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Abstract

Inductive coding traditionally relies on labor-001
intensive human efforts, who are prone to in-002
consistencies and individual biases. Although003
large language models (LLMs) offer promising004
automation capabilities, their standalone use005
often results in inconsistent outputs, limiting006
their reliability. In this work, we propose a007
framework that combines ensemble methods008
with code refinement methodology to address009
these challenges. Our approach integrates mul-010
tiple smaller LLMs, fine-tuned via Low-Rank011
Adaptation (LoRA), and employs a moderator-012
based mechanism to simulate human consen-013
sus. To address the limitations of metrics like014
ROUGE and BERTScore, we introduce a com-015
posite evaluation metric that combines code016
conciseness and contextual similarity. The va-017
lidity of this metric is confirmed through corre-018
lation analysis with human expert ratings. Re-019
sults demonstrate that smaller ensemble models020
with refined outputs consistently outperform021
other ensembles, individual models, and even022
large-scale LLMs like GPT-4. Our evidence023
suggests that smaller ensemble models signifi-024
cantly outperform larger standalone language025
models, pointing out the risk of relying solely026
on a single large model for qualitative analysis.027

1 Introduction028

Inductive coding is a fundamental method in so-029

cial science research, enabling the identification,030

organization, and analysis of patterns and themes031

within textual data (Creswell, 2016; Saldana, 2016;032

Braun and Clarke, 2021). At its core, this method033

extracts key ideas from text, transforming unstruc-034

tured documents into a list of codes that capture035

the underlying themes. Traditionally, this process036

has relied on human coders who, despite their ex-037

pertise, are prone to inconsistencies, cognitive bi-038

ases, and the tendency to overcomplicate labels039

(MacQueen and Guest, 2008; Bumbuc and Hry-040

byk, 2016; Bernard, 2016; Morse, 2017). Large041

Figure 1: Overview of the proposed ensem-
ble pipeline for inductive coding. The input x
is processed by multiple LoRA fine-tuned models
(LLM1,LLM2, . . . ,LLMN ), generating candidate out-
puts (O1, O2, . . . , ON ). Moderators compare and evalu-
ate these candidates, selecting y1, y2, . . . , yN as refined
candidates. Refinement of codes consists of comparing
the current code with previous ones and assigning the
same code based on the chosen similarity threshold.

language models (LLMs) offer an opportunity to 042

automate this process, potentially improving ef- 043

ficiency and standardization (Bommasani et al., 044

2021). However, ensuring the reliability and in- 045

terpretability of LLM-generated codes remains a 046

challenge. 047

Our study addresses two critical gaps in auto- 048

mated inductive coding: (1) the need for structured 049

refinement processes to improve consistency across 050

codes and (2) the limitations of standard evaluation 051

metrics, which fail to capture the nuanced crite- 052

ria used by human experts, such as label granu- 053

larity, alignment, and contextual relevance (Lin, 054

2004; Zhang et al., 2019; Sellam et al., 2020; Fab- 055

bri et al., 2021a; Parfenova et al., 2024; Mizrahi 056

et al., 2024). We introduce a novel ensemble-based 057
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framework that integrates refinement processes in-058

