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Abstract

Inductive coding traditionally relies on labor-
intensive human efforts, who are prone to in-
consistencies and individual biases. Although
large language models (LLMs) offer promising
automation capabilities, their standalone use
often results in inconsistent outputs, limiting
their reliability. In this work, we propose a
framework that combines ensemble methods
with code refinement methodology to address
these challenges. Our approach integrates mul-
tiple smaller LL.Ms, fine-tuned via Low-Rank
Adaptation (LoRA), and employs a moderator-
based mechanism to simulate human consen-
sus. To address the limitations of metrics like
ROUGE and BERTScore, we introduce a com-
posite evaluation metric that combines code
conciseness and contextual similarity. The va-
lidity of this metric is confirmed through corre-
lation analysis with human expert ratings. Re-
sults demonstrate that smaller ensemble models
with refined outputs consistently outperform
other ensembles, individual models, and even
large-scale LLMs like GPT-4. Our evidence
suggests that smaller ensemble models signifi-
cantly outperform larger standalone language
models, pointing out the risk of relying solely
on a single large model for qualitative analysis.

1 Introduction

Inductive coding is a fundamental method in so-
cial science research, enabling the identification,
organization, and analysis of patterns and themes
within textual data (Creswell, 2016; Saldana, 2016;
Braun and Clarke, 2021). At its core, this method
extracts key ideas from text, transforming unstruc-
tured documents into a list of codes that capture
the underlying themes. Traditionally, this process
has relied on human coders who, despite their ex-
pertise, are prone to inconsistencies, cognitive bi-
ases, and the tendency to overcomplicate labels
(MacQueen and Guest, 2008; Bumbuc and Hry-
byk, 2016; Bernard, 2016; Morse, 2017). Large
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Figure 1: Overview of the proposed ensem-
ble pipeline for inductive coding. The input z
is processed by multiple LoRA fine-tuned models
(LLM;,LLM,, ..., LLMy), generating candidate out-
puts (O1, Os, . ..,Opn). Moderators compare and evalu-
ate these candidates, selecting y1,y2, . . ., yn as refined
candidates. Refinement of codes consists of comparing
the current code with previous ones and assigning the
same code based on the chosen similarity threshold.
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language models (LLMs) offer an opportunity to
automate this process, potentially improving ef-
ficiency and standardization (Bommasani et al.,
2021). However, ensuring the reliability and in-
terpretability of LLM-generated codes remains a
challenge.

Our study addresses two critical gaps in auto-
mated inductive coding: (1) the need for structured
refinement processes to improve consistency across
codes and (2) the limitations of standard evaluation
metrics, which fail to capture the nuanced crite-
ria used by human experts, such as label granu-
larity, alignment, and contextual relevance (Lin,
2004; Zhang et al., 2019; Sellam et al., 2020; Fab-
bri et al., 2021a; Parfenova et al., 2024; Mizrahi
et al., 2024). We introduce a novel ensemble-based



framework that integrates refinement processes in-
spired by Retrieval-Augmented Generation (RAG)
(Lewis et al., 2020), reusing previously generated
codes to eliminate their redundancy iteratively.

This study makes three key contributions: (1)
we develop a pipeline that integrates multiple
instruction-finetuned LLMs with an iterative re-
finement process to improve coding consistency;
(2) we introduce a composite evaluation metric
that captures both semantic and structural qual-
ity of generated codes; and (3) we demonstrate
that smaller LLM ensembles, refined by merging
similar codes, outperform standalone large mod-
els, achieving closer alignment with human coded
benchmarks.

The results indicate that the proposed ensem-
ble approach improves the quality of the gener-
ated codes, while the refinement process further
enhances their consistency, resulting in outputs that
are more closely aligned with the human-coded
data. Additionally, we show that ensemble-based
methods reduce variability in code assignments,
addressing the subjectivity present in individual
LLM outputs. These findings provide a strong ba-
sis for improving automated qualitative data anal-
ysis while maintaining compatibility with human
coding standards.

2 Background

Qualitative data analysis (QDA) plays a critical
role in social science research (Miller et al., 1990;
Creswell, 2016), enabling researchers to identify,
categorize and interpret patterns within textual data.
Central to this process is the concept of coding,
where meaningful segments of text are assigned
concise labels, or codes, that capture their core
essence. According to Saldana (2016), a code is
"often a word or short phrase that symbolically
assigns a summative, salient, essence-capturing
and/or evocative attribute to a portion of language-
based or visual data." In thematic analysis, one
of the most widely used methods in QDA, these
codes are further grouped into broader categories
to reveal hierarchical relationships and underlying
themes within the data (Braun and Clarke, 2021).
The source material often includes interviews, doc-
uments, or other qualitative data formats, and the
process involves summarizing the key ideas in
each segment and grouping them into overarching
themes.

Recent advances in natural language processing

have introduced the use of LLMs for automating
qualitative coding tasks (Tornberg, 2023; Parfen-
ova et al., 2024; Fischer and Biemann, 2024). How-
ever, we noticed 2 critical points that need to be ad-
dressed in this domain. (1) To evaluate codes, some
papers noted that traditional summarization metrics
like BERT and ROUGE are not good enough for
this task (Parfenova et al., 2024; Chen et al., 2024),
one research specifically created unsupervised met-
ric to assess codes (Chen et al., 2024). (2) The
second critical point in this domain is that although
individual LLMs demonstrate remarkable perfor-
mance, their output often varies due to differences
in training data, architectures, and model parame-
ters (Bubeck et al., 2023; Touvron et al., 2023b).
This variability introduces subjectivity, making a
single LLM’s coding decisions as inconsistent as
those of individual human annotators. To address
these challenges, ensemble methods, techniques
that combine multiple models, have been increas-
ingly explored for their ability to take advantage of
the complementary strengths of different models
and improve performance (Sagi and Rokach, 2018;
Jiang et al., 2023b).

