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Abstract
Self-supervised learning for vision typically focuses on learning invariant or equivariant
representations through data transformations, but this approach introduces priors and biases
that weaken performance in tasks not aligned with these symmetries. Inspired by world
models, we propose Contextual Self-Supervised Learning (ContextSSL), which learns
a general representation adaptable to different transformations by leveraging context—a
memory module that tracks task-specific states, actions (transformations), and future states.
Instead of enforcing invariance, ContextSSL learns equivariance to all transformations,
enabling the model to encode general features while adapting to task-specific symmetries
with a few examples. Empirically, we demonstrate significant performance gains over existing
methods on equivariance-related tasks.
Keywords: Self-Supervised Learning; Context; Equivariance; Invariance

1. Introduction

Recent advances in self-supervised learning (SSL) of image representations have achieved
competitive performance to it’s supervised counterparts across various tasks, including image
classification (Chen et al., 2020a; Bardes et al., 2022; Bachman et al., 2019; Grill et al., 2020;
Chen et al., 2020b; He et al., 2020; Zbontar et al., 2021). Most SSL approaches rely on
joint-embedding architectures that bring semantically similar (positive) pairs closer together
and push dissimilar (negative) pairs apart. Positive pairs are typically generated through
data augmentations like color changes, cropping, or orientation shifts. These methods often
enforce either invariance (Chen et al., 2020a; Bardes et al., 2022; Chen and He, 2021; He
et al., 2020; Zbontar et al., 2021; Grill et al., 2020) or equivariance (Gupta et al., 2023b;
Devillers and Lefort, 2023; Dangovski et al., 2022; Garrido et al., 2023; Assran et al., 2023;
Garrido et al., 2024) to augmentations, introducing strong inductive biases that may not
generalize well across different downstream tasks.

Can incorporating context into self-supervised vision algorithms eliminate
augmentation-based inductive priors and enable dynamic adaptation to varying symmetries?

This work suggests a positive answer to this question by proposing to enhance the current
joint embedding architecture with a finite context — an abstract representation of a task,
containing a few demonstrations that inform about task-specific symmetries. Based on
this idea, we propose Contextual Self-Supervised Learning (ContextSSL), a contrastive
learning framework that uses a transformer module to adapt to selective invariance or
equivariance to transformations by paying attention to context representing a task. Unlike
previous approaches with built-in symmetries, the ability of ContextSSL to adapt to
varying data symmetries—all without undergoing any parameter updates—enables it to learn
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Figure 1: We apply a transformation (rotation or color) on a source image in latent space
and retrieve the nearest neighbor (NN) of the predicted representation when the context
contains pairs of data transformed by (top row) 3D rotation (Rx, Ry, Rz); (bottom row)
color transformation (θ, ϕ). We see that depending on the kind of context (rotation or color),
ContextSSL aligns the representation with either the rotation angle (top row) or color
(bottom row) of the target image.

a general representation across tasks, devoid of specific inductive priors. We demonstrate that
as the context increases, the model tailors its symmetries to a task, encouraging equivariance
to a subset of transformations and invariance to the rest (as shown in Figure 1). We validate
our approach on real world a physiological dataset MIMIC III (Johnson et al., 2016), a
fairness benchmark UCI-Adult (Asuncion et al., 2007), 3DIEBench and CIFAR10.