spired by Retrieval-Augmented Generation (RAG)059

(Lewis et al., 2020), reusing previously generated060

codes to eliminate their redundancy iteratively.061

This study makes three key contributions: (1)062

we develop a pipeline that integrates multiple063

instruction-finetuned LLMs with an iterative re-064

finement process to improve coding consistency;065

(2) we introduce a composite evaluation metric066

that captures both semantic and structural qual-067

ity of generated codes; and (3) we demonstrate068

that smaller LLM ensembles, refined by merging069

similar codes, outperform standalone large mod-070

els, achieving closer alignment with human coded071

benchmarks.072

The results indicate that the proposed ensem-073

ble approach improves the quality of the gener-074

ated codes, while the refinement process further075

enhances their consistency, resulting in outputs that076

are more closely aligned with the human-coded077

data. Additionally, we show that ensemble-based078

methods reduce variability in code assignments,079

addressing the subjectivity present in individual080

LLM outputs. These findings provide a strong ba-081

sis for improving automated qualitative data anal-082

ysis while maintaining compatibility with human083

coding standards.084

2 Background085

Qualitative data analysis (QDA) plays a critical086

role in social science research (Miller et al., 1990;087

Creswell, 2016), enabling researchers to identify,088

categorize and interpret patterns within textual data.089

Central to this process is the concept of coding,090

where meaningful segments of text are assigned091

concise labels, or codes, that capture their core092

essence. According to Saldana (2016), a code is093

"often a word or short phrase that symbolically094

assigns a summative, salient, essence-capturing095

and/or evocative attribute to a portion of language-096

based or visual data." In thematic analysis, one097

of the most widely used methods in QDA, these098

codes are further grouped into broader categories099

to reveal hierarchical relationships and underlying100

themes within the data (Braun and Clarke, 2021).101

The source material often includes interviews, doc-102

uments, or other qualitative data formats, and the103

process involves summarizing the key ideas in104

each segment and grouping them into overarching105

themes.106

Recent advances in natural language processing107

have introduced the use of LLMs for automating 108

qualitative coding tasks (Tornberg, 2023; Parfen- 109

ova et al., 2024; Fischer and Biemann, 2024). How- 110

ever, we noticed 2 critical points that need to be ad- 111

dressed in this domain. (1) To evaluate codes, some 112

papers noted that traditional summarization metrics 113

like BERT and ROUGE are not good enough for 114

this task (Parfenova et al., 2024; Chen et al., 2024), 115

one research specifically created unsupervised met- 116

ric to assess codes (Chen et al., 2024). (2) The 117

second critical point in this domain is that although 118

individual LLMs demonstrate remarkable perfor- 119

mance, their output often varies due to differences 120

in training data, architectures, and model parame- 121

ters (Bubeck et al., 2023; Touvron et al., 2023b). 122

This variability introduces subjectivity, making a 123

single LLM’s coding decisions as inconsistent as 124

those of individual human annotators. To address 125

these challenges, ensemble methods, techniques 126

that combine multiple models, have been increas- 127

ingly explored for their ability to take advantage of 128

the complementary strengths of different models 129

and improve performance (Sagi and Rokach, 2018; 130

Jiang et al., 2023b). 131

Ensemble learning is a widely used strategy 132

to improve model performance by combining the 133

strengths of multiple models, often referred to as 134

"weaker models"(Sagi and Rokach, 2018; Aniol 135

et al., 2019). There are two common approaches 136

to ensemble learning: one involves weighting indi- 137

vidual models based on their performance, while 138

the other focuses on aggregating diverse outputs to 139

produce a unified result. One example is the Mix- 140

of-Experts (MoE) framework (Cai et al., 2024), 141

which employs specialized sub-models to make 142

predictions and merges their outputs for improved 143

accuracy. Similarly, LLM-Blender (Jiang et al., 144

2023a) demonstrates the potential of ensembling 145

by combining ranked outputs from multiple models 146

to achieve superior performance in complex natural 147

language generation tasks. 148

This study builds upon the concept of ensemble 149

methods but diverges from existing approaches by 150

adopting a moderator-based framework. Unlike 151

fusion techniques that combine outputs probabilis- 152

tically, our approach incorporates a final decision- 153

making model tasked with selecting the best can- 154

didate or proposing a novel output. This design re- 155

flects the dynamics of human collaboration, where 156

consensus is sometimes driven by a leader or a fi- 157

nal arbiter, rather than by averaging or blending 158

opinions (Engle et al., 2014). Using this moderator 159
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model, we aim to mimic the style of the hierarchi-160

cal decision-making process in human qualitative161

coding and demonstrate its effectiveness.162

3 Dataset163

Our experiments used a dataset of 1,000 code-quote164

pairs compiled from two main sources: social sci-165

ence research studies and the SemEval-2014 Task 4166

dataset (Pontiki et al., 2014) for augmentation. The167

social science data includes 600 examples from168

studies across three universities, featuring topics169

such as technology interaction, social values, and170

cultural experiences. The SemEval dataset con-171

tributes an additional 400 examples, consisting of172

reviews manually coded by qualitative researchers.173

Table 1 summarizes the data sources. Each quote174

was labeled by 3–5 coders who independently an-175

notated it before reaching a consensus to establish176

the golden standard. This ensured high-quality la-177

bels and reduced variability due to individual coder178

biases. The test set size was set to 100 examples179

(see Table 2). The dataset was split into training180

and testing sets without a separate validation set.181

Hyperparameters were selected based on the train-182

ing results and evaluated on the test set.183

N Quotes Description

Social Science Studies Data: 600 quotes

78 Study about interaction with self-tracking devices (interviews)
22 Study about life transitions and mobility (interviews)
82 Study about interaction with voice assistants (interviews)
28 Study about museums and cultural experiences (interviews)
25 Study on doctors’ experiences with pregnant women (interviews)
110 Study on universal and national values (interviews)
24 Study on procrastination and budget planning (interviews)
56 Study on technology interactions and user feedback (reviews)
175 Study about social expectations (interviews)

SemEval 2014; Task 4: 400 quotes

211 Restaurant reviews
189 Laptop reviews

Table 1: Summary of Data Sources with descriptions.

Statistic Overall Train Test

Total Quotes 1000 900 100
Social Science Data 600 550 50
SemEval Data 400 350 50
Num of Data Sources 11 11 11
Unique Codes 680 624 94
Avg. Quote Length 254.75274.28 280.89280.89 234.80201.61
Avg. Code Length 19.9510.43 20.0410.70 19.2710.53

Table 2: Summary statistics of the dataset and train/test
splits. Subscript refers to standard deviation where ap-
plicable.

To evaluate the ensemble models, we used184

a second distinct test data set comprising 100185

user reviews of ChatGPT sourced from Kaggle186

(Jikadara, 2023). This data set, characterized by187

user-generated unstructured feedback, differs from 188

the structured data used for training, providing an 189

opportunity to test model performance on unseen, 190

real-world content. Each review was manually an- 191

notated by human coders to create a golden stan- 192

dard reference for evaluation. This dataset was 193

chosen specifically for its diversity in style of lan- 194

guage, sentiment, and varied quote lengths to verify 195

the ensemble’s ability to handle varied text types. 196

4 Pipeline 197

Our proposed pipeline consists of two key stages, 198

as illustrated in Figure 1. First, an input x is pro- 199

cessed independently by three smaller LLMs (7B 200

and 8B parameter sizes). The outputs from these 201

models are then evaluated by a set of N Moder- 202

ators (Moderator1,Moderator2, . . . ,ModeratorN ), 203

which refine and consolidate the results. Finally, 204

code merging is performed to ensure consistency 205

across similar inputs, producing the optimal output. 206

4.1 Phase 1: LoRA finetuning 207

In the first phase of the study, we evaluated sev- 208

eral open-source models: Llama3 (Touvron et al., 209

2023a), Falcon (Pineda et al., 2023), Mistral (Team, 210

2023), Vicuna (Li et al., 2023), Gemma (Team, 211

2024), and TinyLlama (Jiang et al., 2023c), on 212

an open coding task. We employed various ap- 213

proaches, such as zero-shot, few-shot (providing 214

1 to 5 examples, see Appendix A), and parameter- 215

efficient fine-tuning (Han et al., 2024) using Low- 216

Rank Adaptation (LoRA) (Hu et al., 2021). 217

Each model (LLMi) was fine-tuned on the train- 218

ing dataset and generated an output (oi) for a given 219

input (x). The outputs were evaluated based on 220

their semantic similarity and token overlap using 221

BERTScore (Zhang et al., 2019) and ROUGE (Lin, 222

2004). From this evaluation, the three models with 223

the highest performance were selected for the mod- 224

eration phase (see Appendix B). 225

4.2 Phase 2: Moderation and refinement 226

The top three outputs {o1, o2, o3} were passed to 227

Moderators using the prompt template shown in 228

(Appendix C), which incorporated previous model 229

suggestions. The Moderators produced modified 230

outputs {y1, y2, . . . , yN}. 231

To maintain coherence across similar data points, 232

a refinement stage was applied to all generated 233

codes. This process involved code merging, im- 234

plemented through embedding similarity analysis. 235
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Model Parameters Adaptation Prompt BERTScore ROUGE

P R F1 1 2 L

Llama3 (instruct) 8B Finetuning Summarize the main idea of a sentence. 0.72 0.79 0.75 0.18 0.06 0.17

Falcon (instruct) 7B Finetuning
From the perspective of a social scientist,

summarize the following sentence as you would
in thematic coding.

