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Abstract

As the capabilities of artificial agents improve, they are being increasingly deployed
to service multiple diverse objectives and stakeholders. However, the composition
of these objectives is often performed ad hoc, with no clear justification. This paper
takes a normative approach to multi-objective agency: from a set of intuitively
appealing axioms, it is shown that Markovian aggregation of Markovian reward
functions is not possible when the time preference (discount factor) for each
objective may vary. It follows that optimal multi-objective agents must admit
rewards that are non-Markovian with respect to the individual objectives. To this
end, a practical non-Markovian aggregation scheme is proposed, which overcomes
the impossibility with only one additional parameter for each objective. This
work offers new insights into sequential, multi-objective agency and intertemporal
choice, and has practical implications for the design of AI systems deployed to
serve multiple generations of principals with varying time preference.

1 Introduction

The idea that we can associate human preferences with scalar utility values traces back hundreds
of years and has found usage in numerous applications [9, 71, 28, 49]. One of the most recent, and
perhaps most important, is the design of artificial agents. In the field of reinforcement learning
(RL), this idea shows up as the reward hypothesis [74, 67, 10], which lets us define objectives in
terms of a discounted sum of Markovian rewards. While foundational results from decision theory
[81, 62] and inverse RL [52, 54] justify the reward hypothesis when a single objective or principal is
considered, complexities arise in multi-objective scenarios [61, 77]. The literature on social choice
is largely defined by impossibilities [5], and multi-objective composition in the RL and machine
learning literature is typically restrictive [68, 51], applied without clear justification [29], or based
on subjective evaluations of empirical efficacy [21]. Addressing these limitations is crucial for the
development of artificial agents capable of effectively serving the needs of diverse stakeholders.

This paper extends previous normative work in RL by adopting an axiomatic approach to the
aggregation of objectives. The approach is based on a set of intuitively appealing axioms: the
von Neumann-Morgenstern (VNM) axioms, which provide a foundation for rational choice under
uncertainty; Pareto indifference, which efficiently incorporates individual preferences; and dynamic
consistency, which ensures time-consistent decision-making. From these axioms, an impossibility is
derived, leading to the conclusion that optimal multi-objective agents with diverse time preferences
must have rewards that are non-Markovian with respect to the individual objectives. To address this
challenge, a practical state space expansion is proposed, which allows for the Markovian aggregation
of objectives requiring only one parameter per objective. The results prompt an interesting discussion
on dynamic preferences and intertemporal choice, leading to a novel “historical discounting” strategy
that trades off dynamic consistency for intergenerational fairness. Finally, it is shown how both our
results can be extended (albeit non-normatively) to stochastic policies.
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The remainder of this paper is organized as follows: Section 2 motivates the problem by modeling
human procrastination behavior as an aggregation of two objectives, work and play, and showing how
a plan that appears optimal today may lead to the worst possible future outcome. Section 3 presents
the axiomatic background and the key impossibility result. Section 4 presents the corresponding
possibility result and a practical state expansion to implement it. Section 5 relates the results to
intertemporal choice, proposes N -step commitment and historical discounting strategies for managing
intergenerational tradeoffs, extends the results to stochastic policies, and discusses related topics in
RL. Section 6 concludes with some final thoughts and potential future research directions.

2 Motivation: The Procrastinator’s Peril

We begin with a numerical example of how the naive aggregation of otherwise rational preferences can
lead to undesirable behavior. The example, which will be referred to throughout as the “Procastinator’s
Peril”, involves repeated procrastination, a phenomenon to which the reader might relate. An agent
aggregates two competing objectives: work and play. At each time step the agent can choose to
either work or play. The pleasure of play is mostly from today, and the agent doesn’t value future
play nearly as much as present play. On the other hand, the consequences of work are delayed, so
that work tomorrow is valued approximately as much as work today.

Let us model the agent’s preferences for work and play as two separate Markov Decision Processes
(MDP), each with state space S = ∅ and action space A = {w, p}. In the play MDP, we have
rewards R(p) = 0.5, R(w) = 0 and a discount factor of γplay = 0.5. In the work MDP, we have
rewards R(p) = 0, R(w) = 0.3 and a discount factor of γwork = 0.9. One way to combine the
preferences for work and play is to value each trajectory under both MDPs and then add up the
values. Not only does this method of aggregation seem reasonable, but it is actually implied by
some mild and appealing assumptions about preferences (Axioms 1 and 3 in the sequel). Using this
approach, the agent assigns values to trajectories as follows:

τ1 p, p, p, p. . . V (τ1) =
∑

t(0.5)
t · 0.5 = 1.00

τ2 w, w, w, w. . . V (τ2) =
∑

t(0.9)
t · 0.3 = 3.00

τ3 p, w, w, w. . . V (τ3) = 0.5 + 0.9 · V (τ2) = 3.20
τ4 p, p, w, w. . . V (τ3) = 0.75 + 0.92 · V (τ2) = 3.18

We see that the agent most prefers τ3: one period (and one period only!) of procrastination is optimal.
Thus, the agent procrastinates and chooses to play today, planning to work from tomorrow onward.
Come tomorrow, however, the agent is faced with the same choice, and once again puts off work in
favor of play. The process repeats and the agent ends up with the least preferred alternative τ1.

This plainly irrational behavior illustrates the impossibility theorem. Observe that the optimal policy
τ3 is non-Markovian—it must remember that the agent has previously chosen play in order to work
forever. But any MDP has a stationary optimal policy [55], so it follows that we need rewards that are
non-Markovian with respect to the original state-action space. Alternatively, we will see in Subsection
4.2 that we can expand the state space to make the optimal policy Markovian.

3 Impossibility of Dynamically Consistent, Pareto Indifferent Aggregation

Notation We assume familiarity with Markov Decision Processes (MDPs) [55] and reinforcement
learning (RL) [74]. We denote an MDP by M = ⟨S,A, T,R, γ⟩, where γ : S × A → R+ is
a state-action dependent discount function. This generalizes the usual “fixed” γ ∈ R and covers
both the episodic and continuing settings [85]. We use lowercase letters for generic instances, e.g.
s ∈ S, and denote distributions using a tilde, e.g. s̃. In contrast to standard notation we write
both state- and state-action value functions using a unified notation that emphasizes the dependence
of each on the future policy: we write V (s, π) and V (s, aπ) instead of V π(s) and Qπ(s, a). We
extend V to operate on probability distributions of states, V (s̃,Π) = Es∼s̃V (s,Π), and we allow for
non-stationary, history dependent policies (denoted by uppercase Π,Ω). With this notation, we can
understand V as an expected utility function defined over prospects of the form (s̃,Π). We use the
letter h to denote histories (trajectories of states and actions)—these may terminate on either a state
or action, as may be inferred from the context. For convenience, we sometimes directly concatenate
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histories, states, actions and/or policies (e.g., hs, sa, sΠ, aΠ) to represent trajectory segments and/or
the associated stochastic processes. For simplicity, we assume finite |S|, |A|.

