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ABSTRACT

Depth estimation is a critical topic for robotics and vision-related tasks. In monoc-
ular depth estimation, However, the current accuracy of supervised learning needs
to be improved, and the generalization of supervised learning models to other
scenarios is poor, making it difficult to directly estimate depth for other scenar-
ios. In deep learning era, while existing methods mainly rely on the exploration
of image relationships to train the supervised neural networks, fundamental in-
formation provided by the camera itself has been generally ignored, which can
provide extensive supervision information for free, without the need for any extra
equipment to provide supervision signals. Utilizing the camera itself’s intrinsics
and extrinsics, depth information can be calculated for ground regions and regions
connecting ground based on physics principles, providing free and critical prior
information without any other sensors. The method is easy to realize and can be a
component to enhance the effects of all the supervised methods.

1 INTRODUCTION

Monocular Depth Estimation (MDE) serves as a cornerstone in robotics and computer vision, having
a broad spectrum of applications from autonomous driving to augmented reality Tang et al. (2022)
and 3D reconstruction Newcombe et al. (2011). At its core, MDE strives to assign a depth value
to every pixel in an image. The advent of convolutional neural networks has propelled the field
of MDE to new heights Simonyan & Zisserman (2014); Szegedy et al. (2015); He et al. (2016).
Presently, various convolutional neural network architectures Eigen et al. (2014); Fu et al. (2018);
Lee et al. (2019) have exhibited prowess in MDE. Furthermore, with the rise of VIT Dosovitskiy
et al. (2020), transformer-based approaches Ranftl et al. (2021); Yang et al. (2021); Yuan et al.
(2022) are gaining traction. Notably, these methodologies predominantly focus on training models
to predict depths from single images utilizing ground truth. However, the inherent ambiguity of
MDE poses challenges, as MDE is theoretically an ill-posed problem, which can mainly estimate
depth based on learned scenes. Due to the missing second camera or active sensors, MDE systems
trained on one type of scene (e.g., outdoor) typically do not perform well on other types of scenes
(e.g., indoor). Current deep learning paradigms, despite their advancements, have not addressed this
underlying issue, leading to limitations in their generalization capabilities.

Paradoxically, in the era dominated by deep neural networks, pivotal sensor-specific information
often gets overshadowed. In this paper, we introduce a seminal approach that capitalizes on camera
model parameters, both intrinsic and extrinsic, to compute scene depth, thereby providing a solid
depth prior for depth estimation training and inference. Leveraging these camera parameters, we can
ascertain depth across substantial portions of a scene with remarkable accuracy, enabling effective
neural network training without explicit ground truth dependencies. Through semantic segmenta-
tion, ground plane depth can be deduced based on the camera’s physics model. This foundational
depth estimation facilitates the subsequent computation of depths for objects (e.g., buildings, vehi-
cles) situated on this plane. This mechanism effectively provides depth input priors at no additional
cost beyond the camera’s inherent capabilities. Incorporating this physics-based depth, we devise
unique fusion modules to amalgamate physics depth with RGB imagery, serving as inputs that syn-
ergize with networks. More crucially, this strategy can seamlessly integrate with any supervised
depth estimation framework.

In summary, our contributions are threefold: 1. We introduce a groundbreaking mechanism that
harnesses the camera’s physics model parameters to compute scene depth, which we term as physics
depth. 2. Our proposed information fusion module adeptly integrates physics depth into image
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data, yielding multi-modal features. This enriched output can subsequently feed into any supervised
model, markedly enhancing depth prediction accuracy. 3. A simple yet effective network training
system providing attention to two different input modalities (RGB and physics depth) for feature
extraction and fusion has been proposed, which is validated for depth from camera model frame-
work. 4. We present a methodology to both validate and rectify the calibration results of camera
orientation relative to the ground.