Ensemble learning is a widely used strategy
to improve model performance by combining the
strengths of multiple models, often referred to as
"weaker models"(Sagi and Rokach, 2018; Aniol
et al., 2019). There are two common approaches
to ensemble learning: one involves weighting indi-
vidual models based on their performance, while
the other focuses on aggregating diverse outputs to
produce a unified result. One example is the Mix-
of-Experts (MoE) framework (Cai et al., 2024),
which employs specialized sub-models to make
predictions and merges their outputs for improved
accuracy. Similarly, LLM-Blender (Jiang et al.,
2023a) demonstrates the potential of ensembling
by combining ranked outputs from multiple models
to achieve superior performance in complex natural
language generation tasks.

This study builds upon the concept of ensemble
methods but diverges from existing approaches by
adopting a moderator-based framework. Unlike
fusion techniques that combine outputs probabilis-
tically, our approach incorporates a final decision-
making model tasked with selecting the best can-
didate or proposing a novel output. This design re-
flects the dynamics of human collaboration, where
consensus is sometimes driven by a leader or a fi-
nal arbiter, rather than by averaging or blending
opinions (Engle et al., 2014). Using this moderator



model, we aim to mimic the style of the hierarchi-
cal decision-making process in human qualitative
coding and demonstrate its effectiveness.

3 Dataset

Our experiments used a dataset of 1,000 code-quote
pairs compiled from two main sources: social sci-
ence research studies and the SemEval-2014 Task 4
dataset (Pontiki et al., 2014) for augmentation. The
social science data includes 600 examples from
studies across three universities, featuring topics
such as technology interaction, social values, and
cultural experiences. The SemEval dataset con-
tributes an additional 400 examples, consisting of
reviews manually coded by qualitative researchers.

Table 1 summarizes the data sources. Each quote
was labeled by 3-5 coders who independently an-
notated it before reaching a consensus to establish
the golden standard. This ensured high-quality la-
bels and reduced variability due to individual coder
biases. The test set size was set to 100 examples
(see Table 2). The dataset was split into training
and testing sets without a separate validation set.
Hyperparameters were selected based on the train-
ing results and evaluated on the test set.

N Quotes Description

Social Science Studies Data: 600 quotes
78 Study about interaction with self-tracking devices (interviews)
22 Study about life transitions and mobility (interviews)
82 Study about interaction with voice assistants (interviews)
28 Study about museums and cultural experiences (interviews)
25 Study on doctors’ experiences with pregnant women (interviews)
110 Study on universal and national values (interviews)
24 Study on procrastination and budget planning (interviews)
56 Study on technology interactions and user feedback (reviews)
175 Study about social expectations (interviews)

SemEval 2014; Task 4: 400 quotes

211 Restaurant reviews
189 Laptop reviews

Table 1: Summary of Data Sources with descriptions.

Statistic Overall Train Test
Total Quotes 1000 900 100
Social Science Data 600 550 50
SemEval Data 400 350 50
Num of Data Sources 11 11 11
Unique Codes 680 624 94

Avg. Quote Length
Avg. Code Length

254.75274 .28
19.9510.43

280.89280.89
20.0419.70

234.80201.61
19.2710.53

Table 2: Summary statistics of the dataset and train/test
splits. Subscript refers to standard deviation where ap-
plicable.

To evaluate the ensemble models, we used
a second distinct test data set comprising 100
user reviews of ChatGPT sourced from Kaggle
(Jikadara, 2023). This data set, characterized by

user-generated unstructured feedback, differs from
the structured data used for training, providing an
opportunity to test model performance on unseen,
real-world content. Each review was manually an-
notated by human coders to create a golden stan-
dard reference for evaluation. This dataset was
chosen specifically for its diversity in style of lan-
guage, sentiment, and varied quote lengths to verify
the ensemble’s ability to handle varied text types.

4 Pipeline

Our proposed pipeline consists of two key stages,
as illustrated in Figure 1. First, an input x is pro-
cessed independently by three smaller LL.Ms (7B
and 8B parameter sizes). The outputs from these
models are then evaluated by a set of N Moder-
ators (Moderator;, Moderators, . . . , Moderatory),
which refine and consolidate the results. Finally,
code merging is performed to ensure consistency
across similar inputs, producing the optimal output.

4.1 Phase 1: LoRA finetuning

In the first phase of the study, we evaluated sev-
eral open-source models: Llama3 (Touvron et al.,
2023a), Falcon (Pineda et al., 2023), Mistral (Team,
2023), Vicuna (Li et al., 2023), Gemma (Team,
2024), and TinyLlama (Jiang et al., 2023c), on
an open coding task. We employed various ap-
proaches, such as zero-shot, few-shot (providing
1 to 5 examples, see Appendix A), and parameter-
efficient fine-tuning (Han et al., 2024) using Low-
Rank Adaptation (LoRA) (Hu et al., 2021).

Each model (LLM;) was fine-tuned on the train-
ing dataset and generated an output (o0;) for a given
input (x). The outputs were evaluated based on
their semantic similarity and token overlap using
BERTScore (Zhang et al., 2019) and ROUGE (Lin,
2004). From this evaluation, the three models with
the highest performance were selected for the mod-
eration phase (see Appendix B).

4.2 Phase 2: Moderation and refinement

The top three outputs {01, 02, 03} were passed to
Moderators using the prompt template shown in
(Appendix C), which incorporated previous model
suggestions. The Moderators produced modified
outputs {y1,y2,.--, YN}

To maintain coherence across similar data points,
a refinement stage was applied to all generated
codes. This process involved code merging, im-
plemented through embedding similarity analysis.