3.1 Representing rational preferences

This paper is concerned with the representation of aggregated preferences, where both the aggregation
and its individual components satisfy certain axioms of rationality. We define the objects of preference
to be the stochastic processes (“prospects”) generated by following (potentially non-stationary and
stochastic) policy Π from state s. Distributions or “lotteries” over these prospects may be represented
by (not necessarily unique) tuples of state lottery and policy (s̃,Π) ∈ L(S)×Π =: L(P). We write
(s̃1,Π) ≻ (s̃2,Ω) if (s̃1,Π) is strictly preferred to (s̃2,Ω) under preference relation ≻.

To be “rational”, we require ≻ to satisfy the “VNM axioms” [81], which is capture in Axiom 1:

Axiom 1 (VNM). For all p̃, q̃, r̃ ∈ L(P) we have:
Asymmetry: If p̃ ≻ q̃, then not q̃ ≻ p̃;
Negative Transitivity: If not p̃≻ q̃ and not q̃≻ r̃, not p̃≻ r̃;
Independence: If p̃≻ q̃, then αp̃+ (1− α)r̃ ≻ αq̃ + (1− α)r̃, ∀α ∈ (0, 1];
Continuity: If p̃ ≻ q̃ ≻ r̃, then ∃ α, β ∈ (0, 1) such that αp̃+ (1− α)r̃ ≻ q̃ ≻ βp̃+ (1− β)r̃;

where αp̃+ (1− α)q̃ denotes the mixture lottery with α% chance of p̃ and (1− α)% chance of q̃.

Asymmetry and negative transitivity together form the basic requirements of a strict preference
relation—equivalent to completeness and transitivity of the corresponding weak preference relation,
⪰ (defined as p ⪰ q ⇔ q ̸≻ p). Independence can be understood as an irrelevance of unrealized alter-
natives, or consequentialist, axiom: given that the α% branch of the mixture is realized, preference
between p̃ and q̃ is independent of the rest of the mixture (i.e., what could have happened on the
(1− α)% branch). Finally, continuity is a natural assumption given that probabilities are continuous.

We further require ≻ to be dynamically consistent [70, 40, 44]:

Axiom 2 (Dynamic consistency). (s, aΠ) ≻ (s, aΩ) if and only if (T (s, a),Π) ≻ (T (s, a),Ω) where
T (s, a) is the distribution over next states after taking action a in state s.

This axiom rules out the irrational behavior in the Procrastinator’s Peril, by requiring today’s prefer-
ences for tomorrow’s actions to be the same as tomorrow’s preferences. While some of these axioms
(particularly independence and dynamic consistency) have been the subject of debate (see, e.g., [44]),
note that the standard RL model is more restrictive than they require [54].

The axioms produce two key results that we rely on (see Kreps [39] and Pitis [54] for proofs):

Theorem 1 (Expected utility representation). The relation ≻ defined on the set L(P) satisfies Axiom
1 if and only if there exists a function V : P → R such that, ∀ p̃, q̃ ∈ L(P):

p̃ ≻ q̃ ⇐⇒
∑

z∈supp(p̃)
p̃(z)V (z) >

∑
z∈supp(q̃)

q̃(z)V (z).

Another function V † gives this representation iff V † is a positive affine transformation of V .

Using Theorem 1, we extend the domain of value function V to L(P) as V (p̃) =
∑

z p̃(z)V (z).

Theorem 2 (Generalized Bellman representation). If ≻ satisfies Axioms 1-2 and V is an expected
utility representation of ≻, there exist R : S ×A → R, γ : S ×A → R+ such that ∀ s, a,Π,

V (s, aΠ) = R(s, a) + γ(s, a)V (T (s, a),Π).

Remark 3.1.1 Instead of preferences over stochastic processes of potential futures, one could begin
with preferences over trajectories [86, 64, 10]. The author takes issue with this approach, however,
as it’s unclear that such preferences should satisfy Asymmetry or Independence without additional
assumptions (humans often consider counterfactual outcomes when evaluating the desirability of a
trajectory) [54]. By using Theorem 2 to unroll prospects, one can extend preferences over prospects
to define preferences over trajectories according to their discounted reward.

Remark 3.1.2 Theorem 2, as it appeared in Pitis [54], required an additional, explicit “Irrelevance of
unrealizable actions” axiom, since prospects were defined as tuples (s̃,Π). This property is implicit
in our redefinition of prospects as stochastic processes.
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Remark 3.1.3 In this line of reasoning only the preference relation ≻ is primitive; V and its Bellman
form (R, γ) are simply representations of ≻ whose existence is guaranteed by the axioms. Not all
numerical representations of ≻ have these forms [84]. In particular, (strictly) monotonically increasing
transforms preserve ordering, so that any increasing transform V † of a Theorem 1 representation
V is itself a valid numerical representation of ≻ (although lotteries will no longer be valued by the
expectation over their atoms unless the transform is affine, per Theorem 1).

3.2 Representing rational aggregation

Let us now consider the aggregation of several preferences. These may be the preferences of an
agent’s several principals or preferences representing a single individual’s competing interests. Note at
the outset that it is quite natural for different objectives or principals to have differing time preference.
We saw one example in the Procrastinator’s Peril, but we can also consider a household robot that
seeks to aggregate the preferences of Alice and her husband Bob, for whom there is no reason to
assume equal time preference [26].

An intuitively appealing axiom for aggregation is Pareto indifference, which says that if each
individual preference is indifferent between two alternatives, then so too is the aggregate preference.

Axiom 3 (Pareto indifference). If p̃ ≈i q̃ (∀i ∈ I), p̃ ≈Σ q̃.