0.75 0.79 0.77 0.21 0.09 0.21

Mistral (instruct) 7B Finetuning Can you tell me what the main idea of this
sentence is in just a few words? 0.74 0.79 0.77 0.25 0.11 0.23

Vicuna (instruct) 7B Finetuning Summarize the main idea of a sentence. 0.73 0.78 0.76 0.19 0.07 0.18

Gemma (instruct) 7B Finetuning If you were a social scientist doing thematic
analysis, what code would you give to this citation? 0.72 0.78 0.75 0.17 0.06 0.17

TinyLlama (chat) 1.1B Few-shot (5 examples) Summarize the main idea of a sentence.
Here are examples: 0.77 0.74 0.75 0.18 0.03 0.18

Table 3: Performance of various open-source LLMs on open coding task across different adaptation methods and
prompts. This table presents the BERTScore and ROUGE scores for each model, indicating precision (P), recall
(R), and F1 scores for BERTScore, along with ROUGE scores (1, 2, L). Models were evaluated under different
scenarios, including finetuning and few-shot approaches, with prompts designed to align with thematic analysis.
Detailed fine-tuning results are demonstrated in Appendix B.

Given a new input x, its embedding ϕ(x) was com-236

puted using sBERT (Reimers and Gurevych, 2019)237

and compared against previously assigned code em-238

beddings ϕ(pi) using cosine similarity. If the simi-239

larity score met or exceeded a predefined threshold240

(sim(x, pi) ≥ τ ), the existing code was retained;241

otherwise, a new code was assigned. The opti-242

mal output ybest was selected using a composite243

evaluation metric C(yi), which combines multiple244

quality dimensions (detailed in Section 5). This245

unified metric ensured consistent evaluation across246

all moderator outputs.247

5 Metrics248

To evaluate the performance of individual mod-249

els that will serve as input to the moderator, two250

metrics were employed to capture both lexical251

and semantic similarity: ROUGE (Lin, 2004) and252

BERTScore (Zhang et al., 2019). BERTScore is a253

metric that computes the similarity between BERT254

token embeddings of two codes, which helps as-255

sess the meaning in the generated output compared256

to the reference. ROUGE is a lexical similarity257

measure that calculates the overlap of n-grams (1-258

unigram overlap, 2-bigram overlap, L-longest com-259

mon subsequence) between the generated text and260

the reference text. ROUGE is particularly effective261

in summarization task (Fabbri et al., 2021b), which262

is valuable when the exact wording of the output263

needs to match the reference.264

5.1 Composite score265

To systematically assess the performance of en-266

semble models in inductive coding tasks, we intro-267

duce a composite score that integrates four evalua-268

tion scores: (1) cosine similarity, which quantifies269

the semantic alignment between model-generated270

Figure 2: Performance comparison of different mod-
els on inductive coding tasks, measured by Composite
Scores (bars) and ROUGE-1 Mean (line). Ensemble
models with refinement outperform individual models
and non-refinement ensembles.

codes and human-coded references; (2) METEOR 271

score, which captures lexical similarity while ac- 272

counting for synonyms and stemming variations 273

(Banerjee and Lavie, 2005); (3) code length penalty, 274

which discourages excessively verbose codes; and 275

(4) Jensen-Shannon divergence, which measures 276

the distributional closeness of model-generated 277

codes to human annotations. Each component is 278

independently normalized to ensure comparability, 279

and the final composite score is computed as the 280

mean of the four metrics, assigning equal weight 281

to each. 282

Higher cosine similarity and METEOR scores 283

contribute positively to the composite score, re- 284

flecting stronger semantic and lexical agreement 285

with human coders. Conversely, longer codes and 286

greater distributional divergence lower the score, 287

penalizing outputs that deviate from the brevity 288

and consistency typically expected in qualitative 289

coding. 290
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5.2 Metric validation291