Model Parameters Adaptation Prompt BERTScore ROUGE
P R F1 1 2 L
Llama3 (instruct) 8B Finetuning Summarize the main idea of a sentence. 0.72 0.79 0.75 0.18 0.06 0.17
From the perspective of a social scientist,
Falcon (instruct) 7B Finetuning summarize the following sentence as you would 0.75 0.79 0.77 0.21 0.09 0.21
in thematic coding.
Mistral (instruct) 7B Finetuning Can you tell me what the main idea of this 074 079 077 025 011 023
sentence is in just a few words?
Vicuna (instruct) 7B Finetuning Summarize the main idea of a sentence. 0.73 0.78 0.76 0.19 0.07 0.18
Gemma (instruct) 7B Finetuning If you were a social scientist doing thematic o) 26 095 017 006 0.17
analysis, what code would you give to this citation?
TinyLlama (chat) 1B Few-shot (5 examples) Summarize the main idea of a sentence. 077 074 075 018 003 0.8

Here are examples:

Table 3: Performance of various open-source LLMs on open coding task across different adaptation methods and
prompts. This table presents the BERTScore and ROUGE scores for each model, indicating precision (P), recall
(R), and F1 scores for BERTScore, along with ROUGE scores (1, 2, L). Models were evaluated under different
scenarios, including finetuning and few-shot approaches, with prompts designed to align with thematic analysis.
Detailed fine-tuning results are demonstrated in Appendix B.

Given a new input z, its embedding ¢(z) was com-
puted using SBERT (Reimers and Gurevych, 2019)
and compared against previously assigned code em-
beddings ¢(p;) using cosine similarity. If the simi-
larity score met or exceeded a predefined threshold
(sim(x,p;) > 7), the existing code was retained;
otherwise, a new code was assigned. The opti-
mal output ypest Was selected using a composite
evaluation metric C(y;), which combines multiple
quality dimensions (detailed in Section 5). This
unified metric ensured consistent evaluation across
all moderator outputs.

5 Metrics

To evaluate the performance of individual mod-
els that will serve as input to the moderator, two
metrics were employed to capture both lexical
and semantic similarity: ROUGE (Lin, 2004) and
BERTScore (Zhang et al., 2019). BERTScore is a
metric that computes the similarity between BERT
token embeddings of two codes, which helps as-
sess the meaning in the generated output compared
to the reference. ROUGE is a lexical similarity
measure that calculates the overlap of n-grams (1-
unigram overlap, 2-bigram overlap, L-longest com-
mon subsequence) between the generated text and
the reference text. ROUGE is particularly effective
in summarization task (Fabbri et al., 2021b), which
is valuable when the exact wording of the output
needs to match the reference.

5.1 Composite score

To systematically assess the performance of en-
semble models in inductive coding tasks, we intro-
duce a composite score that integrates four evalua-
tion scores: (1) cosine similarity, which quantifies
the semantic alignment between model-generated

Model Performance: Composite Scores vs ROUGE-1 Means

Composite Score —e— ROUGE-1 Mean
014

Figure 2: Performance comparison of different mod-
els on inductive coding tasks, measured by Composite
Scores (bars) and ROUGE-1 Mean (line). Ensemble
models with refinement outperform individual models
and non-refinement ensembles.

codes and human-coded references; (2) METEOR
score, which captures lexical similarity while ac-
counting for synonyms and stemming variations
(Banerjee and Lavie, 2005); (3) code length penalty,
which discourages excessively verbose codes; and
(4) Jensen-Shannon divergence, which measures
the distributional closeness of model-generated
codes to human annotations. Each component is
independently normalized to ensure comparability,
and the final composite score is computed as the
mean of the four metrics, assigning equal weight
to each.

Higher cosine similarity and METEOR scores
contribute positively to the composite score, re-
flecting stronger semantic and lexical agreement
with human coders. Conversely, longer codes and
greater distributional divergence lower the score,
penalizing outputs that deviate from the brevity
and consistency typically expected in qualitative
coding.



5.2 Metric validation

To assess the validity of the composite score, we
conducted a human evaluation study where experts
rated the quality of codes generated by anonymized
models (Appendix F). Each expert was presented
with ten sentences and their corresponding codes,
assigning a rating from 1 to 5 based on clarity,
conciseness, and relevance to the text. We then
computed Spearman’s correlation between the com-
posite score and the average of all expert ratings,
alongside other evaluation metrics.

The analysis reveals a strong correlation between
the composite score and human ratings (Spearman:
0.73, p = 0.039), confirming its alignment with ex-
pert judgments. ROUGE-1 and ROUGE-L exhibit
moderate positive correlations with the composite
score (Spearman: 0.51, p = 0.20 and Spearman:
0.44, p = 0.27, respectively), but their statistical
insignificance suggests that they may not fully cap-
ture the criteria used by human coders. In contrast,
BERTScore F1 shows a negligible correlation with
the composite score (Spearman: 0.06, p =0.90), im-
plying that semantic similarity alone is insufficient
for assessing inductive coding quality. Addition-
ally, the correlation between the composite score
and code length is near zero (Spearman: -0.02, p =
0.96).

Further analysis reveals that BERTScore F1
exhibits a negative correlation with code length,
which contradicts the expectation that qualitative
codes should be concise (see Table 4). This mis-
alignment suggests that BERTScore may not be an
ideal metric for evaluating inductive coding tasks,
as it does not adequately penalize redundancy.

6 Results

The ensemble pipeline with codes merging ap-
proach yield significant performance improve-
ments, as detailed in Table 6. Ensemble models,
particularly refined variants, consistently outper-
form individual models across all metrics except
BERTScore, which remains stable (F1=0.83-0.86)
due to its semantic focus. Among standalone mod-
els, GPT-4 achieves the highest composite score
(0.44), while Llama3.3 70B leads in ROUGE-1
performance (0.12).