Here, p̃ ≈ q̃ means indifference (not p̃ ≻ q̃ and not q̃ ≻ p̃), so that ≈i is the ith individual indifference
relation, I is a finite index set over the individuals, and ≈Σ indicates the aggregate relation. There
exist stronger variants of Pareto property that require monotonic aggregation (e.g., if all individuals
prefer p̃, so too does the aggregate; see Axiom 3′ in Subsection 5.1). We opt for Pareto indifference
to accommodate potentially deviant individual preferences (e.g., if all individuals are indifferent but
for a sociopath, the aggregate preference may be opposite of the sociopath’s).

If we require individual and aggregate preferences to satisfy Axiom 1 and, jointly, Axiom 3, we
obtain a third key result due to Harsanyi [32]. (See Hammond [31] for proof).

Theorem 3 (Harsanyi’s representation). Consider individual preference relations {≻i; i ∈ I} and
aggregated preference relation ≻Σ, each defined on the set L(P), that individually satisfy Axiom 1
and jointly satisfy Axiom 3. If {Vi; i ∈ I} and VΣ are expected utility representations of {≻i; i ∈ I}
and ≻Σ, respectively, then there exist real-valued constant c and weights {wi; i ∈ I} such that:

VΣ(p̃) = c+
∑

i∈I
wiVi(p̃).

That is, the aggregate value can be expressed as a weighted sum of individual values (plus a constant).

According to Harsanyi’s representation theorem, the aggregated value function is a function of the
individual value functions, and nothing else. In other words, Pareto indifferent aggregation of VNM
preferences that results in VNM preference is necessarily context-free—the same weights {wi} apply
regardless of state and policy.

We will also make use of two technical conditions to eliminate certain edge cases. Though sometimes
left implicit, these are both common requirements for aggregation functions [5].

Axiom 4 (Technical conditions on ≻Σ).
Unrestricted Domain: ≻Σ is defined for all valid individual preference sets {≻i; i ∈ I}.
Sensitivity: ∀i ∈ I, holding ≻j , j ̸= i constant, there exist ≻1

i ,≻2
i resulting in different ≻Σ.

The first condition allows us to consider conflicting objectives with different time preference. The
second condition implies that the weights wi in Theorem 3 are nonzero.

Remark 3.2.1 It is worth clarifying here the relation between Harsanyi’s theorem and a related class
of aggregation theorems, occasionally cited within the machine learning literature (e.g., [6]), based on
axioms originating with Debreu [19]. One instance of this class states that any aggregate preference
satisfying six reasonable axioms can be represented in the form: VΣ(p̃) =

∑
i∈I m(Vi(p̃)), where

m is a strictly increasing monotonic function from the family {xp | 0 < p ≤ 1} ∪ {log(x) | p =
0} ∪ {−xp | p < 0} [47]. If we (1) drop the symmetry axiom from this theorem to obtain variable
weights wi, and (2) add a monotonicity axiom to Harsanyi’s theorem to ensure positive weights wi

[32], then the only difference between the theorems is the presence of monotonic function m. But
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note that applying m to each Vi or to VΣ individually does not change the preference ranking they
represent; it does, however, decide whether Vi and VΣ are VNM representations of ≻. Thus, we can
understand Harsanyi’s theorem as saying: if Vi, VΣ are VNM representations of ≻, then m must be
linear. Or conversely, if m is non-linear (p ̸= 1), Vi and VΣ are not VNM representations.

Remark 3.2.2 A caveat of Harsanyi’s theorem is that it implicitly assumes that all individual
preferences, and the aggregate preference, use the same set of agreed upon, “objective” probabilities.
This is normatively justifiable if we use the same probability distribution (e.g., that of the aggregating
agent) to impose “ideal” preferences ≻i on each individual, which may differ from their implicit
subjective or revealed preferences [62]. As noted by Desai et al. [20], Harsanyi’s theorem fails if the
preferences being aggregated use subjective probabilities. Note, however, that the outcome of the
“bargaining” construction in Desai et al. [20] is socially suboptimal when the aggregrating agent has
better information than the principals, which suggests that effort should be made to unify subjective
probabilities. We leave exploration of this to future work.

3.3 Impossibility result

None of Theorems 1-3 assume all Axioms 1-4. Doing so leads to our key result, as follows.

Theorem 4 (Impossibility). Assume there exist distinct policies, Π,Ω,Λ, none of which is a mixture
(i.e., convex combination) of the other two, and consider the aggregation of arbitrary individual
preference relations {≻i; i ∈ I} defined on L(P) that individually satisfy Axioms 1-2. There does
not exist aggregated preference relation ≻Σ satisfying Axioms 1-4.

Sketch of Proof. The full proof is in Appendix B. Briefly, we consider |I| = 2 and use Axiom 4
(Unrestricted Domain) to construct mixtures of Π and Ω so that each mixture is considered indifferent
to Λ by one of the individual preference relations. Then, by applying Theorem 2 and Theorem 3 in
alternating orders to the difference between the value of the mixture policy and the value of Λ, and
doing some algebra, we arrive at the equations

w1γ1(s, a) = w1γΣ(s, a) and w2γ2(s, a) = w2γΣ(s, a), (1)

from which we conclude that γΣ(s, a) = γ1(s, a) = γ2(s, a). But this contradicts our assumption
that individual preferences {≻i; i ∈ I} may be chosen arbitrarily, completing the proof.

Intuition of Proof. Under mild conditions, we can find two policies (a Π/Ω mixture, and Λ) between
which individual preference ≻1 is indifferent, but individual preference ≻2 is not. Then for mixtures
of this Π/Ω mixture and Λ, ≻1 remains indifferent, but the strength of ≻2 changes, so that ≻Σ must
have the same time preference as ≻2. By an analogous argument, ≻Σ must have the same time
preference as ≻1, leading to a violation of Unrestricted Domain.

The closest results from the economics literature consider consumption streams (S = R) [88, 15, 83].
Within reinforcement learning, equal time preference has been assumed, without justification, when
merging MDPs [68, 41] and value functions for different tasks [29].

Remark 3.3.1 A consequence of Unrestricted Domain, critical to the impossibility result, is that
individual preferences may have diverse time preferences (i.e., different discount functions). If
discounts are equal, Markovian aggregation is possible.

Remark 3.3.2 Per Remark 3.2.2, by applying Harsanyi’s theorem, we are implicitly assuming that
all preferences are formed using the same “objective” probabilities over prospects; is there a notion
of “objective” time preference that should be used? If so, this would resolve the impossibility (once
again, requiring that we impose a notion of ideal preference on individuals that differs from their
expressed preference). We leave this consideration for future work.

