstract: This paper presents a novel learning-based control framework that uses
keyframing to incorporate high-level objectives in natural locomotion for legged
robots. These high-level objectives are specified as a variable number of partial
or complete pose targets that are spaced arbitrarily in time. Our proposed frame-
work utilizes a multi-critic reinforcement learning algorithm to effectively handle
the mixture of dense and sparse rewards. Additionally, it employs a transformer-
based encoder to accommodate a variable number of input targets, each associated
with specific time-to-arrivals. Throughout simulation and hardware experiments,
we demonstrate that our framework can effectively satisfy the target keyframe
sequence at the required times. In the experiments, the multi-critic method sig-
nificantly reduces the effort of hyperparameter tuning compared to the standard
single-critic alternative. Moreover, the proposed transformer-based architecture
enables robots to anticipate future goals, which results in quantitative improve-
ments in their ability to reach their targets.
Project website: https://sites.google.com/view/robot-keyframing
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Figure 1: RobotKeyframing: Locomotion policy trained with our framework meets the keyframes
with position and full posture targets (yellow) at specified times on hardware experiments.

1 Introduction

Legged robots hold a great promise for becoming household companions [1] or automated perform-
ers in the entertainment industry [2, 3]. In these applications, it is crucial for robot controllers to
perform natural and directable behavior from simple high-level user command inputs beyond the
typical commands used in the robotic domain such as joystick velocity commands [4, 5] or target
base position [6, 7].

In the character animation domain, a widely used technique for specifying character behavior from
simple and sparse inputs is keyframing [8, 9]. It involves defining the target position or kinematic
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pose of the character at particular points in time, allowing animators to create smooth movements
by interpolating between these keyframes. Despite its proven effectiveness within the kinematic
animation pipeline, incorporating keyframing for achieving time-specific targets remains unexplored
in the realm of physics-based robot control.

With inspiration from the character animation technique, we aim to equip legged robots with more
refined control by incorporating sparse and temporal high-level objectives as keyframes. The pri-
mary goal of this work is to develop a locomotion controller that enables the robot to fulfill specified
partial or full-pose targets while infilling natural behavior during the intermediate periods. This
goal aligns with recent advancements in using reinforcement learning (RL) for legged robots due to
their promising robustness and flexibility [10, 11]. However, learning a policy that accurately meets
keyframes without imposing undesired constraints at intermediate periods presents challenges, par-
ticularly due to the need to handle sparsity in the keyframe objectives. Acquiring effective policies
requires a meticulous reward design procedure that carefully balances these sparse rewards with
other dense rewards which are crucial for regularizing and encouraging natural motion.

In this work, we present a novel framework that unifies timed high-level objectives with natural lo-
comotion of legged robots through temporal keyframes. Along with the imitation objective similar
to Peng et al. [12] for natural motion generation, our pipeline allows specifying full or partial high-
level targets, including base position, orientation, and joint postures. We propose using a multi-critic
RL framework to address the challenge of managing groups of sparse and dense rewards by learning
distinct value functions. Our method also employs a novel transformer-based architecture to encode
a variable number of goals with arbitrary time intervals. Unlike typical sequence-to-sequence trans-
formers [13], we propose a lightweight sequence-to-token module that can be used autoregressively
within a feedback control loop. We demonstrate the effectiveness of our framework through exper-
iments both in simulation and on real-world hardware. Our policies successfully guide the robot to
meet multiple keyframes at the required times, for both position and posture targets. Furthermore,
the multi-critic approach showcases better convergence with less hyperparameter tuning compared
to the conventional single-critic method. Our experiments also reveals that using a transformer-based
encoder to anticipate future goals significantly enhances goal-reaching accuracy.

The contribution of this paper is threefold: (i) We introduce RobotKeyframing, a novel learning-
based framework for integrating high-level objectives in natural locomotion of legged robots; (ii) We
propose using multi-critic RL to effectively handle the mixture of dense and sparse rewards, along
with a sequence-to-token encoder to accommodate a variable number of keyframes; (iii) We validate
the effectiveness of our method through extensive experiments in simulation and on hardware.