Ensembles perform better, with the Mixtral8x7B
ensemble achieving a significant composite score
improvement (0.33—0.91) over its individual coun-
terpart. Llama3.3 70B shows a similar trend, im-
proving from 0.38 to 0.50 through ensemble in-

Model Performance: Coverage, Novelty, and Divergence
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Figure 3: Comparison of LLM performance across three
evaluation metrics: Coverage (measuring how well a
model captures the meaning of the reference codes),
Novelty (assessing the degree of new information in-
troduced by the model), and Divergence (quantifying
distributional shifts from the reference). Ensemble mod-
els with code merging tend to balance coverage and
novelty better than individual models.

tegration. Merging of codes provides additional
benefits, elevating Mixtral8x7B to 0.99 (+9%) and
Llama3.3 70B to 0.74 (+48% from individual base-
line). These improvements demonstrate both the
value of model diversity and postprocessing effec-
tiveness in enhancing coding consistency.

6.1 Composite score analysis

The composite score proved to be effective in
capturing semantic, lexical, and structural align-
ment. Refined ensembles consistently outper-
formed both individual models and ensembles. Al-
though ROUGE-1 primarily captures lexical simi-
larity, it aligned well with the composite score in
the ranking model performance. Also, standalone
large models like GPT-4 exhibited lower ROUGE-
1 scores compared to ensembles, reflecting chal-
lenges in lexical precision.

6.2 Coverage, Novelty, and Divergence
Analysis

Our evaluation also incorporates the metrics pro-
posed by Chen et al. (2024), which offer greater
sensitivity compared to traditional similarity-based
measures like BERTScore (see Figure 3). These
metrics reveal nuanced distinctions in model per-
formance, though the observed differences were
less sensitive than anticipated, except for Jensen-
Shannon divergence—a measure we integrate into
our Composite Score. Notably, the results suggest
that in certain cases, LLM-generated codes may
achieve performance levels comparable to or ex-
ceeding human annotations, raising important ques-
tions about the reliability of human-labeled bench-
marks as definitive gold standards (Chen et al.,



Metric Composite Score BERTScore F1 ROUGE-1 ROUGE-L Code Length Human Rating
Composite Score 1.00 -0.06 0.51 0.44 -0.02 0.73%*
BERTScore F1 -0.06 1.00 -0.09 -0.11 -0.65* -0.14
ROUGE-1 0.51 -0.09 1.00 0.99* -0.35 0.49
ROUGE-L 0.44 -0.11 0.99* 1.00 -0.32 0.44
Code Length -0.02 -0.65* -0.35 -0.32 1.00 -0.41
Human Rating 0.73%* -0.14 0.49 0.44 -0.41 1.00

Table 4: Spearman correlation matrix between evaluation metrics. Statistically significant correlations (p < 0.1) are
highlighted in green. Asterisks (*) indicate significant values.

2024). However, we refrain from making defini-
tive claims about this observation and instead treat
human-generated codes as the established golden
standard in our analysis.

6.3 LLMs alignment

To assess the alignment between different LL.Ms
in qualitative coding, we separately computed the
cosine similarity (Figure 5) and Jensen-Shannon
divergence (Figure 6) between the codes generated
by models. These similarity metrics demonstrate
how consistently different models assign qualita-
tive codes to the same textual input and whether
ensemble models enhance convergence toward a
unified interpretation. The results clearly indicate
that ensemble models, particularly GPT-4 Ensem-
ble, Mixtral 8x7B Ensemble, and Llama3.3 70B
Ensemble, exhibit higher semantic similarity and
lower divergence compared to individual models.

6.4 Qualitative assessment and refinement

Table 5 presents a comparative analysis of codes
generated by ensemble models against the human-
coded gold standard. The GPT-4 Ensemble demon-
strates a tendency toward abstract and generalized
codes (e.g., “User Satisfaction and App Effective-
ness”), which capture broad themes but often lack
specificity. In contrast, the Llama3.3 70B and Mix-
tral 8x7B Ensembles produce codes that align more
closely with the gold standard, offering precise la-
bels. This divergence suggests that GPT-4’s cod-
ing strategy prioritizes thematic abstraction, while
smaller ensembles have a more effective balance
between abstraction and specificity.

The integration of the postprocessing step into
our ensemble framework reduces redundancy in
generated codes by aligning new outputs with previ-
ously assigned codes. As demonstrated in Table 6,
refined ensembles produce more concise outputs,
achieving an average code length reduction from
6.83 to 4.00 tokens—a 41.5% improvement over
non-refined ensembles.
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Figure 4: Comparison of LLMs based on the number of
unique codes and average code length

Further analysis highlights the impact of post-
processing on code diversity. While the human
gold standard comprises 47 unique codes with an
average length of 2.79 tokens, non-refined models
output an excessive number of codes, often gen-
erating unique codes for each input. In contrast,
code merge integration significantly reduces this
redundancy, with Llama3.3 70B Ensemble+ref and
Mixtral 8x7B Ensemble+ref producing 53 and 71
unique codes, respectively. This brings the models
closer to a human-like coding pattern, as illustrated
in Figure 4.

7 Discussion

In this section, we discuss the implications of
our findings regarding the application of ensem-
ble LLMs in automated inductive coding. Our re-
sults highlight key advantages of ensemble-based
approaches over individual models, particularly in
terms of conciseness and the ability to balance ab-
straction and specificity in qualitative coding.

7.1 Ensembles improve coding consistency

A major finding of our study is that ensemble
models consistently outperform individual mod-
els in inductive coding tasks, as shown in Table 6.
The improved performance is particularly evident



Coder Golden Standard Llama3.3 70B Ensem- GPT4o0 Ensemble GPT4 Ensemble Mixtral 8x7B Ensem-
ble ble

Quote Code Assigned

"I am not very happy with this because ChatGPT Technical ~ problems Unsatisfied with Chat- User dissatisfaction Unsatisfied with Chat- User: Dissatisfied with

answers the questions I ask but it stops midway. while using GPT with incomplete an- GPT’s incomplete re- expensive, incomplete

Then even after continuous efforts it does not
give complete answer. This is not very correct.
Please fix it so that there is no more trouble. This
is a very wrong thing, after some use you are
asked to upgrade which is very expensive."