2. Beyond Built-in Symmetry: Contextual Self-Supervised Learning

Recognizing the limitations of existing augmentation-specific SSL methods, we propose a
new paradigm: Contextual Self-Supervised Learning (ContextSSL). Unlike traditional
methods, this approach learns a single model that adapts to be either invariant or equivariant
based on context-specific augmentations, tailored to the needs of the task or data at hand.
Symmetries as Context. Given a set of groups of input transformations {G1, . . . ,GM}, the
goal of ContextSSL is to build a general representation that is adaptive to a set of multiple
symmetries corresponding to these different groups. Each group Gc can be represented through
the joint distribution P (x, a, y|Gc), where x is the input sample (sampled from an unlabeled
dataset), a represents the parameters of the transformation drawn from Gc and applied to x,
and y is the transformed input. We approximate this distribution by drawing K samples
from the joint distribution and form a context C(Gc) = [(x1, a1, y1), . . . , (xK , aK , yK)].
Contextual World Models. To implement this broad goal, we propose to adaptively learn
the symmetries represented by Gc by training the model yi ≈ h((xi, ai); (x1, a1, y1), . . . , (xi−1, ai−1, yi−1)).
While the requested prediction yi concerns only the inputs xi and ai, the model can now
pay attention to the experience so far, enforcing relevant symmetries for the augmenta-
tion group Gc. The predictor h is updated by minimizing the loss at each context length∑K

i=1 ℓ(h((x, ai);Ci−1), yi) where Ci = {(x1, a1, y1), . . . , (xi−1, ai−1, yi−1)} represents the con-
text before index i. We train a decoder-only transformer model in-context as h, conditioning
on relevant context C(Gc) that represents the transformation group Gc.
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Contextual Self-Supervised Learning (ContextSSL). Motivated by these ideas,
we construct pairs of points {(xi, yi)}Ki=1 by either 1) sampling a transformation group (G)
and applying an augmentation from (gG) to xi to obtain yi; or 2) if available, sampling a
meta-latent and its transformation parameters based on the difference between their latent
parameters. Pairs can also be transformed by augmentations from other transformation
groups, but the context C(G) only uses parameters from G. Each input pair {(xi, yi)}Ki=1 is
independently transformed by the encoder into latent representations. The representation of
xi is then concatenated with its transformation action ai. This concatenated vector (xi, ai)
and the transformed input yi form the context for the symmetry G. The output embeddings
are aligned using the InfoNCE loss, minimized at each context length.

At inference, we adapt representation extraction to the specific needs of the downstream
task, whether it requires equivariance or invariance to a transformation group G. For
tasks benefiting from equivariance, we use the maximum context length K from training,
constructing {(xi, ai, yi)}Ki=1 where ai belongs to G and transforms test data xi into yi.
For tasks needing invariance, we use {(xi, 0, yi)}Ki=1 as the context. Specifically, including
the augmentation parameters for transformations in a group G in the context enforces
equivariance, while excluding them enforces invariance. In both cases, the data are still
transformed using augmentations, regardless of the type of symmetry desired. However, this
implementation bears two key challenges, as detailed below.
Context Masking. A challenge in minimizing alignment loss is the model’s tendency
toward shortcut learning, where it treats the embeddings of (xi, ai) as identical to yi due to
access to xi, perfectly minimizing the loss. To counter this, we mask the input token (xi, ai)
for each yi in the context, ensuring that when encoding yi, the transformer only has access to
the past context Ci = {(x1, a1, y1), . . . , (xi−1, ai−1, yi−1)}, excluding its corresponding pair.

However, as shown in Figure 3, for p = 0, a residual challenge of shortcut learning persists
when distinguishing the positives from the negatives. Since the context corresponding to each
negative is different from that of the anchor and the positive, the model could employ trivial
solutions, such as using the mean of the context vector to differentiate between positives and
negatives. To mitigate this issue, we introduce an additional layer of randomness where for
each token in the context, we randomly mask tokens preceding it with probability p.
Avoiding collapse to Invariance. A trivial but undesirable solution that minimizes our
optimization objective is invariance to the input transformations. As illustrated in Figure 4,
naively training ContextSSL leads to poor equivariance with respect to the transformations.
Previous works (Garrido et al., 2023) have also identified this concern and proposed specialized
architectures that incorporate transformation parameters directly into the model. For our
setting, we introduce a rather simple approach that involves jointly training an auxiliary
predictor. This predictor is designed to predict the latent transformations of the target
sample yi from the concatenated input vector (xi, ai).