2 Related Work

2.1 Reinforcement Learning for Legged Robots

Over the last decade, reinforcement learning has been increasingly applied to develop locomotion
policies for legged robots [4, 14, 15]. The primary focus has been to achieve robust control policies
that can accurately track velocity commands from joysticks [11, 16, 17]. More recently, researchers
have attempted to enhance the versatility of legged robot controllers by incorporating high-level ob-
jectives, particularly through position- or orientation-based targets [18, 19, 20]. This high-level con-
trol is typically accomplished through hierarchical frameworks, where a high-level policy is learned
to drive a low-level controller [7, 21, 22]. Conversely, end-to-end approaches aim to develop a uni-
fied policy for both high- and low-level control, allowing high-level objectives to directly influence
low-level decisions [6, 18, 23]. However, the aforementioned methods typically urge the robot to
reach a target as fast as possible, lacking refined control over the temporal profile of achieving the
target. Inspired by keyframing in animation, this work aims to further expand control over robot
motion by incorporating multiple keyframes as input to the control policy, thereby enabling robots
to generate diverse behaviors in reaching targets. We further enhance this versatility by allowing
partial or full targets, including base position, orientation, and joint postures.
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2.2 Natural Motion for Characters and Robots

Synthesizing naturalistic behavior from existing motion datasets while fulfilling spatial or temporal
conditions has been extensively studied in the character animation domain [24, 25, 26, 27]. Existing
research for generating natural motions between keyframes [28, 29, 30] has mainly focused on the
kinematic properties of characters and thus cannot be directly applied to physics-based characters
or robots, whose dynamic interactions with the environment require consideration of both kinemat-
ics and dynamics. Various efforts have also been made to combine kinematic motion generation
with physically controlled robots to achieve natural behavior on hardware [31, 32, 33, 34]. Another
thread of research focuses on controlling characters in physically simulated environments, incorpo-
rating motion datasets as demonstrations [35, 36, 37, 38]. Some of these methods have also been
successfully transferred to robot control for quadrupeds or humanoids [39, 40, 41, 42]. Among
these works, Adversarial Motion Priors (AMP) [12] provides a flexible way to encourage the pol-
icy to have natural, expert-like behavior by connecting generative adversarial networks (GAN) [43]
with RL given an offline motion dataset. We also incorporate an AMP-based imitation objective to
encourage naturalistic motion for the policy and further extend it to infilling keyframes for robots.

3 Method

3.1 Problem Setup

To integrate high-level control objectives into the robotic control framework, we employ sparse
keyframes that require a robot to achieve specific goals at predetermined times. Each keyframe con-
tains a full or partial combination of a variety of targets such as global base position p̂ ∈ R3, global
base orientation (ϕ̂, ζ̂, ψ̂) ∈ R3 where ϕ, ζ, ψ denote roll, pitch, and yaw angles respectively, and
full posture specified by joint angles θ̂j ∈ RNj where Nj is the number of joints. Each keyframe is
also assigned with a specific time t̂ ∈ R in the future at which the robot is expected to meet the goals.
In summary, the high-level objectives are specified through these keyframes K =

(
k1,k2, ...,knk

)
,

where ki =
(
ĝ, t̂
)i

and ĝ ⊂
{
p̂, ϕ̂, ζ̂, ψ̂, θ̂j

}
. Here, nk ≤ Nk where nk and Nk denote the ac-

tual and the maximal number of keyframes, respectively. We aim to support an arbitrary number of
keyframes, allowing for the flexible specification of high-level objectives only as needed.

The main goal is to train a locomotion policy for legged robots that not only meets these keyframes
but also maintains a natural style during the intervals between them. To avoid undesired restrictions
on the intermediate periods, policy’s task performance is evaluated exclusively at the designated
times, making the keyframe objectives temporally sparse. However, relying solely on keyframes to
train the control policy may result in undesirable motions. Thus, it is crucial to have additional re-
wards for regularizing and promoting a natural motion style. In this regard, we incorporate AMP [12]
as a general style guide for the robot, encouraging the policy to behave naturally and similarly to
an offline motion dataset from dogs [44]. The style and regularization rewards are evaluated at ev-
ery step of the episode, making them temporally dense. The mixture of sparse and dense rewards
presents a unique challenge that is difficult to manage effectively with standard RL frameworks. De-
tails on the observation, action, reward definitions, and training setup can be found in Appendix A.