Swers

sponses

ChatGPT answers

"This is a great app, the bot is so accurate to
anything, it gives me tips in gaming, studies, and
life, etc. This app is also helpful if you were
having problems in things! Also, there are some
problems about the server glitch, but don’t worry,
some glitches are just seconds, overall a great
app. Note: the GPT-4o0 is more powerful, and
accurate than the regular one."

Helpful app

Accurate and helpful
app

Helpful and accurate
app experience

User Satisfaction and
App Efficiency

Accurate, helpful tip-
providing app

"The best so far"

Best app

Best so far

The best experience
yet

User Satisfaction and
App Effectiveness

Top User Rating

"Excellent app for learning"

Excellent for learning

Excellent learning app

Excellent learning tool

User Satisfaction and
App Efficiency

Excellent learning app

"Thanks for making my life easier”

Thankfulness

Life made easier

Gratitude for increased
ease

User Satisfaction Feed-
back

Gratitude for Ease

Table 5: Comparison of qualitative codes generated by ensemble models. The golden standard represents human-

coded references.

Model Merge threshold BERTScore ROUGE Composite Score Code length
P R Fl 1 2 L
Mixtral8x7B 0.83 0.84 0.83 0.08 0.01 0.08 0.33 6.83
Mixtral8x7B Ensemble - 0.83 0.85 0.84 0.12 0.01 0.08 0.91 4.02
Mixtral8x7B Ensemble + ref 0.7 0.84 0.85 0.84 0.12 0.01 0.11 0.99 4
Llama3.3 70B - 0.84 0.86 0.85 0.12 0.03 0.12 0.38 3.5
Llama3.3 70B Ensemble - 0.85 0.86 0.85 0.15 0.02 0.15 0.50 3.57
Llama3.3 70B Ensemble + ref 0.5 0.85 0.88 0.86 0.15 0.03 0.15 0.74 3.49
GPT-4 - 0.83 0.84 0.84 0.02 0.00 0.02 0.44 4.39
GPT-4 Ensemble - 0.83 0.85 0.84 0.11 0.02 0.10 0.74 5.01
GPT-4 Ensemble + ref 0.8 0.83 0.85 0.84 0.12 0.02 0.10 0.54 4.62
GPT-40 - 0.85 0.86 0.86 0.04 0.00 0.04 0.37 3.8
GPT-40 Ensemble - 0.85 0.87 0.86 0.14 0.02 0.14 0.74 4.26
GPT-40 Ensemble + ref 0.7 0.85 0.87 0.86 0.11 0.00 0.11 0.54 4.42
Llama3 8B Instruct - 0.83 0.86 0.84 0.12 0.02 0.11 0.61 8.45
Falcon 7B Instruct 0.83 0.85 0.84 0.09 0.01 0.09 0.47 12.76
Mistral 7B Instruct 0.83 0.85 0.84 0.07 0.01 0.07 0.67 11.77

Table 6: Performance comparison of individual models, standard ensembles, and refined ensembles across key
metrics. The merge threshold (refinement) column indicates the similarity threshold between the generated code
and codes before it (can look only in the past). Models are evaluated using BERTScore (Precision, Recall, and F1),
ROUGE (1, 2, and L), Composite Score, and Average Code Length.

in Jensen-Shannon divergence (Figure 6), where
ensembles exhibit lower divergence, indicating a
greater degree of alignment. This suggests that
aggregating multiple model outputs helps reduce
inconsistencies, reflecting the consensus-building
process used by human coders in thematic analysis.

The increased consistency observed in ensemble-
generated codes aligns with findings from prior re-
search on LLM evaluation, which suggest that indi-
vidual models often introduce unwanted variability
in their outputs due to differences in training data
and architectural biases (Bubeck et al., 2023; Jiang
et al., 2023b). In contrast, ensemble methods mit-
igate this variability by integrating diverse inputs,
thereby improving robustness. Our results indicate
that this effect holds even for smaller models.

7.2 Postprocessing enhances code stability

The integration of code merging significantly im-
proves code stability, as demonstrated by higher
composite and ROUGE scores in refined ensem-
bles (Table 6). By referencing previously assigned
codes, refinement reduces redundancy for similar
inputs. This is particularly evident in the reduc-
tion of unique code counts (e.g., 53 for Llama3.3
70B+ref vs. 100 for non-refined models) and code
length (41.5% reduction), bringing model outputs
closer to human-like efficiency.

Figure 5 reveals that all ensemble models exhibit
the highest similarity scores. This suggests that
aggregating inputs from multiple smaller models
leads to greater convergence in assigned qualitative
codes. These ensembles tend to agree more with
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Figure 5: Mean cosine similarity heatmap of model-
generated codes. Darker green cells indicate higher
semantic similarity between models. Ensemble models
(GPT-4 Ensemble, Mixtral 8x7B Ensemble, LLlama3.3
70B Ensemble) exhibit the highest similarity, demon-
strating greater convergence toward a single interpreta-
tion of qualitative codes.
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Figure 6: Mean Jensen-Shannon divergence heatmap of
model-generated codes. Darker green cells indicate
lower divergence, meaning greater agreement in as-
signed codes. Ensemble models exhibit lower JSD,
reinforcing their role in reducing variance and improv-
ing convergence in qualitative coding tasks.

each other, reducing variance in code assignments
compared to individual models.