3. Experimental Results

3.1. Quantitative Assessment of Adaptation to Task-Specific Symmetries

We use the 3D Invariant Equivariant Benchmark (3DIEBench) (Garrido et al., 2023) and
CIFAR10 to test our approach. We compare ContextSSL with 1) VICReg (Bardes et al.,
2022) and SimCLR (Chen et al., 2020a) among the invariant self-supervised approaches; 2)
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EquiMOD (Devillers and Lefort, 2023), SEN (Park et al., 2022) and SIE (Garrido et al.,
2023) amongst the equivariant baselines. We report the test performance on context lengths
0, 2, 14, 30, and 126. To evaluate invariant representations, we use linear classification over
frozen features; for the equivariant case, we report R2 scores on predicting the corresponding
transformations. More details about training setup are provided in Appendix C.

Table 1: Quantitative evaluation of learned representations on invariant (classification) and
equivariant (rotation prediction, color prediction). ContextSSL ’s performance is reported
with increasing context length from 0 to 126, while the invariant and equivariant baselines
do not operate on context, and hence, their performance is independent of context.

G Method Rotation prediction (R2) Color prediction (R2) Classification (top-1)

Context length 0 2 14 30 126 0 2 14 30 126 Representation

Invariant
SimCLR 0.506 0.148 85.3
VICReg 0.371 0.023 76.3

R
ot

at
io

n EquiMOD 0.512 0.097 82.4
SIE 0.671 0.011 77.3
SEN 0.633 0.055 81.5
ContextSSL 0.734 0.740 0.743 0.743 0.744 0.908 0.664 0.037 0.023 0.046 80.4

C
ol

or

EquiMOD 0.429 0.859 82.1
SIE 0.304 0.975 70.3
SEN 0.386 0.949 77.6
ContextSSL1 0.735 0.614 0.389 0.345 0.344 0.908 0.981 0.985 0.986 0.986 80.4

Invariant Classification and Equivariant transformation prediction task. As
shown in Table 1, invariant self-supervised learning methods such as SimCLR and VICReg
achieve high downstream classification accuracies but underperform in equivariant augmenta-
tion prediction tasks. Among the equivariant baselines, EquiMOD persistently maintains its
downstream classification accuracy but exhibits improvements in augmentation prediction
tasks only when trained to be equivariant to color. In contrast, ContextSSL exhibits
equivariance to both rotation and color in the absence of context. As seen from the two
rows corresponding to ContextSSL in Table 1, when the context corresponds to pairs of
data with transformations sampled from the rotation (color) group, the model adaptively
learns to be invariant to color (rotation) while improving equivariance to rotation (color).
Appendix D.12 shows that ContextSSL learns equivariance or invariance to the same
transformation based on the context.
Additional results. Additional results to understand the role of context mask, auxiliary
predictor are shown in Figure 3 and Figure 4 respectively. Further, we demonstrate
that ContextSSL extends to naturally occurring symmetries and sensitive features in
fairness and physiological datasets such as the MIMIC III (Johnson et al., 2016) and UCI
Adult (Asuncion et al., 2007). Unlike 3DIEBench where meta-latents for each data are
available, we manually construct positives by applying augmentations like crop and blur
on CIFAR10. The results for the combinations of crop and blur are reported in Table 2.
Results on additional transformation pairs are provided in Appendix D.9. Related works
and additional discussion about the algorithmic implications can be found in Appendix B.

1. In Table 1, both the ContextSSL models are the same and the performance is reported depending on
whether the context corresponds to rotation or color augmentation group (denoted by G).
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Appendix A. Related Work

Self-Supervised Learning. Existing SSL methods generally belong to two categories:
invariant learning (Chen et al., 2020a; Bardes et al., 2022; Chen and He, 2021; He et al.,
2020; Zbontar et al., 2021; Grill et al., 2020) and equivariant learning. The representative
method for invariant learning is contrastive learning, which draws the representations of
positive samples together in the latent space such that the representations are invariant
to data augmentation. Contrastive learning can learn highly discriminative features at
the cost of losing certain image information due to the invariance constraint Xiao et al.
(2021). Motivated by this limitation, recent works explore merging contrastive learning with
equivariant learning tasks by separate embedding Xiao et al. (2021); Garrido et al. (2023),
augmentation-conditioned predictor Devillers and Lefort (2023); Garrido et al. (2024), and
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explicit equivariant transformation Gupta et al. (2023b). However, existing works still inherit
the limitations of contrastive learning: its symmetry prior is built on a given set of manual
augmentations and is not adaptive to downstream tasks. In contrast, our method enables
the contextual world model to adapt its symmetry to the contextual data, which is more
flexible and generalizable to various tasks.