2 RELATE WORK

2.1 MONOCULAR DEPTH ESTIMATION

Supervised model: In the domain of Monocular Depth Estimation (MDE) using neural networks,
the seminal work of Eigen et al. (2014) constitutes a pivotal and foundational contribution. Their
research introduces a coarse-to-fine convolutional neural network. On the basis of his model, a range
of methods have emerged. It can be categorized into two distinct directions: one that involves the
monodepth estimation problem as a pixel-wise regression task Huynh et al. (2020), and another that
formulates it as a pixel-wise classification challenge Cao et al. (2017). In the decoding stage, Lee
et al. (2019) introduced a local planar guidance layer to infer the plane coefficients, which were
used to recover the full depth of resolution of the map. More recently, Adabins Bhat et al. (2021)
has applied transformer to estimate the depth.

Self-supervised model: Self-supervised depth estimation from monocular videos or stereo image
pairs is emerging due to the mitigation of manual labeling efforts. In the realm of monocular depth,
Zhou et al. Zhou et al. (2017) pioneered a self-supervised framework. This was achieved by jointly
training depth and pose networks anchored on an image reconstruction loss. Subsequently, Godard
et al.Godard et al. (2019) established a benchmark through the proposal of a minimum re-projection
loss and auto-masking loss. Building upon the foundation laid by Godard et al. Newcombe et al.
(2011), several studies Guizilini et al. (2020); Chawla et al. (2021) addressed the inherent scale
ambiguity of monocular SfM-based methods through integration with other sensors.

MDE network architecture: Monocular depth estimation performance varies significantly across
different architectures. Yin & Shi (2018) transitioned from the VGG encoder to a ResNet encoder.
Guizilini et al. (2020) introduced 3D convolutions in PackNet, aiming to efficiently compress and
decompress features while preserving details. To fuse multi-scale features, Wang et al. (2020) em-
ployed attention mechanisms. Recognizing the inherent limitations of CNNs, Zhou et al. (2021)
integrated HRNet for self-supervised monocular depth estimation, capitalizing on HRNet’s Wang
et al. (2020) prowess in modeling multiscale features. In the latest time, Transformer is also devel-
oped for depth estimation Li et al. (2023b).

2.2 GEOMETRIC PRIORS

Geometric priors have gained traction in the domain of monocular depth estimation. Among these,
the normal constraint Long et al. (2021); Qi et al. (2018)—which enforces consistency between
the normal vectors inferred from estimated depths and their ground truth counterparts—is prevalent.
The piecewise planarity prior Chauve et al. (2010); Gallup et al. (2010); Bódis-Szomorú et al. (2014)
offers a tangible approximation to real-world scenarios. This prior segments the scene into 3D planes
Yang & Zhou (2018); Zhang et al. (2020), aiming to categorize the scene into dominant depth planes.

Notwithstanding the inherent ambiguity in monocular depth estimation, contemporary supervised
learning paradigms remain predominantly grounded on truth labels. Even as novel architectures
like the Transformer enhance prediction accuracy, they do not address the foundational challenges
associated with monocular depth estimation errors. While geometric priors can mitigate some uncer-
tainty, their contributions to the overarching problem remain marginal. Diverging from traditional
geometric priors, we leverage camera model parameters to compute scene depth. This approach
furnishes more precise and generalizable depth predictions, largely bolstering model performance.

3 PHYSICS DEPTH COMPUTATION BASED ON CAMERA MODEL

Figure 1: Illustration of physics depth logic
for a car moving on a flat road surface

In this work, we introduce a methodology to compute
the depth of flat surfaces, particularly those directly
within the camera’s field of view, denoted as physics
depth. This approach is especially beneficial for esti-
mating road depths using ground robot cameras. By
harnessing both intrinsic and extrinsic camera param-
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eters, combined with semantic segmentation using models like Zhu et al. (2019), we identify ground
surfaces within images. Furthermore, we determine regions adjoined to these surfaces and compute
their depth values. Evaluations on the KITTI dataset Geiger et al. (2013) corroborate the accuracy of
our method, revealing close alignment with LiDAR-derived depth for proximate road surfaces. Our
analysis also uncovers calibration inconsistencies in the KITTI dataset spanning multiple recording
days, and we detail a correction method for the camera-to-ground calibration matrix. We have ex-
tended our depth estimation technique to cater to surfaces with minor undulations, with outcomes
elucidated subsequently.