7.3 Balancing abstraction and specificity in
generated codes

A key distinction among models is their tendency
toward abstraction versus specificity. As shown in
Table 5, GPT-4 ensembles often generate broad the-
matic labels, which, while useful for high-level
analysis, may lack the granularity required for
domain-specific research. In contrast, smaller en-
sembles produce more precise codes that closely
align with human annotations.

This finding reflects a fundamental trade-off in
LLM-based coding: while abstraction improves
generalizability, excessive abstraction can obscure
critical nuances. Prior work has noted that LLMs

trained on diverse corpora tend to favor generalized
patterns over domain-specific details (Bubeck et al.,
2023; Tornberg, 2023). Results suggest that ensem-
ble approaches can mitigate this issue by combin-
ing diverse inputs, thus producing more balanced
and contextually grounded outputs.

7.4 Future directions

Building on our findings, we identify two promis-
ing directions for future research. First, hierarchi-
cal coding strategies could enable models to gen-
erate both broad thematic categories and specific
subcategories, better reflecting human coding prac-
tices (Saldana, 2016). Second, adaptive RAG mech-
anisms could dynamically adjust retrieval thresh-
olds based on input complexity, further enhancing
consistency and efficiency. These methods could
significantly improve the interpretability and qual-
ity of automated coding systems.

8 Conclusion

In this work, we explored the use of ensemble-
based LLMs with refined outputs for automated
inductive coding, demonstrating that ensemble ap-
proaches consistently outperform individual mod-
els in qualitative coding tasks. Our results highlight
three key findings: (1) Ensemble methods improve
coding consistency, reducing variance and increas-
ing alignment with human-coded benchmarks; (2)
Code merging postprocessing enhances coding sta-
bility, ensuring greater coherence in label assign-
ments across similar inputs; and (3) Smaller ensem-
ble models outperform standalone high-capacity
models, offering a more efficient and scalable alter-
native to traditional LLM-based approaches. These
findings highlight the potential of ensemble ap-
proaches and refinement to advance automated
qualitative analysis while maintaining alignment
with human coding patterns.

Limitations

While our ensemble-based LLMs demonstrate sig-
nificant improvements in inductive coding, several
limitations warrant consideration.

Bias and fairness

Although ensembling reduces inconsistencies
across individual models, it does not fully address
biases inherent in the training data of base models.
These biases may manifest in the form of skewed
code distributions or overgeneralized labels. Future
work should investigate bias mitigation techniques,



such as adversarial training or dataset balancing, to
further improve model fairness and reliability.

Computational costs

While our ensemble models are smaller and more
efficient than large standalone models like GPT-4,
they still require higher computational costs com-
pared to single smaller models. For real-world ap-
plications, further optimization strategies—such as
dynamic ensemble selection—could help balance
accuracy with computational efficiency.

Evaluation metrics

While our composite metric captures multiple di-
mensions of coding performance, no single metric
fully replicates the nuanced judgment of human
coders. Future research should explore more so-
phisticated evaluation frameworks, incorporating
human preference modeling, interactive evaluation
setups, or multi-criteria decision analysis to better
align automated coding with qualitative research
standards.

Language generalizability

Our study focuses exclusively on English-language
datasets, which restricts the generalizability of
our findings to other languages and cultural con-
texts. Extending this approach to multilingual
datasets could reveal additional challenges, such as
language-specific coding conventions or cultural
biases, necessitating further adaptations.

Ethics statement

The use of LLMs in qualitative research introduces
ethical considerations, particularly regarding bias,
transparency, and the potential for automated sys-
tems to replicate or amplify human biases. While
our ensemble-based approach mitigates some of
these risks by combining diverse model outputs
and employing code refinement for consistency, we
acknowledge that biases inherent in training data
may still influence results. Human oversight re-
mains critical, as demonstrated by our reliance on
expert evaluations to establish a golden standard
and validate model outputs. We emphasize that
LLMs should serve as assistive tools rather than re-
placements for human expertise, and we advocate
for the development of ethical guidelines to ensure
responsible use in sensitive research domains. The
datasets used in this study were anonymized and
handled in compliance with ethical research stan-
dards, minimizing risks to participants.
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at the end of each prompt to assess how subtle
changes in prompt formatting might influence the
model’s performance (see Appendix B). Below is
a brief description of each prompt:

* Explicit Instruction (Prompt 1): Summa-
rize the main idea of a sentence. This prompt
provides a direct and clear instruction to the
model, asking it to summarize the core idea
of a given sentence. The expectation is for
the model to extract the primary message or
theme conveyed in the sentence with no addi-
tional context or framing. This prompt is de-
signed to test the model’s ability to perform a
straightforward task without needing implicit
knowledge.

Informal Request (Prompt 2): Can you tell
me what the main idea of this sentence is in
Jjust a few words? This prompt is phrased as
a casual, conversational question, asking the
model to summarize the sentence in "just a
few words." The informal tone encourages a
more concise and simplified response, aiming
to capture how well the model can extract
the essence of the sentence in a more natural,
everyday context.

Expert Angle (Prompt 3): From the perspec-
tive of a social scientist, summarize the fol-
lowing sentence as you would in thematic cod-
ing. This prompt takes a more specialized
approach, asking the model to assume the per-
spective of a social scientist performing the-
matic coding. The expectation here is for the
model to not only summarize the sentence but
to apply a more analytical and structured lens,
possibly introducing higher-level categoriza-
tions that would be typical in qualitative data
analysis.

Impersonalization (Prompt 4): If you were a
social scientist doing thematic analysis, what
code would you give to this citation? In this
prompt, the model is asked to act as a social
scientist and assign a code, which is a brief
label representing the central idea of the sen-
tence. It emphasizes the objectivity of the-
matic analysis, expecting the model to deper-
sonalize the task and focus on generating an
appropriate label that accurately reflects the
content.
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* Detailed Explanation (Prompt 5): Explain
in a couple of words the primary thought ex-
pressed in the following text. This prompt
asks the model to provide a more detailed,
thorough explanation of the primary thought
behind the text. It is designed to encourage
the model to go beyond a simple summary and
delve into the deeper meaning or implications
of the sentence.