World Models. World modeling has achieved notable success in reinforcement learning
(RL) for model-based planning Ha and Schmidhuber (2018); Sekar et al. (2020); Hafner
et al. (2020) and vision (Hafner et al., 2023; Hu et al., 2023; Yang et al., 2024), where it
involves predicting future states based on current observations and actions. This concept,
however, has not yet been fully leveraged in visual representation learning. Nevertheless,
Garrido et al. (2024) shows that several families of self-supervised learning approaches can
be reformulated through the lens of world modeling. Equivariant self-supervised learning
methods. Specifically, Masked Image Modeling approaches (He et al., 2022; Bao et al., 2022;
El-Nouby et al., 2024; Xie et al., 2022) consider masked pixels and target pixel reconstruction
as their action and next state. Other equivariant learning approaches (Devillers and Lefort,
2023; Park et al., 2022; Garrido et al., 2023) consider data transformations and representation
of the target image as their action and next state pair. However, unlike true world modeling,
these approaches do not track past experiences, a component critical for generalization. Our
method instead leverages context to track past experiences in terms of state, action, and
next-state triplets, enabling it to adapt and generalize to varying environments.

In-context Learning. Our work is inspired by and extends the concept of in-context
learning (ICL) (Brown et al., 2020) to training. Initially studied in the context of language,
in-context learning has recently been adapted for vision tasks (Gupta et al., 2023a; Wang
et al., 2023; Bar et al., 2022; Li and Liang, 2021), allowing models to infer environmental
features or tasks directly from input prompts without predefined notions. For example, Visual
Prompting (Wang et al., 2023; Bar et al., 2022) uses a task input/output example pair and a
query image at test time, and uses inpainting to generate the desired output. Gupta et al.
(2023a) propose using unlabeled data as context at training to extract environment-specific
signals and address domain generalization. ICL has been extensively explored in various
domains, including vision, language, and multimodal tasks. However, our work is the first to
apply ICL to vision self-supervised representation learning.

Appendix B. Additional Discussion and Future Perspectives

The field of language modeling has witnessed a significant paradigm shift over the past decade,
moving towards foundation models that generalize across a variety of tasks either directly
or through distillation. However, this shift toward generalization has been conspicuously
absent in the vision domain. This is largely because self-supervised approaches for vision
still heavily rely on inductive priors strongly introduced by enforcing either invariance or
equivariance to data augmentations. This renders representations brittle in downstream
tasks that do not conform to these priors and necessitates retraining the representation
separately for each task. This work forgoes any notion of pre-defined symmetries and instead
trains a model to infer the task-relevant symmetries directly from the context through what
we term Contextual Self-Supervised Learning (ContextSSL). The ability of our model to
learn selective equivariances and invariances based on mere context opens up new avenues
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Figure 2: Family of approaches in self-supervised learning (a) Joint Embedding meth-
ods (Chen et al., 2020a; Bardes et al., 2022; Caron et al., 2021) encode invariances to input
transformations a by aligning representations across views of the same image; (b) Image
World Models (Garrido et al., 2024; Assran et al., 2023) train a world model in the latent
space and encode equivariance to input transformations; (c) Contextual World Models
(ours) selectively enforce equivariance or invariance to a subset of input transformations
based on context {(xi, ai, yi)}ki=1

for effectively handling a broader range of tasks, particularly in dynamic environments
where the relevance of specific features may change over time. However, we limit our scope
of symmetries to hand-crafted transformations in the data and do not explore naturally
occurring symmetries. Nonetheless, ContextSSL lays the groundwork for models that can
potentially discern and adapt to the underlying patterns of tasks, recognize shortcuts, and
more effectively generalize across unseen scenarios. Through this work, we hope to contribute
to a broader understanding of how machines can learn more like humans — contextually,
adaptively, and with an eye toward the infinite variability of the real world.