3.1 GROUND SURFACE PHYSICS DEPTH COMPUTATION

The physics depth pertains to pixels representing an ideal flat surface in the camera’s direct line
of sight. For illustrative purposes, we consider a standard pinhole camera, commonly devoid of
significant distortion, as our model. Nevertheless, our approach is adaptable to other camera varieties
with appropriate model modifications. Utilizing the image’s semantic segmentation, we differentiate
flat terrains from other surfaces. Given the precision of semantic segmentation in standard scene
delineation, it is deployed as established features like SIFT. For each pixel indicative of a frontal flat
surface, we derive a unit vector r, indicative of the camera ray’s direction in the physical realm.

r = [u,v,f ]√
u2+v2+f2

, f = [fx + fy] /2 (1)

where u represents the coordinates of the pixel, with the origin of the coordinate system situated
at the optical center of the image, commonly referred to as the principal point. Meanwhile, fx, fy
denote the camera’s focal lengths in the x, y directions. Then, we rotate the camera ray vector to
align it with the ground plane:

rc = Rcr (2)
Here, Rc is a 3x3 rotation matrix representing the camera’s orientation relative to the ground co-
ordinate system. Using the camera’s roll and pitch angles, the rotation matrix can be computed as
illustrated below:

Rc = Ryaw ∗Rpitch ∗Rroll (3)

Since rc is a unit vector, the 3D coordinates of a ground point relative to the camera’s coordinate
system can be determined by multiplying it with the depth d.

p = d ∗ rc, d ∗ rc = [pu, pv, pf ] , d =
pu
rc,u

=
pv
rc,v

=
pf
rc,f

(4)

where p = [pu, pv, pf ] is the ground point relative to the camera coordinate system, d is the distance
from the camera to the ground point and rc = [rc,u, rc,v, rc,f ] is a unit vector in the direction
of camera ray in physics world. Therefore, pv must be equal to camera height h. For example,
in KITTI camera coordinate system, v direction points downward and camera height, h is 1.65.
Therefore, depth d can be calculated as below:

d =
h

rc,v
(5)

Figure 1 illustrates the physics depth logic for an autonomous vehicle with a camera on top of it.
Here, h is the height of the camera, d is the distance of the camera from point p and rc is the direction
of the camera ray towards the point p in Fig. 1. For every pixel u, v that corresponds to a ground
point, we repeat the above algorithm to calculate the depth. Therefore, we can calculate the depth
value of every ground surface pixel, as Fig. 2. The error for the calculated physics depth is quite
small compared with LiDAR ground truth.

3.2 EXTENSION OF GROUND PHYSICS DEPTH

In our evaluations, the physics depth aligns closely with LiDAR measurements for most scenarios,
providing a dense depth map as opposed to the sparser LiDAR counterpart. However, this approach
predominantly targets the road directly ahead of the robots, which could lead to overfitting to road
regions when training a depth prediction model, restricting its applicability to non-road surfaces.
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To mitigate this overfitting risk, we broadened the scope of our physics-based depth method to cover
the entire ground plane—encompassing roads, sidewalks, parking lots, rail tracks, and more—by
presuming a uniform flatness over these terrains. Furthermore, we extrapolated this depth approach
to vertical entities like vehicles, pedestrians, and buildings. This extension was achieved by propa-
gating depth values vertically from the intersection of horizontal and vertical structures. With these
enhancements, we can now represent nearly 70% of all image pixels with an error margin below
20%, and over half of the image pixels has error less than 5%.

Figure 2: Physics Depth Algorithm on a sample KITTI image: This figure includes: (a) an RGB image
of the scene, (b) the corresponding semantic segmentation image, (c) the physics depth map for road pixels,
(d) the LiDAR depth map for road pixels, and (e) the percentage error frequency distribution for road pixels,
comparing values between physics depth and LiDAR depth.

