
Published as a conference paper at ICLR 2024

UNLEASHING THE POTENTIAL OF FRACTIONAL CAL-
CULUS IN GRAPH NEURAL NETWORKS WITH FROND

Qiyu Kang1∗∗ † , Kai Zhao1∗, Qinxu Ding2, Feng Ji1, Xuhao Li3, Wenfei Liang1, Yang Song4,
Wee Peng Tay1

1Nanyang Technological University 2Singapore University of Social Sciences
3Anhui University 4C3 AI, Singapore

ABSTRACT

We introduce the FRactional-Order graph Neural Dynamical network (FROND),
a new continuous graph neural network (GNN) framework. Unlike traditional
continuous GNNs that rely on integer-order differential equations, FROND em-
ploys the Caputo fractional derivative to leverage the non-local properties of
fractional calculus. This approach enables the capture of long-term dependen-
cies in feature updates, moving beyond the Markovian update mechanisms in
conventional integer-order models and offering enhanced capabilities in graph
representation learning. We offer an interpretation of the node feature updating
process in FROND from a non-Markovian random walk perspective when the
feature updating is particularly governed by a diffusion process. We demonstrate
analytically that oversmoothing can be mitigated in this setting. Experimentally,
we validate the FROND framework by comparing the fractional adaptations of
various established integer-order continuous GNNs, demonstrating their consis-
tently improved performance and underscoring the framework’s potential as an
effective extension to enhance traditional continuous GNNs. The code is available
at https://github.com/zknus/ICLR2024-FROND.

1 INTRODUCTION

Graph Neural Networks (GNNs) have excelled in diverse domains, e.g., chemistry (Yue et al., 2019),
finance (Ashoor et al., 2020), and social media (Kipf & Welling, 2017; Zhang et al., 2022; Wu
et al., 2021). The message passing scheme (Feng et al., 2022), where features are aggregated along
edges and iteratively propagated through layers, is crucial for the success of GNNs. Over the past
few years, numerous types of GNNs have been proposed, including Graph Convolutional Networks
(GCN) (Kipf & Welling, 2017), Graph Attention Networks (GAT) (Veličković et al., 2018), and
GraphSAGE (Hamilton et al., 2017). Recent works, such as (Chamberlain et al., 2021c; Thorpe et al.,
2022; Rusch et al., 2022; Song et al., 2022; Choi et al., 2023; Zhao et al., 2023a; Kang et al., 2023),
have incorporated various continuous dynamical processes to propagate information over graph
nodes, giving rise to a class of continuous GNNs based on integer-order differential equations. These
continuous models have demonstrated notable performance, for instance, in enhancing robustness
and addressing heterophilic graphs (Han et al., 2023).

Within these integer-order continuous GNNs, the differential operator dβ/ dtβ has been constrained to
integer values of β, primarily 1 or 2. However, over recent decades, the wider scientific community has
explored fractional-order differential operators, where β can be any real number. These expansions
have proven pivotal in various applications characterized by non-local and memory-dependent
behaviors, with examples including viscoelastic materials (Bagley & Torvik, 1983), anomalous
transport mechanisms (Gómez-Aguilar et al., 2016), and fractal media (Mandelbrot & Mandelbrot,
1982). Unlike conventional integer-order derivatives that measure the function’s instantaneous rate
of change and focus on the local vicinity, fractional-order derivatives (Tarasov, 2011) consider the
entire historical trajectory of the function.

∗First two authors contributed equally. †Correspondence to: Qiyu Kang <kang0080@e.ntu.edu.sg>.

1

https://github.com/zknus/ICLR2024-FROND

Published as a conference paper at ICLR 2024

We introduce the FRactional-Order graph Neural Dynamical network (FROND) framework, a new
approach that broadens the capabilities of traditional integer-order continuous GNNs by incorporating
fractional calculus. It naturally generalizes the integer-order derivative dβ/ dtβ in these GNNs to
accommodate any positive real number β. This modification gives FROND the ability to incorporate
memory-dependent dynamics for information propagation and feature updating, enabling refined
graph representations and improved performance potentially. Importantly, this technique assures at
least equivalent performance to integer-order models, as setting β to integer values reverts the models
to their traditional integer-order forms.

Several works like (Maskey et al., 2023) have combined fractional graph shift operators with integer-
order ordinary differential equations (ODEs). These studies are distinct from our research, wherein
we focus on incorporating time-fractional derivatives for updating graph node features, modeled
as a memory-inclusive dynamical process. Other works like (Liu et al., 2022) have used fractional
calculus in gradient propagation for the training process, which is different from leveraging fractional
differential equations (FDEs) in modeling the node feature updating. We provide a detailed discussion
of the differences between FROND and these works in Appendix A.

Many real-world graph datasets, such as the World Wide Web, the Internet, and various biological
and social networks, are known to exhibit scale-free hierarchical structures. These structures suggest
a pervasive self-similarity across different scales, hinting at an underlying fractal behavior (Song
et al., 2005; Kim et al., 2007; Masters, 2004). It has been well-established that dynamical processes
with self-similarity on such fractal media are more accurately described using FDEs. For instance, the
dispersion of heat or mass over these structures is best modeled using fractional diffusion equations
(Diaz-Diaz & Estrada, 2022). Further investigations have revealed a direct connection between the
fractal dimension of these structures and the order β in fractional derivatives dβ/ dtβ (Nigmatullin,
1992; Tarasov, 2011). This revelation births a compelling insight: the optimal β in our models, which
may differ from integers, can pave the way for enhanced node classification and potentially unearth
insights into the inherent “fractality” of graph datasets.

Main contributions. Our objective in this paper is to formulate a generalized fractional-order
continuous GNN framework. Our key contributions are summarized as follows:
• We propose a novel, generalized continuous GNN framework that incorporates non-local fractional

derivatives dβ/dtβ . This framework generalizes the prior class of integer-order continuous GNNs,
subsuming them as special instances with β setting as integers. This approach also lays the
groundwork for a diverse new class of GNNs that can accommodate a broad array of learnable
memory-dependent feature-updating processes.

• We provide an interpretation from the perspective of a non-Markovian graph random walk when
the feature-updating dynamics are inspired by the fractional heat diffusion process. Contrasting
with the Markovian random walk implicit in traditional integer-order graph neural diffusion
models whose convergence to the stationary equilibrium is exponentially swift, we establish that in
FROND, convergence follows a slow algebraic rate. This characteristic enhances FROND’s ability
to mitigate oversmoothing, as verified by our experimental results.

• We underscore the compatibility of FROND, emphasizing its capability to be seamlessly integrated
to augment the performance of existing integer-order continuous GNNs across diverse datasets.
Our exhaustive experiments, encompassing the fractional differential extension of (Chamberlain
et al., 2021c; Thorpe et al., 2022; Rusch et al., 2022; Song et al., 2022; Choi et al., 2023; Zhao
et al., 2023a), substantiate this claim. Through detailed ablation studies, we provide insights into
the choice of numerical schemes and parameters.

2 PRELIMINARIES

In this section, we briefly introduce fractional calculus and integer-order continuous GNNs. For a
comprehensive review of fractional calculus, readers are referred to Appendix B.

2.1 CAPUTO FRACTIONAL DERIVATIVE

The literature offers various fractional derivative definitions, notably by Riemann, Liouville, Chapman,
and Caputo (Tarasov, 2011). Our study leverages the Caputo fractional derivative, due to the reasons
listed in Appendix B.4. The traditional first-order derivative of a scalar function f(t) represents the

2

Published as a conference paper at ICLR 2024

local rate of change of the function at a point, defined as: df(t)
dt = lim∆t→0

f(t+∆t)−f(t)
∆t . Let F (s)

denote the Laplace transform of f(t), assumed to exist on [s0,∞) for some s0 ∈ R. Under certain
conditions (Korn & Korn, 2000), the Laplace transform of df(t)

dt is given by:

L
{

df(t)

dt

}
= sF (s)− f(0) (1)

The Caputo fractional derivative of order β ∈ (0, 1] for a function f(t) is defined as follows:

Dβ
t f(t) =

1

Γ(1− β)

∫ t

0

(t− τ)−βf ′(τ) dτ, (2)

where Γ(·) denotes the gamma function, and f ′(τ) is the first-order derivative of f . The broader
definition for any β > 0 is deferred to Appendix B. The Caputo fractional derivative inherently
integrates the entire history of the system through the integral term, emphasizing its non-local nature.
For s > max {0, s0}, the Laplace transform of the Caputo fractional derivative is given by (Diethelm,
2010)[Theorem 7.1]:

L
{
Dβ

t f(t)
}
= sβF (s)− sβ−1f(0). (3)

Comparing (1) and (3), it is evident that the Caputo derivative serves as a generalization of the
first-order derivative. The alteration in the exponent of s comes from the memory-dependent property
in (2). As β → 1, the Laplace transform of the Caputo fractional derivative converges to that of the
traditional first-order derivative. When β = 1, D1

t f = f ′ is uniquely determined through the inverse
Laplace transform (Cohen, 2007).

In summary, from the frequency domain using the Laplace transform, we observe that the Caputo
fractional derivative can be seen as a natural extension of the traditional first-order derivative. For
vector-valued functions, the fractional derivative is defined component-wise for each dimension.

2.2 INTEGER-ORDER CONTINUOUS GNNS

We denote an undirected graph as G = (V,W) without self-loops, where V is the set of |V| = N

nodes. The feature matrix X =
(
[x1]

⊺
, · · · , [xN]

⊺)⊺ ∈ RN×d consists of rows xi ∈ Rd as node
feature vectors and i is the node index. The N ×N matrix W := (Wij) has elements Wij indicating
the edge weight between the i-th and j-th node with Wij = Wji. The following integer-order
continuous GNNs leverage ODEs to facilitate information propagation amongst graph nodes, where
features evolve as X(t), starting from the initial condition X(0) = X.

GRAND: Inspired by the heat diffusion equation, GRAND (Chamberlain et al., 2021c) utilizes the
following nonlinear autonomous dynamical system:

dX(t)

dt
= (A(X(t))− I)X(t). (4)

where A(X(t)) ∈ RN×N is a learnable, time-variant attention matrix, calculated using the features
X(t), and I denotes the identity matrix. The feature update outlined in (4) is referred to as the
GRAND-nl version (due to the nonlinearity in A(X(t))). We define di =

∑n
j=1Wij and let D be a

diagonal matrix with Dii = di. The random walk Laplacian is then represented as L = I−WD−1.
In a simplified context, we employ the following linear dynamical system:

dX(t)

dt
= (WD−1 − I)X(t) = −LX(t). (5)

The feature update process in (5) is the GRAND-l version. For implementations of (5), one may
direct set WD−1 = A(X(0)) as a column-stochastic attention matrix, rather than using a plain
weight. Notably, in this time-invariant setting, the attention weight matrix, reliant on the initial node
features, stays unchanged throughout the feature evolution period.

GRAND++ (Thorpe et al., 2022) adds a source term to GRAND, enhancing learning in scenarios
with limited labeled nodes. GraphCON (Rusch et al., 2022) employs a second-order ODE, which
is equivalent to two first-order ODEs, drawing inspiration from oscillator systems. CDE (Zhao
et al., 2023a) incorporates convection-diffusion equations into GNNs to address heterophilic graph
challenges. GREAD (Choi et al., 2023) introduces a reaction term in the GRAND model, improving
its application to heterophilic graphs and formulating a diffusion-reaction equation within GNNs.
The detailed formulation for each model is presented in Appendix E.1 due to space constraints.

3

Published as a conference paper at ICLR 2024

3 FRACTIONAL-ORDER GRAPH NEURAL DYNAMICAL NETWORK

In this section, we introduce the FROND framework, a novel approach that augments traditional
integer-order continuous GNNs by incorporating fractional calculus. We elucidate the fractional coun-
terparts of several well-established integer-order continuous GNNs, including GRAND, GRAND++,
GraphCON, CDE, and GREAD, as referenced in Section 2.2. We provide a detailed study of the
fractional extension of GRAND, and present insights into the inherent memory mechanisms in our
framework through a random walk interpretation. Our theoretical findings suggest a potential mitiga-
tion of oversmoothing due to the model’s slow algebraic convergence to stationarity. Subsequently,
we outline the numerical FDE solvers required to implement FROND.

3.1 FRAMEWORK

Consider a graph G = (V,W) as defined in Section 2.2. Analogous to the implementation in
traditional integer-order continuous GNNs, a preliminary learnable encoder function φ : V → Rd that
maps each node to a feature vector can be applied. Stacking all the feature vectors together, we obtain
X ∈ RN×d. Employing the Caputo fractional derivative outlined in Section 2.1, the information
propagation and feature updating dynamics in FROND are characterized by the following FDE:

Dβ
t X(t) = F(W,X(t)), β > 0, (6)

where β denotes the fractional order of the derivative, and F is a dynamic operator on the graph like the
models presented in Section 2.2. The initial condition for (6) is set as X[⌈β⌉−1](0) = . . . = X(0) = X
consisting of the preliminary node features, with X[i](t) denoting the i-th order derivative and ⌈β⌉ is
the smallest integer not less than β, akin to the initial conditions seen in integer-order ODEs.1 Similar
to integer-order continuous GNNs, we set an integration time parameter T to get X(T). The final
node embeddings for downstream tasks are then decoded using a learnable decoder ψ(X(T)).

When β = 1, (6) reverts to the class of integer-order continuous GNNs, with the infinitesimal
variation of features dependent only on their present state. Conversely, when β < 1, the Caputo
fractional derivative (2) dictates that the updating process for features encompasses their entire history,
not just the present state. This paradigm facilitates memory-dependent dynamics in the framework.

For further insights into memory dependence, readers are directed to Section 3.3, which discusses
time discretization techniques for numerically solving the system. It illustrates how, akin to integer-
order neural ODE models, time consistently acts as an analog to the layer index and how the nonlocal
properties of fractional derivatives facilitate nontrivial dense or skip connections between layers. In
Section 3.2, when the dynamic operator F is designated as the diffusion process in (5), we offer
a memory-dependent non-Markovian random walk interpretation of the fractional graph neural
diffusion process. Here, as β → 1, the non-Markovian random walk increasingly detaches from
the path history, becoming a Markovian walk at β = 1, which is related to the normal diffusion
process (Thorpe et al., 2022). The parameter β provides flexibility to adjust the extent of memorized
dynamics embedded in the framework. From a geometric perspective, as discussed in Section 1, the
information propagation dynamics in fractal graph datasets might be more suitably described using
FDEs. Choosing a non-integer β could reveal the degree of fractality in graph datasets.

3.1.1 FROND MODEL EXAMPLES

When F in (6) is specified to the dynamics depicted in various integer-order continuous GNNs (cf.
Section 2.2), we formulate FROND GNN variants such as F-GRAND, F-GRAND++, F-GREAD,
F-CDE, and F-GraphCON, serving as fractional differential extensions of the original GNNs.

F-GRAND: Mirroring the GRAND model, the fractional-GRAND (F-GRAND) has two versions.
The F-GRAND-nl version employs a time-variant FDE as follows:

Dβ
t X(t) = (A(X(t))− I)X(t), 0 < β ≤ 1. (7)

1See Appendix B.3.2. We mainly consider β ∈ (0, 1] and the initial condition is X(0) = X.

4

Published as a conference paper at ICLR 2024

It is computed using X(t) and the attention mechanism derived from the Transformer model (Vaswani
et al., 2017). The entries of A(X(t)) = (a(xi,xj)) are given by:

a(xi,xj) = softmax

({
(WKx⊺i)

⊺WQx
⊺
j

d̄k

})
. (8)

In this formulation, WK and WQ are the learned matrices, and d̄k signifies a hyperparameter related
to the dimensionality of WK . In parallel, the F-GRAND-l version stands as the fractional differential
extension of (5):

Dβ
t X(t) = −LX(t), 0 < β ≤ 1. (9)

Recall that the initial condition for F-GRAND-nl and F-GRAND-l is X(0) = X due to β ∈ (0, 1].

F-GRAND++, F-GREAD, F-CDE, and F-GraphCON: Due to space constraints, we direct the
reader to Appendix E for detailed formulations. Succinctly, they represent the fractional differential
extensions of GRAND++, GraphCON, CDE, and GREAD. To highlight FROND’s compatibility and
its potential to enhance the performance of existing integer-order continuous GNNs across a variety
of datasets, exhaustive experiments are provided in Section 4 and Appendix E.

3.2 RANDOM WALK PERSPECTIVE OF F-GRAND-L

The established Markov interpretation of GRAND-l (5), as outlined in (Thorpe et al., 2022), aligns
with F-GRAND-l (9) when β = 1. We herein broaden this interpretation to encompass a non-
Markovian random walk that considers the walker’s complete path history when β is a non-integer,
thereby elucidating the memory effects inherent in FROND. In contrast to the Markovian walk, whose
distribution converges exponentially to equilibrium, our strategy assures algebraic convergence,
revealing F-GRAND-l’s efficacy in mitigating oversmoothing as evidenced in Section 4.3.

To begin, we discretize the time domain into time instants as tn = nσ, σ > 0, n = 0, 1, 2, . . . , where
σ is assumed to be small enough to ensure the validity of the approximation. Let R(tn) be a random
walk on the graph nodes {xj}Nj=1 that is not necessarily a Markov process and R(tn+1) may depend
on the path history (R(t0),R(t1), . . . ,R(tn)) of the random walker. For convenience, we introduce
the coefficients ck for k ≥ 1 and bn for n ≥ 0 from (Gorenflo et al., 2002), which are used later to
define the random walk transition probability:

ck(β) = (−1)k+1

(
β

k

)
=

∣∣∣∣∣
(
β

k

)∣∣∣∣∣ , bn(β) =

n∑
k=0

(−1)k
(
β

k

)
, (10)

where the generalized binomial coefficient
(
β
k

)
= Γ(β+1)

Γ(k+1)Γ(β−k+1) and the gamma function Γ(·) are
employed in the definition of the coefficients. The sequences ck and bn consist of positive numbers,
not greater than 1, decreasing strictly monotonically to zero (see supplementary material for details)
and satisfy

∑n
k=1 ck + bn = 1. Using these coefficients, we define the transition probabilities of the

random walk starting from xj0 as

P
(
R(tn+1) = xjn+1

∣∣R(t0) = xj0 ,R(t1) = xj1 , . . . ,R(tn) = xjn

)

=

c1 − σβ if staying at current location with jn+1 = jn,

σβ Wjnjn+1

djn
if jumping to neighboring nodes with jn+1 ̸= jn,

cn+1−k if revisiting historical positions with jn+1 = jk, 1 ≤ k ≤ n− 1,

bn if revisiting historical positions with jn+1 = j0.

(11)

This formulation integrates memory effects, considering the walker’s time, position, and path history.
The transition mechanism of the memory-inclusive random walk between tn and tn+1 is elucidated
as follows: Suppose the walker is at node jn at time tn, having a full path history (j0, j1, . . . , jn).
We generate a random number ρ ∈ [0, 1) uniformly, and divide the interval [0, 1) into adjacent
sub-intervals with lengths c1, c2, . . . , cn, bn. We further subdivide the first interval (with length c1)
into sub-intervals of lengths c1 − σβ and σβ .

1. If ρ is in the first interval with length c1, the walker either moves to a neighbor jn+1 = k

with probability σβ Wjnk

djn
or remains at the current position with probability c1 − σβ .

2. For ρ in subsequent intervals, the walker jumps to a previously visited node in the history
(j0, j1, . . . , jn−1), specifically, to jn+1−k if in ck, or to j0 if in bn.