Appendix C. Supplementary experimental details and assets disclosure

To evaluate the efficacy of our proposed algorithm ContextSSL, our experiments are
designed to address the following questions:

i) How does ContextSSL fare against competitive invariant and equivariant self-
supervised learning approaches in terms of performance across varying context sizes
and different sets of data transformations?

ii) How effectively can ContextSSL identify task-specific symmetries, both within the
scope of self-supervised learning and beyond?

iii) What roles do specific components such as selective masking and the auxiliary la-
tent transformation predictor play in facilitating the learning of general and context-
adaptable representations?
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C.1. Assets

We do not introduce new data in the course of this work. Instead, we use publicly available
widely used image datasets for the purposes of benchmarking and comparison.

C.2. Hardware and setup

Each experiment was conducted on 1 NVIDIA Tesla V100 GPUs, each with 32GB of
accelerator RAM. The CPUs used were Intel Xeon E5-2698 v4 processors with 20 cores
and 384GB of RAM. All experiments were implemented using the PyTorch deep learning
framework.

C.3. Datasets

3D Invariant Equivariant Benchmark (3DIEBench). To test equivariance and in-
variance to multiple data transformations, we use the 3D Invariant Equivariant Benchmark
(3DIEBench) (Garrido et al., 2023) which has been specifically designed to address the
limitations of existing datasets in evaluating invariant and equivariant representations. It
contains images of 3D objects along with their latent parameters such as object rotation,
lighting color, and floor color. Since we have access available to individual meta latent
parameters, transformation parameters between two views of an object are calculated as
the difference between their individual latents. We test our approach on 3DIEBench under
two settings 1) Considering two transformation groups: rotation and color with the aim
of learning invariance to one and equivariance to another after conditioning on context; 2)
Considering one transformation group, say rotation and learning to enforce invariance or
equivariance to rotation with context. As previously mentioned, all methods are trained for
1000 epochs using a batch size of 512 on 128×128 resolution images. We use the standard
training, validation and test splits, made publicly available by the authors (Garrido et al.,
2023).

CIFAR10. 3DIEBench dataset is limited to only rotations and color as transformation
groups. We extend our approach to include more common self-supervised benchmarks,
such as CIFAR-10, incorporating transformations like blurring, color jitter, and cropping.
Unlike 3DIEBench, we manually construct positive pairs by applying compositions of these
handcrafted augmentations. We consider three transformation groups: crop, blur and color.
Similar to 3DIEBench, we consider combinations of two groups for each training run. We
use the standard training, validation and test splits.

C.4. Baseline Algorithms

Among the invariant self-supervised approached, we compare our approach to VICReg (Bardes
et al., 2022) and and SimCLR (Chen et al., 2020a). For each method, comparisons are drawn
using their originally proposed architectures. For the equivariant baselines, we consider
EquiMOD (Devillers and Lefort, 2023), SIE (Garrido et al., 2023) and SEN (Park et al., 2022).
Similar to Garrido et al. (2023), For SEN, we use the InfoNCE loss instead the original triplet
loss. To discard the performance gains potentially arising from ContextSSL’s transformer
architecture, for each approach, we consider an additional baseline that replaces the original
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projection heads or predictor with our transformer model. Given an algorithm name N , we
refer to this baseline as N+. Amongst these, we report the best performing variant in our
results. For N+, we conduct analysis in two distinct settings: 1) a ’no context’ or c = 0
invariant condition, and 2) a fully contextualized setting with a context length of 126.