Remark 3.3.3 Theorem 4 applies to the standard RL setup, where γ1, γ2, γΣ are constants.

4 Escaping Impossibility with Non-Markovian Aggregation

An immediate consequence of Theorem 4 is that any scalarized approach to multi-objective RL [79]
is generally insufficient to represent composed preferences. But the implications run deeper: insofar
as general tasks consist of several objectives, Theorem 4 pushes Sutton’s reward hypothesis to its
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limits. To escape impossibility, the Procrastinator’s Peril is suggestive: to be productive, repeat play
should not be rewarded. And for this to happen, we must keep track of past play, which suggests that
reward must be non-Markovian, even when all relevant objectives are Markovian. That is, even
if we have settled on some non-exhaustive state representation that is “sufficiently” Markovian, an
extra aggregation step could render it no longer sufficient.

Relaxing Markov Preference The way in which non-Markovian rewards (or equivalently, non-
Markovian utilities) can be used to escape Theorem 4 is quite subtle. Nowhere in the proofs of
Theorems 1-4 is the Markov assumption explicitly used. Nor does it obviously appear in any of
the Axioms. The Markov assumption is, however, invoked in two places. First, to establish history-
independent comparability between the basic objects of preference—prospects (s,Π)—and second,
to extend that comparison set to include “prospects” of the form (T (s, a),Π). To achieve initial
comparability, Pitis [54] applied a “Markov preference” assumption (preferences over prospects are
independent of history) together with an “original position” construction that is worth repeating here:

[I]t is admittedly difficult to express empirical preference over prospects . . . an agent only
ever chooses between prospects originating in the same state . . . [Nevertheless,] we imagine
a hypothetical state from which an agent chooses between [lotteries] of prospects, denoted
by L(P). We might think of this choice being made from behind a “veil of ignorance” [58].

(2)

In other words, to allow for comparisons between prospect (s1,Π) and (s2,Π), we prepend some
pseudo-state, s0, and compare prospects (s0s1,Π) and (s0s2,Π). Markov preference then lets us cut
off the history, so that our preferences between (s1,Π) and (s2,Π) are cardinal.

The impossibility result suggests, however, that aggregate preference is not independent of history, so
that construction 2 cannot be applied. Without this construction, there is no reason to require relative
differences between V (s1, ∗) and V (s2, ∗) to be meaningful, or to even think about lotteries/mixtures
of the two prospects (as done in Axiom 1). Letting go of this ability to compare prospects starting in
different states means that Theorem 1 is applicable only to sets of prospects with matching initial
states, unless we shift our definition of “prospect” to include the history; i.e., letting h represent the
history, we now compare “historical prospects” with form (h,Π).

Though this does not directly change the conclusion of Theorem 2, T (s, a) in V (T (s, a),Π) includes
a piece of history, (s, a), and can no longer be computed as Es′∼T (s,a)V (s′,Π). Instead, since the
agent is not choosing between prospects of form (s′,Π) but rather (abusing notation) prospects of
form (sas′,Π), the expectation should be computed as Es′∼T (s,a)V (sas′,Π).

The inability to compare prospects starting in different states also changes the conclusion of Theorem
3, which implicitly uses such comparisons to find constant coefficients wi that apply everywhere in the
original L(P). Relaxing the application of Harsanyi’s theorem to not make inter-state comparisons
results in weights wi(h) that are history dependent when aggregating the historical prospects.

4.1 Possibility Result

Allowing the use of history dependent coefficients in the aggregation of Vi(T (s, a),Π) resolves
the impossibility. The following result shows that given some initial state dependent coefficients
wi(s), we can always construct history dependent coefficients wi(h) that allow for dynamically
consistent aggregation satisfying all axioms. In the statement of the theorem, L(Ph) is used to denote
the set of lotteries over prospects starting with history h of arbitrary but finite length (not to be
confused with the set of lotteries over all historical prospects, of which there is only one). Note that
if a preference relation satisfies Axioms 1-2 with respect to L(P), the natural extension to L(Phs),
(hs,Π1) ≻ (hs,Π2) ⇐⇒ (s,Π1) ≻ (s,Π2), satisfies Axioms 1-2 with respect to L(Phs). Here,
we are using hs to denote a history terminating in state s.

Theorem 5 (Possibility). Consider the aggregation of arbitrary individual preference relations
{≻i; i ∈ I} defined on L(P), and consequently L(Ph), ∀h, that individually satisfy Axioms 1-2.
There exists aggregated preference relations {≻h

Σ}, defined on L(Ph), ∀h, that satisfy Axioms 1-4.

In particular, given s, a, VΣ, {Vi}, {wi(s)}, where (A) each Vi satisfies Axioms 1-2 on L(P), and VΣ

satisfies Axioms 1-2 on L(Ph),∀h, and (B) VΣ(s, aΠ) =
∑

i wi(s)Vi(s, aΠ)), then, choosing

wi(sas
′) := wi(sa) := wi(s)γi(s, a) for all i, s′ (3)
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implies that VΣ(sas
′,Π) ∝

∑
i wi(sa)Vi(s

′,Π) so that the aggregated preferences {≻sas′

Σ } satisfy
Axiom 3 on L(Psas′). Unrolling this result—wi(hsas

′) := wi(hs)γi(s, a)—produces a set of
constructive, history dependent weights {wi(h)} such that Axiom 3 is satisfied for all histories {h}.

Sketch of Proof. The full proof is in Appendix B. Following the proof of Theorem 4, we arrive at

w1(s)γ1(s, a) = w1(sa)γΣ(s, a) and w2(s)γ2(s, a) = w2(sa)γΣ(s, a), (4)

from which we conclude that:
w2(sa)

w1(sa)
=

w2(s)γ2(s, a)

w1(s)γ1(s, a)
. (5)

This shows the existence of weights wi(sa), unique up to a constant scaling factor, for which
VΣ(T (s, a),Π) ∝

∑
i wi(sa)Vi(T (s, a),Π), that apply regardless of how individual preferences are

chosen or aggregated at s. Unrolling the result completes the proof.

From Theorem 5 we obtain a rather elegant result: rational aggregation over time discounts the
aggregation weights assigned to each individual value function proportionally to its respective
discount factor. In the Procrastinator’s Peril, for instance, where we started with wp(s) = ww(s) = 1,
at the initial (and only) state s, we might define wp(sps) = 0.5 and ww(sps) = 0.9. With these non-
Markovian aggregation weights and γΣ(sp) = 1, you can verify that (1) the irrational procrastination
behavior is solved, and (2) the aggregated rewards for work and play are now non-Markovian.