5

Published as a conference paper at ICLR 2024

When β < 1, the random walk can, with positive probability, revisit its history, restricting exten-
sive drift. We denote P(R(tn)) as the probability column vector, with its j-th element given as
P(R(tn) = xj). Additionally, we specify iP(R(tn)) to indicate the situation where the random
walker initiates from the i-th node, i.e., R(0) = xi, with probability 1. In this case, the initial
probability vector iP(R(0)) is represented as a one-hot vector with the i-th entry marked as 1. Using
the technique from (Gorenflo et al., 2002), we can prove the following:
Theorem 1. Consider the random walk defined in (11), with the step size σ and number of steps
n. Under the conditions that n → ∞ and nσ = t, the limiting probability distribution P(t) :=
limn→∞ P(R(tn)) satisfies (9). In other words,

Dβ
t P(t) = −LP(t) (12)

Considering that initial conditions and dimensions affect the solutions of FDEs, P(t) and X(t) are
not equivalent. However, due to the linearity of FDEs, the following conclusion is straightforward:
Corollary 1. Under the conditions that n→ ∞ and nσ = t, we have limn→∞

∑
i iP(R(tn))xi =

X(t), i.e.,
∑

i iP(t)xi = X(t) with iP(t) := limn→∞ iP(R(tn)) , where X(t) is the solution to (9)
with the initial condition X(0) = X.
Remark 1. Theorem 1 and Corollary 1 relate F-GAND-l (9) to the non-Markovian random walk
in (11), illustrating memory dependence in FROND. As β → 1, this process reverts to the Marko-
vian random walk found in GRAND-l (Thorpe et al., 2022) in (13). This underscores the FROND
framework’s capability to apprehend more complex dynamics than integer-order continuous GNNs.

P
(
R(tn+1) = xjn+1

∣∣R(t0) = xj0 ,R(t1) = xj1 , . . . ,R(tn) = xjn

)
(13)

= P
(
R(tn+1) = xjn+1

∣∣R(tn) = xjn

)
=

{
1− σ if staying at current location with jn+1 = jn

σ
Wjnjn+1

djn
if jumping to neighbors with jn+1 ̸= jn

since we have that all these coefficients vanishing except c1 = 1, i.e.,
c1 = 1, lim

β→1
ck(β) = 0, k ≥ 2, lim

β→1
bn(β) = 0, n ≥ 1. (14)

3.2.1 OVERSMOOTHING MITIGATION OF F-GRAND-L COMPARED TO GRAND-L

The seminal research (Oono & Suzuki, 2020)[Corollary 3. and Remark 1] has highlighted that, when
considering a GNN as a layered dynamical system, oversmoothing is a broad expression of the
exponential convergence to stationary states that only retain information about graph connected
components and node degrees. Under certain conditions, the stationary distribution for the Markovian
random walk (13) is given by π = (d1∑N

j=1 dj
, . . . , dN∑N

j=1 dj
) (Thorpe et al., 2022), with an exponentially

rapid convergence rate ∥P(R(tn))− π⊺∥2 ∼ O(e−r′n) 2, where r′ > 0 relates to the eigenvalues of
the matrix L (Chung, 1997), and ∥ · ∥2 denotes the ℓ2 norm. This behavior extends to the continuous
limit, akin to a first-order linear ODE solution, exhibiting exponential convergence with some r > 0:

∥P(t)− π
⊺∥2 ∼ O(e−rt). (15)

In contrast, we next prove that the non-Markovian random walk (11) converges to the stationary
distribution at a slow algebraic rate, thereby helping to mitigate oversmoothing. As β → 0, the
convergence is expected to be arbitrarily slow. In real-world scenarios where we operate within a finite
horizon, this slower rate of convergence may be sufficient to alleviate oversmoothing, particularly
when it is imperative for a deep model to extract distinctive features instead of achieving exponentially
fast convergence to a stationary equilibrium.
Theorem 2. Under the assumption that the graph is strongly connected and aperiodic, the stationary
probability for the non-Markovian random walk (11), with 0 < β < 1, is still π, which is unique.
This mirrors the stationary probability of the Markovian random walk as defined by (13) when β = 1.
Notably, when β < 1, the convergence of the distribution (distinct from π) to π is algebraic:

∥P(t)− π
⊺∥2 ∼ Θ(t−β). (16)

Remark 2. Corollary 1 and Theorem 2 indicate that X(t) =
∑

i iP(t)xi, as the solution to F-
GRAND-l (9), converges to

∑
i π

⊺xi = π⊺∑
i xi at a slow algebraic rate since ∥iP(t)− π⊺∥2 ∼

Θ(t−β) for all i. Notably, π⊺∑
i xi forms a rank 1 invariant subspace under the dynamics of (9),

due to π being stationary. This underscores the difference in convergence rates, contrasting the slow
algebraic rate in our case with the fast exponential rate (Oono & Suzuki, 2020; Zhao et al., 2023b).

2We use the asymptotic order notations from (Notations, 2023) in this paper.

6

Published as a conference paper at ICLR 2024

3.3 SOLVING FROND

X(0) X(t1) X(t2) X(tn−1) X(tn) X(0) X(t1) X(t2) X(tn−1) X(tn)

memory window width K

Figure 1: Diagrams of fractional Adams–Bashforth–Moulton method with full (left) and short (right) memory.

The studies by (Chen et al., 2018b; Quaglino et al., 2019; Yan et al., 2018) introduce numerical
solvers specifically designed for integer-order neural ODE models. Our research, in contrast, engages
with fractional-order ODEs, entities inherently more intricate than integer-order ODEs. To address
the scenario where β is non-integer, we introduce the fractional explicit Adams–Bashforth–Moulton
solver, incorporating three variants employed in this study: the basic predictor discussed in this
section, the predictor-corrector elaborated in Appendix C.2, and the short memory principle
detailed in Appendix C.3. Additionally, we present one implicit L1 solver in Appendix C.4. These
methods exemplify how time still acts as a continuous analog to the layer index and elucidate how
memory dependence manifests as nontrivial dense or skip connections between layers (see Figs. 1
and 4), stemming from the non-local properties of fractional derivatives.

Basic Predictor: We first employ a preliminary numerical solver called “predictor” (Diethelm et al.,
2004) through time discretisation. Let h be a small positive discretization parameter. We have

PX
(k) =

⌈β⌉−1∑
j=0

tjk
j!
X[j](0) +

1

Γ(β)

k−1∑
j=0

µj,kF(W,X(j)), (17)

where µj,k = hβ

β

(
(k − j)β − (k − 1− j)β

)
, k denotes the discrete time index (iteration), and

tk = kh represents the discretized time steps. X(k) is the numerical approximation of X(tk). When
β = 1, this method simplifies to the Euler solver in (Chen et al., 2018b; Chamberlain et al., 2021c) as
µj,n ≡ h, yielding PX

(k) = X(k−1)+hF(W,X(k−1)). Thus, our basic predictor can be considered
as the fractional Euler method or fractional Adams–Bashforth method, which is a generalization of the
Euler method used in (Chen et al., 2018b; Chamberlain et al., 2021c). However, when β < 1, we need
to utilize the full memory {F(W,X(j))}k−1

j=0 . The block diagram in Fig. 1 shows the basic predictor
and the short memory variant, highlighting the inclusion of nontrivial dense or skip connections in
our framework. A more refined visualization is conveyed in Fig. 4, elucidating the manner in which
information propagates through layers and the graph’s spatial domain.

4 EXPERIMENTS

We execute a series of experiments to illustrate that continuous GNNs formulated within the FROND
framework using Dβ

t outperform their traditional counterparts based on integer-order derivatives.
Importantly, our primary aim is not to achieve state-of-the-art results, but rather to demonstrate the
additional effectiveness of the FROND framework when applied to existing integer-order continuous
GNNs. In the main paper, we detail the impressive results achieved by F-GRAND, particularly empha-
sizing its efficacy on tree-structured data, and F-CDE, highlighting its proficiency in managing large
heterophilic datasets. We also validate the slow algebraic convergence, as discussed in Theorem 2,
by constructing deeper GNNs with non-integer β < 1. To maintain consistency in the experiments
presented in the main paper, the basic predictor solver is used instead of other solvers when β < 1.

More Experiments In the Appendix: The Appendix D section provides additional details covering
various aspects such as experimental settings, described in Appendices D.1 to D.3, the computational
complexity of F-GRAND in Appendix D.6, and analysis of F-GRAND’s robustness against adversarial
attacks in Appendix D.9. Furthermore, results related to other FROND-based continuous GNNs
are extensively presented in the Appendix E. In the main paper, we utilize the basic predictor, as
delineated in (17), while the exploration of its variants is reserved for the Appendix D.5. Additional
insights into the optimal fractional-derivative order β and fractality in graph datasets are explored in
Section Appendix D.11.

7

Published as a conference paper at ICLR 2024

4.1 NODE CLASSIFICATION OF F-GRAND

Datasets and splitting. We utilize datasets with varied topologies, including citation networks
(Cora (McCallum et al., 2004), Citeseer (Sen et al., 2008), Pubmed (Namata et al., 2012)),
tree-structured datasets (Disease and Airport (Chami et al., 2019)), coauthor and co-purchasing
graphs (CoauthorCS (Shchur et al., 2018), Computer and Photo (McAuley et al., 2015)), and the
ogbn-arxiv dataset (Hu et al., 2020). We follow the same data splitting and pre-processing in (Chami
et al., 2019) for Disease and Airport datasets. Consistent with experiment settings in GRAND
(Chamberlain et al., 2021c), we use random splits for the largest connected component of each other
dataset. We also incorporate the large-scale Ogbn-Products dataset (Hu et al., 2021) to demonstrate
the scalability of the FROND framework, with the results displayed in Table 7.
Methods. For a comprehensive performance comparison, we select several prominent GNN models
as baselines, including GCN (Kipf & Welling, 2017), and GAT (Veličković et al., 2018). Given the
inclusion of tree-structured datasets, we also incorporate well-suited baselines: HGCN(Chami et al.,
2019) and GIL (Zhu et al., 2020b). To highlight the benefits of memorized dynamics in FROND,
we include GRAND (Chamberlain et al., 2021c) as a special case of F-GRAND with β = 1. In
line with (Chamberlain et al., 2021c), we examine two F-GRAND variants: F-GRAND-nl (7) and
F-GRAND-l (9). Graph rewiring is not explored in this study. Where available, results from the paper
(Chamberlain et al., 2021c) are used.

Table 1: Node classification results(%) for random train-val-test splits. The best and the second-best
results are highlighted in red and blue, respectively.

Method Cora Citeseer Pubmed CoauthorCS Computer Photo CoauthorPhy ogbn-arxiv Airport Disease

GCN 81.5±1.3 71.9±1.9 77.8±2.9 91.1±0.5 82.6±2.4 91.2±1.2 92.8±1.0 72.2±0.3 81.6±0.6 69.8±0.5
GAT 81.8±1.3 71.4±1.9 78.7±2.3 90.5±0.6 78.0±19.0 85.7±20.3 92.5±0.90 73.7±0.1 81.6±0.4 70.4±0.5

HGCN 78.7±1.0 65.8±2.0 76.4±0.8 90.6±0.3 80.6±1.8 88.2±1.4 90.8±1.5 59.6±0.4 85.4±0.7 89.9±1.1
GIL 82.1±1.1 71.1±1.2 77.8±0.6 89.4±1.5 – 89.6±1.3 – – 91.5±1.7 90.8±0.5

GRAND-l 83.6±1.0 73.4±0.5 78.8±1.7 92.9±0.4 83.7±1.2 92.3±0.9 93.5±0.9 71.9±0.2 80.5±9.6 74.5±3.4
GRAND-nl 82.3±1.6 70.9±1.0 77.5±1.8 92.4±0.3 82.4±2.1 92.4±0.8 91.4±1.3 71.2±0.2 90.9±1.6 81.0±6.7

F-GRAND-l 84.8±1.1 74.0±1.5 79.4±1.5 93.0±0.3 84.4±1.5 92.8±0.6 94.5±0.4 72.6±0.1 98.1±0.2 92.4±3.9
β for F-GRAND-l 0.9 0.9 0.9 0.7 0.98 0.9 0.6 0.7 0.5 0.6

F-GRAND-nl 83.2±1.1 74.7±1.9 79.2±0.7 92.9±0.4 84.1±0.9 93.1±0.9 93.9±0.5 71.4±0.3 96.1±0.7 85.5±2.5
β for F-GRAND-nl 0.9 0.9 0.4 0.6 0.85 0.8 0.4 0.7 0.1 0.7

Figure 2: oversmoothing mitigation.

Table 2: Graph classification results.
POL GOS

Feature Profile word2vec BERT Profile word2vec BERT
GraphSage 77.60±0.68 80.36±0.68 81.22±4.81 92.10±0.08 96.58±0.22 97.07±0.23
GCN 78.28±0.52 83.89±0.53 83.44±0.38 89.53±0.49 96.28±0.08 95.96±0.75
GAT 74.03±0.53 78.69±0.78 82.71±0.19 91.18±0.23 96.57±0.34 96.61±0.45

GRAND-l 77.83±0.37 86.57±1.13 85.97±0.74 96.11±0.26 97.04±0.55 96.77±0.34

F-GRAND-l 79.49±0.43 88.69±0.37 89.29±0.93 96.40±0.19 97.40±0.03 97.53±0.14

Table 3: Node classification accuracy of F-
GRAND-l under different value of β when time
T = 8.

β 0.1 0.3 0.5 0.7 0.9 1.0

Cora 74.80±0.42 77.0±0.98 79.60±0.91 81.56±0.30 82.68±0.64 82.37±0.59

Airport 97.09±0.87 95.80±2.03 91.66±6.34 84.36±8.04 78.73±6.33 78.88±9.67

Performance. The results for graph node classification are summarized in Table 1, which also report
the optimal β obtained via hyperparameter tuning. Consistent with our expectations, F-GRAND
surpasses GRAND across nearly all datasets, given that GRAND represents a special case of FROND
with β = 1. This underscores the consistent performance enhancement offered by the integration of
memorized dynamics. This advantage is particularly noticeable on tree-structured datasets such as
Airports and Disease, where F-GRAND markedly outperforms the baselines. For instance, F-GRAND-
l outperforms both GRAND and GIL by approximately 7% on the Airport dataset. Interestingly,
our experiments indicate a smaller β (signifying greater dynamic memory) is preferable for such
fractal-structured datasets, aligning with previous studies on FDEs in biological and chemical systems
(Nigmatullin, 1986; Ionescu et al., 2017). Further discussion on β and its relation to the fractal
dimension of graph datasets can be found in Section 4.4 and Appendix D.11.

8

Published as a conference paper at ICLR 2024

4.2 GRAPH CLASSIFICATION OF F-GRAND

We employ the Fake-NewsNet datasets (Dou et al., 2021), constructed from Politifact and Gossipcop
fact-checking data. More details can be found in the Appendix D.2. This dataset features three types of
node features: 768-dimensional BERT features, and 300-dimensional spaCy features, both extracted
using pre-trained models, and 10-dimensional profile features from Twitter accounts. The graphs in
the dataset exhibit a hierarchical tree structure. From Table 2, we observe that F-GRAND consistently
outperforms GRAND with a notable edge on the POL dataset.

4.3 OVERSMOOTHING OF F-GRAND

To validate that F-GRAND mitigates the oversmoothing issue and performs well with numerous
layers, we conducted an experiment using the basic predictor in the Adams Bashforth Moulton method
as defined in (17). This allows us to generate architectures of varying depths. In this context, we
utilize the fixed data splitting as described in (Chami et al., 2019). As illustrated in Fig. 2, optimal
performance on the Cora dataset is attained with a network depth of 64 layers. When compared to
GRAND-l, F-GRAND-l maintains a consistent performance level across all datasets as the number
of layers increases, with virtually no performance drop observed up to 128 layers. This observation
is consistent with our expectations, given that Theorem 2 predicts a slow algebraic convergence. In
contrast, GRAND exhibits a faster rate of performance degradation particularly on the Airport dataset.
Further details on oversmoothing mitigation are in Appendix D.7.

4.4 ABLATION STUDY: SELECTION OF β

In Table 3, we investigate the influence of β across various graph datasets. Notably, for the Cora
dataset, a larger β is optimal, whereas, for tree-structured data, a smaller β is preferable. This suggests
that the quantity of memorized dynamics should be tailored to the dataset’s topology, and a default
setting of memoryless graph diffusion with β = 1 may not be optimal. More comprehensive details
concerning the variations in β can be found in the appendix, specifically in Table 15.

4.5 MORE INTEGER-ORDER CONTINUOUS GNNS IN FROND FRAMEWORK

Our FROND framework can be seamlessly applied to various other integer-order continuous GNNs,
as elaborated in Appendix E. Specifically, here we outline the node classification results of FROND
based on the CDE model in Table 4. It is evident from the results that F-CDE enhances the perfor-
mance of the CDE model across almost all large heterophilic datasets. The optimal β is determined
through hyperparameter tuning. When β = 1, F-CDE seamlessly reverts to CDE, and the results
from the original paper are reported. Additionally, we conduct comprehensive experiments detailed
in Appendix E. The results for F-GRAND++, F-GREAD, and F-GraphCON are available in Ta-
ble 19, Table 23, and Table 25, respectively. Collectively, these results demonstrate that our FROND
framework can significantly bolster the performance of integer-order continuous GNNs, without
introducing any additional training parameters to the backbones.

Table 4: Node classification accuracy(%) of large heterophilic datasets
Model Roman-empire Wiki-cooc Minesweeper Questions Workers Amazon-ratings

CDE 91.64±0.28 97.99±0.38 95.50±5.23 75.17±0.99 80.70±1.04 47.63±0.43
F-CDE 93.06±0.55 98.73±0.68 96.04±0.25 75.17±0.99 82.68±0.86 49.01±0.56

β for F-CDE 0.9 0.6 0.6 1.0 0.4 0.1

5 CONCLUSION

We have introduced FROND, a novel graph learning framework that incorporates Caputo fractional
derivatives to capture long-term memory in the graph feature updating dynamics. This approach
has demonstrated superior performance compared to various traditional integer-order continuous
GNNs. The resulting framework represents a significant advancement in graph representation learning,
addressing key challenges in the field, such as oversmoothing. Our results highlight the potential of
fractional calculus in enabling more effective graph learning algorithms.

9

Published as a conference paper at ICLR 2024

ACKNOWLEDGMENTS AND DISCLOSURE OF FUNDING

This research is supported by the Singapore Ministry of Education Academic Research Fund Tier
2 grant MOE-T2EP20220-0002, and the National Research Foundation, Singapore and Infocomm
Media Development Authority under its Future Communications Research and Development Pro-
gramme. The computational work for this article was partially performed on resources of the National
Supercomputing Centre, Singapore (https://www.nscc.sg). Xuhao Li is supported by the National
Natural Science Foundation of China (Grant No. 12301491) and the Anhui Provincial Natural Science
Foundation (Grant No. 2208085QA02). To improve the readability, parts of this paper have been
grammatically revised using ChatGPT OpenAI (2022).

REFERENCES

Ricardo Almeida, Nuno RO Bastos, and M Teresa T Monteiro. Modeling some real phenomena
by fractional differential equations. Mathematical Methods in the Applied Sciences, 39(16):
4846–4855, 2016.

Uri Alon and Eran Yahav. On the bottleneck of graph neural networks and its practical implications.
In Proc. Int. Conf. Learn. Representations, 2021.

Harbir Antil, Ratna Khatri, Rainald Löhner, and Deepanshu Verma. Fractional deep neural network
via constrained optimization. Mach. Learn.: Sci. Technol., 2(1):015003, 2020.

Haitham Ashoor, Xiaowen Chen, Wojciech Rosikiewicz, Jiahui Wang, Albert Cheng, Ping Wang,
Yijun Ruan, and Sheng Li. Graph embedding and unsupervised learning predict genomic sub-
compartments from hic chromatin interaction data. Nat. Commun., 11, 2020.