C.5. Training Protocol

To ensure a fair comparison across different algorithms for each dataset, we use a standardized
neural network backbone. Precisely, for our encoder, we use a ResNet-18 backbone pre-trained
on ImageNet. For ContextSSL, output features from the encoder are transformed into the
context sequence, which is then processed by the decoder-only Transformer (Vaswani et al.,
2017) from the GPT-2 Transformer family (Radford et al., 2019). Our model configuration
includes 3 layers, 4 attention heads, and a 2048-dimensional embedding space, consistently
applied across all datasets. Linear layers are utilized to convert the input sequence into the
transformer’s latent embedding of dimension 2048 and to map the predicted output vectors
to the output space of dimension 512.

We fix the maximum training context length to 128. Since for every y, the corresponding
token (xi, ai) is masked out, context length L corresponds to effective context length L− 2.
Thus, we report ContextSSL’s performance over varying test context length of 0, 2, 14, 30
and 126. On all datasets, we train ContextSSL with the Adam optimizer with a learning
rate of 5e−5 and weight decay 1e−3. For baseline self-supervised approaches, in their original
architecture, we use a learning rate of 1e−3 with no weight decay. However, when tested
using the transformer architecture, we choose one of the above two optimizer hyperpameters.
Consequently, performance of the best performing model is reported among the two baselines.
Similar to Garrido et al. (2023), we report hyper-parameters and architectures specific to
each method:

• SimCLR (Chen et al., 2020a) We train using a 2048-2048-2048 dimensional multi-
layered perceptron (MLP) based projection head with a temperature of 0.5.

• VICReg (Bardes et al., 2022) We train using a 2048-2048-2048 MLP for the
projection head and use weight of 10 for both the invariance loss and variance loss and
1 for covariance loss.

• SEN (Park et al., 2022) Similar to other approaches we use a projection head of
dimension 2048-2048-2048 and temperature 0.1.

• EquiMod (Devillers and Lefort, 2023) We use the standatd projection head of
dimensions 1024-1024-128 and use equal weighing of the invariance and the equivariance
loss.

• SIE (Garrido et al., 2023) We use two 1024-1024-1024 projection heads, one for invariant
latent space and other for equivariant. When trained to learn equivariance to only
rotation or only color, we use weight of 10 for both the invariance loss and variance loss,
1 for the covariance loss and 4.5 for the equivariant loss. However, when trained to be
equivariant to both rotation and color jointly, we use 10 as the equivariant weight.
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C.6. Evaluation metrics

In line with established self-supervised learning methodologies, we begin by assessing the
quality of the learned representations through downstream tasks. For evaluating invariant
representations, we employ linear classification over frozen features. To evaluate equivariant
representations, we predict the corresponding data transformation. This prediction takes
representations from two differently transformed views of the same object and regresses on
the applied transformation between them. Further, we use Mean Reciprocal Rank (MRR)
and Hit Rate at k (H@k) to evaluate the performance for our context predictor. Given
the source data and the transformation action, we identify the k nearest neighbors in the
embedding space. MRR is calculated as the average reciprocal rank of the target embedding
within these nearest neighbors. Hit rate-k (H@k) assigns a score of 1 if the target embedding
is within the k-nearest neighbors of the predicted embedding and 0 otherwise. Similar to
Garrido et al. (2023), we restrict the search for nearest neighbors to different views of the
same object, thus ensuring that the predictor is not penalized for retrieving an incorrect
object in a pose similar to the correct one.

Appendix D. Additional Experiments

D.1. Role of Context Mask and Auxiliary Predictor

Role of Context Mask. To illustrate how context masking effectively eliminates shortcuts,
we conduct an ablation study with varying masking probabilities, detailed in Figure 3. We
observed that as masking probability increases, performance on both classification and
prediction tasks initially improves but later declines, reaching optimal performance at a
masking probability of 90%.

(a) (b) (c)

Figure 3: Role of context mask to avoid context based shortcuts in ContextSSL

Role of Auxiliary Predictor. We demonstrate that the auxiliary predictor is crucial
for the model to achieve equivariance. In its absence, as depicted in Figure 4, while the model
retains its performance on the invariant classification task, it fails to learn equivariance, and
cannot effectively adapt to different contexts.