3.2 Multi-Critic RL for Dense-Sparse Reward Mixture

Modern RL algorithms [45, 46, 47] typically employ the actor-critic paradigm, where the actor
decides the action to take, and the critic evaluates the action by estimating the value function. To
effectively manage a complex mixture of temporally dense and sparse rewards, we employ a multi-
critic (MuC) RL framework by Martinez-Piazuelo et al. [48] as shown in Fig. 2. It involves training
a set of critic networks {Vϕi}ni=0 to learn distinct value functions associated with different reward
groups {ri}ni=0. Similar concepts have been used to balance a set of dense rewards [49, 50]; however,
we extend the multi-critic method to the context of dense and sparse reward combination, where we
demonstrate its distinct advantages. We design each reward group to contain either exclusively
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dense or sparse rewards. This division is essential for effectively managing the distinct temporal
characteristics of each reward type and facilitates value estimation.

We integrate the multi-critic concept to Proximal Policy Optimization (PPO) [46], as shown
in Alg. 1. Particularly, each value network Vϕi(·) is trained independently for a specific reward
group ri with temporal difference loss,

L(ϕi) = Êt

[
∥ri,t + γVϕi

(st+1)− Vϕi
(st)∥2

]
, (1)

where Êt is the empirical average and γ is the discount factor. The value functions calculated by each
critic are used to individually estimate the advantage {Âi}ni=0 for each reward group. Subsequently,
these advantages are synthesized into a policy improvement step by calculating the multi-critic ad-
vantage as a weighted sum of the normalized advantages from each reward group

ÂMuC =

n∑
i=0

wi ·
Âi − µÂi

σÂi

, (2)

where µÂi
and σÂi

are the batch mean and standard deviation of the advantage from group i. Similar
to PPO, the surrogate loss for policy gradient is clipped

LCLIP−MuC(θ) = Êt

[
min

(
αt(θ)ÂMuC,t, clip(αt(θ), 1− ϵ, 1 + ϵ)ÂMuC,t

)]
, (3)

where αt(θ) and ϵ respectively denote the probability ratio and the clipping hyperparameter. This
formulation integrates feedback from both dense and sparse rewards into the policy update, facili-
tating a balanced and effective learning process.

Figure 2: Multi-Critic RL.

Algorithm 1 Multi-Critic PPO

1: Initialize policy parameters θ and parame-
ters of each critic, ϕi.

2: for n = 1 to N do
3: Rollout policy πθ to fill the buffer.
4: for each mini-batch do
5: Estimate Âi for each ri.
6: Compute ÂMuC with Eq. 2.
7: Update policy with Eq. 3.
8: Update each critic with Eq. 1.
9: end for

10: end for

Assigning distinct critics for dense and sparse rewards helps achieve each set of objectives more ef-
fectively while reducing the reliance on extensive hyperparameter tuning. To illustrate this, consider
a simple scenario with an episode length of T involving two types of rewards: a temporally dense
reward rd that is active at every step and a temporally sparse reward rs that is only active at the final
step of an episode

rs,t =

{
r̂s, t = T

0, otherwise.
(4)

In the conventional single-critic RL, the total reward of each time step t is typically computed as a
linear combination of different reward terms rt = wsrs,t + wdrd,t. The value in this scenario is

V (st) = E

[
wsγ

(T−t)r̂s + wd

T∑
k=t

γkrd,k

]
. (5)

We define the reward sparsity ratio as the number of dense reward steps per sparse reward horizon,
which is here equal to T . The second term in Eq. 5 consists of a summation over T − t individual
reward terms, whereas the first term includes only a single component. This highlights the impact of
different reward sparsities on the learning process, suggesting that the weight of reward groups must

4



be adjusted for different sparsity ratios to achieve a proper balance. This challenge is amplified when
the sparsity ratio changes between episodes, for example, when keyframe timings are randomly
sampled within a range. These variations can complicate the hyperparameter tuning process and
hinder the efficacy of the learning algorithm.

In the multi-critic approach, on the other hand, the advantage for each reward group is normalized
independently, ensuring that a fixed weight ratio for the advantages is adequate to maintain the de-
sired balance, regardless of variations in the sparsity ratio. This method decouples reward frequency
and magnitude from the learning process, enabling more effective policy optimization and reducing
the effort for manual hyperparameter tuning.