3.3 CORRECTION OF CAMERA-TO-GROUND CALIBRATION

Camera extrinsic is an important component in calculating the physics depth. Extensive methods
have been developed for camera calibration, such as Zhengyou (1998). In our analysis of the
Physics Depth Algorithm on the complete KITTI dataset, optimal results were evident on the initial
day (2011-09-26). However, performance diminished in the subsequent days. Here, we provide a
camera-to-road calibration verification and correction method. Taking KITTI dataset as an example,
given the algorithm’s excellence on day one, we postulated that discrepancies in the later days might
stem from inconsistencies in the KITTI dataset’s camera calibration parameters, specifically Rc.

To substantiate this, we aimed to compute the camera calibration rotation matrix Rc = Rcl × Rlg

using LiDAR data. Here, Rcl is the rotation matrix to transition a point from the camera to the
LiDAR frame, and Rlg transforms a point from the LiDAR to the ground frame. Below is the
procedure for verifying and correcting the camera-to-road calibration.

Camera Calibration Correction Methodology:

1. Rlc is provided in the KITTI’s calibration set. Compute Rcl as the transpose of Rlc.
2. Derive Rlg via:

(a) Project 3D depth points from the LiDAR onto the LiDAR frame to form a 3D hyper-
plane of the ground.

(b) Determine the centroid of these 3D ground points in the LiDAR frame. Decompose
the surface normal at this centroid to ascertain roll and pitch angles.

(c) Refer to the third step of the physics depth algorithm to obtain Rgl using the derived
angles.

(d) Compute the transpose of Rgl to yield Rlg.
3. Combine Rcl and Rlg from the above steps to produce Rc.
4. Utilize Rc in the third step of the physics depth algorithm to achieve the Camera Calibration

Corrected Physics Depth.

Note that robotics calibration is usually precise. Here, we are providing a method to verify and
correct the camera-to-road calibration output. Through our testing, the camera-to-road calibration
in KITTI dataset maintains errors, which we will demonstrate and provide the corrected results in
the experiment part.

4 INFORMATION FUSION MODULE

In this section, we introduce a comprehensive Information Fusion module, designed to merge our
physics depth with RGB images, as illustrated in Fig. 3. The module encompasses three integral
parts: MHRA (Multi-Head Relational Attention), Depth Information Selection, and the Supervision
Model. This fusion strategy aims to leverage the interplay between physics depth and traditional
image information, enhancing the supervised learning model’s performance in monocular depth
estimation.
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4.1 FUSION UNIFIED FRAMEWORK

As depicted in Fig. 3, our Fusion Unified framework is inspired by the spatio-temporal network
structure of UniFormer Li et al. (2023a). This design extracts and integrates features from RGB and
depth images to serve as inputs for supervised learning models. Our approach recognizes that while
physics depth provides partial depth information for an image, a relationship exists between these
depths and other image regions. By learning this mapping, our network can better handle monocular
depth estimation tasks, leveraging the advantages of the physics depth.

The Fusion Unified framework comprises five pivotal modules: Dynamic Position Embedding
(DPE), global and local Multi-Head Relation Aggregator (MHRA), Physics Depth Selection (PDS),
and the Supervision model. Given the accuracy of road depth data, the PDS module introduces
an adaptive weighting mechanism to the physics depth features, determining the emphasis of each
feature and mitigating overfitting risks.

In the MHRA module, our goal is to capture both global and local details from the physics depth and
RGB images. While the road depth data is precise, an over-reliance on the physics depth can lead
to overfitting. Consequently, it is vital to judiciously leverage this depth information. In the PDS
module, we introduce a weight matrix for the physics depth features, determining which aspects to
emphasize and which to downplay. Given that these weight matrices are learned, the network can
adaptively modulate the inclusion of depth information, ensuring it does not solely rely on the depth
features.
4.1.1 GLOBAL AND LOCAL MULTI-HEAD RELATIONAL ATTENTION

The MHRA module aims to extract both global and local information from the physics depth and
RGB images. While CNN structures excel in capturing local information, Transformer architectures,
due to the attention mechanism, adeptly extract global details. In our MHRA design, local MHRA
targets the extraction of local RGB nuances, as RGB images contain extensive details, while global
MHRA focuses on capturing the overarching trends within the physics depth data, depicting the
scene structures.