To assess the validity of the composite score, we292

conducted a human evaluation study where experts293

rated the quality of codes generated by anonymized294

models (Appendix F). Each expert was presented295

with ten sentences and their corresponding codes,296

assigning a rating from 1 to 5 based on clarity,297

conciseness, and relevance to the text. We then298

computed Spearman’s correlation between the com-299

posite score and the average of all expert ratings,300

alongside other evaluation metrics.301

The analysis reveals a strong correlation between302

the composite score and human ratings (Spearman:303

0.73, p = 0.039), confirming its alignment with ex-304

pert judgments. ROUGE-1 and ROUGE-L exhibit305

moderate positive correlations with the composite306

score (Spearman: 0.51, p = 0.20 and Spearman:307

0.44, p = 0.27, respectively), but their statistical308

insignificance suggests that they may not fully cap-309

ture the criteria used by human coders. In contrast,310

BERTScore F1 shows a negligible correlation with311

the composite score (Spearman: 0.06, p = 0.90), im-312

plying that semantic similarity alone is insufficient313

for assessing inductive coding quality. Addition-314

ally, the correlation between the composite score315

and code length is near zero (Spearman: -0.02, p =316

0.96).317

Further analysis reveals that BERTScore F1318

exhibits a negative correlation with code length,319

which contradicts the expectation that qualitative320

codes should be concise (see Table 4). This mis-321

alignment suggests that BERTScore may not be an322

ideal metric for evaluating inductive coding tasks,323

as it does not adequately penalize redundancy.324

6 Results325

The ensemble pipeline with codes merging ap-326

proach yield significant performance improve-327

ments, as detailed in Table 6. Ensemble models,328

particularly refined variants, consistently outper-329

form individual models across all metrics except330

BERTScore, which remains stable (F1=0.83-0.86)331

due to its semantic focus. Among standalone mod-332

els, GPT-4 achieves the highest composite score333

(0.44), while Llama3.3 70B leads in ROUGE-1334

performance (0.12).335

Ensembles perform better, with the Mixtral8x7B336

ensemble achieving a significant composite score337

improvement (0.33→0.91) over its individual coun-338

terpart. Llama3.3 70B shows a similar trend, im-339

proving from 0.38 to 0.50 through ensemble in-340

Figure 3: Comparison of LLM performance across three
evaluation metrics: Coverage (measuring how well a
model captures the meaning of the reference codes),
Novelty (assessing the degree of new information in-
troduced by the model), and Divergence (quantifying
distributional shifts from the reference). Ensemble mod-
els with code merging tend to balance coverage and
novelty better than individual models.

tegration. Merging of codes provides additional 341

benefits, elevating Mixtral8x7B to 0.99 (+9%) and 342

Llama3.3 70B to 0.74 (+48% from individual base- 343

line). These improvements demonstrate both the 344

value of model diversity and postprocessing effec- 345

tiveness in enhancing coding consistency. 346

6.1 Composite score analysis 347

The composite score proved to be effective in 348

capturing semantic, lexical, and structural align- 349

ment. Refined ensembles consistently outper- 350

formed both individual models and ensembles. Al- 351

though ROUGE-1 primarily captures lexical simi- 352

larity, it aligned well with the composite score in 353

the ranking model performance. Also, standalone 354

large models like GPT-4 exhibited lower ROUGE- 355

1 scores compared to ensembles, reflecting chal- 356

lenges in lexical precision. 357

6.2 Coverage, Novelty, and Divergence 358

Analysis 359

Our evaluation also incorporates the metrics pro- 360

posed by Chen et al. (2024), which offer greater 361

sensitivity compared to traditional similarity-based 362

measures like BERTScore (see Figure 3). These 363

metrics reveal nuanced distinctions in model per- 364

formance, though the observed differences were 365

less sensitive than anticipated, except for Jensen- 366

Shannon divergence—a measure we integrate into 367

our Composite Score. Notably, the results suggest 368

that in certain cases, LLM-generated codes may 369

achieve performance levels comparable to or ex- 370

ceeding human annotations, raising important ques- 371

tions about the reliability of human-labeled bench- 372

marks as definitive gold standards (Chen et al., 373
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Metric Composite Score BERTScore F1 ROUGE-1 ROUGE-L Code Length Human Rating

Composite Score 1.00 -0.06 0.51 0.44 -0.02 0.73*
BERTScore F1 -0.06 1.00 -0.09 -0.11 -0.65* -0.14
ROUGE-1 0.51 -0.09 1.00 0.99* -0.35 0.49
ROUGE-L 0.44 -0.11 0.99* 1.00 -0.32 0.44
Code Length -0.02 -0.65* -0.35 -0.32 1.00 -0.41
Human Rating 0.73* -0.14 0.49 0.44 -0.41 1.00

Table 4: Spearman correlation matrix between evaluation metrics. Statistically significant correlations (p < 0.1) are
highlighted in green. Asterisks (*) indicate significant values.

2024). However, we refrain from making defini-374

tive claims about this observation and instead treat375

human-generated codes as the established golden376

standard in our analysis.377

6.3 LLMs alignment378

To assess the alignment between different LLMs379

in qualitative coding, we separately computed the380

cosine similarity (Figure 5) and Jensen-Shannon381

divergence (Figure 6) between the codes generated382

by models. These similarity metrics demonstrate383

how consistently different models assign qualita-384

tive codes to the same textual input and whether385

ensemble models enhance convergence toward a386

unified interpretation. The results clearly indicate387

that ensemble models, particularly GPT-4 Ensem-388

ble, Mixtral 8x7B Ensemble, and Llama3.3 70B389

Ensemble, exhibit higher semantic similarity and390

lower divergence compared to individual models.391

6.4 Qualitative assessment and refinement392

Table 5 presents a comparative analysis of codes393

generated by ensemble models against the human-394

coded gold standard. The GPT-4 Ensemble demon-395

strates a tendency toward abstract and generalized396

codes (e.g., “User Satisfaction and App Effective-397

ness”), which capture broad themes but often lack398

specificity. In contrast, the Llama3.3 70B and Mix-399

tral 8x7B Ensembles produce codes that align more400

closely with the gold standard, offering precise la-401

bels. This divergence suggests that GPT-4’s cod-402

ing strategy prioritizes thematic abstraction, while403

smaller ensembles have a more effective balance404

between abstraction and specificity.405

The integration of the postprocessing step into406

our ensemble framework reduces redundancy in407

generated codes by aligning new outputs with previ-408

ously assigned codes. As demonstrated in Table 6,409

refined ensembles produce more concise outputs,410

achieving an average code length reduction from411

6.83 to 4.00 tokens—a 41.5% improvement over412

non-refined ensembles.413

Figure 4: Comparison of LLMs based on the number of
unique codes and average code length

Further analysis highlights the impact of post- 414

processing on code diversity. While the human 415

gold standard comprises 47 unique codes with an 416

average length of 2.79 tokens, non-refined models 417

output an excessive number of codes, often gen- 418

erating unique codes for each input. In contrast, 419

code merge integration significantly reduces this 420

redundancy, with Llama3.3 70B Ensemble+ref and 421

Mixtral 8x7B Ensemble+ref producing 53 and 71 422

unique codes, respectively. This brings the models 423

closer to a human-like coding pattern, as illustrated 424

in Figure 4. 425

7 Discussion 426

In this section, we discuss the implications of 427

our findings regarding the application of ensem- 428

ble LLMs in automated inductive coding. Our re- 429

sults highlight key advantages of ensemble-based 430

approaches over individual models, particularly in 431

terms of conciseness and the ability to balance ab- 432

straction and specificity in qualitative coding. 433

7.1 Ensembles improve coding consistency 434

A major finding of our study is that ensemble 435

models consistently outperform individual mod- 436

els in inductive coding tasks, as shown in Table 6. 437

The improved performance is particularly evident 438
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Coder Golden Standard Llama3.3 70B Ensem-
ble