Kendall Atkinson, Weimin Han, and David E Stewart. Numerical solution of ordinary differential
equations. John Wiley & Sons, 2011.

Pedro HC Avelar, Anderson R Tavares, Marco Gori, and Luis C Lamb. Discrete and continuous deep
residual learning over graphs. arXiv preprint arXiv:1911.09554, 2019.

Ronald L Bagley and PJ Torvik. A theoretical basis for the application of fractional calculus to
viscoelasticity. J. Rheology, 27(3):201–210, 1983.

Deyu Bo, Xiao Wang, Chuan Shi, and Huawei Shen. Beyond low-frequency information in graph con-
volutional networks. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35,
pp. 3950–3957, 2021.

Cristian Bodnar, Francesco Di Giovanni, Benjamin Paul Chamberlain, Pietro Liò, and Michael M.
Bronstein. Neural sheaf diffusion: A topological perspective on heterophily and oversmoothing in
GNNs. In Advances Neural Inf. Process. Syst., 2022.

Dirk Brockmann, Lars Hufnagel, and Theo Geisel. The scaling laws of human travel. Nature, 439
(7075):462–465, 2006.

Ben Chamberlain, James Rowbottom, Maria I Gorinova, Michael Bronstein, Stefan Webb, and
Emanuele Rossi. Grand: Graph neural diffusion. In Proc. Int. Conf. Mach. Learn., pp. 1407–1418,
2021a.

Benjamin Chamberlain, James Rowbottom, Davide Eynard, Francesco Di Giovanni, Xiaowen Dong,
and Michael Bronstein. Beltrami flow and neural diffusion on graphs. In Advances Neural Inf.
Process. Syst., pp. 1594–1609, 2021b.

Benjamin Paul Chamberlain, James Rowbottom, Maria Goronova, Stefan Webb, Emanuele Rossi,
and Michael M Bronstein. Grand: Graph neural diffusion. In Proc. Int. Conf. Mach. Learn., 2021c.

Ines Chami, Zhitao Ying, Christopher Ré, and Jure Leskovec. Hyperbolic graph convolutional neural
networks. In Advances Neural Inf. Process. Syst., 2019.

Jinyin Chen, Yangyang Wu, Xuanheng Xu, Yixian Chen, Haibin Zheng, and Qi Xuan. Fast gradient
attack on network embedding. ArXiv, 2018a.

10

Published as a conference paper at ICLR 2024

Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. Simple and deep graph
convolutional networks. In Proc. Int. Conf. Mach. Learn., pp. 1725–1735, 2020.

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David Duvenaud. Neural ordinary differential
equations. In Advances Neural Inf. Process. Syst., 2018b.

Eli Chien, Jianhao Peng, Pan Li, and Olgica Milenkovic. Adaptive universal generalized pagerank
graph neural network. arXiv preprint arXiv:2006.07988, 2020.

Jeongwhan Choi, Seoyoung Hong, Noseong Park, and Sung-Bae Cho. Gread: Graph neural reaction-
diffusion networks. In Proc. Int. Conf. Mach. Learn., 2023.

Fan RK Chung. Spectral graph theory, volume 92. American Mathematical Soc., 1997.

Alan M. Cohen. Inversion Formulae and Practical Results, pp. 23–44. Springer US, Boston, MA,
2007.

Bernard D Coleman and Walter Noll. Foundations of linear viscoelasticity. Rev. Modern Phys., 33
(2):239, 1961.

Weihua Deng. Short memory principle and a predictor–corrector approach for fractional differential
equations. J. Comput. Appl. Math., 206(1):174–188, 2007.

Francesco Di Giovanni, James Rowbottom, Benjamin P Chamberlain, Thomas Markovich, and
Michael M Bronstein. Graph neural networks as gradient flows. arXiv preprint arXiv:2206.10991,
2022.

Francesco Di Giovanni, James Rowbottom, Benjamin Paul Chamberlain, Thomas Markovich, and
Michael M Bronstein. Understanding convolution on graphs via energies. Tran. Mach. Learn. Res.,
2023.

Fernando Diaz-Diaz and Ernesto Estrada. Time and space generalized diffusion equation on
graph/networks. Chaos, Solitons and Fractals, 156:111791, 2022.

Kai Diethelm. The analysis of fractional differential equations: an application-oriented exposition
using differential operators of Caputo type, volume 2004. Springer, 2010.

Kai Diethelm and Neville J Ford. Analysis of fractional differential equations. J. Math. Anal. Appl.,
265(2):229–248, 2002.

Kai Diethelm, Neville J Ford, and Alan D Freed. Detailed error analysis for a fractional adams
method. Numer. Algorithms, 36:31–52, 2004.

Yingtong Dou, Kai Shu, Congying Xia, Philip S. Yu, and Lichao Sun. User preference-aware fake
news detection. In Proc. Int. ACM SIGIR Conf. Res. Develop. Inform. Retrieval, 2021.

Jian Du, Shanghang Zhang, Guanhang Wu, José M. F. Moura, and Soummya Kar. Topology adaptive
graph convolutional networks. ArXiv, abs/1710.10370, 2017.

Lun Du, Xiaozhou Shi, Qiang Fu, Xiaojun Ma, Hengyu Liu, Shi Han, and Dongmei Zhang. Gbk-
gnn: Gated bi-kernel graph neural networks for modeling both homophily and heterophily. In
Proceedings of the ACM Web Conference 2022, pp. 1550–1558, 2022.

Emilien Dupont, Arnaud Doucet, and Yee Whye Teh. Augmented neural odes. In Advances Neural
Inf. Process. Syst., pp. 1–11, 2019.

Jiarui Feng, Yixin Chen, Fuhai Li, Anindya Sarkar, and Muhan Zhang. How powerful are k-hop
message passing graph neural networks. Advances in Neural Information Processing Systems, 35:
4776–4790, 2022.

Guang-hua Gao and Zhi-zhong Sun. A compact finite difference scheme for the fractional sub-
diffusion equations. Journal of Computational Physics, 230(3):586–595, 2011.

Hongyang Gao and Shuiwang Ji. Graph u-nets. In Proc. Int. Conf. Mach. Learn., pp. 2083–2092,
2019.

11

Published as a conference paper at ICLR 2024

José Francisco Gómez-Aguilar, Margarita Miranda-Hernández, MG López-López, Victor Manuel
Alvarado-Martínez, and Dumitru Baleanu. Modeling and simulation of the fractional space-time
diffusion equation. Commun. Nonlinear Sci. Numer. Simul., 30(1-3):115–127, 2016.

Rudolf Gorenflo and Francesco Mainardi. Fractional diffusion processes: probability distributions
and continuous time random walk. In Process. Long-Range Correlations: Theory Appl., pp.
148–166. Springer, 2003.

Rudolf Gorenflo, Francesco Mainardi, Daniele Moretti, and Paolo Paradisi. Time fractional diffusion:
a discrete random walk approach. Nonlinear Dynamics, 29:129–143, 2002.

Alessio Gravina, Davide Bacciu, and Claudio Gallicchio. Anti-symmetric dgn: A stable architecture
for deep graph networks. In Proc. Int. Conf. Learn. Representations, 2022.

Ling Guo, Hao Wu, Xiaochen Yu, and Tao Zhou. Monte carlo fpinns: Deep learning method for
forward and inverse problems involving high dimensional fractional partial differential equations.
Comput. Methods Appl. Mechanics Eng., 400:115523, 2022.

Kyle B Gustafson, Basil S Bayati, and Philip A Eckhoff. Fractional diffusion emulates a human
mobility network during a simulated disease outbreak. Frontiers Ecology Evol., 5:35, 2017.

Benjamin Gutteridge, Xiaowen Dong, Michael M Bronstein, and Francesco Di Giovanni. Drew:
Dynamically rewired message passing with delay. In Proc. Int. Conf. Mach. Learn., pp. 12252–
12267, 2023.

Eldad Haber and Lars Ruthotto. Stable architectures for deep neural networks. Inverse Problems, 34
(1):1–23, December 2017.

William L. Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large graphs.
In Advances Neural Inf. Process. Syst., 2017.

Andi Han, Dai Shi, Lequan Lin, and Junbin Gao. From continuous dynamics to graph neural
networks: Neural diffusion and beyond. arXiv preprint arXiv:2310.10121, 2023.

Philip Hartman. Ordinary differential equations. SIAM, 2002.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proc. Conf. Comput. Vision Pattern Recognition, 2016.

Roger A Horn and Charles R Johnson. Matrix analysis. Cambridge university press, New York,
2012.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele
Catasta, and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs.
arXiv:2005.00687, 2020.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs, 2021.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected
convolutional networks. In Proc. Conf. Comput. Vision Pattern Recognition, 2017.

Hussain Hussain, Meng Cao, Sandipan Sikdar, Denis Helic, Elisabeth Lex, Markus Strohmaier, and
Roman Kern. Adversarial inter-group link injection degrades the fairness of graph neural networks.
arXiv preprint arXiv:2209.05957, 2022.

C Ionescu, A Lopes, Dana Copot, JA Tenreiro Machado, and Jason HT Bates. The role of fractional
calculus in modeling biological phenomena: A review. Commun. Nonlinear Sci. Numer. Simul.,
51:141–159, 2017.

Rana Javadi, Hamid Mesgarani, Omid Nikan, and Zakieh Avazzadeh. Solving fractional order
differential equations by using fractional radial basis function neural network. Symmetry, 15(6):
1275, 2023.

12

Published as a conference paper at ICLR 2024

Bangti Jin, Buyang Li, and Zhi Zhou. Correction of high-order bdf convolution quadrature for
fractional evolution equations. SIAM J. Sci. Comput., 39(6):A3129–A3152, 2017.

Wei Jin, Yao Ma, Xiaorui Liu, Xianfeng Tang, Suhang Wang, and Jiliang Tang. Graph structure
learning for robust graph neural networks. In Proc. Int. Conf. Knowl. Discovery Data Mining, pp.
66–74, 2020.

Qiyu Kang, Yang Song, Qinxu Ding, and Wee Peng Tay. Stable neural ODE with Lyapunov-stable
equilibrium points for defending against adversarial attacks. In Advances Neural Inf. Process. Syst.,
2021.

Qiyu Kang, Kai Zhao, Yang Song, Sijie Wang, and Wee Peng Tay. Node embedding from neural
Hamiltonian orbits in graph neural networks. In Proc. International Conference on Machine
Learning, pp. 15786–15808, 2023.

Qiyu Kang, Kai Zhao, Yang Song, Yihang Xie, Yanan Zhao, Sijie Wang, Rui She, and Wee Peng Tay.
Coupling graph neural networks with fractional order continuous dynamics: A robustness study.
In Proc. AAAI Conference on Artificial Intelligence, Vancouver, Canada, 2024.

JS Kim, K-I Goh, G Salvi, E Oh, B Kahng, and D Kim. Fractality in complex networks: Critical and
supercritical skeletons. Physical Review E, 75(1):016110, 2007.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In Proc. Int. Conf. Learn. Representations, 2017.

Granino Arthur Korn and Theresa M Korn. Mathematical handbook for scientists and engineers:
definitions, theorems, and formulas for reference and review. Courier Corporation, 2000.

Diego Krapf. Mechanisms underlying anomalous diffusion in the plasma membrane. Current Topics
Membranes, 75:167–207, 2015.

Guohao Li, Matthias Muller, Ali Thabet, and Bernard Ghanem. Deepgcns: Can gcns go as deep as
cnns? In Proc. Int. Conf. Learn. Representations, pp. 9267–9276, 2019.

Guohao Li, Chenxin Xiong, Ali Thabet, and Bernard Ghanem. Deepergcn: All you need to train
deeper gcns. arXiv preprint arXiv:2006.07739, 2020a.

Xiang Li, Renyu Zhu, Yao Cheng, Caihua Shan, Siqiang Luo, Dongsheng Li, and Weining Qian.
Finding global homophily in graph neural networks when meeting heterophily. In International
Conference on Machine Learning, pp. 13242–13256. PMLR, 2022.

Yaxin Li, Wei Jin, Han Xu, and Jiliang Tang. Deeprobust: A pytorch library for adversarial attacks
and defenses. arXiv preprint arXiv:2005.06149, 2020b.

Derek Lim, Felix Hohne, Xiuyu Li, Sijia Linda Huang, Vaishnavi Gupta, Omkar Bhalerao, and
Ser Nam Lim. Large scale learning on non-homophilous graphs: New benchmarks and strong
simple methods. Advances in Neural Information Processing Systems, 34:20887–20902, 2021.

Zijian Liu, Yaning Wang, Yang Luo, and Chunbo Luo. A regularized graph neural network based on
approximate fractional order gradients. Mathematics, 10(8):1320, 2022.

Sitao Luan, Chenqing Hua, Qincheng Lu, Jiaqi Zhu, Mingde Zhao, Shuyuan Zhang, Xiao-Wen
Chang, and Doina Precup. Revisiting heterophily for graph neural networks. Advances in neural
information processing systems, 35:1362–1375, 2022.

Chunwan Lv and Chuanju Xu. Error analysis of a high order method for time-fractional diffusion
equations. SIAM J. Sci. Comput., 38(5):A2699–A2724, 2016.

J Tenreiro Machado, Virginia Kiryakova, and Francesco Mainardi. Recent history of fractional
calculus. Communications in nonlinear science and numerical simulation, 16(3):1140–1153, 2011.

13

Published as a conference paper at ICLR 2024

Benoit B Mandelbrot and Benoit B Mandelbrot. The fractal geometry of nature, volume 1. WH
freeman New York, 1982.

Sohir Maskey, Raffaele Paolino, Aras Bacho, and Gitta Kutyniok. A fractional graph laplacian
approach to oversmoothing. arXiv preprint arXiv:2305.13084, 2023.

Barry R Masters. Fractal analysis of the vascular tree in the human retina. Annu. Rev. Biomed. Eng.,
6:427–452, 2004.

Julian McAuley, Christopher Targett, Qinfeng Shi, and Anton van den Hengel. Image-based rec-
ommendations on styles and substitutes. In Proc. Int. ACM SIGIR Conf. Res. Develop. Inform.
Retrieval, pp. 43–52, 2015.

Andrew McCallum, Kamal Nigam, Jason D. M. Rennie, and Kristie Seymore. Automating the
construction of internet portals with machine learning. Inf. Retrieval, 3:127–163, 2004.

Federico Monti, Davide Boscaini, Jonathan Masci, Emanuele Rodola, Jan Svoboda, and Michael M
Bronstein. Geometric deep learning on graphs and manifolds using mixture model cnns. In Proc.
Conf. Comput. Vision Pattern Recognition, pp. 5115–5124, 2017.

Galileo Mark Namata, Ben London, Lise Getoor, and Bert Huang. Query-driven active surveying for
collective classification. In Workshop Mining Learn. Graphs, 2012.

Ravil’Rashidovich Nigmatullin. Fractional integral and its physical interpretation. Theoretical and
Mathematical Physics, 90(3):242–251, 1992.

RR Nigmatullin. The realization of the generalized transfer equation in a medium with fractal
geometry. Physica status solidi (b), 133(1):425–430, 1986.

Bachmann–Landau Order Notations. Big o notation, 2023. URL https://en.wikipedia.
org/wiki/Big_O_notation. Accessed: Sep 1, 2023.

Kenta Oono and Taiji Suzuki. Graph neural networks exponentially lose expressive power for node
classification. In Proc. Int. Conf. Learn. Representations, 2020.

OpenAI. Chatgpt-4, 2022. Available at: https://www.openai.com (Accessed: 10 April 2024).

Guofei Pang, Lu Lu, and George Em Karniadakis. fpinns: Fractional physics-informed neural
networks. SIAM J. Sci. Comput., 41(4):A2603–A2626, 2019.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. In Advances Neural Inf. Process. Syst., 2017.

Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang. Geom-gcn: Geometric
graph convolutional networks. arXiv preprint arXiv:2002.05287, 2020.

Igor Podlubny. Fractional-order systems and fractional-order controllers. Institute of Experimental
Physics, Slovak Academy of Sciences, Kosice, 12(3):1–18, 1994.

Igor Podlubny. Fractional Differential Equations. Academic Press, 1999.

Michael Poli, Stefano Massaroli, Junyoung Park, Atsushi Yamashita, Hajime Asama, and Jinkyoo
Park. Graph neural ordinary differential equations. arXiv preprint arXiv:1911.07532, 2019.

Alessio Quaglino, Marco Gallieri, Jonathan Masci, and Jan Koutník. Snode: Spectral discretization
of neural odes for system identification. In Proc. Int. Conf. Learn. Representations, 2019.

Ahmed Gomaa Radwan, Ahmed S Elwakil, and Ahmed M Soliman. Fractional-order sinusoidal
oscillators: design procedure and practical examples. IEEE Tran. Circuits and Syst., 55(7):
2051–2063, 2008.

T Konstantin Rusch, Ben Chamberlain, James Rowbottom, Siddhartha Mishra, and Michael Bronstein.
Graph-coupled oscillator networks. In Proc. Int. Conf. Mach. Learn., 2022.

14

https://en.wikipedia.org/wiki/Big_O_notation
https://en.wikipedia.org/wiki/Big_O_notation
https://www.openai.com

Published as a conference paper at ICLR 2024

Enrico Scalas, Rudolf Gorenflo, and Francesco Mainardi. Fractional calculus and continuous-time
finance. Physica A: Statistical Mechanics and its Applications, 284(1-4):376–384, 2000.

Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-Rad.
Collective classification in network data. AI Magazine, 29(3):93, Sep. 2008.

Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan Günnemann. Pitfalls
of graph neural network evaluation. Relational Representation Learning Workshop, Advances
Neural Inf. Process. Syst.,, 2018.

Rui She, Qiyu Kang, Sijie Wang, Wee Peng Tay, Yong Liang Guan, Diego Navarro Navarro, and
Andreas Hartmannsgruber. Image patch-matching with graph-based learning in street scenes. IEEE
Trans. Image Process., 32:3465–3480, 2023a.

Rui She, Qiyu Kang, Sijie Wang, Yuán-Ruì Yáng, Kai Zhao, Yang Song, and Wee Peng Tay.
Robustmat: Neural diffusion for street landmark patch matching under challenging environments.
IEEE Trans. Image Process., 2023b.

Rui She, Qiyu Kang, Sijie Wang, Wee Peng Tay, Kai Zhao, Yang Song, Tianyu Geng, Yi Xu,
Diego Navarro Navarro, and Andreas Hartmannsgruber. PointDifformer: Robust point cloud
registration with neural diffusion and transformer. IEEE Transactions on Geoscience and Remote
Sensing, 62:1 – 15, 2024a. doi: 10.1109/TGRS.2024.3351286.

Rui She, Sijie Wang, Qiyu Kang, Kai Zhao, Yang Song, Wee Peng Tay, Tianyu Geng, and Xingchao
Jian. PosDiffNet: Positional neural diffusion for point cloud registration in a large field of view
with perturbations. In Proc. AAAI Conference on Artificial Intelligence, Vancouver, Canada, 2024b.

Chaoming Song, Shlomo Havlin, and Hernan A Makse. Self-similarity of complex networks. Nature,
433(7024):392–395, 2005.

Chaoming Song, Lazaros K Gallos, Shlomo Havlin, and Hernán A Makse. How to calculate the
fractal dimension of a complex network: the box covering algorithm. J. Stat. Mech. Theory Exp.,
2007(03):P03006, 2007.

Yang Song, Qiyu Kang, Sijie Wang, Kai Zhao, and Wee Peng Tay. On the robustness of graph neural
diffusion to topology perturbations. In Advances Neural Inf. Process. Syst., 2022.