XRGB = DPE(xrgb) + xrgb, XDepth = DPE(xdepth) + xdepth (6)

YRGB = MHRAlocal(NormBN (XRGB)) +XRGB (7)
YDepth = MHRAglobal(NormLN (XDepth)) +XDepth (8)

MHRA exploits token relationships in a multi-head style:

Rn(X) = AnVn(X) (9)

MHRA(X) = Concat(R1(X);R2(X); · · ·RN (X))U (10)
Rn(·) is the nth header, U is a learnable parameter matrix for the integration of N heads. Vn(X) is
a linear transformation for original tokens. An is token affinity learning, which has local and global
modes. For RGB images, our goal is the extraction of local information.

Alocal
n (Xi, Xj) = ai−j

n (11)

an is the learnable parameter, (i− j) denotes the relative position between token i and j. The entire
depth image is integrated to extract the global relationship. Qn (·) ,Kn (·) are two different linear
transformations.

Aglobal
n (Xi, Xj) =

eQn(Xi)
T Kn(Xj)∑

j′∈ΩH×W
e
Qn(Xi)

T Kn(Xj′) (12)

4.1.2 PHYSICS DEPTH SELECTION

In terms of depth information, the road data is highly accurate as it derives from meticulously cal-
culated camera parameters. This module takes as inputs the road data, the filled depth information
(representing physical depth), and the original RGB image. While the road information contributes
precision to the depth values, the process of filling the environment with this data lacks accuracy. To
rectify this, we employ a deep neural network to refine and enhance it. However, the depth informa-
tion itself remains predominantly accurate, serving as a foundational global reference for our focus
on physical depth. Concurrently, we prioritize the RGB information to complement the incomplete
aspects of the physical depth information and rectify any discrepancies introduced during the filling
process. Consequently, our emphasis lies on extracting RGB texture details, analyzing color space
distribution, and other local data to refine the final output.
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Figure 3: Information Fusion module consists of four key modules, Dynamic Position Embedding (DPE),
global and local Multi-Head Relation Aggregator (MHRA), Physics Depth Selection, and the Supervision
Model.

In the PDS module, we first concatenate the depth features YDep and image features YRGB together,
capturing multimodal features YMul. YMul is then further characterized by key multimodal features
Y At
Mul using the CBAM module.

YMul = YRGB + YDep (13)

The CBAM module is Convolutional Block Attention Module Woo et al. (2018), which applies chan-
nel and spatial attention modules sequentially. This allows the module to learn ”what” and ”where”
to attend in the channel and spatial axes, respectively. As a result, by learning what information to
emphasize or suppress, our module efficiently adjusts the features within the network.

F ′ = Mc(F )⊗ F, F ′′ = Ms(F
′)⊗ F ′ (14)

Mc (F ) = σ (MLP (AvgPool (F )) +MLP (MaxPool (F )))

= σ
(
W1

(
W0

(
F c
avg

))
+W1 (W0 (F

c
max))

) (15)

Ms(F ) = σ
(
f7×7 ([AvgPool (F ) ;MaxPool (F )])

)
= σ

(
f7×7

([
F s
avg;F

s
max

])) (16)

⊗ denotes element-wise multiplication; σ denotes the sigmoid function. MLP stands for a multi-
layer perceptron, where W0 and W1 represent shared weights for both inputs. The ReLU activation
function is applied after W0. f7×7 represents a convolution operation with a filter size of 7 × 7.
F s
avg and F s

max denote average-pooled features and max-pooled features, respectively.