Simplified Task (Prompt 6): What is the gist
of this sentence? This prompt simplifies the
task by asking for the "gist" of the sentence.
It challenges the model to provide a very brief
and straightforward summary, focusing on dis-
tilling the essential meaning of the sentence.

Detailed fine-tuning results

These results (see Table 7) demonstrate the per-
formance of various models when fine-tuned on
the task of open coding using different prompts.
BERTScore and ROUGE are reported.

C Moderator prompt template

You will be given a paragraph from the

text, which is: {textdescription}.

Definition of the code: A word or short

phrase that symbolically

assigns a summative, salient, essence-

capturing, and/or evocative

attribute for a portion of language-

based or visual data.

Here is the excerpt to code:
{row[’Paragraph’1}

Here are three coding suggestions from

1.
2.
S

previous models:

{row[’Llama3_Code’]}
{row[’Falcon_Code’]}
{row[’Mistral_Code’]}

Please choose the best code or suggest a

new code taking into account all
these answers.

The output should be the code with no

longer than 5 words.

Listing 1: Moderator Prompt Template with Model
Suggestions

D Links to models on Hugging Face

e Llama3 8B: https://huggingface.co/
meta-1lama/Meta-Llama-3-8B-Instruct


https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct
https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct
https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct

Model BERTScore ROUGE

Psta Rgia Flsta 1 2 L

Summarize the main idea of a sentence\n

Llama3 0.7130.060 0.7580.040 0.7340.062 0.141 0.033 0.153
Falcon 0.7460.073 0.7820.097 0.7640.095 0.176 0.047 0.189
Mistral 0.7290.076 0.7870.093 0.7560.078 0.178 0.047 0.195
Vicuna 0.7310.063 0.7770.095 0.7530.079 0.163 0.028 0.182
Gemma 0.712¢.084 0.7380.078 0.7450.080 0.163 0.030 0.168
TinyLlama 0.718¢.072 0.7750.090 0.7570.087 0.164 0.052 0.158
Summarize the main idea of a sentence.
Llama3 0.7180.072 0.7880.089 0.7500.073 0.181 0.059 0.166
Falcon 0.7380.099 0.7870.103 0.7619.096 0.213 0.077 0.210
Mistral 0.719¢.072 0.7680.086 0.7420.075 0.157 0.055 0.148
Vicuna 0.7330.079 0.7870.095 0.7580.081 0.193 0.068 0.185
Gemma 0.719¢.071 0.7790.089 0.7460.072 0.172 0.049 0.166
TinyLlama 0.7360.083 0.7880.092 0.7600.081 0.207 0.074 0.199
Can you tell me what the main idea of this sentence is in just a few words?
Llama3 0.6880.055 0.7780.084 0.7290.061 0.116 0.034 0.110
Falcon 0.7530.105 0.7870.108 0.7680.102 0.236 0.104 0.239
Mistral 0.742¢.106 0.7950.106 0.7660.101 0.246 0.106 0.235
Vicuna 0.6919.060 0.7830.087 0.7320.063 0.168 0.047 0.164
Gemma 0.711¢.075 0.7860.093 0.7460.079 0.171 0.057 0.168
TinyLlama 0.7250.083 0.7890.090 0.7540.079 0.178 0.067 0.177
From the perspective of a social scienti: ize the following sent as you would in thematic coding\n
Llama3 0.6980.059 0.7840.083 0.7380.062 0.130 0.033 0.119
Falcon 0.7450.109 0.7920.105 0.7660.102 0.210 0.089 0.211
Mistral 0.6880.060 0.7850.086 0.7320.064 0.139 0.041 0.131
Vicuna 0.7130.080 0.7780.094 0.7430.080 0.169 0.061 0.166
Gemma 0.721¢.085 0.7840.093 0.7490.082 0.180 0.070 0.177
Tinyllama 0.7180.073 0.7760.083 0.7450.072 0.165 0.053 0.158
From the perspective of a social scienti: ize the following as you would in thematic coding.
Llama3 0.685¢.082 0.7810.064 0.7330.081 0.136 0.025 0.154
Falcon 0.7540.066 0.7780.091 0.7590.088 0.181 0.048 0.190
Mistral 0.7400.067 0.7800.088 0.7560.071 0.172 0.045 0.187
Vicuna 0.718¢.071 0.7800.094 0.7530.073 0.165 0.039 0.185
Gemma 0.7000.072 0.7800.085 0.7460.080 0.180 0.046 0.187
TinyLlama 0.729¢.076 0.7780.089 0.7540.080 0.169 0.046 0.183
If you were a social scientist doing thematic analysis, what code would you give to this citation?
Llama3 0.6920.060 0.7850.083 0.7350.064 0.064 0.043 0.126
Falcon 0.7360.093 0.7850.101 0.7590.092 0.206 0.076 0.200
Mistral 0.6860.057 0.7850.082 0.7310.061 0.132 0.044 0.123
Vicuna 0.719¢.070 0.7890.091 0.7510.073 0.183 0.063 0.169
Gemma 0.724¢.085 0.7840.091 0.7519.082 0.170 0.066 0.168
Tinyllama 0.720¢.071 0.7780.083 0.747¢.072 0.186 0.053 0.182
What is the gist of this sentence?
Llama3 0.6800.064 0.7800.086 0.7250.066 0.129 0.042 0.121
Falcon 0.7319.091 0.7800.098 0.7540.089 0.182 0.080 0.179
Mistral 0.7260.079 0.7850.095 0.7530.079 0.165 0.057 0.160
Vicuna 0.7200.070 0.7810.089 0.7480.072 0.172 0.055 0.162
Gemma 0.707¢.077 0.7730.091 0.7370.076 0.152 0.059 0.146
Tinyllama 0.7130.057 0.7730.079 0.7410.061 0.143 0.032 0.139
Explain in a couple of words the primary thought expressed in the following text\n
Llama3 0.6910.062 0.7830.085 0.7330.066 0.120 0.038 0.110
Falcon 0.7340.078 0.7780.090 0.7540.078 0.171 0.049 0.165
Mistral 0.6980.067 0.7800.088 0.7350.070 0.141 0.038 0.131
Vicuna 0.7030.072 0.7800.088 0.7380.072 0.155 0.048 0.148
Gemma 0.7060.064 0.7860.086 0.7420.066 0.177 0.053 0.170
Tinyllama 0.7200.077 0.7840.091 0.7500.078 0.168 0.071 0.163
Explain in a couple of words the primary thought expressed in the following text.
Llama3 0.7000.068 0.7840.055 0.7470.063 0.142 0.025 0.152
Falcon 0.7520.088 0.7790.061 0.7600.086 0.183 0.042 0.193
Mistral 0.7380.070 0.7909.090 0.7590.073 0.173 0.047 0.183
Vicuna 0.7170.066 0.7800.094 0.7520.099 0.161 0.025 0.182
Gemma 0.7080.068 0.7780.079 0.7460.098 0.172 0.039 0.186
TinyLlama 0.7280.073 0.7780.091 0.7550.089 0.168 0.053 0.168