Didier Sornette. Critical phenomena in natural sciences: chaos, fractals, selforganization and
disorder: concepts and tools. Springer Science & Business Media, 2006.

Zhi-zhong Sun and Xiaonan Wu. A fully discrete difference scheme for a diffusion-wave system.
Applied Numerical Mathematics, 56(2):193–209, 2006.

Vasily E Tarasov. Fractional dynamics: applications of fractional calculus to dynamics of particles,
fields and media. Springer Science & Business Media, 2011.

Matthew Thorpe, Hedi Xia, Tan Nguyen, Thomas Strohmer, Andrea Bertozzi, Stanley Osher, and
Bao Wang. Grand++: Graph neural diffusion with a source term. In Proc. Int. Conf. Learn.
Representations, 2022.

WenYi Tian, Han Zhou, and Weihua Deng. A class of second order difference approximations for
solving space fractional diffusion equations. Math. Comput., 84(294):1703–1727, 2015.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In Proc. Int. Conf. Learn. Representations, pp. 1–12, 2018.

Jihong Wang, Minnan Luo, Fnu Suya, Jundong Li, Zijiang Yang, and Qinghua Zheng. Scalable attack
on graph data by injecting vicious nodes. Data Mining Knowl. Discovery, pp. 1 – 27, 2020.

Shupeng Wang, Hui Zhang, and Xiaoyun Jiang. Fractional physics-informed neural networks for
time-fractional phase field models. Nonlinear Dyn., 110(3):2715–2739, 2022a.

15

Published as a conference paper at ICLR 2024

Sijie Wang, Qiyu Kang, Rui She, Wee Peng Tay, Andreas Hartmannsgruber, and Diego Navarro
Navarro. RobustLoc: Robust camera pose regression in challenging driving environments. In Proc.
AAAI Conference on Artificial Intelligence, Feb. 2023.

Yuelin Wang, Kai Yi, Xinliang Liu, Yu Guang Wang, and Shi Jin. Acmp: Allen-cahn message
passing with attractive and repulsive forces for graph neural networks. In Proc. Int. Conf. Learn.
Representations, 2022b.

Marcin Waniek, Tomasz P. Michalak, Michael J. Wooldridge, and Talal Rahwan. Hiding individuals
and communities in a social network. Nature Human Behaviour, 2(1):139–147, 2018.

Ee Weinan. A proposal on machine learning via dynamical systems. Commun. Math. Statist., 1(5):
1–11, 2017.

Wikipedia. Hardy–littlewood tauberian theorem, 2023. URL https://en.wikipedia.org/
wiki/Hardy%E2%80%93Littlewood_Tauberian_theorem. Accessed: Sep 1, 2023.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and Philip S. Yu. A
comprehensive survey on graph neural networks. IEEE Trans. Neural Netw. Learn. Syst., 32(1):
4–24, 2021.

Louis-Pascal Xhonneux, Meng Qu, and Jian Tang. Continuous graph neural networks. In Proc. Int.
Conf. Mach. Learn., pp. 10432–10441, 2020.

Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi, and Stefanie
Jegelka. Representation learning on graphs with jumping knowledge networks. In Proc. Int. Conf.
Mach. Learn., pp. 5453–5462, 2018.

Hanshu Yan, Jiawei Du, Vincent YF Tan, and Jiashi Feng. On robustness of neural ordinary
differential equations. In Advances Neural Inf. Process. Syst., pp. 1–13, 2018.

Yujun Yan, Milad Hashemi, Kevin Swersky, Yaoqing Yang, and Danai Koutra. Two sides of the
same coin: Heterophily and oversmoothing in graph convolutional neural networks. In 2022 IEEE
International Conference on Data Mining (ICDM), pp. 1287–1292. IEEE, 2022.

Xiang Yue, Zhen Wang, Jingong Huang, Srinivasan Parthasarathy, Soheil Moosavinasab, Yungui
Huang, Simon M Lin, Wen Zhang, Ping Zhang, and Huan Sun. Graph embedding on biomedical
networks: methods, applications and evaluations. Bioinformatics, 36(4):1241–1251, 2019.

Santos B Yuste and Luis Acedo. An explicit finite difference method and a new von neumann-type
stability analysis for fractional diffusion equations. SIAM Journal on Numerical Analysis, 42(5):
1862–1874, 2005.

Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor Prasanna. Graph-
saint: Graph sampling based inductive learning method, 2020.

Ziwei Zhang, Peng Cui, and Wenwu Zhu. Deep learning on graphs: A survey. IEEE Trans. Knowl.
Data Eng., 34(1):249–270, Jan 2022.

Kai Zhao, Qiyu Kang, Yang Song, Rui She, Sijie Wang, and Wee Peng Tay. Graph neural convection-
diffusion with heterophily. In Proc. Inter. Joint Conf. Artificial Intell., Macao, China, 2023a.

Kai Zhao, Qiyu Kang, Yang Song, Rui She, Sijie Wang, and Wee Peng Tay. Adversarial robustness
in graph neural networks: A Hamiltonian energy conservation approach. In Advances in Neural
Information Processing Systems, New Orleans, USA, 2023b.

Qinkai Zheng, Yixiao Fei, Yanhao Li, Qingmin Liu, Minhao Hu, and Qibo Sun. Kdd cup 2020
ml track 2 adversarial attacks and defense on academic graph 1st place solution, 2022. URL
https://github.com/Stanislas0/KDD_CUP_2020_MLTrack2_SPEIT. Accessed:
May 1, 2022.

Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu, and Danai Koutra. Beyond
homophily in graph neural networks: Current limitations and effective designs. Advances in neural
information processing systems, 33:7793–7804, 2020a.

16

https://en.wikipedia.org/wiki/Hardy%E2%80%93Littlewood_Tauberian_theorem
https://en.wikipedia.org/wiki/Hardy%E2%80%93Littlewood_Tauberian_theorem
https://github.com/Stanislas0/KDD_CUP_2020_MLTrack2_SPEIT

Published as a conference paper at ICLR 2024

Jiong Zhu, Ryan A Rossi, Anup Rao, Tung Mai, Nedim Lipka, Nesreen K Ahmed, and Danai Koutra.
Graph neural networks with heterophily. In Proceedings of the AAAI conference on artificial
intelligence, volume 35, pp. 11168–11176, 2021.

Shichao Zhu, Shirui Pan, Chuan Zhou, Jia Wu, Yanan Cao, and Bin Wang. Graph geometry interaction
learning. In Advances Neural Inf. Process. Syst., 2020b.

Juntang Zhuang, Nicha Dvornek, Xiaoxiao Li, and James S Duncan. Ordinary differential equations
on graph networks. 2019.

Xu Zou, Qinkai Zheng, Yuxiao Dong, Xinyu Guan, Evgeny Kharlamov, Jialiang Lu, and Jie Tang.
Tdgia: Effective injection attacks on graph neural networks. In Proc. Int. Conf. Knowl. Discovery
Data Mining, pp. 2461–2471, 2021.

Daniel Zügner and Stephan Günnemann. Adversarial attacks on graph neural networks via meta
learning. In Proc. Int. Conf. Learn. Representations, 2019.

Daniel Zügner, Amir Akbarnejad, and Stephan Günnemann. Adversarial attacks on neural networks
for graph data. In Proc. Int. Conf. Knowl. Discovery Data Mining, 2018.

17

Published as a conference paper at ICLR 2024

This appendix complements the main body of our paper, providing additional details and supporting
evidence for the assertions made therein. The structure of this document is as follows:

1. We discuss related work in Appendix A.

2. We offer a concise review of fractional calculus in Appendix B.

3. We include more solver details and variants in Appendix C.

4. We present dataset statistics, experimental settings, and additional experimental results in
Appendix D.

5. We introduce more dynamics within the FROND framework in Appendix E.

6. We provide proofs for all theoretical assertions made in the main paper in Appendix F.

7. We discuss the limitations of our work and its broader impact in the final section of this
supplementary material.

A RELATED WORK

Fractional Calculus and Its Applications

The field of fractional calculus has seen a notable surge in interest recently due to its wide-ranging
applications across various domains. These include, but are not limited to, numerical analysis
(Yuste & Acedo, 2005), viscoelastic materials (Coleman & Noll, 1961), population growth models
(Almeida et al., 2016), control theory (Podlubny, 1994), signal processing (Machado et al., 2011),
financial mathematics (Scalas et al., 2000), and particularly in the representation of porous and fractal
phenomena (Nigmatullin, 1986; Mandelbrot & Mandelbrot, 1982; Ionescu et al., 2017). Within these
contexts, FDEs have been developed as a powerful extension to the conventional integer-ordered
differential equations, offering a resilient mathematical framework for system analysis (Diethelm &
Ford, 2002). To illustrate, in studies related to diffusion processes, researchers have utilized fractional
calculus for delineating various natural and synthetic systems, from protein diffusion in cellular
membranes (Krapf, 2015), to animal migration patterns (Brockmann et al., 2006), human mobility
networks (Gustafson et al., 2017), and even biological phenomena pertinent to respiratory tissues
and neuroscience (Ionescu et al., 2017). Interestingly, the occurrence of subdiffusion, as modeled by
FDEs, has been observed in scenarios where diffusing entities encounter intermittent obstructions
due to the complex geometrical structure or interaction dynamics of the environment (Diaz-Diaz &
Estrada, 2022; Sornette, 2006).

Within the realm of deep learning, (Liu et al., 2022) proposes a novel approach to GNN parameter
optimization using the fractional derivative. This marks a significant shift from the conventional
integer-order derivative employed in optimization algorithms like SGD or Adam (Kingma & Ba,
2014) with respect to the weights. The essence of their work fundamentally differs from ours, which
focuses on the fractional-order evolution of node embeddings, not gradient optimization. A detailed
examination of the study by (Liu et al., 2022) is pivotal as it adopts fractional derivatives instead
of the standard first-order derivatives during the weight updating phase of a GNN in the gradient
descent. Specifically, attention is drawn to equation (16) in (Liu et al., 2022), elucidating that the
fractional derivative is operational on the loss function. This stands in stark contrast to the FROND
framework proposed in this work. As delineated in equation (6) of our paper, the fractional derivative
is applied to the evolving node feature, representing an implementation of a fractional-order feature
updating process, thereby showcasing a clear distinction in the application of fractional derivatives.

Additionally, (Antil et al., 2020) incorporates insights from fractional calculus and its L1 approx-
imation of the fractional derivative to craft a densely connected neural network. Their aim is to
adeptly handle non-smooth data and counteract the vanishing gradient problem. While our research
operates within a similar sphere, we have introduced fractional calculus into integer-order continuous
GNNs. Our work examines the potential of fractional derivatives in node embedding evolution to
address the oversmoothing issue and establishes a connection to non-Markovian dynamic processes.
Our framework paves the way for a new class of GNNs, enabling a wide spectrum of learnable
feature-updating processes influenced by memory effects.

From the perspective of physics-informed machine learning, another line of research is dedicated
to crafting neural networks rooted in physical laws to solve fractional PDEs. A pioneering work

18

Published as a conference paper at ICLR 2024

in this domain is the Fractional Physics Informed Neural Networks (fPINNs) (Pang et al., 2019).
Subsequent research, such as (Guo et al., 2022; Javadi et al., 2023; Wang et al., 2022a), has evolved
in this direction. It is worth noting that this line of research is starkly different from our problem
formulation.

Integer-Order Continuous GNNs

Recent research has illuminated a fascinating intersection between differential equations and neural
networks. The concept of continuous dynamical systems as a framework for deep learning has
been initially explored by (Weinan, 2017). The seminal work of (Chen et al., 2018b) introduces
neural ODEs with open-source solvers to model continuous residual layers, which has subsequently
been applied to the field of GNNs. By utilizing neural ODEs, we can align the inputs and outputs
of a neural network with specific physical laws, enhancing the network’s explainability (Weinan,
2017; Chamberlain et al., 2021c). Additionally, separate advancements in this domain have led to
improvements in neural network performance (Dupont et al., 2019), robustness(Yan et al., 2018;
Kang et al., 2021), and gradient stability (Haber & Ruthotto, 2017; Gravina et al., 2022). In practical
applications, neural ODEs are demonstrating superior performance (She et al., 2024a;b; 2023b; Wang
et al., 2023; She et al., 2023a). In a similar vein, (Avelar et al., 2019) models continuous residual
layers in GCN, leveraging neural ODE solvers to produce output. Further, the work of (Poli et al.,
2019) proposes a model that considers a continuum of GNN layers, merging discrete topological
structures and differential equations in a manner compatible with various static and autoregressive
GNN models. The study (Zhuang et al., 2019) introduces GODE, which enables the modeling of
continuous diffusion processes on graphs. It also suggests that the oversmoothing issue in GNNs may
be associated with the asymptotic stability of ODEs. Recently, GraphCON (Rusch et al., 2022) adopts
the coupled oscillator model that preserves the graph’s Dirichlet energy over time and mitigates the
oversmoothing problem. In (Chamberlain et al., 2021a), the authors modeled information propagation
as a diffusion process of a substance from regions of higher to lower concentration. The Beltrami
diffusion model is utilized in (Chamberlain et al., 2021b; Song et al., 2022) to enhance rewiring and
improve the robustness of the graph. The study by (Bodnar et al., 2022) introduces general sheaf
diffusion operators to regulate the diffusion process and maintain non-smoothness in heterophilic
graphs, leading to improved node classification performance. Meanwhile, ACMP (Wang et al., 2022b)
is inspired by particle reaction-diffusion processes, taking into account repulsive and attractive force
interactions between particles. Concurrently, the graph CDE model (Zhao et al., 2023a) is crafted to
handle heterophilic graphs and is inspired by the convection-diffusion process. GRAND++ (Thorpe
et al., 2022) leverages heat diffusion with sources to train models effectively with a limited amount of
labeled training data. Concurrently, GREAD (Choi et al., 2023) articulates a GNN approach, which is
premised on reaction-diffusion equations, aiming to negotiate heterophilic datasets effectively. In
another development, the continuous GNN as an ODE (Maskey et al., 2023) encapsulates a graph
spatial domain rewiring, leveraging the fractional order of the graph Laplacian matrix, presenting
a substantial advancement in understanding graph structures. We also recommend that interested
readers refer to the recent survey (Han et al., 2023) on continuous GNNs for a more thorough
summarization.

Our FROND extends the above integer-order continuous GNNs by incorporating the Caputo fractional
derivative. The models mentioned can be reduced from our unified mathematical framework, with
variations manifesting from the choice of the dynamic operator F(W,X(t)) in (6) and as β equals 1
in the fractional derivative operator Dβ

t .

Skip Connections in GNNs

The incorporation of skip or dense connections within network layers has been a transformative
approach within deep learning literature. Initially popularized through the ResNet architecture (He
et al., 2016), this strategy introduces shortcut pathways for gradient flow during backpropagation,
thereby simplifying the training of more profound networks. While this architectural design has been
instrumental in improving Convolutional Neural Networks (CNNs), it has also been employed in
GNNs to bolster their representational capacity and mitigate the vanishing gradient problem. For
example, the Graph U-Net (Gao & Ji, 2019) employs skip connections to enable efficient information
propagation across layers. Similarly, the Jump Knowledge Network (Xu et al., 2018) implements
a layer-aggregation mechanism that amalgamates outputs from all preceding layers, a strategy
reminiscent of the dense connections found in DenseNet (Huang et al., 2017). Furthermore, the work
(Chen et al., 2020) introduces GCNII, an extension of the standard GCN model that incorporates

19

Published as a conference paper at ICLR 2024

two simple techniques, initial residual and identity mapping, to tackle the oversmoothing problem.
Expanding on the idea of depth in GNNs, (Li et al., 2019; 2020a) propose DeepGCNs, an innovative
architecture that employs residual/dense connections along with dilated convolutions. The work
(Di Giovanni et al., 2023) suggests that gradient-flow message passing neural networks may be able to
deal with heterophilic graphs provided that a residual connection is available. The paper (Gutteridge
et al., 2023) proposes a spatial domain rewiring and focuses on long-range interactions. DRew in
(Gutteridge et al., 2023) does not adhere to any ODE evolutionary structure. Additionally, the skip
connection in the vDRew from (Gutteridge et al., 2023) specifically links an n− k-th layer to the
n-th layer. This design is fundamentally different from our FDE approach.

By incorporating fractional calculus and memory effects into our framework, we not only offer a
new perspective on understanding the structural design of skip connections in GNNs as a discretized
fractional dynamical system, but we also establish a foundation for the development of more versatile
and powerful mechanisms for graph representation learning.

B REVIEW OF CAPUTO TIME-FRACTIONAL DERIVATIVE

We appreciate the need for a more accessible explanation of the Caputo time-fractional derivative
and its derivation, as the mathematical intricacies may be challenging for some readers in the GNN
community. To address this, we are providing a more comprehensive background in this section. In
the main paper, we briefly touched upon fractional calculus, with a particular focus on the Caputo
fractional derivative that has been employed in our work. In this appendix, we aim to provide a
more detailed overview of it and explain why it is widely employed in applications. We have based
our FROND framework on the assumption that the solution to the fractional differential equation
exists and is unique. The appendix provides explicit conditions for this, which are automatically
satisfied in most neural network designs exhibiting local Lipschitz continuity. To simplify, these
conditions are akin to those for ordinary differential equations, a common assumption implicitly
made in integer-order continuous GNNs such as GRAND (Chamberlain et al., 2021c), GraphCON
(Rusch et al., 2022), GRAND++ (Thorpe et al., 2022), GREAD (Choi et al., 2023) and CDE (Zhao
et al., 2023a).

B.1 CAPUTO FRACTIONAL DERIVATIVE AND ITS COMPATIBILITY OF INTEGER-ORDER
DERIVATIVE

In the main paper, our focus is predominantly on the order β ∈ (0, 1] for the sake of simplification.
The Caputo fractional derivative of a function f(t) over an interval [0, b], of a general positive order
β ∈ (0,∞), is defined as follows:

Dβ
t f(t) =

1

Γ(⌈β⌉ − β)

∫ t

0

(t− τ)⌈β⌉−β−1f [⌈β⌉](τ)dτ, (18)

Here, ⌈β⌉ is the smallest integer greater than or equal to β, Γ(·) denotes the gamma function,
and f [⌈β⌉](·) denotes the ⌈β⌉-order derivative of f(·). Within this definition, it is presumed that
f [⌈β⌉] ∈ L1[0, b], i.e., f [⌈β⌉] is Lebesgue integrable, to ensure the well-defined nature of Dβ

t f(t) as
per (18) (Diethelm, 2010). For a vector-valued function, the Caputo fractional derivative is defined
on a component-by-component basis for each dimension, similar to the integer-order derivative. For
ease of exposition, we discuss only the scalar case here, although all the following results can be
generalized to vector-valued functions. The Laplace transform for a general order β ∈ (0,∞) is
presented in Theorem 7.1 (Diethelm, 2010) as:

LDβ
t f(s) = sβLf(s)−

⌈β⌉∑
k=1

sβ−kf [k−1](0). (19)

where we assume that the Laplace transform Lf exists on [s0,∞) for some s0 ∈ R. In contrast, for
the integer-order derivative f [β] where β is a positive integer, we also have the formulation (19),
with the only difference being the range of β. Therefore, as β approaches some integer, the Laplace
transform of the Caputo fractional derivative converges to the Laplace transform of the traditional
integer-order derivative. As a result, we can conclude that the Caputo fractional derivative operator

20

Published as a conference paper at ICLR 2024

generalizes the traditional integer-order derivative since their Laplace transforms coincide when β
takes an integer value. The inverse Laplace transform specifies the uniquely determined Dβ

t f = f [β]

when β is an integer (in the sense of almost everywhere (Cohen, 2007)).