Y At
Mul has a significant impact on the output and influences the extent to which the physical depth

information is integrated into the network. To achieve this, we utilize depthwise separable convo-
lution along with the sigmoid function to enable the network to learn the weight matrix associated
with the physical depth feature α. The formula is presented below:

Y At
Mul = CBAM(YMul), α = σ(DW (Y At

Mul)) (17)

CBAM(F ) = Ms(Mc(F )⊗ F )⊗ (Mc(F )⊗ F ) (18)
σ denotes sigmoid function, DW denotes Depthwise separable convolution. This weight matrix
provides explicit filtering of the physical depth features and enables adaptive adjustment of the
degree to which physical depth information is integrated into the network based on the supervision
results. To achieve this, we perform element-wise multiplication of the weight matrix σ with the
physical depth features YDep, resulting in the extraction of key physical depth features Y At

Dep with
varying degrees of attention as determined by the network.

Since the physical depth information Y At
Dep is combined with the image features YRGB , we add them

to the input image features YRGB to generate multimodal features Z enriched with the key physical
depth information Y At

Dep. The formula is presented below:

Y At
Dep = α · YDep, Z = Y At

Dep + YRGB (19)
multimodal features Z, which can be used as input to any current monocular depth estimation su-
pervise model for image depth estimation.
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Method Cap AbsRel ↓ Sq Rel↓ RMSE↓ RMSE log↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑
Eigen.Eigen & Fergus (2015) 0-80m 0.203 1.548 6.307 0.282 0.702 0.898 0.967
VNL.Yin et al. (2019) 0-80m 0.072 - 3.258 0.117 0.938 0.990 0.998
BTS Lee et al. (2019) 0-80m 0.061 0.261 2.834 0.099 0.954 0.992 0.998
PWA Lee et al. (2021) 0-80m 0.060 0.221 2.604 0.093 0.958 0.994 0.999
Adabins Bhat et al. (2021) 0-80m 0.058 0.190 2.360 0.088 0.964 0.995 0.999
P3Depth Patil et al. (2022) 0-80m 0.071 0.270 2.842 0.103 0.953 0.993 0.998
DepthFormer Li et al. (2023b) 0-80m 0.052 0.158 2.143 0.079 0.975 0.997 0.999
NeWCRFsPatil et al. (2022) 0-80m 0.052 0.155 2.129 0.079 0.974 0.997 0.999
iDiscPiccinelli et al. (2023) 0-80m 0.050 0.145 2.067 0.077 0.977 0.997 0.999
URCDCShao et al. (2023) 0-80m 0.050 0.142 2.032 0.076 0.977 0.997 0.999
MiM(base) Xie et al. (2023) 0-80m 0.052 0.141 2.050 0.078 0.976 0.998 0.999
MiM(large) 0-80m 0.050 0.139 1.966 0.075 0.977 0.998 0.999
our(base) 0-80m 0.0271 0.0483 1.2301 0.0442 0.9959 0.9993 0.9998
our(large) 0-80m 0.0251 0.0428 1.1652 0.0415 0.9966 0.9994 0.9998

Table 1: For a quantitative depth comparison using the Eigen split of the KITTI dataset, we employ MIM
(MonoDepth3) as our supervised model. Specifically, we utilize MIM with the following configurations: MIM
Base: Swin v2 base, MIM Large: Swin v2 large.

Figure 4: Extension of the Physics Depth Algorithm on sample KITTI image. (a) RGB image of the sample.
(b) Semantic segmentation image of the sample. (c) Physics depth map for road pixels, along with its scale. (d)
Frequency distribution of percentage errors for road pixels. (e) Physics depth map for all ground surface pixels,
along with its scale. (f) Frequency distribution of percentage errors for all ground surface pixels. (g) Physics
depth map for all ground surface pixels and vertical surfaces, along with its scale. (h) Frequency distribution of
percentage errors for all ground surface pixels, comparing the values between physics depth and LiDAR depth.