3.3 Transformer-based Keyframe Encoding

The transformer framework [51] has achieved great success in modeling sequential data not only
in the natural language processing [52, 53] but also in other areas including robotics [54]. The
attention mechanism, serving as the core of transformer networks, models the correlation between
each element of the input sequence and reweights them accordingly. To handle a variable number of
keyframes in our problem, we utilize a transformer-based encoder to process the sequence of goals
for both the policy and critics. However, unlike the typical application of transformers in sequence-
to-sequence tasks, we adapt the architecture to function in a sequence-to-token manner, as shown
in Fig. 3. This adaptation makes it suitable for autoregressive feedback control in robotic systems.

Figure 3: Policy with transformer-based keyframe encoder.

In our system, each input token xi
t is a vector corresponding to a particular keyframe. At every

time step t, each keyframe ki is transformed spatially and temporally into a robot-centric view,
resulting in a goal error ∆gi

t and a calculated time to goal t̂i − t. These are then concatenated with
the robot state st to form a single token. Additionally, we incorporate a self-goal keyframe, x0

t ,
as the first token in the sequence. This token represents a state with zero error and zero time to
goal, which ensures that the control system remains operational despite the absence of active goals
or after achieving all goals. The transformer encoder receives the sequence of tokens as a matrix
Xt = [x0

t ; . . . ;x
nk
t ], where x0

t = [st,0, 0], and xi
t = [st,∆gi

t, t̂
i − t] for i = 1, . . . , nk.

In scenarios where the number of active keyframes is less than the maximum capacity of the system,
we apply masking to ignore the surplus tokens and focus only on the relevant keyframes. Further-
more, we also apply masking to keyframes once their designated time is reached and surpassed by a
few steps. This practice prevents past goals from inappropriately influencing the long-term behavior
of the policy. The output from the transformer encoder is then forwarded to a max-pooling layer,
which condenses the encoded goal features for delivery to the subsequent multilayer perceptrons
(MLP). By leveraging transformer’s ability to handle sequences of varying lengths, our architecture
can effectively integrate multiple and variable numbers of goals into the control process.

4 Results

The control policies are trained for quadruped robots with 12 degrees of freedom (DoF) using Isaac
Gym [55]. At the start of each episode, the robot is either set to a default state or initialized according
to a posture and height sampled from the dataset, a technique known as Reference State Initialization
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(a)

t=0 s t=1 s t=2 s

Target time =2 s

t=0 s t=2 s t=3 st=1 s t=4 s

Target time =4 s

(b)

Figure 4: a) Horizontal trajectories of the robot base given two sets of position goals (dots). b) Spec-
ifying different temporal profiles generates diverse behaviors for the same position goal.

(RSI) [56]. We incorporate a learning curriculum, beginning with keyframes entirely sourced from
reference data and progressively increasing the proportion of randomly generated keyframes, with
time intervals, position targets, and yaw angles each sampled from a predetermined range. In this
section, we present the qualitative and quantitative experiment results in simulation and on hardware.

4.1 Keyframe Matching

We demonstrate that our trained policy effectively reaches keyframes at the designated times through
several simulation experiments. Given keyframes consisting of position goals, our policy reaches its
targets with notable precision, as illustrated in Fig. 4a by the horizontal trajectories for two example
scenarios with different number of keyframes. Furthermore, our framework offers control over
target reaching time and can generate diverse behaviors for the same targets by specifying different
time profiles. This is depicted in Fig. 4b through snapshots of robot motion when provided with
keyframes consisting of the same position goal, but different target times. Full posture targets are
also supported along with position and orientation goals. Fig. 5 shows snapshots of the robot motion
given different keyframe scenarios, highlighting that our policy accurately meets its full posture
targets while maintaining a natural style. Further quantitative evaluation of keyframe matching is
provided in Appendix A.6.

4.2 Multi-Critic RL

In this section, we conduct a comparative analysis between multi-critic and single-critic approaches
in the keyframing setup. Learning curves for both methods are presented in Fig. 6, with each method
trained across three different ranges of sparsity ratios by sampling keyframes with varying time

Figure 5: Snapshots of the robot motion given keyframes with full postures: moving forward (top),
jumping (middle) and raising the paw up (bottom). Target keyframes are displayed in yellow.
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Figure 6: Convergence comparison of single-critic (left) and multi-critic (right) for different ranges
of keyframe time horizons ([25, 50], [50, 75], [75, 100]) with fixed weights.