Under specific reasonable conditions, we can directly present this generalization as follows. Suppose
f [⌈β⌉](t) (18) is continuously differentiable. In this context, integration by parts can be utilized to
demonstrate that

Dβ
t f(t) =

1

Γ(⌈β⌉ − β)

(
−
[
f [⌈β⌉](τ)

(t− τ)⌈β⌉−β

⌈β⌉ − β

] ∣∣∣∣t
0

+

∫ t

0

f [⌈β⌉+1](τ)
(t− τ)⌈β⌉−β

⌈β⌉ − β
dτ

)

=
t⌈β⌉−βf [⌈β⌉](0)

Γ(⌈β⌉ − β + 1)
+

1

Γ(⌈β⌉ − β + 1)
×
∫ t

0

(t− τ)⌈β⌉−βf [⌈β⌉+1](τ) dτ. (20)

As β → ⌈β⌉, we have

lim
β→⌈β⌉

Dβ
t f(t) = f [⌈β⌉](0) +

∫ t

0

f [⌈β⌉+1](τ)dτ

= f [⌈β⌉](0) + f [⌈β⌉](t)− f [⌈β⌉](0)

= f [⌈β⌉](t).

(21)

In parallel to the integer-order derivative, given certain conditions ((Diethelm, 2010)[Lemma
3.13]), the Caputo fractional derivative possesses the semigroup property as illustrated in (Diethelm,
2010)[Lemma 3.13]:

Dε
tD

n
t f = Dn+ε

t f. (22)

Nonetheless, it is crucial to recognize that, in general, the Caputo fractional derivative does not exhibit
the semigroup property, a characteristic inherent to integer-order derivatives, as detailed in (Diethelm,
2010)[Section 3.1]. The Caputo fractional derivative also exhibits linearity, but does not adhere to
the same Leibniz and chain rules as its integer counterpart. As such properties are not utilized in our
work, we refer interested readers to (Diethelm, 2010)[Theorem 3.17 and Remark 3.5.].

B.2 COMPARISON BETWEEN RIEMANN–LIOUVILLE AND CAPUTO DERIVATIVE

Another well-known fractional derivative is the Riemann–Liouville derivative, which, however, sees
less use in practical applications (see Appendix B.4 for more insights). In this section, we offer a
succinct introduction to the Riemann–Liouville derivative and compare it with Caputo’s definition.
The Riemann–Liouville fractional derivative is given as

D̂β
t f(t) :=

1

Γ(⌈β⌉ − β)

d⌈β⌉

dt⌈β⌉

∫ t

0

(t− τ)⌈β⌉−β−1f(τ)dτ (23)

Here again, we make the assumption that sufficient conditions are satisfied to ensure well-definedness
(refer to (Diethelm, 2010)[section 2.2] for details).

We compare the Taylor expansion for the two definitions of fractional derivatives, namely the
Riemann-Liouville and Caputo derivatives, with the conventional integer-order derivative. This
comparison allows us to clearly highlight the distinctions among the differential equations defined
under these three different approaches.

• Classical Integer-order Taylor Expansion: (Diethelm, 2010)[Theorem 2.C] Assuming that f has
absolutely continuous (m− 1)-st derivative, we have that for t ∈ [0, b],

f(t) =

m−1∑
k=0

tk

k!

dkf(0)

dtk
+ Jm dm

dtm
f(t) (24)

where Jnf(t) := 1
Γ(n)

∫ t

0
(t− τ)n−1f(τ) dτ . Note that here, k is an integer.

• Riemann-Liouville Fractional Taylor Expansion: (Diethelm, 2010)[Theorem 2.24] Let n > 0
andm = ⌊n⌋+1. Assume that f is such that Jm−nf has absolutely continuous (m−1)-st derivative.

21

Published as a conference paper at ICLR 2024

Then,

f(t) =
tn−m

Γ(n−m+ 1)
Jm−nf(0) +

m−1∑
k=1

tk+n−m

Γ(k + n−m+ 1)
D̂k+n−m

t f(0) + JnD̂n
t f(t). (25)

Note that in the case n ∈ N we have m = n+ 1 and Γ(n−m+ 1) = Γ(0) = ∞, and the first term
before the sum vanishes. Hence, we recover the classical result. For general n, the order in D̂k+n−m

t
is not a integer.

• Caputo Fractional Taylor Expansion: (Diethelm, 2010)[Theorem 3.8.] Assume that n ≥ 0,m =
⌈n⌉, and f has absolutely continuous (m− 1)-st derivative. Then

f(t) =

m−1∑
k=0

tk

k!
Dk

t f(0) + JnDn
t f(t). (26)

Note the order in Dk
t is an integer. If we compare (24) to (26), it becomes evident that the Caputo

derivative closely resembles the classical integer-order derivative in terms of Taylor expansion. This
fact influences the initial conditions for the differential equations introduced in the following section.

B.3 (CAPUTO) FRACTIONAL DIFFERENTIAL EQUATION

In this section, we first compare the initial conditions for FDEs under the Riemann-Liouville and
Caputo definitions. Following this, we present the precise conditions for the existence and uniqueness
of the solution to the fractional differential equation. These conditions closely align with those
of ordinary differential equations, which are widely assumed by integer-order continuous GNNs
(Chamberlain et al., 2021c; Rusch et al., 2022; Thorpe et al., 2022; Choi et al., 2023; Zhao et al.,
2023a).

B.3.1 RIEMANN-LIOUVILLE CASE

Drawing from the Riemann-Liouville fractional Taylor expansion, let us assume that e is a given
function with the property that there exists some function g such that g = D̂β

t e. The solution of the
Riemann-Liouville differential equation of the form

D̂β
t f = g (27)

is given by

f(t) = e(t) +

⌈β⌉∑
j=1

cjt
n−j (28)

where cj are arbitrary constants. In other words, to uniquely determine the solution from (25), we
need to know the value of D̂k+n−m

t f(0). This is akin to a k order ordinary differential equation
where the initial conditions are assumed as dk

dtk
f(0), with the distinction that the order in D̂k+n−m

t
is not an integer.

B.3.2 CAPUTO CASE

Similarly, if e is a given function with the property that e = Dβ
t g and if we intend to solve

Dβ
t f = g (29)

then we find

f(t) = e(t) +

⌈β⌉∑
j=1

cjt
⌈β⌉−j (30)

once more, with cj as arbitrary constants. Thus, to obtain a unique solution, it is natural to prescribe the
values of integer order derivatives f(0), D1

t f(0), . . . , D
⌈β⌉−1
t f(0) in the Caputo setting, mirroring

traditional ordinary differential equations.

22

Published as a conference paper at ICLR 2024

B.3.3 EXISTENCE AND UNIQUENESS OF THE (CAPUTO) SOLUTION

Next, we delve into a general Caputo fractional differential equation, presented as follows:

Dβ
t y(t) = g(t, y(t)) (31)

conjoined with suitable initial conditions. As hinted in (29) and (30), the initial conditions take the
form:

Dk
t y(0) = y

(k)
0 , k = 0, 1, . . . , ⌈β⌉ − 1. (32)

The following theorem addresses the existence and uniqueness of solutions:

• Caputo existence and uniqueness theorem: (Diethelm, 2010)[Theorem 6.8] Let
y
(0)
0 , . . . , y

(m−1)
0 ∈ R and h∗ > 0. Define the set G := [0, h∗] × R and let the function

g : G → R be continuous and fulfill a Lipschitz condition with respect to the second variable,
i.e.,

|g (x, y1)− g (x, y2)| ≤ L |y1 − y2|
for some constant L > 0 independent of x, y1, and y2. Then there uniquely exists function
y ∈ C [0, h∗] solving the initial value problem (31) and (32).

For a point of reference, we also provide the well-known Picard–Lindelöf uniqueness theorem for
first-order ordinary differential equations.

• Picard–Lindelöf theorem (Hartman, 2002)[Page 8] Let D ⊆ R × Rn be a closed rectangle
with (t0, y0) ∈ intD, the interior of D. Let g : D → Rn be a function that is continuous in t
and Lipschitz continuous in y. Then, there exists some ε > 0 such that the initial value problem

y′(t) = g(t, y(t)), y (t0) = y0.

has a unique solution y(t) on the interval [t0, t0 + ε].

This allows us to draw parallels between the existence and uniqueness theorem of the Caputo
fractional differential equation and its integer-order ordinary differential equation equivalent. We
also remind readers that standard neural networks, as compositions of linear maps and pointwise
non-linear activation functions with bounded derivatives (such as fully-connected and convolutional
networks), satisfy global Lipschitz continuity with respect to the input. For attention neural networks,
which are compositions of softmax and matrix multiplication, we observe local Lipschitz continuity.
To see this, suppose v = softmax(u) ∈ Rn×1. Then

dv

∂u
= diag(v)− vv⊤ =

v1 (1− v1) −v1v2 . . . −v1vn
−v2v1 v2 (1− v2) . . . −v2vn

...
...

. . .
...

−vnv1 −vnv2 . . . vn (1− vn)

 .
For bounded input, we have a bounded Jacobian. All the integer-order continuous GNN works, such
as recent contributions like (Chamberlain et al., 2021c; Rusch et al., 2022; Thorpe et al., 2022; Choi
et al., 2023; Zhao et al., 2023a) assume the uniqueness of the ODE solutions. This means that all the
integer-order continuous GNNs can be extended by our FROND framework with fractional dynamics.

B.4 REASONS FOR CHOOSING CAPUTO DERIVATIVE

We now explain the reasons behind our preference for the Caputo fractional derivative:

1. As previously discussed, Caputo fractional differential equations align with integer-order
differential equations concerning initial conditions.

2. The Caputo fractional derivative maintains a more intuitive resemblance to the integer-
order derivative and satisfies the significant property of equating to zero when applied to a
constant. This property is not satisfied by the Riemann-Liouville fractional derivative. Refer
to (Diethelm, 2010)[Example 2.4. and Example 3.1.] for further clarification.

3. Given its widespread application in the literature for practical use cases, numerical methods
for solving Caputo fractional differential equations have been meticulously developed and
exhaustively analyzed (Diethelm, 2010; Diethelm et al., 2004; Deng, 2007).

23

Published as a conference paper at ICLR 2024

C NUMERICAL SOLVERS FOR FROND

We remind readers that numerous methods for training neural ODEs, and consequently updating the
weights θ in the neural network have been proposed. These include the autodifferentiation technique in
PyTorch (Yan et al., 2018; Paszke et al., 2017), the adjoint sensitivity method (Chen et al., 2018b), and
Snode (Quaglino et al., 2019). In our work, we employ the most straightforward autodifferentiation
technique for training FROND with fractional neural differential equations, leveraging the numerical
solvers outlined in (Diethelm, 2010; Diethelm et al., 2004; Deng, 2007). While we plan to investigate
more sophisticated techniques for training FROND in future work, we have open-sourced our current
solver implementations in https://github.com/zknus/torchfde. We believe these will
serve as valuable tools for the GNN community, encouraging the advancement of a unique class of
GNNs that incorporate memory effects.

In traditional integer-order continuous GNNs (Chamberlain et al., 2021c; Thorpe et al., 2022; Rusch
et al., 2022; Song et al., 2022; Choi et al., 2023; Zhao et al., 2023a), the time parameter t serves as
a continuous analog to GNN layers, resembling the concept of neural ODEs (Chen et al., 2018b)
as continuous residual networks. Time discretization plays a crucial role in many numerical solvers
for neural ODEs. For example, the explicit Euler scheme reduces neural ODEs to residual networks
with shared hidden layers (Chen et al., 2018b). More sophisticated discretization methods, such as
adaptive step size solvers (Atkinson et al., 2011), provide accurate solutions but require additional
computational resources.

Unlike prior studies, our work involves fractional-order ODEs, which are more complex
than ODEs when the derivative order β takes non-integer values. We present the fractional
Adams–Bashforth–Moulton method with three variants utilized in this work, demonstrating how the
time parameter continues to serve as a continuous analog to the layer index and how the non-local
nature of fractional derivatives leads to nontrivial dense or skip connections between layers. Addi-
tionally, we also present one implicit L1 solver for solving FROND when β is not an integer. It is
worth noting that various neural ODE solvers remain applicable for FROND when β is an integer.

We first recall the FROND framework

Dβ
t X(t) = F(W,X(t)), β > 0,

where β denotes the fractional order of the derivative, and F is a dynamic operator on the graph like
the models presented in Section 2.2. The initial condition is set as X[⌈β⌉−1](0) = . . . = X(0) = X
consisting of the preliminary node features, akin to the initial conditions seen in ODEs.

C.1 BASIC PREDICTOR

Referencing (Diethelm et al., 2004), we first employ a preliminary numerical solver called “predictor”
through time discretisation tj = jh, where the discretisation parameter h is a small positive value:

PX
(k) =

⌈β⌉−1∑
j=0

tjk
j!
X[j](0) +

1

Γ(β)

k−1∑
j=0

µj,kF(W,X(j)), (33)

where µj,n = hβ

β

(
(n− j)β − (n− 1− j)β

)
, k denotes the discrete time index (iteration), and

tk = kh represents the discretized time steps. X(k) is the numerical approximation of X(tk). When
β = 1, this method simplifies to the Euler solver in (Chen et al., 2018b; Chamberlain et al., 2021c) as
µj,n ≡ h, yielding PX

(k) = X(k−1)+hF(W,X(k−1)). Thus, our basic predictor can be considered
as the fractional Euler method or fractional Adams–Bashforth method, which is a generalization of
the Euler method used in (Chen et al., 2018b; Chamberlain et al., 2021c). However, when β < 1, we
need to utilize the full memory {F(W,X(j))}k−1

j=0 .

The block diagram of this basic predictor, shown in Fig. 3, reveals that our framework introduces
nontrivial dense or skip connections between layers. A more refined visualization is conveyed in
Fig. 4, elucidating the manner in which information propagates through layers and the graph’s spatial
domain.

24

https://github.com/zknus/torchfde

Published as a conference paper at ICLR 2024

C.2 PREDICTOR-CORRECTOR

The corrector formula from (Diethelm et al., 2004), a fractional variant of the one-step Adams-
Moulton method, refines the initial approximation using the predictor PX

(k) as follows:

X(k) =

⌈β⌉−1∑
j=0

tjk
j!
X[j](0) +

1

Γ(β)

k−1∑
j=0

ηj,kF(W,X(j)) +
1

Γ(β)
ηk,kF(W, PX

(k)). (34)

Here we show the coefficients ηj,n in the predictor-corrector variant (34) from (Diethelm et al., 2004):

ηj,k(β) =
hβ

β(β + 1)
×

(k − 1)β+1 − (k − 1− β)kβ if j = 0,

(k − j + 1)β+1 + (k − 1− j)β+1 − 2(k − j)β+1 if 1 ≤ j ≤ k − 1,

1 if j = k.

(35)

C.3 SHORT MEMORY PRINCIPLE

When T is large, computational time complexity becomes a challenge due to the non-local nature
of fractional derivatives. To mitigate this, (Deng, 2007; Podlubny, 1999) suggest leveraging the
short memory principle to modify the summation in (17) and (34) to

∑n−1
j=n−K . This corresponds to

employing a shifting memory window with a fixed width K. The block diagram is depicted in Fig. 3.

X(0) X(t1) X(t2) X(tn−1) X(tn) X(0) X(t1) X(t2) X(tn−1) X(tn)

memory window width K

Figure 3: Diagrams of fractional Adams–Bashforth–Moulton method with full (left) and short (right) memory.

time discretization

X(0)

X(t1)

X(t2)

X(tn−1)

X(tn)

Figure 4: Model discretization in FROND with the basic predictor solver. Unlike the Euler discretization in
ODEs, FDEs incorporate connections to historical times, introducing memory effects. Specifically, the dark blue
connections observed in FDEs are absent in ODEs. The weight of these skip connections correlates with µj,k(β)
as detailed in (17).

C.4 L1 SOLVER

The L1 scheme is one of the most popular methods to approximate the Caputo fractional derivative in
time. It utilizes a backward differencing method for effective approximation of derivatives. Refer-
encing (Gao & Sun, 2011; Sun & Wu, 2006), we have the L1 approximation of Caputo fractional

25

Published as a conference paper at ICLR 2024

derivative as follows:

Dβ
t X

(k) ≈ µ

k−1∑
j=0

Rβ
k,j(X

(j+1) −X(j))

where h is the temporal step size,

µ =
1

hβΓ(2− β)
, Rβ

k,j = (k − j)1−β − (k − j − 1)1−β , 0 ≤ j ≤ k − 1.

Applying the L1 solver for our problem, we obtain

µ

k−1∑
j=0

Rβ
k,j(X

(j+1) −X(j)) = (A(X(k))− I)X(k).

Manipulating the above equation, we have

X(k) − 1

µ
(A(X(k))− I)X(k)) = X(k−1) −

k−2∑
j=0

Rβ
k,j(X

(j+1) −X(j))

The above formula is an implicit nonlinear scheme. To solve it without calculating the inversion of a
matrix, we propose the following iteration method:

(1) Compute a basic approximation of X(tk) with the following formula:

PX
(k) − 1

µ
(A(X(k−1))− I)X(k−1) = X(k−1) −

k−2∑
j=0

Rβ
k,j(X

(j+1) −X(j)).

(2) Substitute the above PX
(k) into the implicit scheme to update X(k):

X(k) − 1

µ
(A(PX

(k))− I)PX
(k) = X(k−1) −

k−2∑
j=0

Rβ
k,j(X

(j+1) −X(j)). (36)

The step (2) can be repeated multiple times to obtain an accurate approximation of X(tk).

D DATASETS, SETTINGS AND MORE EXPERIMENTS FOR F-GRAND MODEL

D.1 DATASETS

The dataset statistics used in Table 1 are provided in Table 5. Following the experimental framework
in (Chamberlain et al., 2021c), we select the largest connected component from each dataset, except
for the tree-like graph datasets (Airport and Disease). However, for the study of oversmoothing, we
use a fixed data splitting approach over the entire datasets, as described in (Chami et al., 2019).

D.2 GRAPH CLASSIFICATION DETAILS

We use the Fake-NewsNet datasets from (Dou et al., 2021), constructed based on fact-checking
information obtained from Politifact and Gossipcop. The dataset incorporates four distinct node
feature categories, including 768-dimensional BERT features and 300-dimensional spaCy features,
which are derived using pre-trained BERT and spaCy word2vec models, respectively. Additionally, a
10-dimensional profile feature is extracted from individual Twitter accounts’ profiles. Each graph
within the dataset is characterized by a hierarchical tree structure, with the root node representing
the news item and the leaf nodes representing Twitter users who have retweeted said news. An edge
exists between a user node and the news node if the user retweeted the original news tweet, while an
edge between two user nodes is established when one user retweets the news tweet from another user.
This hierarchical organization facilitates the analysis of the spread and influence of both genuine and
fabricated news within the Twitter ecosystem. The datasets statistics are summarized in Table 6.

26

Published as a conference paper at ICLR 2024

Table 5: Dataset Statistics used in Table 1
Dataset Type Classes Features Nodes Edges

Cora citation 7 1433 2485 5069
Citeseer citation 6 3703 2120 3679
PubMed citation 3 500 19717 44324

Coauthor CS co-author 15 6805 18333 81894
Computers co-purchase 10 767 13381 245778

Photos co-purchase 8 745 7487 119043
CoauthorPhy co-author 5 8415 34493 247962
OGB-Arxiv citation 40 128 169343 1166243

Airport tree-like 4 4 3188 3188
Disease tree-like 2 1000 1044 1043

Table 6: Dataset and graph statistics used in Table 2
Dataset Graphs (Fake) Total Nodes Total Edges Avg. Nodes per Graph
Politifact (POL) 314 (157) 41,054 40,740 131
Gossipcop (GOS) 5464 (2732) 314,262 308,798 58

D.3 IMPLEMENTATION DETAILS

Our FROND framework adheres to the experimental settings of the foundational integer-order
continuous GNNs, diverging only in the introduction of fractional derivatives in place of integer
derivatives. In implementing FROND, we employ one fully-connected (FC) layer on the raw input
features to obtain the initial node representations X(0). Subsequently, we utilize another FC layer
as the decoder function to process the FDE output, X(T), for executing downstream tasks. For
more detailed information regarding the hyperparameter settings, we kindly direct the readers to the
accompanying supplementary material, which includes the provided code for reproducibility. Our
experiments were conducted using NVIDIA RTX A5000 graphics cards.