GPT4o Ensemble GPT4 Ensemble Mixtral 8x7B Ensem-
ble

Quote Code Assigned

"I am not very happy with this because ChatGPT
answers the questions I ask but it stops midway.
Then even after continuous efforts it does not
give complete answer. This is not very correct.
Please fix it so that there is no more trouble. This
is a very wrong thing, after some use you are
asked to upgrade which is very expensive."

Technical problems
while using

Unsatisfied with Chat-
GPT

User dissatisfaction
with incomplete an-
swers

Unsatisfied with Chat-
GPT’s incomplete re-
sponses

User: Dissatisfied with
expensive, incomplete
ChatGPT answers

"This is a great app, the bot is so accurate to
anything, it gives me tips in gaming, studies, and
life, etc. This app is also helpful if you were
having problems in things! Also, there are some
problems about the server glitch, but don’t worry,
some glitches are just seconds, overall a great
app. Note: the GPT-4o is more powerful, and
accurate than the regular one."

Helpful app Accurate and helpful
app

Helpful and accurate
app experience

User Satisfaction and
App Efficiency

Accurate, helpful tip-
providing app

"The best so far" Best app Best so far The best experience
yet

User Satisfaction and
App Effectiveness

Top User Rating

"Excellent app for learning" Excellent for learning Excellent learning app Excellent learning tool User Satisfaction and
App Efficiency

Excellent learning app

"Thanks for making my life easier" Thankfulness Life made easier Gratitude for increased
ease

User Satisfaction Feed-
back

Gratitude for Ease

Table 5: Comparison of qualitative codes generated by ensemble models. The golden standard represents human-
coded references.

Model Merge threshold BERTScore ROUGE Composite Score Code length

P R F1 1 2 L

Mixtral8x7B - 0.83 0.84 0.83 0.08 0.01 0.08 0.33 6.83
Mixtral8x7B Ensemble - 0.83 0.85 0.84 0.12 0.01 0.08 0.91 4.02
Mixtral8x7B Ensemble + ref 0.7 0.84 0.85 0.84 0.12 0.01 0.11 0.99 4
Llama3.3 70B - 0.84 0.86 0.85 0.12 0.03 0.12 0.38 3.5
Llama3.3 70B Ensemble - 0.85 0.86 0.85 0.15 0.02 0.15 0.50 3.57
Llama3.3 70B Ensemble + ref 0.5 0.85 0.88 0.86 0.15 0.03 0.15 0.74 3.49
GPT-4 - 0.83 0.84 0.84 0.02 0.00 0.02 0.44 4.39
GPT-4 Ensemble - 0.83 0.85 0.84 0.11 0.02 0.10 0.74 5.01
GPT-4 Ensemble + ref 0.8 0.83 0.85 0.84 0.12 0.02 0.10 0.54 4.62
GPT-4o - 0.85 0.86 0.86 0.04 0.00 0.04 0.37 3.8
GPT-4o Ensemble - 0.85 0.87 0.86 0.14 0.02 0.14 0.74 4.26
GPT-4o Ensemble + ref 0.7 0.85 0.87 0.86 0.11 0.00 0.11 0.54 4.42
Llama3 8B Instruct - 0.83 0.86 0.84 0.12 0.02 0.11 0.61 8.45
Falcon 7B Instruct - 0.83 0.85 0.84 0.09 0.01 0.09 0.47 12.76
Mistral 7B Instruct - 0.83 0.85 0.84 0.07 0.01 0.07 0.67 11.77

Table 6: Performance comparison of individual models, standard ensembles, and refined ensembles across key
metrics. The merge threshold (refinement) column indicates the similarity threshold between the generated code
and codes before it (can look only in the past). Models are evaluated using BERTScore (Precision, Recall, and F1),
ROUGE (1, 2, and L), Composite Score, and Average Code Length.

in Jensen-Shannon divergence (Figure 6), where439

ensembles exhibit lower divergence, indicating a440

greater degree of alignment. This suggests that441

aggregating multiple model outputs helps reduce442

inconsistencies, reflecting the consensus-building443

process used by human coders in thematic analysis.444

The increased consistency observed in ensemble-445

generated codes aligns with findings from prior re-446

search on LLM evaluation, which suggest that indi-447

vidual models often introduce unwanted variability448

in their outputs due to differences in training data449

and architectural biases (Bubeck et al., 2023; Jiang450

et al., 2023b). In contrast, ensemble methods mit-451

igate this variability by integrating diverse inputs,452

thereby improving robustness. Our results indicate453

that this effect holds even for smaller models.454

7.2 Postprocessing enhances code stability 455

The integration of code merging significantly im- 456

proves code stability, as demonstrated by higher 457

composite and ROUGE scores in refined ensem- 458

bles (Table 6). By referencing previously assigned 459

codes, refinement reduces redundancy for similar 460

inputs. This is particularly evident in the reduc- 461

tion of unique code counts (e.g., 53 for Llama3.3 462

70B+ref vs. 100 for non-refined models) and code 463

length (41.5% reduction), bringing model outputs 464

closer to human-like efficiency. 465

Figure 5 reveals that all ensemble models exhibit 466

the highest similarity scores. This suggests that 467

aggregating inputs from multiple smaller models 468

leads to greater convergence in assigned qualitative 469

codes. These ensembles tend to agree more with 470

7



Figure 5: Mean cosine similarity heatmap of model-
generated codes. Darker green cells indicate higher
semantic similarity between models. Ensemble models
(GPT-4 Ensemble, Mixtral 8x7B Ensemble, Llama3.3
70B Ensemble) exhibit the highest similarity, demon-
strating greater convergence toward a single interpreta-
tion of qualitative codes.