Remark 4.1 (Important!) The discount γΣ is left undetermined by Theorem 5. One might determine
it several ways: by appealing to construction 2 with respect to historical prospects in order to establish
inter-state comparability, by setting it to be the highest individual discount (0.9 in the Procrastinator’s
Peril), by normalizing the aggregation to weights to sum to 1 at each step, or perhaps by another
method. In any case, determining γΣ would also determine the aggregation weights, per equation
4 (and vice versa). We leave the consideration of different methods for setting γΣ and establishing
inter-state comparability of VΣ to future work. (NB: This is a normative question, which we leave
unanswered. While one can make assumptions, as we will for our numerical example in Subsection
5.2, future research should be wary of accepting a solution just because it seems to work.)

4.2 A Practical State Space Expansion

The basic approach to dealing with non-Markovian rewards is to expand the state space in such a way
that rewards becomes Markovian [27, 14, 2]. However, naively expanding S to a history of length H
could have O((|S|+ |A|)H) complexity. Fortunately, the weight update in equation 4 allows us to
expand the state using a single parameter per objective. In particular, for history hsa and objective
i, we append to the state the factors yi(hsa) := yi(h)γi(s, a)/γΣ(s, a), which are defined for every
history, and can be accumulated online while executing a trajectory. Then, given a composition with
any set of initial weights {wi}, we can compute the weights of augmented state saug = (s, yi(hs)) as
wi(saug) = yi(hs) · wi. Letting L(P(y)) be the set of prospects on the augmented state set, we get
the following corollary to Theorem 5:

Corollary 1. Consider the aggregation of arbitrary individual preference relations {≻i; i ∈ I}
defined on L(P), and consequently L(P(y)), that individually satisfy Axioms 1-2. There exists
aggregated preference relation {≻Σ}, defined on L(P(y)), that satisfies Axioms 1-4.

5 Discussion and Related Work

5.1 A Fundamental Tension in Intertemporal Choice

The state space expansion of Subsection 4.2 allows us to represent the (now Markovian) values of
originally non-Markovian policies in a dynamically consistent way. While this allows us to design
agents that implement these policies, it doesn’t quite solve the intertemporal choice problem.

In particular, it is known that dynamic consistency (in the form of Koopmans’ Stationarity [38]),
together with certain mild axioms, implies a first period dictatorship: the preferences at time t = 1 are
decisive for all time [25] (in a sense, this is the very definition of dynamic consistency!). Generally
speaking, however, preferences at time t ̸= 1 are not the same as preferences at time t = 1 (this is
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what got us into our Procrastinator’s Peril to begin with!) and we would like to care about the value
at all time steps, not just the first.

A typical approach is to treat each time step as a different generation (decision maker), and then
consider different methods of aggregating preferences between the generations [33]. Note that (1)
this aggregation assumes intergenerational comparability of utilities (see Remark 4.1), and (2) each
generation is expressing their personal preferences about what happens in all generations, not just
their own. Since this is a single aggregation, it will be dynamically consistent (we can consider the
first period dictator as a benevolent third party who represents the aggregate preference instead of
their own). A sensible approach might be to assert a stronger version of Axiom 3 that uses preference:

Axiom 3′ (Strong Pareto Preference) If p̃ ⪰i q̃ (∀i ∈ I), then p̃ ⪰Σ q̃; and if, furthermore, ∃j ∈ I
such that p̃ ≻j q̃, then p̃ ≻Σ q̃.

Using Axiom 3′ in place of Axiom 3 for purposes of Theorem 3 gives a representation that assigns
strictly positive weights to each generation’s utility. Given infinite periods, it follows (e.g., by the
Borel-Cantelli Lemma for general measure spaces) that if utilities are bounded, some finite prefix of
the infinite stream decides the future and we have a “finite prefix dictatorship”, which is not much
better than a first period one.

The above discussion presents a strong case against using dynamic consistency to determine a long
horizon policy. Intuitively, this makes sense: preferences change over time, and our current generation
should not be stuck implementing the preferences of our ancestors. One way to do this is by taking
time out of the equation, and optimizing the expected individual utility of the stationary state-action
distribution, dπ (cf. Sutton and Barto [74] (Section 10.4) and Naik et al. [50]):

J(π) =
∑

s
dπ(s)Vπ(s) (6)

Unfortunately, as should be clear from the use of a stationary policy π, this time-neutral approach
falls short for our purposes, which suggests the use of a non-Markovian policy. While optimizing
equation 6 would find the optimal stationary policy in the Procrastinator’s Peril (work forever with
V (τ2) = 3.0), it seems clear that we should play at least once (V (τ3) = 3.2) as this hurts no one and
makes the current decision maker better off—i.e., simply optimizing (6) violates the Pareto principle.

This discussion exemplifies a known tension in intertemporal choice between Pareto optimality and
the requirement to treat every generation equally—it is impossible to have both [16, 42]. In a similar
spirit to Chichilnisky [16], who has proposed an axiomatic approach requiring both finite prefixes
of generations and infinite averages of generations to have a say in the social preference, we will
examine a compromise (to the author’s knowledge novel) between present and future decision makers
in next Subsection.

5.2 N-Step Commitment and Historical Discounting

We now consider two solutions to the intertemporal choice problem that deviate just enough from
dynamic consistency to overcome finite period dictatorships, while capturing almost all value for
each decision maker. In other words, they are “almost” dynamically consistent. We leverage the
following observation: due to discounting, the first step decision maker cares very little about the far
off future. If we play once, then work for 30 steps in the Procrastinator’s Peril, we are already better
off than the best stationary policy, regardless of what happens afterward.

This suggests that, rather than following the current decision maker forever, we allow them commit to
a non-Markovian policy for some N < ∞ steps that brings them within some ϵ of their optimal policy,
without letting them exert complete control over the far future. To implement this, we could reset the
accumulated factors yi to 1 every N steps. This approach is the same as grouping every consecutive
N step window into a single, dynamically consistent generation with a first period dictator.