(a)

(b)

t=0 s

t=0 s

t=1 s

t=1 s

t=1.5 s

t=1.5 s

Figure 7: The policy aware of all goals (a) adjusts its yaw angle earlier to better reach the second
goal compared to the policy only aware of the next goal (b). Keyframes are placed at 1 and 1.5
seconds in time. Left: snapshots, right: trajectories.

horizons. Initially, reward and advantage weights are tuned separately for single- and multi-critic
according to the time horizon range [25, 50]. New policies are then trained using the same weights
for another two scenarios of time horizons, [50, 75] and [75, 100]. The learning curves reveal that the
multi-critic algorithm achieves a similarly fast convergence without retuning the advantage weights
for different scenarios. In contrast, the single-critic method displays significant delays in reward
increase due to the sparser nature with longer keyframe horizons, underscoring the efficiency of the
multi-critic in reducing the need for extensive manual hyperparameter tuning. This feature makes
multi-critic particularly valuable in environments with varying reward sparsities.

4.3 Future Goal Anticipation

An advantage of using a transformer-based encoder is that it enables the policy to incorporate multi-
ple and a varying number of goals as input. If the goals are temporally close to each other, awareness
of future goals influences the robot’s motion to achieve all of them more accurately. The phe-
nomenon of future goal anticipation is demonstrated in Fig. 7 where we compare a policy aware of
all goals and a policy only aware of the immediate next goal, both trained with only position goals in
the keyframe. The policy trained with multiple keyframes adopts a larger yaw angle at the first goal,
leaning more towards the second one to be able to reach it with higher accuracy. Table 1 provides a
quantitative comparison of the two policies across three different scenarios: straight, turn and slow
turn, the latter featuring a longer time horizon for the second goal. The results indicate that future
goal anticipation helps the policy to adjust its motion while approaching earlier goals to gain better
accuracy for the subsequent targets. This is particularly important when keyframes are temporally
close, resulting in higher accuracy gains in fast and dynamic movements, compared to slower ones.

4.4 Hardware Deployment

We validate our method through extensive hardware experiments using the Unitree Go2 [57], a
12-DoF commercial quadruped robot. Fig. 8 illustrates the outcomes of a policy that manages up
to 5 positional goals arranged in different courses, and a policy trained for full pose targets that
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First Goal Straight Turn Turn (Slow)
Aware of all goals 0.0872± 0.0336 0.0781± 0.0236 0.0806± 0.0265
Aware of next goal 0.0898± 0.0317 0.0841± 0.0335 0.0787± 0.0208

Straight

Second Goal Straight Turn Turn (Slow)
Aware of all goals 0.0472± 0.0187 0.3340± 0.1162 0.0566± 0.0804
Aware of next goal 0.1332± 0.0605 0.7271± 0.1528 0.1711± 0.1071

Turn

Table 1: Average position error (m) for three keyframe scenarios (depicted on right) across 20
experiments. The policy aware of all goals achieves better accuracy in reaching them.

Figure 8: Hardware deployment of RobotKeyframing for position targets (top), and full-pose targets
(bottom). Posture keyframes are displayed in yellow.

successfully drives the robot to achieve various posture keyframes. These experiments underscore
the adaptability and effectiveness of our keyframing approach in enhancing high-level control in
robotic systems. Readers are encouraged to watch the videos provided in the supplementary material
for a more comprehensive presentation of these results.

5 Discussion

Conclusion: This paper presents RobotKeyframing, a learning-based control framework designed
to incorporate high-level objectives into the natural locomotion of legged robots through a sequence
of keyframes, leveraging transformer models and multi-critic reinforcement learning. Through sim-
ulation and hardware experiments, we demonstrated the effectiveness of our approach: The sparse
reward imposed by keyframe objectives is effectively handled by a multi-critic PPO algorithm. In
addition, the transformer-based architecture is adaptive to various number of target keyframes and
improves accuracy in reaching targets through future goal anticipation.