4.2 SUPERVISION MODEL MODULE

In this module, we can employ any existing supervised learning model and seamlessly integrate it
by directly utilizing the final features obtained from the Information Fusion Module as inputs. No
structural modifications are required. Consequently, our module can be seamlessly integrated with
any supervised model. Within this section, we introduce a smoothing loss function designed to
enhance the accuracy of monocular depth prediction without introducing additional errors.

In this study, RGB images serve as a global prior knowledge source for applying smoothing con-
straints to the depth map, ensuring a smoother property for the depth or surface normal vectors.
Smoothing constraints find widespread utility in depth estimation tasks, given that depth maps or
surface normal vectors often exhibit noise and discontinuities. These imperfections can be attributed
to various factors such as illumination variations, material disparities, occlusions, motion blur, and
more within the image. By implementing a smoothing constraint, we effectively mitigate these
noise and discontinuities in the depth map or surface normal vectors while endeavoring to preserve
intricate details.

Loss(smooth) = 1
N

∑
i,j

|∂xdi,j | e−∥∂xIi,j∥ + |∂ydi,j | e−∥∂yIi,j∥
(20)

We promote local smoothness of the depth map by incorporating an L1 penalty on the depth gra-
dients ∂d. Since depth discontinuities frequently coincide with image gradients, as observed in
Godard et al. (2017), we augment this cost term by introducing an edge-aware factor based on the
RGB image gradients ∂I .

5 EXPERIMENTS

5.1 SEGMENTATION FOR PHYSICS DEPTH COMPUTATION

Figure 2 illustrates the different stages of the extension of the physics depth logic,: RGB image of
the sample; semantic segmentation image of the sample; The physics depth map for road pixels,
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Figure 5: Percentage error frequency distribution for the entire KITTI dataset is illustrated. The top row of
the figure showcases the accuracy of the physics depth logic, presenting a frequency distribution of percentage
errors for road pixels across the complete KITTI dataset. This distribution enables a direct comparison between
the physics depth and KITTI’s LiDAR depth for the specified timestamps: (a) 2011-09-26, (b) 2011-09-28, (c)
2011-09-29, (d) 2011-09-30, and (e) 2011-10-03. The second row illustrates the analogous distributions after
corrections have been applied to KITTI’s camera calibration.

accompanied by its scale; The percentage error frequency distribution for road pixels; The physics
depth map for the whole ground surface pixels, accompanied by its scale; The percentage error fre-
quency distribution for whole ground surface pixels; The physics depth map for the whole ground
surface pixels and vertical surfaces, accompanied by its scale, The percentage error frequency dis-
tribution for whole ground surface pixels, comparing the values between physics depth and LiDAR
depth. We can see that based on semantics information, we can generate accurate physics depth
values very close to the LiDAR ground truth with small errors.

5.2 PHYSICS DEPTH CALCULATION

Figure 4 demonstrates the effect of our physics depth calculation output for both the ground surface
and regions connecting with the ground, such as vehicles and buildings. One can notice that with
the camera model, the depth can be calculated very accurately for both ground regions and regions
connecting the ground, both visually (top row) and quantitatively (error as shown in bottom row).

5.3 KITTY DATASET CORRECTION

Testing on the Entire KITTI Dataset: The KITTI dataset consists of five distinct calibration files,
each corresponding to data collected on different days. In Figure 5, we conducted a percentage error
frequency distribution analysis for each day, and the results are as follows: The error frequency
histograms clearly demonstrate a substantial improvement in the performance of the physics depth
algorithm after the KITTI camera calibration was corrected using LiDAR 3D depth points. This
highlights the calibration inconsistencies in KITTI dataset, particularly after the initial day of data.