D.4 LARGE SCALE OGBN-PRODUCTS DATASET

In this section, we extend our evaluation to include another large-scale dataset, Ogbn-products,
adhering to the experimental settings outlined in (Hu et al., 2021). For effective handling of this large
dataset, we employ a mini-batch training approach, which involves sampling nodes and constructing
subgraphs, as proposed by GraphSAINT (Zeng et al., 2020). Upon examination, we observe that
F-GRAND-l demonstrates superior performance compared to both GRAND-l and the GCN model,
although it falls slightly short of the performance exhibited by GraphSAGE. This outcome could
potentially be attributed to the insufficient dynamic setting in (9). As such, the more advanced
dynamic F(W,X(t)) in (6) may require additional refinement.

Table 7: Node classification accuracy(%) on Ogbn-products dataset
Model MLP Node2vec Full-batch GCN GraphSAGE GRAND-l F-GRAND-l

Acc 61.06±0.08 72.49±0.10 75.64±0.21 78.29±0.16 75.56±0.67 77.25±0.62

D.5 PERFORMANCE OF DIFFERENT SOLVER VARIANTS

In this work, we introduce two types of solvers with distinct variants. We evaluate the performance
of these variants in Table 8. Specifically, we run F-GRAND on the Cora and Airport datasets with
h = 1 and T = 64. The solver variants perform comparably. For the Cora dataset, the fractional
Adams–Bashforth–Moulton method with a short memory parameter of K = 10 performs slightly
worse than the other variants. However, it demonstrates comparable performance to other solver
variants on the Airport dataset.

27

Published as a conference paper at ICLR 2024

Table 8: Node classification accuracy(%) under different solver when time T = 64

Predictor(17) Predictor-Corrector (34) Short Memory Implicit L1

Cora(β = 0.6) 83.44±0.91 83.45±1.09 81.51±1.07 82.85±1.08
Airport(β = 0.1) 97.41±0.42 96.85±0.36 97.23±0.59 96.06±1.59

Table 9: Node classification accuracy based on memory K on the Cora dataset when time T = 40.
memory K 1 5 10 15 20 25 30 35 40

Accuracy (%) 74.9±0.8 80.8±0.8 83.3±1.1 83.9±1.2 84.2±1.1 84.1±1.2 84.5±1.1 84.1±1.1 84.8±1.1
Inference (ms) 9.81 17.53 24.97 32.03 38.79 42.99 45.27 48.70 48.35

D.5.1 FURTHER CLARIFICATION ON TWO ACCURACIES

This section aims to clarify potential ambiguities surrounding the term “accuracy” by distinguishing
between “task accuracy” and “numerical accuracy.” Task accuracy pertains to the performance of
GNNs on tasks such as node classification. In contrast, numerical accuracy relates to the precision of
numerical solutions to FDEs, a critical concern in mathematics.

For example, generally, a larger K value in the Short Memory solver might enhance both numerical
and GNN task accuracy. However, it comes with the trade-off of demanding more computational
resources. Furthermore, the two accuracies are related, but not equivalent to each other. For added
clarity, we conducted an ablation study on the Cora dataset, keeping all parameters constant except
for the memory parameter K. The outcomes of this study are detailed in Table 9. Our observations
indicate that while increasing the value of K can improve numerical accuracy and potentially GNN
task accuracy, the computational cost also rises. Notably, the gains in task accuracy plateau beyond a
K value of 15.

We also remind the readers that in the literature, to solve FDEs, there exist other more numerically
accurate solvers like (Jin et al., 2017; Tian et al., 2015; Lv & Xu, 2016) that use higher convergence
order. In general, these kinds of solvers can theoretically reduce computation cost and memory storage,
as we can obtain the same numerical accuracy using larger step sizes compared to lower-order solvers.
It does not aim to improve GNN task accuracy as we can take smaller step sizes to achieve this, but
it may be helpful for other performances like computation cost and memory storage reduction. In
our paper, we focus on task accuracy. Therefore, classical solvers are used in our work. Nonetheless,
more numerically accurate solvers could potentially benefit other applications of fractional dynamics,
particularly when GNNs are utilized to simulate and forecast real physical systems.

D.6 COMPUTATION TIME

It should be emphasized that our FROND framework does not introduce any additional training
parameters to the backbone integer-order continuous GNNs. Instead, we simply modify the integration
method from standard integration to fractional integration.

In this section, we report the inference time of the different solver variants in Tables 10 to 13. For
comparison, we consider the neural ODE solver for β = 1, which includes Euler, RK4, Implicit
Adams, and dopri5 methods as per in the paper (Chen et al., 2018b). We observe that when T = 4,
the inference time required by the FROND solver variants is similar to that of the ODE Euler solver.
However, for larger T = 64, the basic Predictor (17) solver requires more inference time than Euler
and is comparable to RK4. For more accurate approximation solver variants (34) and (36) incorporat-
ing the corrector formula, Tables 12 and 13 show that these methods require more computational time
as the number of iterations increases. While the advantages of these solvers might not be pronounced
for GNN node classification tasks, they could provide benefits for other applications of fractional
dynamics, such as when GNNs are used to simulate and forecast real physical systems.

D.7 CONTINUED STUDY OF OVERSMOOTHING

To corroborate that FROND mitigates the issue of oversmoothing and performs well with an increasing
number of layers, we conducted an experiment employing the basic predictor with up to 128 layers in

28

Published as a conference paper at ICLR 2024

Table 10: Average time under different solvers when time T = 4 and hidden dimension is 64 on Cora
dataset

Predictor(17) Predictor-Corrector(34) Short Memory Implicit L1 Euler RK4 Implicit Adams dopri5

Inference time (ms) 0.98 1.67 0.98 0.62 0.96 2.06 3.20 11.91

Table 11: Average time under different solvers when time T = 64 and hidden dimension is 64 on
Cora dataset

Predictor(17) Predictor-Corrector(34) Short Memory Implicit L1 Euler RK4 Implicit Adams dopri5

Inference time (ms) 44.46 160.92 30.26 221.74 12.16 42.66 103.46 66.15

Table 12: Average time of (34) and (36) with correctors, used to refine the approximation, when time
T = 4 and hidden dimension is 64 on the Cora dataset.

Predictor-Corrector (34) 1 3 5 10

Inference time (ms) 1.67 3.31 4.74 8.34

Implicit-L1 (36) 1 3 5 10

Inference time (ms) 0.62 1.04 1.48 2.55

Table 13: Average time of (34) and (36) with correctors, used to refine the approximation, when time
T = 64 and hidden dimension is 64 on the Cora dataset.

Predictor-Corrector (34) 1 3

Inference time (ms) 160.92 442.88

Implicit-L1 (36) 1 3

Inference time (ms) 221.74 441.60

the main paper. The results are presented in Fig. 2. For this experiment, we utilized the fixed data
splitting approach for the Cora and Citeseer dataset without using the Largest Connected Component
(LCC) as described in (Chami et al., 2019).

In the supplementary material, we further probe oversmoothing by conducting experiments with an
increased number of layers, reaching up to 256. The results of these experiments are illustrated in
Table 14. From our observations, F-GRAND-l maintains a consistent performance level even as the
number of layers escalates. This contrasts with GRAND-l, where there is a notable performance
decrease with the increase in layers. For instance, on the Cora datasets, the accuracy of GRAND-l
drops from 81.29% with 4 layers to 73.37% with 256 layers. In stark contrast, our F-GRAND-l model
exhibits minimal performance decrease on this dataset. On the Airport dataset, F-GRAND-l registers
a slight decrease to 94.91% with 256 layers from 97.0% with 4 layers. However, the performance of
GRAND-l significantly drops to 53.0%. These observations align with our expectations, as Theorem 2
predicts a slow algebraic convergence rate, while GRAND exhibits a more rapid performance
degradation.

Additionally, we note that the optimal number of layers for F-GRAND is 64 on the Cora and Airport
datasets, whereas on the Cirtesser dataset, the best performance is achieved with 16 layers.

D.8 ABLATION STUDY: SELECTION OF β CONTINUED

In the main paper, we explore the impact of the fractional order parameter β across a variety of graph
datasets, with the results of these investigations presented in Table 3. More comprehensive details
concerning the variations in β can be found in Table 15.

29

Published as a conference paper at ICLR 2024

Table 14: oversmoothing mitigation under fixed data splitting without LCC
Dataset Model 4 8 16 32 64 80 128 256

Cora

GCN 81.35±1.27 15.3±3.63 19.70±7.06 21.86±6.09 13.0±0.0 13.0±0.0 13.0±0.0 13.0±0.0
GAT 80.95±2.28 31.90±0.0 31.90±0.0 31.90±0.0 31.90±0.0 31.90±0.0 31.90±0.0 31.90±0.0

GRAND-l 81.29±0.43 82.95±0.52 82.48±0.46 81.72±0.35 81.33±0.22 81.07±0.44 80.09±0.43 73.37±0.59
F-GRAND-l 81.17±0.75 82.68±0.64 83.05±0.81 82.90±0.81 83.44±0.91 82.85±0.89 82.34±0.83 81.74±0.53

Citeseer

GCN 68.84±2.46 61.58±2.09 10.64±1.79 7.7±0.0 7.7±0.0 7.7±0.0 7.7±0.0 7.7±0.0
GAT 65.20±0.57 18.10±0.0 18.10±0.0 18.10±0.0 18.10±0.0 18.10±0.0 18.10±0.0 18.10±0.0

GRAND-l 70.68±1.23 70.39±0.68 70.18±0.56 68.90±1.50 68.01±1.47 67.44±1.25 63.45±2.86 56.98±1.26
F-GRAND-l 70.68±1.23 71.04±0.68 71.08±1.12 70.83±0.90 70.27±0.86 70.50±0.76 70.32±1.67 71.0±0.45

Airport

GCN 84.77±1.45 74.43±8.19 62.56±2.16 15.27±0.0 15.27±0.0 15.27±0.0 15.27±0.0 15.27±0.0
GAT 83.59±1.51 67.02±4.70 46.56±0.0 46.56±0.0 46.56±0.0 46.56±0.0 46.56±0.0 46.56±0.0

GRAND-l 80.53±9.59 79.88±9.67 76.24±3.80 68.67±4.02 62.28±10.83 50.38±2.98 57.96±11.63 53.0±14.85
F-GRAND-l 97.0±0.79 97.09±0.87 96.97±0.84 96.50±0.60 97.41±0.42 96.53±0.74 97.03±0.55 94.91±3.72

Table 15: Node classification accuracy(%) under different value of β when time T = 8.
β 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Cora 74.80±0.42 76.10±0.34 77.0±0.98 77.80±0.75 79.60±0.91 80.79±0.58 81.56±0.30 82.44±0.51 82.68±0.64 82.37±0.59

Airport 97.09±0.87 96.67±0.91 95.80±2.03 94.04±3.62 91.66±6.34 89.24±7.87 84.36±8.04 79.29±6.01 78.73±6.33 78.88±9.67

D.9 ROBUSTNESS AGAINST ADVERSARIAL ATTACKS

Despite the significant advancements GNNs have made in inference tasks on graph-structured data,
they are recognized as being susceptible to adversarial attacks (Zügner et al., 2018). Adversaries,
aiming to deceive a trained GNN, can either introduce new nodes into the graph during the inference
phase, known as an injection attack (Wang et al., 2020; Zheng et al., 2022; Zou et al., 2021;
Hussain et al., 2022), or manipulate the graph’s topology by adding or removing edges, termed as
a modification attack (Chen et al., 2018a; Waniek et al., 2018; Du et al., 2017). In this section, we
present preliminary experiments assessing the robustness of our model against adversarial attacks.
Specifically, we carry out graph modification adversarial attacks using the Metattack method (Zügner
& Günnemann, 2019). Our approach adheres to the attack setting described in Pro-GNN (Jin et al.,
2020), and we utilize the perturbed graph provided by the DeepRobust library (Li et al., 2020b)
to ensure a fair comparison. The perturbation rate, indicating the proportion of altered edges, is
incrementally adjusted in 5% steps from 0% to 25%.

The results of these experiments are presented in Table 16. It should be noted that the impact of
Meta-attacks with higher strengths detrimentally affects the performance of all models under test.
However, our FROND-nl model consistently demonstrates enhanced resilience against adversarial
attacks compared to the baselines, including GRAND-nl. For instance, at a perturbation rate of 25%,
F-GRAND-nl outshines the baselines by an estimated margin of 10-15% on the Cora dataset.

Comprehensive testing against various adversarial attack methods and a theoretical understanding are
detailed in our recent work (Kang et al., 2024).

Table 16: Node classification accuracy (%) under modification, poisoning, non-targeted attack
(Metattack) in transductive learning.

Dataset Ptb Rate(%) GGN GAT GRAND-nl F-GRAND-nl

Cora

0 83.50±0.44 83.97±0.65 83.14±1.06 83.48±1.08
5 76.55±0.79 80.44±0.74 80.54±1.17 80.25±0.90
10 70.39±1.28 75.61±0.59 76.59±1.21 77.94±0.48
15 65.10±0.71 69.78±1.28 71.62±1.39 75.14±1.16
20 59.56±2.72 59.94±0.92 57.52±1.20 69.04±1.13
25 47.53±1.96 54.78±0.74 53.70±1.91 63.40±1.44

Citeseer
0 71.96±0.55 73.26±0.83 71.40±1.08 70.14±0.83
5 70.88±0.62 72.89±0.83 70.99±1.12 70.0±1.72
10 67.55±0.89 70.63±0.48 68.83±1.31 68.64±1.11
15 64.52±1.11 69.02±1.09 66.78±0.92 67.90±0.41
20 62.03±3.49 61.04±1.52 58.95±1.33 65.84±0.75
25 56.94±2.09 61.85±1.12 60.52±1.29 66.50±1.16

30

Published as a conference paper at ICLR 2024

D.10 COMPARISON BETWEEN RIEMANN-LIOUVILLE (RL) DERIVATIVE AND CAPUTO
DERIVATIVE

The underlying rationale for opting for the Caputo derivative over the Riemann-Liouville (RL)
derivative is extensively delineated in Appendix B.4. However, a supplementary experiment was
conducted utilizing the RL derivative in lieu of the Caputo derivative, the results of which are
documented in Table 17. It can be observed that the task accuracies for both approaches are very
similar. Further investigations on the use of different fractional derivatives and how to optimize the
whole model architecture to adapt to a particular choice will be explored in future work.

Table 17: Comparison between RL-GRAND-l (using Riemann-Liouville derivative) and the original
F-GRAND-l (using Caputo derivative).

Method Cora Citeseer Pubmed CoauthorCS Computer Photo CoauthorPhy Airport Disease

GRAND-l 83.6±1.0 73.4±0.5 78.8±1.7 92.9±0.4 83.7±1.2 92.3±0.9 93.5±0.9 80.5±9.6 74.5±3.4
RL-GRAND-l 84.6±1.2 74.2±1.0 80.1±1.2 92.8±0.3 87.4±1.1 93.3±0.7 94.1±0.3 96.2±0.2 90.7±1.3
F-GRAND-l 84.8±1.1 74.0±1.5 79.4±1.5 93.0±0.3 84.4±1.5 92.8±0.6 94.5±0.4 98.1±0.2 92.4±3.9

D.11 FRACTAL DIMENSION OF GRAPH DATASETS

Table 18: Comparison between the estimated fractal dimension, the best order β and the δ-
hyperbolicity

Dataset Disease Airport Pubmed Citeseer Cora

fractal dimension 2.47 2.17 2.25 0.62 1.22

best β (F-GRAND-l) 0.6 0.5 0.9 0.9 0.9
best β (F-GRAND-nl) 0.7 0.1 0.4 0.9 0.9

δ-hyperbolicity 0.0 1.0 3.5 4.5 11.0

In Fig. 5, using the Compact-Box-Burning algorithm from (Song et al., 2007), we compute the fractal
dimension for some datasets that have moderate sizes. As noted in Table 1, there is a clear trend
between δ-hyperbolicity (as referenced in (Chami et al., 2019) for assessing tree-like structures—with
lower values suggesting more tree-like graphs) and the fractal dimension of datasets. Specifically, a
lower δ-hyperbolicity corresponds to a larger fractal dimension. As discussed in Sections 1 and 4,
we believe that our fractional derivative Dβ

t effectively captures the fractal geometry in the datasets.
Notably, we discerned a trend: a larger fractal dimension typically corresponds to a smaller optimal
β.

E MORE DYNAMICS IN FROND FRAMEWORK

E.1 REVIEW OF GRAPH ODE MODELS

GRAND++: The work by (Thorpe et al., 2022) introduces graph neural diffusion with a source term,
aimed at graph learning in scenarios with a limited quantity of labeled nodes. This approach leverages
a subset of feature vectors, those associated with labeled nodes, indexed by I, and considered
“trustworthy” to act as a source term. It adheres to (4) and (5), incorporating an additional source
term, facilitating the propagation of information from nodes in I to node i.

dX(t)

dt
= F (X(t)) + s({xi}i∈I) (37)

Here, I denotes the set of source nodes, s(·) represents a source function, and F (·) embodies the
function depicting the right-hand side of (4) and (5). The model is manifested in two variations,
respectively denoted as GRAND++-nl and GRAND++-l.

GraphCON: Inspired by oscillator dynamical systems, GraphCON (Rusch et al., 2022) is defined
through the employment of second-order ODEs. It is crucial to highlight that, for computation, the

31

Published as a conference paper at ICLR 2024

100 101

Size of Box

101

102

103

104

Nu
m

be
r o

f B
ox

es

Airport Slope: 2.17
Disease Slope: 2.47
Pubmed Slope: 2.25
Cora Slope: 1.22
Citeseer Slope: 0.62

Figure 5: The fractal dim of datasets. We use the Compact-Box-Burning algorithm in (Song et al., 2007) to
compute the log-log slope (fractal dim) of the box size and the minimum number of boxes needed to cover the
graph.

second-order ODE is decomposed into two first-order ODEs:

dY(t)

dt
= σ(Fθ(X(t), t))− γX(t)− α̃Y(t),

dX(t)

dt
= Y(t), (38)

where σ(·) is the activation function, Fθ(X(t), t) is the neural network function with parameters θ, γ
and α̃ are learnable coefficients, and Y(t) is the velocity term converting the second-order ODE to
two first-order ODEs.
Analogous to the GRAND model, the GraphCON model is also available in both linear (GraphCON-l)
and non-linear (GraphCON-nl) versions concerning time. The differentiation between these versions
is determined by whether the function Fθ undergoes updates based on time t.

CDE: With the objective of addressing heterophilic graphs, the paper (Zhao et al., 2023a) integrates
the concept of convection-diffusion equations (CDE) into GNNs, leading to the proposition of the
neural CDE model: This innovative model incorporates a convection term and introduces a unique
velocity for each node, aiming to preserve diversity in heterophilic graphs. The corresponding formula
is illustrated in (39).

dX(t)

dt
= (A(X(t))− I)X(t) + div(V(t) ◦X(t)) (39)

In this equation, V(t) represents the velocity field of the graph at time t, div(·) denotes the divergence
operator as defined in the paper (Chamberlain et al., 2021c; Song et al., 2022), and ◦ symbolizes the
element-wise (Hadamard) product.
GREAD: To address the challenges posed by heterophilic graphs, the authors in (Choi et al., 2023)
present the GREAD model. This model enhances the GRAND model by incorporating a reaction
term, thereby formulating a diffusion-reaction equation within GNNs. The respective formula is
depicted in (40), and the paper offers various alternatives for the reaction term.

dX(t)

dt
= −αL(X(t)) + αr(X(t)) (40)

In this equation, r(X(t)) represents the reaction term, and α is a trainable parameter used to balance
the impact of each term.