A more fluid and arguably better approach is to discount the past when making current decisions
(“historical discounting”). We can implement historical discounting with factor η ∈ [0, 1] by changing
the update rule for factors yi to

yi(hsa) := η

[
yi(h)

γi(s, a)

γΣ(s, a)

]
+ (1− η)wn

i (s),

where wn
i (s) denotes the initial weight for objective i at the nth generation (if preferences do not

change over time, wn
i = wi). This performs an exponential moving average of preferences over time—
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high η < 1 initially gives the first planner full control, but eventually discounts their preferences
until they are negligible. This obtains a qualitatively different effect from N -step commitment, since
the preferences of all past time steps have positive weight (by contrast, on the N th step, N -step
commitment gives no weight to the N − 1 past preferences). As a result, in the Procrastinator’s Peril,
any sufficiently high η returns policy τ3, whereas N -step commitment would play every N steps.

Historical discounting is an attractive compromise because it is both Pareto efficient, and also
anonymous with respect to tail preferences—it both optimizes equation 6 in the limit, and plays on
the first step. Another attractive quality is that historical discounting allows changes in preference to
slowly deviate from dynamic consistency over time—the first period is not a dictator.

As a numerical example, we can consider what happens in the Procrastinator’s Peril if we
start to realize that we value occasional play, and preferences shift away from the play
MDP to a playn MDP. The playn MDP has fixed γplayn = 0.9 and non-Markovian reward
R(p | no play in last N-1 steps) = 0.5, R(anything else) = 0. We assume preferences shift lin-
early over the first 10 timesteps, from wplay = 1, wplayn = 0 at t = 0 to wplay = 0, wplayn = 1 at
t = 10 (and wwork = 1 throughout). Then, the optimal trajectories τ∗ for different η, and resulting
discounted reward for the first time step, V 1(τ∗), are as follows:

η τ∗ V 1(τ∗)

0.00 play for 5 steps, then play every 10 steps 2.635
0.30 play for 5 steps, then play every 10 steps 2.635
0.50 play for 3 steps, then play every 10 steps 2.932
0.90 play, then work for 14 steps, then play every 10 steps 3.105
0.95 play, then work for 23 steps, then play every 10 steps 3.163
0.98 play, then work for 50 steps, then play every 10 steps 3.198
1.00 play, then work forever (same as τ3) 3.200

When η = 0, each time step acts independently, and since the play MDP has high weight at the start,
we experience a brief period of consistent play in line with the original Procrastinator’s Peril, before
preferences fully shift to occasional play. With high η < 1, we capture almost all value for the first
time step, while also eventually transitioning to the equilibrium “play every 10 steps” policy.

5.3 Extension to Boltzmann Policies

The preference relation ≻ is deterministic, but the associated policy does not have to be. In many
cases—partially-observed, multi-agent, or even fully-observed settings [74, 30]—stochastic policies
outperform deterministic ones. And for generative sequence models such as LLMs [13], stochastic
policies are inherent. We can extend our analysis—impossibility, possibility, state space expansion,
and intertemporal choice rules—to such cases by adopting a stochastic choice rule.

To formalize this, we will take the stochastic choice rule as primitive, and use it to define a (deter-
ministic) relation ≻ that, for practical purposes, satisfies Axioms 1-4 [18]. We assume our choice
rule satisfies Luce’s Choice Axiom [43], which says that the relative rate of choosing between two
alternatives in a choice set of n alternatives is constant regardless of the choice set. This can be
implemented numerically with a Bradley-Terry choice model [11] by associating each alternative
ai with a scalar Ω(ai), so that given choice set {ai, aj}, p(ai) = Ω(ai)/(Ω(ai) + Ω(aj)). (An
interesting interpretation for Ω(ai) that connects to both probability matching [82, 65] and statistical
mechanics [45] is as the number of “outcomes” (microstates) for which ai is the best choice.)

We then simply “define” preference as ai ≻ aj ⇐⇒ Ω(ai) > Ω(aj), and utility as V (ai) :=
k log Ω(ai), so that the policy is a softmax of the utilities. The way these utilities are used in practice
(e.g., [30, 17]) respects Axioms 1-2. And summing utilities is a common approach to composition
[21, 29], which is consistent with Harsanyi’s representation (Theorem 3). For practical purposes then,
the impossibility result applies whenever composed objectives may have different time preference.

Remark 5.3 Unlike our main results, this extension to Boltzmann policies is motivated by practical,
rather than normative, considerations. Simple counterexamples to Luce’s Choice Axiom exist [87]
and probability matching behavior is evidently irrational in certain circumstances [65]. We note,
however, that certain theoretical works tease at the existence of a normative justification for Boltzmann
policies [18, 8, 73, 23]; given the practice, a clear justification would be of great value.
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5.4 Related Work in RL

Task Definition Tasks are usually defined as the maximization of expected cumulative reward in an
MDP [74, 55, 67]. Preference-based RL [86] avoids rewards, operating directly with preferences (but
note that preference aggregation invokes Arrow’s impossibility theorem [5, 48]), while other works
translate preferences into rewards [17, 72, 12, 35]. This paper joins a growing list of work [54, 1, 76,
77] that challenges the implicit assumption that “MDPs are enough” in many reward learning papers,
particularly those that disaggregate trajectory returns into stepwise rewards [22, 56, 59].

Discounting Time preference or discounting can be understood as part of the RL task definition.
Traditionally, a constant γ has been used, although several works have considered other approaches,
such as state-action dependent discounting [85, 66] and non-Markovian discounting [24, 63]. Several
works have considered discounting as a tool for optimization [80] or regularization [36, 4, 57].

Task Compositionality Multi-objective RL [61] represents or optimizes over multiple objectives or
general value functions [75], which are often aggregated with a linear scalarization function [7, 3].
Rather than scalarizing to obtain a single solution to a multi-objective problem, one can also seek out
sets of solutions, such as the set of Pareto optimal policies [78] or the set of acceptable policies [46].
Several works have also considered formal task decompositions [14, 51] where simple addition of
MDPs is insufficient [68]. More broadly, in machine learning, composition can be done via mixtures
of experts and/or energy-based modeling [34, 21], which have also been applied to RL [29, 41]. Our
results provide normative justification for linear scalarization when time preference is the same for
all objectives, but call for non-Markovian adjustments when time preferences differ.

Non-Markovian Rewards The necessity of non-Markovian rewards was demonstrated in other
settings by Abel et al. [1] and more recently, in a concurrent work by Skalse and Abate [69]. Though
several papers explicitly consider RL with non-Markovian rewards [27, 60], this is usually motivated
by task compression rather than necessity, and the majority of the RL literature restricts itself
to Markovian models. Many popular exploration strategies implicitly use non-Markovian rewards
[37, 53]. Our work is unique in that non-Markovian rewards arise from aggregating strictly Markovian
quantities, rather non-Markovian quantities present in the task definition or algorithm.