Limitations and future work: First, if the timing values are infeasible for the specified goals, the
robot may fail to meet the targets. However, it is worth noting that such cases do not result in uncon-
trolled behaviors, such as falling down. Second, our approach inherits the mode collapse issue from
the AMP framework [12], which can be mitigated in future research through the integration of style
embeddings. Third, the performance of our policy is currently limited by the motions in the dataset,
restricting its ability to generalize to out of distribution motions or targets. Looking ahead, our
method can be expanded to incorporate diverse types of goals in the keyframes, such as end-effector
targets or more intuitive high-level inputs such as skill or text. Additionally, RobotKeyframing can be
extended to more complex characters and potentially used for physics-based motion in-betweening
in the character animation domain.
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A Appendix

A.1 Observation and Action Space

The observation of the policy is composed of two main components: state observation and goal
observation. State observation at time t include the linear velocity (v) and angular velocity (ω) of
the base in local coordinates, current joint angles (θj), current joint velocities (θ̇j), projected gravity
in the base frame (gproj), base height (h) and previous actions from the last timestep (aprev),

st = {v,ω,θj , θ̇j , gproj , h,aprev}t. (6)

A variable number of keyframes K =
(
k1,k2, ...,knk

)
are specified as targets for the robot. At

each time step t, each keyframe ki is transformed spatially and temporally into a robot-centric view.
Then, the goal observation is prepared by calculating the remaining time to goal t̂i − t and the error
to target goals (∆gi

t),
∆gi

t ⊂ {∆pi
b,∆ϕ

i,∆ζi,∆ψi,∆θi
j}. (7)

Here, ∆pi
b denotes the error between robot base position and keyframe position in the base coordi-

nate frame, ∆θi
j is the error in joint angles, and ∆ϕi, ∆ζi and ∆ψi denote the errors in roll, pitch

and yaw angles, respectively, which are wrapped to (−π, π].

The policy receives the sequence of tokens Xt = (x0
t , ...,x

nk
t ) as input to the encoder, where

x0
t = (st,0, 0), and xi

t = (st,∆gi
t, t̂

i − t) for i = 1, ..., nk. Thanks to the transformer-based
keyframe encoding, the extra tokens can be masked to enable arbitrary number of goals. In addition,
keyframes with a time over one second past the current time are also masked to avoid any long-term
influence on reaching the future goals.

The action (at) space of the policy is set to target joint angles, which are tracked using a PD con-
troller to compute the motor torques.

A.2 Reward Terms

We include three groups of rewards in this framework: regularization, style, and goal. For each
reward group, the final reward is computed as a multiplication of individual reward terms,

rgroup =
∏

i∈group

ri. (8)

Regularization rewards are designed to provide a smooth output of the policy and consist of several
terms defined in Table A1. Here, K is an exponential kernel function defined in Eq. 9 where σ and
δ are the sensitivity and tolerance of the kernel function, respectively.

K(x, σ, δ) = exp

(
−
(
max (0, ∥x∥ − δ)

σ

)2
)

(9)

To generate natural motion between the keyframes, we use AMP proposed by Peng et al. [12], which
involves training a discriminator D to identify motions that are similar to those of the offline expert
dataset. The style reward is defined based on the discriminator output of the latest state transition of
the robot (st−1, st),

rstyle = max
(
1− 0.25(D(st−1, st)− 1)2, 0

)
. (10)

Table A1: Regularization reward terms
Action rate K (ȧ, 8.0, 0)

Base horizontal acceleration K(p̈xy, 8.0, 0)

Joint acceleration K(θ̈j , 150.0, 10.0)

Joint soft limits K (max (θj − θj,max,θj,min − θj ,0) , 0.1, 0)
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Table A2: Goal reward terms
Goal position Φi(K(p− p̂i, 0.2, 0))

Goal roll Φi(K(ϕ− ϕ̂i, 0.1, 0))

Goal pitch Φi(K(ζ − ζ̂i, 0.1, 0))

Goal yaw Φi(K(ψ − ψ̂i, 0.3, 0))

Goal posture Φi(K(θj − θ̂i
j , 0.2

√
12, 0))

Goal rewards are defined with a temporally sparse kernel Φi(x)

Φi(x) =

{
x, t = t̂i

0, otherwise
, (11)

and only activated when the corresponding timestep for that goal t̂i is reached in the episode. The
detailed reward terms are defined in table A2.