32

Published as a conference paper at ICLR 2024

E.2 F-GRAND++

Building upon the GRAND++ model (Thorpe et al., 2022), we define F-GRAND++ as follows:

Dβ
t X(t) = F (X(t)) + s({xi}i∈I) (41)

We follow the same experimental settings as delineated in the GRAND++ paper. Given that the
primary focus of GRAND++ is the model’s performance under limited-label scenarios, our experi-
ments also align with this setting. The sole distinction lies in the incorporation of fractional dynamics.
Within this framework, we substitute the ordinary differential equation dX(t)

dt used in GRAND++
with our FROND fractional derivative Dβ

t X(t). The optimal β is determined through hyperparameter
tuning. When β = 1, F-GRAND++ seamlessly reverts to GRAND++, and the results from the
original paper are reported. Our observations distinctly indicate that the Fractional-GRAND++ con-
sistently surpasses the performance of the original GRAND++ in nearly all scenarios. We also present
the complete comparison results in Table 20, where it is evident that F-GRAND++ demonstrates
greater effectiveness in learning with low labeling rates compared to GRAND++, GRAND, and other
baseline methods.

Table 19: Node classification results (%) under limited-label scenarios
Model pre class Cora Citeseer Pubmed CoauthorCS Computer Photo

GRAND++ 1 54.94±16.09 58.95±9.59 65.94±4.87 60.30±1.50 67.65±0.37 83.12±0.78
F-GRAND++ 1 57.31±8.89 59.11±6.73 65.98±2.72 67.71±1.91 67.65±0.37 83.12±0.78

β 0.95 0.95 0.85 0.7 1.0 1.0

GRAND++ 2 66.92±10.04 64.98±8.31 69.31±4.87 76.53±1.85 74.47±1.48 83.71±0.90
F-GRAND++ 2 70.09±8.36 64.98±8.31 69.37±5.36 77.97±2.35 78.85±0.96 83.71±0.90

β 0.9 1.0 0.95 0.5 0.8 1.0

GRAND++ 5 77.80±4.46 70.03±3.63 71.99±1.91 84.83±0.84 82.64±0.56 88.33±1.21
F-GRAND++ 5 78.79±1.66 70.26±2.36 73.38±5.67 86.09±2.09 82.64±0.56 88.56±0.67

β 0.9 0.8 0.9 0.8 1.0 0.75

GRAND++ 10 80.86±2.99 72.34±2.42 75.13±3.88 86.94±0.46 82.99±0.81 90.65±1.19
F-GRAND++ 10 82.73±0.81 73.52±1.44 77.15±2.87 87.85±1.44 83.26±0.41 91.15±0.52

β 0.95 0.9 0.95 0.6 0.7 0.95

GRAND++ 20 82.95±1.37 73.53±3.31 79.16±1.37 90.80±0.34 85.73±0.50 93.55±0.38
F-GRAND++ 20 84.57±1.07 74.81±1.78 79.96±1.68 91.03±0.72 85.78±0.43 93.55±0.38

β 0.9 0.85 0.95 0.9 0.9 1.0

E.3 F-CDE

Drawing inspiration from the graph neural CDE model (Zhao et al., 2023a), we further define the
F-CDE model as follows:

Dβ
t X(t) = (A(X(t))− I)X(t) + div(V(t) ◦X(t)) (42)

In this expression, V(t) represents the velocity field of the graph at time t. The divergence operator,
div(·), is defined as per the formulation given in (Song et al., 2022), and ◦ symbolizes the element-
wise (Hadamard) product.

We follow the same experimental setting as in the CDE paper(Zhao et al., 2023a). Given that the
primary focus of CDE is on evaluating model performance on large heterophilic datasets, our ex-
periments are also conducted under similar conditions. The statistics for the dataset are available in
Table 21. The sole distinction in our approach lies in incorporating fractional dynamics; we achieve
this by replacing the ODE used in CDE with our FROND fractional derivative. The complete com-
parison results in Table 22 conspicuously reveal that Fractional CDE exhibits superior performance
compared to the conventional CDE and other baselines across various datasets.

33

Published as a conference paper at ICLR 2024

Table 20: Full table: Classification accuracy of different GNNs trained with different number of
labeled data per class (#per class) on six benchmark graph node classification tasks. The highest
accuracy is highlighted in bold for each number of labeled data per class. These results show that
F-GRAND++ is more effective in learning with low-labeling rates than GRAND++ and GRAND.
Where available, baseline results are cited from (Thorpe et al., 2022).

Model #per class CORA CiteSeer PubMed CoauthorCS Computer Photo

F-GRAND++

1
2
5
10
20

57.31 ± 8.89
70.09 ± 8.36
78.79 ± 1.66
82.73 ± 0.81
84.57 ± 1.07

59.11 ± 6.73
64.98 ± 8.31
70.26 ± 2.36
73.52 ± 1.44
74.81 ± 1.78

65.98 ± 2.72
69.37 ± 5.36
73.38 ± 5.67
77.15 ± 2.87
79.96 ± 1.68

67.71 ± 1.91
77.97 ± 2.35
86.09 ± 2.09
87.85 ± 1.44
91.03 ± 0.72

67.65 ± 0.37
78.85 ± 0.96
82.64 ± 0.56
83.26 ± 0.41
85.78 ± 0.43

83.12 ± 0.78
83.71 ± 0.90
88.56 ± 0.67
91.15 ± 0.52
93.55 ± 0.38

GRAND++

1
2
5
10
20

54.94 ± 16.09
66.92 ± 10.04
77.80 ± 4.46
80.86 ± 2.99
82.95 ± 1.37

58.95 ± 9.59
64.98 ± 8.31
70.03 ± 3.63
72.34 ± 2.42
73.53 ± 3.31

65.94 ± 4.87
69.31 ± 4.87
71.99 ± 1.91
75.13 ± 3.88
79.16 ± 1.37

60.30 ± 1.50
76.53 ± 1.85
84.83 ± 0.84
86.94 ± 0.46
90.80 ± 0.34

67.65 ± 0.37
76.47 ± 1.48
82.64 ± 0.56
82.99 ± 0.81
85.73 ± 0.50

83.12 ± 0.78
83.71 ± 0.90
88.33 ± 1.21
90.65 ± 1.19
93.55 ± 0.38

GRAND

1
2
5
10
20

52.53 ± 16.40
64.82 ± 11.16
76.07 ± 5.08
80.25 ± 3.40
82.86 ± 2.39

50.06 ± 17.98
59.55 ± 10.89
68.37 ± 5.00
71.90 ± 7.66
73.02 ± 5.89

62.11 ± 10.58
69.00 ± 7.55
73.98 ± 5.08
76.33 ± 3.41
78.76 ± 1.69

59.15 ± 5.73
73.83 ± 5.58
85.29 ± 2.19
87.81 ± 1.36
91.03 ± 0.47

48.67 ± 1.66
74.77 ± 1.85
80.72 ± 1.09
82.42 ± 1.10
84.54 ± 0.90

81.25 ± 2.50
82.13 ± 3.27
88.27 ± 1.94
90.98 ± 0.93
93.53 ± 0.47

GCN

1
2
5
10
20

47.72 ± 15.33
60.85 ± 14.01
73.86 ± 7.97
78.82 ± 5.38
82.07 ± 2.03

48.94 ± 10.24
58.06 ± 9.76
67.24 ± 4.19
72.18 ± 3.47
74.21 ± 2.90

58.61 ± 12.83
60.45 ± 16.20
68.69 ± 7.93
72.59 ± 3.19
76.89 ± 3.27

65.22 ± 2.25
83.61 ± 1.49
86.66 ± 0.43
88.60 ± 0.50
91.09 ± 0.35

49.46 ± 1.65
76.90 ± 1.49
82.47 ± 0.97
82.53 ± 0.74
82.94 ± 1.54

82.94 ± 2.17
83.61 ± 0.71
88.86 ± 1.56
90.41 ± 0.35
91.95 ± 0.11

GAT

1
2
5
10
20

47.86 ± 15.38
58.30 ± 13.55
71.04 ± 5.74
76.31 ± 4.87
79.92 ± 2.28

50.31 ± 14.27
55.55 ± 9.19
67.37 ± 5.08
71.35 ± 4.92
73.22 ± 2.90

58.84 ± 12.81
60.24 ± 14.44
68.54 ± 5.75
72.44 ± 3.50
75.55 ± 4.11

51.13 ± 5.24
63.12 ± 6.09
71.65 ± 4.53
74.71 ± 3.35
79.95 ± 2.88

37.14 ± 7.81
65.07 ± 8.86
71.43 ± 7.34
76.04 ± 0.35
80.05 ± 1.81

73.58 ± 8.15
76.89 ± 4.89
83.01 ± 3.64
87.42 ± 2.38
89.38 ± 2.48

GraphSage

1
2
5
10
20

43.04 ± 14.01
53.96 ± 12.18
68.14 ± 6.95
75.04 ± 5.03
80.04 ± 2.54

48.81 ± 11.45
54.39 ± 11.37
64.79 ± 5.16
68.90 ± 5.08
72.02 ± 2.82

55.53 ± 12.71
58.97 ± 12.65
66.07 ± 6.16
70.74 ± 3.11
74.55 ± 3.09

61.35 ± 1.35
76.51 ± 1.31
89.06 ± 0.69
89.68 ± 0.39
91.33 ± 0.36

27.65 ± 2.39
42.63 ± 4.29
64.83 ± 1.62
74.66 ± 1.29
79.98 ± 0.96

45.36 ± 7.13
51.93 ± 4.21
78.26 ± 1.93
84.38 ± 1.75
91.29 ± 0.67

MoNet (Monti et al., 2017)

1
2
5
10
20

47.72 ± 15.53
60.85 ± 14.01
73.86 ± 7.97
78.82 ± 5.38
82.07 ± 2.03

39.13 ± 11.37
48.52 ± 9.52
61.66 ± 6.61
68.08 ± 6.29
71.52 ± 4.11

56.47 ± 4.67
61.03 ± 6.93
67.92 ± 2.50
71.24 ± 1.54
76.49 ± 1.75

58.99 ± 5.17
76.57 ± 4.06
87.02 ± 1.67
88.76 ± 0.49
90.31 ± 0.41

23.78 ± 7.57
38.19 ± 3.72
59.38 ± 4.73
68.66 ± 3.30
73.66 ± 2.87

34.72 ± 8.18
43.03 ± 8.22
71.80 ± 5.02
78.66 ± 3.17
88.61 ± 1.18

Table 21: Dataset statistics used in Table 4
Dataset Nodes Edges Classes Node Features

Roman-empire 22662 32927 18 300
Wiki-cooc 10000 2243042 5 100

Minesweeper 10000 39402 2 7
Questions 48921 153540 2 301
Workers 11758 519000 2 10

Amaon-ratings 24492 93050 5 300

Table 22: Full table: Node classification accuracy(%) of large heterophilic datasets.
Model Roman-empire Wiki-cooc Minesweeper Questions Workers Amazon-ratings

ResNet 65.71±0.44 89.36±0.71 50.95±1.12 70.10±0.75 73.08±1.28 45.70±0.69

H2GCN(Zhu et al., 2020a) 68.09±0.29 89.24±0.32 89.95±0.38 66.66±1.84 81.76±0.68 41.36±0.47
CPGNN(Zhu et al., 2021) 63.78±0.50 84.84±0.66 71.27±1.14 67.09±2.63 72.44±0.80 44.36±0.35

GPR-GNN(Chien et al., 2020) 73.37±0.68 91.90±0.78 81.79±0.98 73.41±1.24 70.59±1.15 43.90±0.48
GloGNN(Li et al., 2022) 63.85±0.49 88.49±0.45 62.53±1.34 67.15±1.92 73.90±0.95 37.28±0.66
FAGCN(Bo et al., 2021) 70.53±0.99 91.88±0.37 89.69±0.60 77.04±1.56 81.87±0.94 46.32±2.50

GBK-GNN(Du et al., 2022) 75.87±0.43 97.81±0.32 83.56±0.84 72.98±1.05 78.06±0.91 43.47±0.51
ACM-GCN(Luan et al., 2022) 68.35±1.95 87.48±1.06 90.47±0.57 OOM 78.25±0.78 38.51±3.38

GRAND(Chamberlain et al., 2021a) 71.60±0.58 92.03±0.46 76.67±0.98 70.67±1.28 75.33±0.84 45.05±0.65
GraphBel(Song et al., 2022) 69.47±0.37 90.30±0.50 76.51±1.03 70.79±0.99 73.02±0.92 43.63±0.42

Diag-NSD(Bodnar et al., 2022) 77.50±0.67 92.06±0.40 89.59±0.61 69.25±1.15 79.81±0.99 37.96±0.20
ACMP(Wang et al., 2022b) 71.27±0.59 92.68±0.37 76.15±1.12 71.18±1.03 75.03±0.92 44.76±0.52

CDE 91.64±0.28 97.99±0.38 95.50±5.23 75.17±0.99 80.70±1.04 47.63±0.43
F-CDE 93.06±0.55 98.73±0.68 96.04±0.25 75.17±0.99 82.68±0.86 49.01±0.56

β for F-CDE 0.9 0.6 0.6 1.0 0.4 0.1

34

Published as a conference paper at ICLR 2024

E.4 F-GREAD

Our FROND framework is also extendable to the GREAD model (Choi et al., 2023), as defined in
(43).

Dβ
t X(t) = −αL(X(t)) + αr(X(t)) (43)

where r(X(t)) represents a reaction term, and α is a trainable parameter used to emphasize each
term.

We adhere to the same experimental setting outlined in the GREAD paper (Choi et al., 2023),
concentrating exclusively on heterophilic datasets. We choose the Blurring-Sharpening (BS) as the
reaction term to formulate both GREAD-BS and F-GREAD-BS, as GREAD-BS exhibits strong
performance according to Table 4 in the GREAD paper (Choi et al., 2023). The results presented in
Table 23 (refer to Table 24 for comprehensive comparisons with other baselines) demonstrate that our
FROND framework enhances the performance of GREAD across all examined datasets.

Table 23: Node classification accuracy(%) of heterophilic datasets
Model Chameleon Squirrel Film Texas Wisconsin

GREAD-BS 71.38±1.31 59.22±1.44 37.90±1.17 88.92±3.72 89.41±3.30
F-GREAD-BS 71.45±1.98 60.86±1.05 38.28±0.74 92.97±4.39 90.59±3.80

β 0.9 0.9 0.8 0.9 0.9

Table 24: Full table: Node classification accuracy(%) of heterophilic datasets
Model Chameleon Squirrel Film Texas Wisconsin

Geom-GCN(Pei et al., 2020) 60.00±2.81 38.15±0.92 31.59±1.15 66.76±2.72 64.51±3.66
H2GCN(Zhu et al., 2020a) 60.11±2.15 36.48±1.86 35.70±1.00 84.86±7.23 87.65±4.98
GGCN(Yan et al., 2022) 71.14±1.84 55.17±1.58 37.54±1.56 84.86±4.55 86.86±3.29
LINKX(Lim et al., 2021) 68.42±1.38 61.81±1.80 36.10±1.55 74.60±8.37 75.49±5.72
GloGNN(Li et al., 2022) 69.78±2.42 57.54±1.39 37.35±1.30 84.32±4.15 87.06±3.53

ACM-GCN(Luan et al., 2022) 66.93±1.85 54.40±1.88 36.28±1.09 87.84±4.40 88.43±3.22
GCNII(Chen et al., 2020) 63.86±3.04 38.47±1.58 37.44±1.30 77.57±3.83 80.39±3.40

CGNN(Xhonneux et al., 2020) 46.89±1.66 29.24±1.09 35.95±0.86 71.35±4.05 74.31±7.26
GRAND(Chamberlain et al., 2021a) 54.67±2.54 40.05±1.50 35.62±1.01 75.68±7.25 79.41±3.64
BLEND(Chamberlain et al., 2021b) 60.11±2.09 43.06±1.39 35.63±1.01 83.24±4.65 84.12±3.56

Sheaf(Bodnar et al., 2022) 68.04±1.58 56.34±1.32 37.81±1.15 85.05±5.51 89.41±4.74
GRAFF(Di Giovanni et al., 2022) 71.08±1.75 54.52±1.37 36.09±0.81 88.38±4.53 87.45±2.94

GREAD-BS 71.38±1.31 59.22±1.44 37.90±1.17 88.92±3.72 89.41±3.30
F-GREAD-BS 71.45±1.98 60.86±1.05 38.28±0.74 92.97±4.39 90.59±3.80

β 0.9 0.9 0.8 0.9 0.9

E.5 F-GRAPHCON

We also incorporate the following fractional-order oscillators dynamics, inspired by (Radwan et al.,
2008; Rusch et al., 2022):

Dβ
t Y = σ (Fθ(X, t))− γX− αY

Dβ
t X = Y

(44)

which represent the fractional dynamics version of GraphCON (Rusch et al., 2022). We denote this
as F-GraphCON, with two variants, F-GraphCON-GCN and F-GraphCON-GAT. Here, Fθ is set as
GCN and GAT, as in the setting described in (Rusch et al., 2022). We refer readers to (Rusch et al.,
2022) for further details. Notably, when β = 1, F-GraphCON simplifies to GraphCON, devoid of
memory functionality.

35

Published as a conference paper at ICLR 2024

Table 25: Node classification accuracy(%) based on GraphCON model
Cora Citeseer Pubmed Airport Disease

GraphCON-GCN 81.9±1.7 72.9±2.1 78.8±2.6 68.6±2.1 87.5±4.1
GraphCON-GAT 83.2±1.4 73.2±1.8 79.4±1.3 74.1±2.7 65.7±5.9

F-GraphCON-GCN 84.6±1.4 75.3±1.1 80.3±1.3 97.3±0.5 92.1±2.8
β 0.9 0.8 0.9 0.1 0.1

F-GraphCON-GAT 83.9±1.2 73.4±1.5 79.4±1.3 97.3±0.8 86.9±4.0
β 0.7 0.9 1.0 0.1 0.1

Table 26: Full table: Node classification accuracy(%) based on GraphCON model.
Cora Citeseer Pubmed Airport Disease

GCN 81.5±1.3 71.9±1.9 77.8±2.9 81.6±0.6 69.8±0.5
GAT 81.8±1.3 71.4±1.9 78.7±2.3 81.6±0.4 70.4±0.5

HGCN 78.7±1.0 65.8±2.0 76.4±0.8 85.4±0.7 89.9±1.1
GIL 82.1±1.1 71.1±1.2 77.8±0.6 91.5±1.7 90.8±0.5

GRAND-l 83.6±1.0 73.4±0.5 78.8±1.7 80.5±9.6 74.5±3.4
GRAND-nl 82.3±1.6 70.9±1.0 77.5±1.8 90.9±1.6 81.0±6.7

GraphCON-GCN 81.9±1.7 72.9±2.1 78.8±2.6 68.6±2.1 87.5±4.1
GraphCON-GAT 83.2±1.4 73.2±1.8 79.4±1.3 74.1±2.7 65.7±5.9

F-GraphCON-GCN 84.6±1.4 75.3±1.1 80.3±1.3 97.3±0.5 92.1±2.8
β 0.9 0.8 0.9 0.1 0.1

F-GraphCON-GAT 83.9±1.2 73.4±1.5 79.4±1.3 97.3±0.8 86.9±4.0
β 0.7 0.9 1.0 0.1 0.1

Table 27: Node classification accuracy(%) of undirected graphs based on F-FLODE model
Film Squirrel Chameleon

FLODE 37.16±1.42 64.23±1.84 73.60±1.55

F-FLODE 37.95±1.27 65.53±1.83 74.17±1.59
β 0.8 0.9 0.9

Table 28: Node classification accuracy(%) of directed graphs based on F-FLODE model
Film Squirrel Chameleon

FLODE 37.41±1.06 74.03±1.58 77.98±1.05

F-FLODE 37.97±1.15 75.03±1.42 78.51±1.09
β 0.9 0.9 0.9

E.6 F-FLODE

In the work of (Maskey et al., 2023), the authors introduce the FLODE model, which incorporates
fractional graph shift operators within integer-order continuous GNNs. Specifically, instead of
utilizing a Laplacian matrix L, they employ the fractional power of L, denoted as Lα (see (45)). Our
research diverges from this approach, focusing on the incorporation of time-fractional derivative
Dβ

t for updating graph node features in a memory-inclusive dynamical process. It is pivotal to
differentiate the term “fractional” as used in our work from that in (Maskey et al., 2023), as they
signify fundamentally distinct concepts in the literature. Fundamentally, FLODE differs from our
work in key aspects:

36

Published as a conference paper at ICLR 2024

• FLODE employs the fractional (real-valued) power of L, namely Lα. The feature evolution
model used by FLODE, specifically in its first heat diffusion-type variant, is given by:

dX(t)

dt
= −LαX(t)Φ. (FLODE)

This is a graph spatial domain rewiring technique, as Lα introduces dense connections
compared to L. As a result, FLODE introduces space-based long-range interactions during
the feature updating process.