6 Conclusion and Future Work

The main contribution of this work is an impossibility result from which one concludes that non-
Markovian rewards (or an equivalent state expansion) are likely necessary for agents that pursue
multiple objectives or serve multiple principals. It’s possible that this will be the case for any
advanced agent whose actions impact multiple human stakeholders. To accurately align such agents
with diverse human preferences we need to endow them with the capacity to solve problems requiring
non-Markovian reward, for which this paper has proposed an efficient state space expansion that
uses one new parameter per aggregated objective. While the proposed state space expansion allows
multi-objective agents to have dynamically consistent preferences for future prospects, it does not, in
itself, solve the intertemporal choice problem. To that end, we have proposed “historical discounting”,
a novel compromise between dynamic consistency and fair consideration of future generations.

Interesting avenues for future work include quantifying the inefficiency of Markovian representations,
investigating normative approaches to aggregating preferences based on subjective world models
(Remark 3.2.2), considering the existence of an “objective” time preference (Remark 3.3.2), improv-
ing methods for determining subjective time preference (e.g., [63]), implementing and comparing
approaches to determining γΣ (Remark 4.1), investigating historical discounting in more detail (Sub-
section 5.2), and considering the existence of a normative justification for Boltzmann policies and
their composition (Subsection 5.3).
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A Notation Glossary

Table 1: Notation summary.

Basic notation

L(·) the set of probability distributions over its argument
{·} a set of its argument
M a generalized MDP (S,A, T , T0, R, γ)

S, s the state space S with generic state s ∈ S
A, a the action space A with generic action a ∈ A
T the transition function T : S ×A → L(S)
R the reward function R : S ×A → R
γ the generalized discount factor γ : S ×A → R+

τ a trajectory τ = [(s0, a0), (s1, a1), . . . ], which may or may not terminate
h a history (trajectory to up to time t)
π, ω stationary policies π, ω : S → L(A)

Π,Ω,Λ non-stationary policies (πt | τ t
0, πt+1 | τ t+1

0 , . . . )

Π policy space, so π, ω,Π,Ω ∈ Π; note L(Π) = Π

P the space P = S × Π of prospects over which preferences are expressed; note
L(P ) = L(S)×Π

Ph the set of historical prospects starting with h; NB: (h2,Π) ̸∈ Ph1 for h1 ̸= h2.
P(y) the set of prospects on augmented state space S ∪ {yi}
(s,Π) ∈ P a prospect (stochastic process representing the controlled future)
(h,Π) a historical prospect (state space has been expanded to include h)
hs, sa, sΠ, aΠ, . . . concatenations of subcomponents of trajectories/histories/policies; for example, the

non-stationary policy sΠ := (a,Π0,Π1, . . . )

V value function V : L(S)×Π → R, which is equal to the discounted sum of future
rewards: V (s̃,Π) = Es0∼s̃,Π

{∑∞
t=0

[∏t
k=1 γ(st−1, at−1)

]
r(st, at)

}
supp(p̃) the support of distribution p̃

I index set I of individuals (assumed finite)
wi, wi(s), wi(h) the ith aggregation weight, either a constant, or a function of state or history
yi(h) the ith aggregation factor for history h

dπ the stationary state-action distribution for policy π

Generic modifiers

· i index i of a sequence, vector, or collection of agents
· ji the slice from i to j of a sequence or vector; e.g., τ t+k

t is the trajectory slice
[(st, at), . . . , (st+k, at+k)]

· Σ indicates an aggregated item (e.g., ≻Σ is social/aggregated preference)
· ′ indicates next timestep when time implicit (e.g., s, s′)
·̃ indicates a probability distribution (e.g., s̃ ∈ L(S))
≻h indicates a preference relation on Ph

Operators

:= (=:) defined as (is the definition of)
≻ strict preference
⪰ weak preference (p ⪰ q ↔ q ̸≻ p)
≈ indifference (p ̸≻ q
and q ̸≻ p)
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B Proofs

Theorem 4 (Impossibility). Assume there exist distinct policies, Π,Ω,Λ, none of which is a mixture
(i.e., convex combination) of the other two, and consider the aggregation of arbitrary individual
preference relations {≻i; i ∈ I} defined on L(P) that individually satisfy Axioms 1-2. There does
not exist aggregated preference relation ≻Σ satisfying Axioms 1-4.

Proof. Fix s, a. Using Theorem 2, choose {ri, γi}, rΣ, γΣ to represent individual and aggregate
preferences over L(P). Define mixture policy Πβ := βΠ+ (1− β)Ω. W.l.o.g. assume |I| = 2.

We use Axiom 4 (Unrestricted Domain) to set

(T (s, a),Π) ≻1 (T (s, a),Λ) ≻1 (T (s, a),Ω),

(T (s, a),Ω) ≻2 (T (s, a),Λ) ≻2 (T (s, a),Π),
(7)

and, using Theorem 1 to shift V1, V2, we have

V1(T (s, a),Λ) = V2(T (s, a),Λ) = 0,

V1(T (s, a),Π) > 0 > V1(T (s, a),Ω) s.t. V1(T (s, a),Πβ1
) = 0,

V2(T (s, a),Ω) > 0 > V2(T (s, a),Π) s.t. V2(T (s, a),Πβ2
) = 0,

(8)

for some β1, β2 ∈ (0, 1) with β1 ̸= β2 (again appealing to Unrestricted Domain). Intuitively,
equation 7 requires individual preferences to conflict, and the β1 ̸= β2 condition requires them to be
non-symmetric about Λ. Equation 8 is merely a convenient choice of numerical representation.

We now apply Theorem 3 followed by Theorem 2 to the expression VΣ(s, aΠβ) − VΣ(s, aΛ). We
again invoke Theorem 1 to shift VΣ and eliminate the constant term, so that by Theorem 3 ∃ {wi} for
which,

VΣ(s, aΠβ)− VΣ(s, aΛ) =
∑
i∈I

wiVi(s, aΠβ)−
∑
i∈I

wiVi(s, aΛ)

= w1γ1(s, a) [V1(T (s, a),Πβ)− V1(T (s, a),Λ)]+

w2γ2(s, a) [V2(T (s, a),Πβ)− V2(T (s, a),Λ)]

= w1γ1(s, a)V1(T (s, a),Πβ) + w2γ2(s, a)V2(T (s, a),Πβ).