For advantage weights (Eq. 2), we recommend starting with a 1:1 ratio and making minor adjust-
ments based on specific preferences. In our experiments, we used ωstyle = 0.5, ωgoal = 0.5, ωreg =
0.1, maintaining equal weights for goal and style, with a lower weight for the regularization critic.

A.3 Dataset Preparation

We use a database of motion capture from dogs introduced by Zhang et al. [44]. The motions are
retargeted to the robot skeleton using inverse kinematics for the end-effectors’ positions with some
local offsets to compensate for the different proportions of the robot and dog. A subset of around
20 minutes of data was used, removing the undesired motions such as smelling the ground, walking
on slopes, etc. We augment this dataset with other motion clips animated by artists to include more
diversity in the dataset. The frame rate is adjusted to that of the simulation, i.e. 50 frames per second.
In addition, the linear and angular velocity of the base are precomputed for each frame using a finite
difference method and stored in the dataset.

A.4 Training Procedure

We utilize Isaac Gym [55] for simulating the physical environment. At the start of each episode, the
robot is initialized either to a default state (20% probability) or using Reference State Initialization
(RSI) (80% probability). For RSI, a random frame from the reference motion trajectory provides the
height, orientation, joint angles, base linear velocity, base angular velocity, and joint velocities for
initializing the robot. RSI plays a crucial role in capturing and learning the specific style of motion,
as highlighted in previous studies such as Peng et al. [56].

We employ two keyframe sampling strategies: dataset-based and random sampling. In the dataset-
based approach, a motion trajectory and starting frame index are initially sampled. Then the time
interval between keyframes are uniformly drawn from a specified range. The corresponding frames
from the dataset are used to obtain the global position, orientation, and posture of the robot at
the keyframe times. The global horizontal positions are subsequently converted to relative local
positions with respect to the starting frame and then transformed into positions in the simulator’s
world coordinates by accounting for the robot’s initial state. The yaw angle is similarly adjusted,
while height, roll, pitch, and joint postures are directly used as target values.

In the random sampling strategy, time intervals are sampled from a predefined range, similar to the
first strategy. The radius and direction of each keyframe, relative to the previous one are uniformly
sampled to compute the keyframe’s global horizontal position. Additionally, the change in yaw
angle is sampled and added to the previous keyframe’s yaw. The roll and pitch angles, joint postures
and height are taken directly from a reference frame randomly selected from the dataset. This
ensures that the posture is feasible and compatible with the height. Details of the sampling ranges
are provided in Table A3.
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Table A3: Keyframe sampling ranges
Quantity Time interval Waypoint radius Waypoint direction Delta yaw angle

(steps) (m) (rad) (rad)
Range [25, 50] [0.5, 1.0] [−π/3, π/3] [−π/3, π/3]

Our methodology incorporates a learning curriculum, beginning with keyframes entirely sourced
from reference data and progressively increasing the proportion of randomly generated keyframes.
The meticulous sampling of target keyframes is critical for ensuring their feasibility and preventing
them from impeding effective policy learning.

We train the policy to handle a maximum number of keyframes, randomly selecting the actual num-
ber of keyframes for each episode. To avoid negative impacts on training, unused goals are masked
when input into the transformer encoder. For stability, the episode does not terminate immediately
after the last goal is reached; instead, it terminates approximately one second later. The training
setup for a full keyframe comprising time, position, roll, pitch, yaw, and posture targets with up to 5
maximum keyframes requires approximately 17 hours on a system equipped with Nvidia GeForce
RTX 4090.

A.5 Hardware Implementation Details

Domain randomization is added during training to achieve a robust policy that can be executed
on hardware. Similar to Kang et al. [58], we randomize friction coefficients, motor stiffness and
damping gains and actuator latency. Furthermore, we add external pushes during training. Details
of domain randomization ranges are provided in Table A4. Although joint limits are softly taken
into account in the simulation, we found it crucial to terminate episodes when reaching joint limits
to ensure a stable deployment on hardware. We use a motion capture system to receive the global
position and orientation of the robot. These are used to compute the relative errors to the target goals
and are then passed to the policy. Other observations are computed based on the outputs from the
state estimator. Our locomotion control policy runs at 50 Hz and updates the joint angle targets. At
a lower-level, the robot’s built-in motor controller operates at 1000 Hz, updating the torque targets
for each joint. To enhance computational efficiency during RL training, we simulate the robot and
the PD controller at 200 Hz, which has proven effective in practice.