Table 7: Detailed Fine-tuning Results. The following table presents the detailed results from fine-tuning experiments,
including precision (P), recall (R), F1 score, and ROUGE across different models and prompts.
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e Falcon 7B: https://huggingface.co/
tiiuae/falcon-7b-instruct
e Mistral 7B: https://huggingface.co/

mistralai/Mistral-7B-Instruct-vo.2

e Vicuna 7B: https://huggingface.co/
Imsys/vicuna-7b-v1.5
e Gemma 7B: https://huggingface.co/

google/gemma-7b-it

e TinyLlama 1.1B: https://huggingface.
co/TinyLlama/TinyLlama-1.1B-Chat-v1.
Q

e Llama 3.3. 70B: https://
huggingface.co/meta-1lama/Llama-3.
3-70B-Instruct

e Mixtral 7x8B: https://huggingface.co/
mistralai/Mixtral-8x7B-vo.1

E LoRA configuration

This section provides the LoRA (Low-Rank Adap-
tation) configuration used for fine-tuning the mod-
els in this study. Below is the code snippet used for
configuring LoRA:

config = LoraConfig(
r=16,
lora_alpha=32,
target_modules=["gate_proj"”, "up_proj"”, "down_proj"l,
lora_dropout=0.05,
bias="none",
task_type="CAUSAL_LM"
)

model = get_peft_model(model, config)
print_trainable_parameters(model)

generation_config = model.generation_config
generation_config.max_new_tokens = 15
generation_config.temperature = 0.7
generation_config.top_p = 0.7
generation_config.num_return_sequences = 1
generation_config.pad_token_id = tokenizer.eos_token_id
generation_config.eos_token_id = tokenizer.eos_token_id

F Human evaluation instructions

To validate the quality of automatically generated
qualitative codes, we conducted a human evalua-
tion study in which domain experts rated model-
generated codes for a given set of quotes. The
evaluation form was structured as follows:

F.1 Code Rating Guidelines

Introduction:

Thank you for participating in this evaluation study.
Your expertise is crucial in assessing the quality
of automatically generated qualitative codes. In
this task, you will be presented with a sentence
(quote) and a corresponding code assigned by a
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model. You will rate the quality of the code based
on its accuracy, relevance, and conciseness.
Definition of a Code:

According to Saldana (2016), a code is "often a
word or short phrase that symbolically assigns
a summative, salient, essence-capturing, and/or
evocative attribute for a portion of language-based
or visual data."

F.2 Instructions for Participants

1. Read the given quote carefully.

2. Review the assigned code.

3. Rate the quality of the code on a scale from 1
to 5 based on the following criteria:

* 1 - Very Poor: The code does not reflect the
main idea of the quote at all.

* 2 - Poor: The code partially captures the
quote but lacks clarity or relevance.

* 3 - Acceptable: The code is somewhat rele-
vant but could be improved for clarity or con-
ciseness.

* 4 - Good: The code accurately represents the
key idea of the quote with minimal ambiguity.

* 5 - Excellent: The code perfectly captures the
essence of the quote in a concise and mean-
ingful way.

These ratings were collected for all models
across a diverse set of ten quotes. The results
were analyzed to compute correlations between
human ratings and various automated evaluation
metrics, contributing to the validation of the com-
posite score.


https://huggingface.co/tiiuae/falcon-7b-instruct
https://huggingface.co/tiiuae/falcon-7b-instruct
https://huggingface.co/tiiuae/falcon-7b-instruct
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2
https://huggingface.co/lmsys/vicuna-7b-v1.5
https://huggingface.co/lmsys/vicuna-7b-v1.5
https://huggingface.co/lmsys/vicuna-7b-v1.5
https://huggingface.co/google/gemma-7b-it
https://huggingface.co/google/gemma-7b-it
https://huggingface.co/google/gemma-7b-it
https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v1.0
https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v1.0
https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v1.0
https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v1.0
https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v1.0
https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct
https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct
https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct
https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct
https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct
https://huggingface.co/mistralai/Mixtral-8x7B-v0.1
https://huggingface.co/mistralai/Mixtral-8x7B-v0.1
https://huggingface.co/mistralai/Mixtral-8x7B-v0.1
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