Figure 6: Mean Jensen-Shannon divergence heatmap of
model-generated codes. Darker green cells indicate
lower divergence, meaning greater agreement in as-
signed codes. Ensemble models exhibit lower JSD,
reinforcing their role in reducing variance and improv-
ing convergence in qualitative coding tasks.

each other, reducing variance in code assignments471

compared to individual models.472

7.3 Balancing abstraction and specificity in473

generated codes474

A key distinction among models is their tendency475

toward abstraction versus specificity. As shown in476

Table 5, GPT-4 ensembles often generate broad the-477

matic labels, which, while useful for high-level478

analysis, may lack the granularity required for479

domain-specific research. In contrast, smaller en-480

sembles produce more precise codes that closely481

align with human annotations.482

This finding reflects a fundamental trade-off in483

LLM-based coding: while abstraction improves484

generalizability, excessive abstraction can obscure485

critical nuances. Prior work has noted that LLMs486

trained on diverse corpora tend to favor generalized 487

patterns over domain-specific details (Bubeck et al., 488

2023; Tornberg, 2023). Results suggest that ensem- 489

ble approaches can mitigate this issue by combin- 490

ing diverse inputs, thus producing more balanced 491

and contextually grounded outputs. 492

7.4 Future directions 493

Building on our findings, we identify two promis- 494

ing directions for future research. First, hierarchi- 495

cal coding strategies could enable models to gen- 496

erate both broad thematic categories and specific 497

subcategories, better reflecting human coding prac- 498

tices (Saldana, 2016). Second, adaptive RAG mech- 499

anisms could dynamically adjust retrieval thresh- 500

olds based on input complexity, further enhancing 501

consistency and efficiency. These methods could 502

significantly improve the interpretability and qual- 503

ity of automated coding systems. 504

8 Conclusion 505

In this work, we explored the use of ensemble- 506

based LLMs with refined outputs for automated 507

inductive coding, demonstrating that ensemble ap- 508

proaches consistently outperform individual mod- 509

els in qualitative coding tasks. Our results highlight 510

three key findings: (1) Ensemble methods improve 511

coding consistency, reducing variance and increas- 512

ing alignment with human-coded benchmarks; (2) 513

Code merging postprocessing enhances coding sta- 514

bility, ensuring greater coherence in label assign- 515

ments across similar inputs; and (3) Smaller ensem- 516

ble models outperform standalone high-capacity 517

models, offering a more efficient and scalable alter- 518

native to traditional LLM-based approaches. These 519

findings highlight the potential of ensemble ap- 520

proaches and refinement to advance automated 521

qualitative analysis while maintaining alignment 522

with human coding patterns. 523

Limitations 524

While our ensemble-based LLMs demonstrate sig- 525

nificant improvements in inductive coding, several 526

limitations warrant consideration. 527

Bias and fairness 528

Although ensembling reduces inconsistencies 529

across individual models, it does not fully address 530

biases inherent in the training data of base models. 531

These biases may manifest in the form of skewed 532

code distributions or overgeneralized labels. Future 533

work should investigate bias mitigation techniques, 534

8



such as adversarial training or dataset balancing, to535

further improve model fairness and reliability.536

Computational costs537

While our ensemble models are smaller and more538

efficient than large standalone models like GPT-4,539

they still require higher computational costs com-540

pared to single smaller models. For real-world ap-541

plications, further optimization strategies—such as542

dynamic ensemble selection—could help balance543

accuracy with computational efficiency.544

Evaluation metrics545

While our composite metric captures multiple di-546

mensions of coding performance, no single metric547

fully replicates the nuanced judgment of human548

coders. Future research should explore more so-549

phisticated evaluation frameworks, incorporating550

human preference modeling, interactive evaluation551

setups, or multi-criteria decision analysis to better552

align automated coding with qualitative research553

standards.554

Language generalizability555

Our study focuses exclusively on English-language556

datasets, which restricts the generalizability of557

our findings to other languages and cultural con-558

texts. Extending this approach to multilingual559

datasets could reveal additional challenges, such as560

language-specific coding conventions or cultural561

biases, necessitating further adaptations.562

Ethics statement563

The use of LLMs in qualitative research introduces564

ethical considerations, particularly regarding bias,565

transparency, and the potential for automated sys-566

tems to replicate or amplify human biases. While567

our ensemble-based approach mitigates some of568

these risks by combining diverse model outputs569

and employing code refinement for consistency, we570

acknowledge that biases inherent in training data571

may still influence results. Human oversight re-572

mains critical, as demonstrated by our reliance on573

expert evaluations to establish a golden standard574

and validate model outputs. We emphasize that575

LLMs should serve as assistive tools rather than re-576

placements for human expertise, and we advocate577

for the development of ethical guidelines to ensure578

responsible use in sensitive research domains. The579

datasets used in this study were anonymized and580

handled in compliance with ethical research stan-581

dards, minimizing risks to participants.582
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at the end of each prompt to assess how subtle737