Table A4: Domain randomization ranges
Quantity Range

Friction Coefficient [0.25, 1.75]

Push velocity (m/s) [0.0, 1.0]

Push angular velocity (m/s) [0.0, 1.0]

Stiffness multiplier [0.9, 1.1]

Damping multiplier [0.9, 1.1]

Actuator lag steps [0, 6]

A.6 Keyframe Matching

We provide quantitative analysis of keyframe matching performance for the three scenarios from
Fig. 5 with full-pose keyframes in Table A5. The mean and standard deviation of each entry is from
20 independent evaluations. The posture error reported is the root mean squared error (RMSE) of
all joint angles. The results indicate that our trained policy tracks the keyframes with good precision
and consistency.

To assess the generalization capability of our method, we evaluated the trained policy using three
different keyframe sampling strategies:
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Table A5: Keyframe matching error for three different scenarios
Scenario Walk (goal 1) Walk (goal 2) Jump Paw up
Distance error (m) 0.048± 0.011 0.020± 0.003 0.118± 0.012 0.044± 0.015

Roll error (deg) 3.094± 0.327 1.621± 0.074 1.473± 0.579 1.209± 0.733

Pitch error (deg) 0.332± 0.178 0.934± 0.235 1.558± 0.940 0.516± 0.246

Yaw error (deg) 1.209± 0.384 2.120± 0.367 7.110± 1.060 2.773± 1.301

Posture error (deg) 2.469± 0.309 2.595± 0.126 3.226± 0.103 4.698± 0.808

• Dataset: Sampling the full pose (position, orientation, and posture) only from trajectories
in the reference dataset.

• Random: Sampling the posture from the reference dataset while randomly sampling the
planar position and yaw angle targets.

• Evaluation dataset: Sampling the full pose from the evaluation dataset, which was not
seen by the policy during training. For the evaluation dataset, we use a few locomotion
clips from the open-sourced dataset from Han et al. [59].

The mean and standard deviation for each strategy are derived from 20 independent evaluations
and shown in Table A6. The results indicate that our policy generalizes outside the trained dataset
in terms of position and yaw angle when exposed to the randomly sampled target during training.
Surprisingly, the policy achieves decent keyframe tracking in position and orientation as well as
postures with the evaluation dataset which is never seen during training. Although Table A6 shows
promising generalization results, full generalization to postures that differ significantly from those
in the training dataset is yet to be achieved.

Table A6: Keyframe matching performance across different keyframe sampling strategies
Keyframes source Dataset Random Evaluation dataset
Distance error (m) 0.060± 0.050 0.142± 0.087 0.064± 0.060

Roll error (deg) 1.873± 1.888 3.181± 3.466 3.231± 9.053

Pitch error (deg) 3.084± 6.747 4.260± 9.202 1.438± 2.842

Yaw error (deg) 2.394± 1.775 8.754± 6.220 2.200± 2.235

Posture error (deg) 5.119± 3.143 4.640± 1.606 9.207± 7.122

A.7 Future Goal Anticipation

Details of target keyframes used for Table 1 are given in Table A7.

Table A7: Details of keyframe scenarios

Scenario
First Goal Second Gaol

Time (steps) Position (m) Time (steps) Position (m)
Straight 50 (0, 0.32, 1.0) 75 (0, 0.32, 2.0)

Turn 50 (0, 0.32, 1.0) 75 (1.0, 0.32, 1.5)

Turn (Slow) 50 (0, 0.32, 1.0) 100 (1.0, 0.32, 1.5)
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A.8 Training Hyperparameters

Table A8 provides details of hyperparameters used for training.

Table A8: Summery of training hyperparameters
Number of environments 4096
Number of mini-batches 4
Number of learning epochs 5
Learning rate 0.0001
Entropy coefficient 0.02
Target KL divergence 0.02
Gamma 0.99
Lambda 0.95
Discriminator learning rate 0.0003
Discriminator update rate per epoch 20
Discriminator batch size 768
Transformer encoder layers 2
Transformer heads 1
Transformer feed-forward dimensions 512
MLP dimensions [512, 256]

Initial standard deviation 1.0
Activation function ELU
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