• In contrast, our FROND model incorporates the time-fractional derivative Dβ
t to update

graph node features in a memory-inclusive dynamical process. In this context, time acts
as a continuous counterpart to the layer index, leading to significant dense skip connec-
tions between layers due to memory dependence. Thus, FROND induces time/layer-based
long-range interactions in the feature update process. Note that FLODE does not utilize
time-fractional derivatives. Our method is not only compatible with various integer-order
continuous GNNs, including FLODE (see (F-FLODE)), but also extends them to graph FDE
models.

We next introduce the F-FLODE model, which utilizes time-fractional derivatives for updating graph
node features in FLODE:

Dβ
t X(t) = −LαX(t)Φ, (F-FLODE)

where L denotes the symmetrically normalized adjacency matrix. The α-fractional power of the
graph Laplacian, Lα, is given by:

Lα := UΣαVH. (45)

In this formulation, U, Σ, and V are obtained from the SVD decomposition of L = UΣVH, and
α ∈ R represents the order. The channel mixing matrix Φ, a symmetric matrix, follows the setting in
(Maskey et al., 2023).

Following the experimental setup outlined in (Maskey et al., 2023), we present our results in Tables 27
and 28, demonstrating that our FROND framework enhances the performance of FLODE across all
evaluated datasets. Note the difference in the equations in (FLODE) and (F-FLODE), where the two
are equivalent only when β = 1. This example illustrates that the FROND framework encompasses
the FLODE model as a special case when β = 1. Our experimental results indicate that F-FLODE
outperforms FLODE with the optimal β ̸= 1 in general.

F PROOFS OF RESULTS

In this section, we provide detailed proofs of the results stated in the main paper.

F.1 PROOF OF THEOREM 1

Proof. We observe that for 0 < β < 1 they possess the properties, the coefficients ck, bm defined in
(10) satisfying the following properties (Gorenflo et al., 2002).

∞∑
k=1

ck = 1, 1 > β = c1 > c2 > c3 > . . .→ 0,

b0 = 1, bm = 1−
m∑

k=1

ck =

∞∑
k=m+1

ck, 1 = b0 > b1 > b2 > b3 > . . .→ 0.

From the definition of the transition probability (11), we have

37

Published as a conference paper at ICLR 2024

P(R(tn+1) = xh)

= bnP(R(t0) = xh) + cnP(R(t1) = xh) + . . .+ c2P(R(tn−1) = xh)+

+ (c1 − σβ)P(R(tn) = xh) +

n∑
j=1

σβWjh

dj
P(R(tn) = xj)

= bnP(R(t0) = xh) + cnP(R(t1) = xh) + . . .+ c2P(R(tn−1) = xh)+

+ c1P(R(tn) = xh)− σβP(R(tn) = xh) +

N∑
j=1

σβWjh

dj
P(R(tn) = xj). (46)

By rearranging, we have

P(R(tn+1) = xh)−
n∑

k=1

ckP(R(tn+1−k) = xh)− bnP(R(t0) = xh)

= (−1)0
(
β

0

)
P(R(tn+1) = xh)−

n∑
k=1

(−1)k+1

(
β

k

)
P(R(tn+1−k) = xh)

−
n∑

k=0

(−1)k
(
β

k

)
P(R = xh)

=

n∑
k=0

(−1)k
(
β

k

)
P(R(tn+1−k) = xh)−

n∑
k=0

(−1)k
(
β

k

)
P(R = xh)

=

n∑
k=0

(−1)k
(
β

k

)
[P(R(tn+1−k) = xh)− P(R = xh)]

= −σβP(R(tn) = xh) +

n∑
j=1

σβWjh

dj
P(R(tn) = xj).

Dividing both sides of the final equality by σβ , it follows that
n∑

k=0

(−1)k
(
β

k

)
P(R(tn+1−k) = xh)− P(R = xh)

σβ

= −P(R(tn) = xh) +

N∑
j=1

Wjh

dj
P(R(tn) = xj). (47)

From the Griinwald-Letnikov fractional derivatives formulation (Podlubny, 1999)[eq. (2.54)], the
limit of LHS of (47) is

lim
σ→0
nσ=t

n∑
k=0

(−1)k
(
β

k

)
P(R(tn+1−k) = xh)− P(R = xh)

σβ
= Dβ

t P(R(t) = xh) ≡ [Dβ
t P(t)]h.

(48)

where P(t) := limn→∞ P(R(tn)) and [Dβ
t P(t)]h denotes the h-th element of the vector. On the

other hand, the RHS of (47) is

−P(R(tn) = xh) +

N∑
j=1

Wjh

dj
P(R(tn) = xj) = [−LP(R(tn))]h (49)

where P(R(tn)) is the probability (column) vector with j-th element being P(R(tn) = xj), and
[−LP(R(tn))]h denotes the h-th element of the vector −LP(R(tn)).

Putting them together, we have

Dβ
t P(t) = −LP(t) (50)

since we assume tn = t in the limit. The proof of Theorem 1 is now complete.

38

Published as a conference paper at ICLR 2024

F.2 PROOF OF COROLLARY 1

It directly follows from the the linearity of FDEs and X(0) = X =
∑

i iP(0)xi where recall that
the initial probability vector iP(R(0)) ≡ iP(0) is represented as a one-hot vector with the i-th entry
marked as 1.

F.3 PROOF OF THEOREM 2

Before presenting the formal proof, we aim to provide additional insights and intuition regarding the
algebraic convergence from two perspectives.

• Fractional Random Walk Perspective: In a standard random walk, a walker moves to a
new position at each time step without delay. However, in a fractional random walk, which
is more reflective of our model’s behavior, the walker has a probability of revisiting past
positions. This revisitation is not arbitrary; it is governed by a waiting time that follows
a power-law distribution with a long tail. This characteristic fundamentally changes the
walk’s dynamics, introducing a memory component and leading to a slower, algebraic rate
of convergence. This behavior is intrinsically different from normal random walks, where
the absence of waiting times facilitates a quicker, exponential, convergence.

• Analytic Perspective: From an analytic perspective, the essential slow algebraic rate pri-
marily stems from the slow convergence of the Mittag-Leffler function towards zero. To
elucidate this, let us consider the scalar scenario. Recall that the Mittag-Leffler function Eβ

is defined as:

Eβ(z) :=

∞∑
j=0

zj

Γ(jβ + 1)

for values of z where the series converges. Specifically, when β = 1,

E1(z) =

∞∑
j=0

zj

Γ(j + 1)
=

∞∑
j=0

zj

j!
= exp(z)

corresponds to the well-known exponential function. According to [A1, Theorem 4.3.], the
eigenfunctions of the Caputo derivative are expressed through the Mittag-Leffler function.
In more precise terms, if we define y(t) as

y(t) := Eβ (−λtn) , t ≥ 0,

it follows that

Dβ
t y(t) = −λy(t).

Notably, when β = 1, this reduces to d exp(−λt)
dt = −λ exp(−λt). We examine the behavior

of Eβ (−λtn). From (Diethelm, 2010)[Theorem 7.3.], when 0 < β < 1, it is noted that:
(a) The function y(t) is completely monotonic on (0,∞).
(b) As x→ ∞,

y(t) =
t−β

λΓ(1− β)
(1 + o(1)).

Thus, the function Eβ

(
−λtβ

)
converges to zero at a rate of Θ

(
t−β
)
. Our paper extends

this to the general high-dimensional case by replacing the scalar λ with the Laplacian matrix
L, wherein the eigenvalues of L play a critical role analogous to λ in the scalar case.
For a diagonalizable Laplacian matrix L, the proof essentially reverts to the scalar case
as outlined above (refer to (56) in our paper). However, in scenarios where L is non-
diagonalizable and has a general Jordan normal form, it becomes necessary to employ the
Laplace transform technique to demonstrate that the algebraic rate remains valid (refer to
the context between (56) and (58)).

39

Published as a conference paper at ICLR 2024

Proof. We first prove the stationary probability π =

(
d1∑N

j=1 dj
, . . . , dN∑N

j=1 dj

)
by induction. Assume

that for i = 1, . . . , n, the probability distribution P(R(tn)) always equals π⊺. For i = n+ 1, from
(46), it follows that

[P(R(tn+1))]h = P(R(tn+1) = xh)

= bnP(R(t0) = xi) +
∑
k

ckP(R(tn+1−k) = xh)

− σβP(R(tn) = xh) +

N∑
j=1

σβWjh

dj
P(R(tn) = xj)

= πhbn +

n∑
k=1

πhck − πhσ
β +

N∑
j=1

πjσ
βWjh

dj

= πh(bn +

n∑
k=1

ck)− πhσ
β +

N∑
j=1

dj∑N
j=1 dj

σβWjh

dj

= πh − πhσ
β + σβ

N∑
j=1

Wjh∑N
j=1 dj

= πh − πhσ
β + σβ dh∑N

j=1 dj

= πh.

This proves the existence of stationary probability. The uniqueness follows from this observation:
if P(R(t1)) = π′ ̸= π, we do not have P(R(t2)) = P(R(t1)) since otherwise it indicates that the
Markov chain defined by

P
(
R(tn+1) = xjn+1

∣∣R(t0) = . . . ,R(t1) = . . . , . . . ,R(tn) = xjn

)
(51)

= P(R(tn+1) = xj |R(tn) = xi) (52)
= P(R(t2) = xj |R(t1) = xi) (53)

=

{
c1 − σβ + b1 if staying at current location with j = i

σβ Wij

di
if jumping to neighboring nodes with j ̸= j

(54)

has stationary distribution other than π, which contradicts the assumption of a strongly connected
and aperiodic graph.

We next establish the algebraic convergence as 0 < β < 1.

It is evident that for the matrix WD−1, given that it is column stochastic and the graph is strongly
connected and aperiodic, the Perron-Frobenius theorem Horn & Johnson (2012)[Lemma 8.4.3.,
Theorem 8.4.4] confirms that the value 1 is the unique eigenvalue of this matrix that equals its spectral
radius, which is also 1. Consequently, it follows that the matrix L = I−WD−1 has an eigenvalue
of 0, with all other eigenvalues possessing positive real parts. Considering the Jordan canonical form
of L, denoted as L = SJS−1, it is observed that J contains a block that consists solely of a single 0,
while the other blocks are characterized by eigenvalues λk possessing positive real parts.

WLOG, we assume that the dimension of X ∈ RN in (9), as this is consistent with handling the
probability vector P(t) described in (12). We rewrite it as

Dβ
t Y(t) = −JY(t) (55)

where S−1X(t) = Y(t) ∈ RN representing a transformation of the feature space, and the trans-
formed initial condition is defined as S−1X(0) = Y(0).

If the matrix L is diagonalizable, then its Jordan canonical form J becomes a diagonal matrix, with
the diagonal elements representing the eigenvalues of L. In this scenario, the differential equation
can be decoupled into a set of independent equations, each described by

Dβ
t Yk(t) = −λkYk(t). (56)

40

Published as a conference paper at ICLR 2024

Here, Yk signifies the k-th component of the vector Y. According to Diethelm (2010)[Theorem 4.3.],
the solution to each differential equation in the given context is represented as:

Yk(t) = Yk(0)Eβ(−λktβ) (57)

where is Eβ(·) is the Mittag-Leffler function define as Eβ(z) =
∑∞

j=0
zj

Γ(βj+1) and Γ(·) is the
gamma function. This formulation leads to two important observations:

1. For the index j such that the eigenvalue λj = 0, the solution simplifies to Yj(t) = Yj(0). This
corresponds to a stationary vector in the original space when transformed back to X(t).

2. According to Podlubny (1999)[Theorem 1.4.], for indices k ̸= j, since λk has a positive real part,
the convergence to zero is characterized by the following order:

Yk(t) = Θ(t−β).

Asymptotically, this indicates that all components Yk(t), except Yj(t), will converge to zero at an
algebraic rate. In terms of X(t), this translates into a convergence towards a stationary vector in the
eigenspace corresponding to the eigenvalue 0, while components associated with other eigenspaces
diminish at an algebraic rate.

If the matrix J is not diagonal, the entries of Y(t) corresponding to distinct Jordan blocks in J
remain uncoupled. Therefore, it suffices to consider a single Jordan block corresponding to a non-
zero eigenvalue λk. In this case, employing the Laplace transform technique becomes useful for
demonstrating that the algebraic rate of convergence remains valid. We assume the Jordan block
J(λk), associated with λk, is of size m. It follows that for this Jordan block we have

Dβ
t Y1(t) = −λkY1(t)−Y2(t),

...
...

Dβ
t Ym−1(t) = −λkYm−1(t)−Ym(t),

Dβ
t Ym(t) = −λkYm(t),

which can be solved from the bottom up. Beginning with the last equation, we obtain:

Ym(t) = Ym(0)Eβ(−λktβ) = Θ(t−β).

Further, the differential equation for Ym−1(t) is given by:

Dβ
t Ym−1(t) = −λkYm−1(t)−Ym(0)Eβ(−λktβ)

Applying the Laplace transform and referring to (3), we obtain:

L
{
Dβ

t Ym−1(t)
}
= sβYm−1(s)− sβ−1Ym−1 (0)

where Ym−1(s) is the Laplace transform of Ym−1(t). For the right-hand side of the differential
equation, we have L{λkYm−1(t)} = λkYm−1(s). Additionally, the Laplace transform of the
Mittag-Leffler function Eβ

(
−λktβ

)
known to be sβ−1

sβ+λk
Podlubny (1999)[eq 1.80]. Consequently,

the equation in the Laplace domain is represented as:

sβYm−1(s)− sβ−1Ym−1 (0) = −λkYm−1(s)−Ym(0)
sβ−1

sβ + λk
Rearranging this equation to isolate Ym−1(s) yields:

Ym−1(s) =
sβ−1Ym−1 (0)−Ym(0) sβ−1

sβ+λk

sβ + λk

As s→ 0, it follows that Ym−1(s) = Θ(sβ−1). Applying the same process recursively, we find that
Yi(s) = Θ(sβ−1) for all i = 1, . . . ,m. Invoking the Hardy–Littlewood Tauberian theorem Wikipedia
(2023), we can conclude that for all indices i = 1, . . . ,m, the following relationship holds:

Yi(t) = Θ(t−β). (58)
Consequently, we can deduce that, akin to the scenarios involving diagonalizable matrices, the
feature components associated with other eigenspaces in non-diagonalizable cases also diminish at
an algebraic rate.

The proof now is complete.

41

Published as a conference paper at ICLR 2024

LIMITATIONS

Our research proposes an advanced graph diffusion framework that integrates time-fractional deriva-
tives, effectively encompassing many GNNs. Nonetheless, it presents certain limitations. A crucial
element we have overlooked is the application of the fractional derivative in the spatial domain. In
fractional diffusion equations, this implies substituting the standard second-order spatial derivative
with a Riesz-Feller derivative (Gorenflo & Mainardi, 2003), thus modeling a random walk with
space-based long-range jumps. Incorporating such a space-fractional diffusion equation within GNNs
could potentially alleviate issues like the bottleneck and over-squashing highlighted in (Alon & Yahav,
2021). This represents a current limitation of our work and suggests a compelling future research
trajectory that merges both time and space fractional derivatives in GNNs.

BROADER IMPACT

The introduction of FROND holds significant potential for applications such as sensor networks,
transportation, and manufacturing. FROND’s ability to encapsulate long-term memory in neural dy-
namical processes can enhance the representation of complex interconnections, improving predictive
modeling and efficiency. This could lead to more responsive sensor networks, optimized routing in
transportation, and improved visibility into manufacturing process networks. However, the advent
of FROND and similar models may also have mixed labor implications. While these technologies
might render certain repetitive tasks obsolete, potentially displacing jobs, they may also generate new
opportunities focused on developing and maintaining such advanced systems. Moreover, the shift
from mundane tasks could enable workers to focus more on strategic and creative roles, enhancing job
satisfaction and productivity. It’s paramount that the deployment of FROND is done ethically, with
ample support for reskilling those whose roles may be affected. This helps ensure that the broader
impact of this technology is beneficial to society as a whole.

42

	Introduction
	Preliminaries
	Caputo Fractional Derivative
	Integer-Order Continuous GNNs

	Fractional-Order Graph Neural Dynamical Network
	Framework
	FROND Model Examples

	Random Walk Perspective of F-GRAND-l
	Oversmoothing Mitigation of F-GRAND-l Compared to GRAND-l

	Solving FROND

	Experiments
	Node Classification of F-GRAND
	Graph Classification of F-GRAND
	Oversmoothing of F-GRAND
	Ablation Study: Selection of beta
	More integer-order continuous GNNs in FROND framework

	Conclusion
	Related Work
	Review of Caputo Time-Fractional Derivative
	Caputo Fractional Derivative and Its Compatibility of Integer-order Derivative
	Comparison between Riemann–Liouville and Caputo Derivative
	(Caputo) Fractional Differential Equation
	Riemann-Liouville Case
	Caputo Case
	Existence and Uniqueness of the (Caputo) Solution

	Reasons for Choosing Caputo Derivative

	Numerical Solvers for FROND
	Basic predictor
	Predictor-corrector
	Short memory principle
	L1 Solver

	Datasets, Settings and More Experiments for F-GRAND model
	Datasets
	Graph Classification Details
	Implementation Details
	Large scale Ogbn-products dataset
	Performance of Different Solver Variants
	Further Clarification On Two Accuracies

	Computation Time
	Continued Study of Oversmoothing
	Ablation Study: Selection of Continued
	Robustness Against Adversarial Attacks
	Comparison between Riemann-Liouville (RL) derivative and Caputo Derivative
	Fractal Dimension of Graph Datasets

	More Dynamics in FROND Framework
	Review of Graph ODE Models
	F-GRAND++
	F-CDE
	F-GREAD
	F-GraphCON
	F-FLODE

	Proofs of Results
	Proof of Theorem 1
	Proof of Corollary 1
	Proof of Theorem 2