changes in prompt formatting might influence the738

model’s performance (see Appendix B). Below is739

a brief description of each prompt:740

• Explicit Instruction (Prompt 1): Summa-741

rize the main idea of a sentence. This prompt742

provides a direct and clear instruction to the743

model, asking it to summarize the core idea744

of a given sentence. The expectation is for745

the model to extract the primary message or746

theme conveyed in the sentence with no addi-747

tional context or framing. This prompt is de-748

signed to test the model’s ability to perform a749

straightforward task without needing implicit750

knowledge.751

• Informal Request (Prompt 2): Can you tell752

me what the main idea of this sentence is in753

just a few words? This prompt is phrased as754

a casual, conversational question, asking the755

model to summarize the sentence in "just a756

few words." The informal tone encourages a757

more concise and simplified response, aiming758

to capture how well the model can extract759

the essence of the sentence in a more natural,760

everyday context.761

• Expert Angle (Prompt 3): From the perspec-762

tive of a social scientist, summarize the fol-763

lowing sentence as you would in thematic cod-764

ing. This prompt takes a more specialized765

approach, asking the model to assume the per-766

spective of a social scientist performing the-767

matic coding. The expectation here is for the768

model to not only summarize the sentence but769

to apply a more analytical and structured lens,770

possibly introducing higher-level categoriza-771

tions that would be typical in qualitative data772

analysis.773

• Impersonalization (Prompt 4): If you were a774

social scientist doing thematic analysis, what775

code would you give to this citation? In this776

prompt, the model is asked to act as a social777

scientist and assign a code, which is a brief778

label representing the central idea of the sen-779

tence. It emphasizes the objectivity of the-780

matic analysis, expecting the model to deper-781

sonalize the task and focus on generating an782

appropriate label that accurately reflects the783

content.784

• Detailed Explanation (Prompt 5): Explain 785

in a couple of words the primary thought ex- 786

pressed in the following text. This prompt 787

asks the model to provide a more detailed, 788

thorough explanation of the primary thought 789

behind the text. It is designed to encourage 790

the model to go beyond a simple summary and 791

delve into the deeper meaning or implications 792

of the sentence. 793

• Simplified Task (Prompt 6): What is the gist 794

of this sentence? This prompt simplifies the 795

task by asking for the "gist" of the sentence. 796

It challenges the model to provide a very brief 797

and straightforward summary, focusing on dis- 798

tilling the essential meaning of the sentence. 799

B Detailed fine-tuning results 800

These results (see Table 7) demonstrate the per- 801

formance of various models when fine-tuned on 802

the task of open coding using different prompts. 803

BERTScore and ROUGE are reported. 804

C Moderator prompt template 805

You will be given a paragraph from the
text , which is: {textdescription }.

Definition of the code: A word or short
phrase that symbolically

assigns a summative , salient , essence -
capturing , and/or evocative

attribute for a portion of language -
based or visual data.

Here is the excerpt to code:
{row[’Paragraph ’]}

Here are three coding suggestions from
previous models:

1. {row[’Llama3_Code ’]}
2. {row[’Falcon_Code ’]}
3. {row[’Mistral_Code ’]}

Please choose the best code or suggest a
new code taking into account all

these answers.
The output should be the code with no

longer than 5 words.

Listing 1: Moderator Prompt Template with Model
Suggestions

D Links to models on Hugging Face 806

• Llama3 8B: https://huggingface.co/ 807

meta-llama/Meta-Llama-3-8B-Instruct 808
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Model BERTScore ROUGE

Pstd Rstd F1std 1 2 L

Summarize the main idea of a sentence\n

Llama3 0.7130.060 0.7580.040 0.7340.062 0.141 0.033 0.153
Falcon 0.7460.073 0.7820.097 0.7640.095 0.176 0.047 0.189
Mistral 0.7290.076 0.7870.093 0.7560.078 0.178 0.047 0.195
Vicuna 0.7310.063 0.7770.095 0.7530.079 0.163 0.028 0.182
Gemma 0.7120.084 0.7380.078 0.7450.080 0.163 0.030 0.168
TinyLlama 0.7180.072 0.7750.090 0.7570.087 0.164 0.052 0.158

Summarize the main idea of a sentence.

Llama3 0.7180.072 0.7880.089 0.7500.073 0.181 0.059 0.166
Falcon 0.7380.099 0.7870.103 0.7610.096 0.213 0.077 0.210
Mistral 0.7190.072 0.7680.086 0.7420.075 0.157 0.055 0.148
Vicuna 0.7330.079 0.7870.095 0.7580.081 0.193 0.068 0.185
Gemma 0.7190.071 0.7790.089 0.7460.072 0.172 0.049 0.166
TinyLlama 0.7360.083 0.7880.092 0.7600.081 0.207 0.074 0.199

Can you tell me what the main idea of this sentence is in just a few words?

Llama3 0.6880.055 0.7780.084 0.7290.061 0.116 0.034 0.110
Falcon 0.7530.105 0.7870.108 0.7680.102 0.236 0.104 0.239
Mistral 0.7420.106 0.7950.106 0.7660.101 0.246 0.106 0.235
Vicuna 0.6910.060 0.7830.087 0.7320.063 0.168 0.047 0.164
Gemma 0.7110.075 0.7860.093 0.7460.079 0.171 0.057 0.168
TinyLlama 0.7250.083 0.7890.090 0.7540.079 0.178 0.067 0.177

From the perspective of a social scientist, summarize the following sentence as you would in thematic coding\n

Llama3 0.6980.059 0.7840.083 0.7380.062 0.130 0.033 0.119
Falcon 0.7450.109 0.7920.105 0.7660.102 0.210 0.089 0.211
Mistral 0.6880.060 0.7850.086 0.7320.064 0.139 0.041 0.131
Vicuna 0.7130.080 0.7780.094 0.7430.080 0.169 0.061 0.166
Gemma 0.7210.085 0.7840.093 0.7490.082 0.180 0.070 0.177
Tinyllama 0.7180.073 0.7760.083 0.7450.072 0.165 0.053 0.158

From the perspective of a social scientist, summarize the following sentence as you would in thematic coding.

Llama3 0.6850.082 0.7810.064 0.7330.081 0.136 0.025 0.154
Falcon 0.7540.066 0.7780.091 0.7590.088 0.181 0.048 0.190
Mistral 0.7400.067 0.7800.088 0.7560.071 0.172 0.045 0.187
Vicuna 0.7180.071 0.7800.094 0.7530.073 0.165 0.039 0.185
Gemma 0.7000.072 0.7800.085 0.7460.080 0.180 0.046 0.187
TinyLlama 0.7290.076 0.7780.089 0.7540.080 0.169 0.046 0.183

If you were a social scientist doing thematic analysis, what code would you give to this citation?
Llama3 0.6920.060 0.7850.083 0.7350.064 0.064 0.043 0.126
Falcon 0.7360.093 0.7850.101 0.7590.092 0.206 0.076 0.200
Mistral 0.6860.057 0.7850.082 0.7310.061 0.132 0.044 0.123
Vicuna 0.7190.070 0.7890.091 0.7510.073 0.183 0.063 0.169
Gemma 0.7240.085 0.7840.091 0.7510.082 0.170 0.066 0.168
Tinyllama 0.7200.071 0.7780.083 0.7470.072 0.186 0.053 0.182

What is the gist of this sentence?