D.2. Qualitative Assessment of Adaptation to Task-Specific Symmetries

We conduct a qualitative assessment of model performance by taking the nearest neighbors
of the predictor output when inputting a source image and a transformation variable, as
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(a) (b)

(a) (b)

Figure 4: Role of auxiliary pre-
dictor to avoid the trivial solu-
tion of invariance.
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Figure 5: Nearest neighbors of different methods taking
as input the source image and rotation angle. Con-
textSSL aligns best with the rotation angle of the
target image.

shown in Figure 5. The nearest neighbors of invariance models (SimCLR and VICReg) have
random rotation angles. Equivariance baselines (SEN, SIE, EquiMOD) correctly generate the
target rotation angle for some of the 3-nearest neighbors but fail in others. ContextSSL
outperforms by successfully identifying the correct angle in all 3-nearest neighbors while
remaining invariant to color variations. Additional qualitative assessments for ContextSSL
with varying context are provided in Appendix D.8.

D.3. Expanding to Diverse Data Transformations

Unlike 3DIEBench where meta-latents for each data are available, we manually construct
positives by applying augmentations like crop and blur on CIFAR10. The results for the
combinations of crop and blur are reported in ??. Consistent with our previous results,
while almost retaining the classification performance as SimCLR, ContextSSL learns to
adaptively enforce equivariance to crop (blur) and invariance to blur (crop) depending upon
the context. Note that the invariance performance initially improves with increasing context
length but then diminishes. This occurs due to the 90% random masking ratio during
training, which necessitates out-of-distribution generalization when the context length is
large. Results on additional transformation pairs are provided in Appendix D.9.

Table 2: Performance of ContextSSL on invariant (classification) and equivariant (crop
prediction, blur prediction) tasks in CIFAR-10 under the environment of crop, i.e. Con-
textSSL (crop), and blur, i.e. ContextSSL (blur).

Method Crop prediction (R2) Blur prediction (R2) Classification (top-1)

0 2 14 30 126 0 2 14 30 126 Representation

SimCLR 0.459 0.371 89.1
SimCLR+ (c=0) 0.448 0.361 88.9
SimCLR+ 0.362 0.444 59.9
ContextSSL (crop) 0.608 0.607 0.607 0.608 0.608 0.920 0.854 0.624 0.667 0.694 88.5
ContextSSL (blur) 0.609 0.482 0.434 0.417 0.465 0.920 0.923 0.925 0.925 0.925 88.5
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D.4. Context World Models Beyond Self-Supervised Learning

While our analysis has primarily focused on self-supervised learning, the concept of context is
versatile and extends beyond representation learning. In principle, irrespective of the task at
hand, paying attention to context can learn and identify features defined by it. To validate
this and explore broader applications of our algorithm, we consider a supervised learning task
where our transformer model is trained to directly predict the labels corresponding to an input
image. We further corrupt the labels to be directly influenced by the augmentation group
transforming the data. Specifically, for 3DIEBench dataset, we add a constant value of 10 to
each label if the context corresponds to the rotation group and leave it unchanged otherwise.
We report classification performance along with rotation and color prediction equivariant
measures. As shown in Table 5, ContextSSL’s classification accuracy improves with context,
demonstrating its ability to better identify the underlying symmetry group with increase in
context. Additional results are provided in Appendix D.10. Further, ContextSSL serves as
a general framework that can adapt to different training regimes such as supervised learning.

D.5. ContextSSL on Naturally Occurring Symmetries

We show that ContextSSL extends to naturally occurring symmetries and sensitive features
in fairness and physiological datasets such as the MIMIC III (Johnson et al., 2016) and UCI
Adult (Asuncion et al., 2007). To demonstrate this, we train ContextSSL to be selectively
equivariant or invariant to gender by merely attending to different contexts. This is crucial; for
instance, equivariance is needed for gender-specific medical diagnoses where different medicine
dosages are required, while invariance is essential for fairness in tasks such as predicting
hospital stay duration or medical cost. We present these results in Table 3 and Table 4, with
details in the caption. From Table 3 , we can observe that ContextSSL learns equivariance
to gender in one context, improving gender and medical diagnosis prediction for MIMIC-III.
In another context, ContextSSL achieves higher invariance to gender, resulting in superior
performance on fairness metrics like equalized odds (EO) and equality of opportunity (EOPP)
for hospital stay (LOS) prediction. We observe similar results for fairness of income prediction
in the UCI Adult dataset, as shown in Table 4 of the attached document.