(9)

where the second line applies Theorem 2, with rewards cancelling out.

Alternatively, applying Theorem 2 followed by Theorem 3 to the same expression yields,

VΣ(s, aΠβ)− VΣ(s, aΛ) = γΣ(s, a)VΣ(T (s, a),Πβ)− γΣ(s, a)VΣ(T (s, a),Λ)

= w1γΣ(s, a) [V1(T (s, a),Πβ)− V1(T (s, a),Λ)]+

w2γΣ(s, a) [V2(T (s, a),Πβ)− V2(T (s, a),Λ)]

= w1γΣ(s, a)V1(T (s, a),Πβ) + w2γΣ(s, a)V2(T (s, a),Πβ)

(10)

Combining equations 9 and 10, we obtain:

w1γ1(s, a)V1(T (s, a),Πβ) + w2γ2(s, a)V2(T (s, a),Πβ)

= w1γΣ(s, a)V1(T (s, a),Πβ) + w2γΣ(s, a)V2(T (s, a),Πβ).
(11)

Finally, setting β to be β1 or β2 in equation 11, we obtain the equalities:

w1γ1(s, a)V1(T (s, a),Πβ2
) = w1γΣ(s, a)V1(T (s, a),Πβ2

),

w2γ2(s, a)V2(T (s, a),Πβ1) = w2γΣ(s, a)V2(T (s, a),Πβ1).
(12)

The wi are non-zero (Axiom 4, Sensitivity) and the remaining values are non-zero (else β1 = β2), so
we conclude that γΣ(s, a) = γ1(s, a) = γ2(s, a). But this contradicts our assumption that individual
preferences {≻i; i ∈ I} may be chosen arbitrarily, completing the proof.
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Theorem 5 (Possibility). Consider the aggregation of arbitrary individual preference relations
{≻i; i ∈ I} defined on L(P), and consequently L(Ph), ∀h, that individually satisfy Axioms 1-2.
There exists aggregated preference relations {≻h

Σ}, defined on L(Ph), ∀h, that satisfy Axioms 1-4.

In particular, given s, a, VΣ, {Vi}, {wi(s)}, where (A) each Vi satisfies Axioms 1-2 on L(P), and VΣ

satisfies Axioms 1-2 on L(Ph),∀h, and (B) VΣ(s, aΠ) =
∑

i wi(s)Vi(s, aΠ)), then, choosing

wi(sas
′) := wi(sa) := wi(s)γi(s, a) for all i, s′ (13)

implies that VΣ(sas
′,Π) ∝

∑
i wi(sa)Vi(s

′,Π) so that the aggregated preferences {≻sas′

Σ } satisfy
Axiom 3 on L(Psas′). Unrolling this result—wi(hsas

′) := wi(hs)γi(s, a)—produces a set of
constructive, history dependent weights {wi(h)} such that Axiom 3 is satisfied for all histories {h}.

Proof. We follow the proof of Theorem 4. Fix s, a. Using Theorem 2, choose {ri, γi}, rΣ, γΣ to
represent individual and aggregate preferences over L(Ps) and L(Psas′). Define mixture policy
Πβ := βΠ+ (1− β)Ω. W.l.o.g. assume |I| = 2.

We use Axiom 4 (Unrestricted Domain) to set

(T (s, a),Π) ≻1 (T (s, a),Λ) ≻1 (T (s, a),Ω),

(T (s, a),Ω) ≻2 (T (s, a),Λ) ≻2 (T (s, a),Π),
(14)

and, using Theorem 1 to shift V1, V2, we have

V1(T (s, a),Λ) = V2(T (s, a),Λ) = 0,

V1(T (s, a),Π) > 0 > V1(T (s, a),Ω) s.t. V1(T (s, a),Πβ1) = 0,

V2(T (s, a),Ω) > 0 > V2(T (s, a),Π) s.t. V2(T (s, a),Πβ2
) = 0,

(15)

for some β1, β2 ∈ (0, 1) with β1 ̸= β2 (again appealing to Unrestricted Domain).

We now apply Theorem 3 followed by Theorem 2 to the expression VΣ(s, aΠβ) − VΣ(s, aΛ). We
again invoke Theorem 1 to shift VΣ and eliminate the constant term, so that by Theorem 3 ∃ {wi(s)}
for which,

VΣ(s, aΠβ)− VΣ(s, aΛ) =
∑
i∈I

wi(s)Vi(s, aΠβ)−
∑
i∈I

wi(s)Vi(s, aΛ)

= w1(s)γ1(s, a) [V1(T (s, a),Πβ)− V1(T (s, a),Λ)]+

w2(s)γ2(s, a) [V2(T (s, a),Πβ)− V2(T (s, a),Λ)]

= w1(s)γ1(s, a)V1(T (s, a),Πβ) + w2(s)γ2(s, a)V2(T (s, a),Πβ).

(16)

where the second line applies Theorem 2, with rewards cancelling out.

It suffices to find one set of satisfactory wi(h), so we can assume that, given s, a, wi(sas
′) := w(sa)

is the same for all s′. This will allow us to factor it out below. Then, applying Theorem 2 followed by
Theorem 3 to the same expression yields,

VΣ(s, aΠβ)− VΣ(s, aΛ) = γΣ(s, a)VΣ(T (s, a),Πβ)− γΣ(s, a)VΣ(T (s, a),Λ)

= w1(sa)γΣ(s, a) [V1(T (s, a),Πβ)− V1(T (s, a),Λ)]+

w2(sa)γΣ(s, a) [V2(T (s, a),Πβ)− V2(T (s, a),Λ)]

= w1(sa)γΣ(s, a)V1(T (s, a),Πβ) + w2(sa)γΣ(s, a)V2(T (s, a),Πβ)

(17)

Combining equations 16 and 17, setting β to be β1 or β2 in equation, and rearranging, we obtain the
equalities:

w1(s)γ1(s, a) = w1(sa)γΣ(s, a) and w2(s)γ2(s, a) = w2(sa)γΣ(s, a), (18)

from which we conclude that:
w2(sa)

w1(sa)
=

w2(s)γ2(s, a)

w1(s)γ1(s, a)
(19)

This shows the existence of weights wi(sa), unique up to a constant scaling factor, for which
VΣ(T (s, a),Π) ∝

∑
i wi(sa)Vi(T (s, a),Π), that apply regardless of how individual preferences are

chosen or aggregated at s. Unrolling the result completes the proof.
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