5.4 KITTY MONODEPTH EVALUATION

KITTI Results: Using the standard KITTI Eigen split, which comprises 697 images, we conducted
an evaluation of our model. Table 1 presents a summary of the performance of state-of-the-art
(SoTA) supervised methods on the KITTI dataset, clearly indicating that our method outperforms
previous approaches significantly. Even in comparison to MIM (MonoDepth3) using the same model
architecture, the introduction of physics depth information led to substantial improvements. Specif-
ically, for the swin v2 base structure, the RMSE (Root Mean Square Error) improved from 2.05
to 1.2301, and for the swin v2 large structure, it improved from 1.96 to 1.1652. In Figure
6, we observe that when comparing the prediction results of AdaBins, SwinV2-L, 1K-MIM, and
NeWCRFs models, our model excels in capturing intricate scene details and demonstrates superior
scene recovery capabilities.

5.5 ABLATION STUDY

To thoroughly assess the impact of the proposed components in our methods on performance, we
conducted detailed ablation studies on the KITTI dataset, as presented in Table 2.

Physics Depth: We observe from the comparison between row 1 and row 2 that the impact is sub-
stantially enhanced when the physics depth information is directly fused with the RGB information.
This underscores the significant potential of physics depth in improving the predictive capabilities
of supervised learning models for monocular depth estimation.

Information Fusion: In the comparison between Row 3 and Row 4, we observe that the information
fusion module, which combines features from depth and RGB images, substantially enhances the
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Figure 6: Qualitative results on KITTI:.From top to bottom the models are AdaBins, SwinV2-L 1K-MIM,
NeWCRFs, our models.

ID PD 80%PD FM AbsRel ↓ Sq Rel↓ RMSE↓ RMSE log↓ δ < 1.25 ↑
1 % % % 0.050 0.139 1,966 0.078 0.976
2 % ! % 0.0310 0.0620 1.3839 0.0499 0.9943
3 ! % % 0.0314 0.0648 1.4330 0.0509 0.9941
4 % ! ! 0.0258 0.0453 1.1978 0.0424 0.9964
5 ! % ! 0.0251 0.0428 1.1652 0.0415 0.9966

Table 2: A study of our methods on the KITTI dataset: PD: Physics Depth. IF: Information Fusion Module.
80% PD: Utilizing 80% of physics depth data

model’s predictive capacity for depth estimation. Moving on to Row 4 vs. Row 5, we note that,
even after employing the same information fusion module, utilizing all the data produces superior
results compared to using only the top 80% of the data. Data with higher errors can still provide
valuable insights to the model, whereas excessively clean data may lead to model overfitting. To
address this challenge, we introduce a physics depth selection module within the information fusion
module. This module intelligently highlights physics depth features that enhance model predictions
while effectively filtering out features that could hinder the model’s performance. This adaptive
approach enables us to harness the full potential of physics depth information, leading to a significant
enhancement in the model’s predictive capabilities.

80% Physics Depth: We calculate the depth of each pixel along with its ground truth error and
select the top 80% of the depth data, ordered from the smallest to the largest error, as the input to
our model. The results are presented in Row 2 vs. 3. It is evident that both using all the data and
using the top 80% of the data enhance the predictive capabilities of the model. However, leveraging
the physics depth information within the top 80% of the error range yields greater improvements.
This outcome can be attributed to the fact that not all physics depth measurements are absolutely
accurate, and significant errors can adversely impact the model’s performance.

6 CONCLUSION

In this work, we introduce a physics-based supervised learning approach for depth estimation. While
existing supervised techniques often rely on advanced network architectures, unique geometric pri-
ors, and diverse data augmentations to marginally enhance model performance, our method lever-
ages physics scene depth for precise depth prediction. This significantly elevates the evaluation
metrics of monocular depth estimation. By tapping into the potential of physics depth estimation
calculated through camera model, we seek to enhance the performance of supervised models, espe-
cially in discerning ground and environmental details. Our ultimate aim is to enable these models to
intrinsically predict accurate depth values leveraging insights from the physics depth. This approach
is straightforward to deploy and offers a foundational mechanism to augment the depth prediction
capabilities of various supervised models.

9



Under review as a conference paper at ICLR 2024

REFERENCES

Shariq Farooq Bhat, Ibraheem Alhashim, and Peter Wonka. Adabins: Depth estimation using adap-
tive bins. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, pp. 4009–4018, 2021.
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