Llama3 0.6800.064 0.7800.086 0.7250.066 0.129 0.042 0.121
Falcon 0.7310.091 0.7800.098 0.7540.089 0.182 0.080 0.179
Mistral 0.7260.079 0.7850.095 0.7530.079 0.165 0.057 0.160
Vicuna 0.7200.070 0.7810.089 0.7480.072 0.172 0.055 0.162
Gemma 0.7070.077 0.7730.091 0.7370.076 0.152 0.059 0.146
Tinyllama 0.7130.057 0.7730.079 0.7410.061 0.143 0.032 0.139

Explain in a couple of words the primary thought expressed in the following text\n

Llama3 0.6910.062 0.7830.085 0.7330.066 0.120 0.038 0.110
Falcon 0.7340.078 0.7780.090 0.7540.078 0.171 0.049 0.165
Mistral 0.6980.067 0.7800.088 0.7350.070 0.141 0.038 0.131
Vicuna 0.7030.072 0.7800.088 0.7380.072 0.155 0.048 0.148
Gemma 0.7060.064 0.7860.086 0.7420.066 0.177 0.053 0.170
Tinyllama 0.7200.077 0.7840.091 0.7500.078 0.168 0.071 0.163

Explain in a couple of words the primary thought expressed in the following text.

Llama3 0.7000.068 0.7840.055 0.7470.063 0.142 0.025 0.152
Falcon 0.7520.088 0.7790.061 0.7600.086 0.183 0.042 0.193
Mistral 0.7380.070 0.7900.090 0.7590.073 0.173 0.047 0.183
Vicuna 0.7170.066 0.7800.094 0.7520.099 0.161 0.025 0.182
Gemma 0.7080.068 0.7780.079 0.7460.098 0.172 0.039 0.186
TinyLlama 0.7280.073 0.7780.091 0.7550.089 0.168 0.053 0.168

Table 7: Detailed Fine-tuning Results. The following table presents the detailed results from fine-tuning experiments,
including precision (P), recall (R), F1 score, and ROUGE across different models and prompts.
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• Falcon 7B: https://huggingface.co/809

tiiuae/falcon-7b-instruct810

• Mistral 7B: https://huggingface.co/811

mistralai/Mistral-7B-Instruct-v0.2812

• Vicuna 7B: https://huggingface.co/813

lmsys/vicuna-7b-v1.5814

• Gemma 7B: https://huggingface.co/815

google/gemma-7b-it816

• TinyLlama 1.1B: https://huggingface.817

co/TinyLlama/TinyLlama-1.1B-Chat-v1.818

0819

• Llama 3.3. 70B: https://820

huggingface.co/meta-llama/Llama-3.821

3-70B-Instruct822

• Mixtral 7x8B: https://huggingface.co/823

mistralai/Mixtral-8x7B-v0.1824

E LoRA configuration825

This section provides the LoRA (Low-Rank Adap-826

tation) configuration used for fine-tuning the mod-827

els in this study. Below is the code snippet used for828

configuring LoRA:829
830

config = LoraConfig(831
r=16,832
lora_alpha=32,833
target_modules=["gate_proj", "up_proj", "down_proj"],834
lora_dropout=0.05,835
bias="none",836
task_type="CAUSAL_LM"837

)838
839

model = get_peft_model(model, config)840
print_trainable_parameters(model)841

842
generation_config = model.generation_config843
generation_config.max_new_tokens = 15844
generation_config.temperature = 0.7845
generation_config.top_p = 0.7846
generation_config.num_return_sequences = 1847
generation_config.pad_token_id = tokenizer.eos_token_id848
generation_config.eos_token_id = tokenizer.eos_token_id849

F Human evaluation instructions850

To validate the quality of automatically generated851

qualitative codes, we conducted a human evalua-852

tion study in which domain experts rated model-853

generated codes for a given set of quotes. The854

evaluation form was structured as follows:855

F.1 Code Rating Guidelines856

Introduction:857

Thank you for participating in this evaluation study.858

Your expertise is crucial in assessing the quality859

of automatically generated qualitative codes. In860

this task, you will be presented with a sentence861

(quote) and a corresponding code assigned by a862

model. You will rate the quality of the code based 863

on its accuracy, relevance, and conciseness. 864

Definition of a Code: 865

According to Saldana (2016), a code is "often a 866

word or short phrase that symbolically assigns 867

a summative, salient, essence-capturing, and/or 868

evocative attribute for a portion of language-based 869

or visual data." 870

F.2 Instructions for Participants 871

1. Read the given quote carefully. 872

2. Review the assigned code. 873

3. Rate the quality of the code on a scale from 1 874

to 5 based on the following criteria: 875

• 1 - Very Poor: The code does not reflect the 876

main idea of the quote at all. 877

• 2 - Poor: The code partially captures the 878

quote but lacks clarity or relevance. 879

• 3 - Acceptable: The code is somewhat rele- 880

vant but could be improved for clarity or con- 881

ciseness. 882

• 4 - Good: The code accurately represents the 883

key idea of the quote with minimal ambiguity. 884

• 5 - Excellent: The code perfectly captures the 885

essence of the quote in a concise and mean- 886

ingful way. 887

These ratings were collected for all models 888

across a diverse set of ten quotes. The results 889

were analyzed to compute correlations between 890

human ratings and various automated evaluation 891

metrics, contributing to the validation of the com- 892

posite score. 893
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