Table 3: Performance of ContextSSL on the MIMIC III dataset (Johnson et al., 2016).
For each data point xi, we create the transformed data yi by flipping the value of gender.
For this experiment, equivariance is needed for gender-specific medical diagnoses where
different medicine dosages are required, while invariance is essential for fairness in tasks such
as predicting hospital stay duration or medical cost. We observe that when the environment
is equivariant to gender, both gender prediction and medical treatment prediction improve
with context. When the environment is invariant, embedding fairness of hospital stay (LOS)
prediction as measured by equalized odds (EO) and equality of opportunity (EOPP), improves
with context.

G Gender prediction Acc ↑ LOS prediction Acc ↑ Equalized odds ↓ Equality of opportunity ↓ Treatment prediction Acc ↑

Context Length 0 126 0 126 0 126 0 126 0 126

Equivariant 0.969 0.991 0.942 0.944 0.028 0.035 0.023 0.031 0.333 0.344
Invariant 0.969 0.626 0.942 0.943 0.028 0.023 0.023 0.004 0.333 0.316

15



Extended Abstract Track
Table 4: Performance of ContextSSL on the UCI Adult (Asuncion et al., 2007) dataset.
For each data point xi, we create the transformed data yi by flipping the value of gender.
When the environment is equivariant to gender, both gender prediction and income prediction
improve with context. When the environment is invariant, embedding fairness of income
prediction measured by equalized odds (EO) and equality of opportunity (EOPP), improves
with context.

G Gender prediction Acc ↑ Income prediction AUC ↑ Equalized odds ↓ Equality of opportunity ↓

Context Length 0 126 0 126 0 126 0 126

Equivariant 0.985 0.999 0.900 0.900 0.114 0.130 0.061 0.101
Invariant 0.985 0.605 0.900 0.899 0.114 0.066 0.061 0.047

Table 5: Performance of ContextSSL on equivariant tasks (including classificaion) for
context-dependent labels. ContextSSL adapts to context-dependent labels with varying
context.

Method Rotation prediction (R2) Color prediction (R2) Classification (top-1)

0 2 14 30 126 0 2 14 30 126 0 2 14 30 126

SimCLR (color) 0.537 0.056 72.0
SimCLR (rotation) 0.537 0.056 14.2
SimCLR+ (c=0) (color) 0.427 -0.007 80.4
SimCLR+ (c=0) (rotation) 0.427 -0.007 5.2
SimCLR+ (color) 0.424 0.243 16.8 15.1 15.6 14.8 14.0
SimCLR+ (rotation) 0.424 0.243 56.1 58.2 58.4 58.4 59.1
ContextSSL (color) 0.556 0.542 0.538 0.540 0.539 0.913 0.973 0.981 0.982 0.982 8.9 82.4 82.7 82.8 83.0
ContextSSL (rotation) 0.556 0.624 0.661 0.665 0.666 0.913 0.379 0.111 0.095 0.093 73.5 82.7 82.6 82.6 83.0

D.6. Quantitative Assessment of Adaptation to Task-Specific Symmetries

In this section, we present additional results on the quantitative assessment of model
performance on 3DIEBench, including the evaluation of learned representations on equivariant
tasks (rotation and color prediction) to predict individual latent values. In contrast, the
results in Table 1 focus on predicting relative latent values between pairs of image embeddings
as inputs.

D.6.1. Invariant Classification and Equivariant transformation prediction
task

As shown in Table 6, invariant self-supervised learning methods such as SimCLR and VICReg
underperform in equivariant augmentation prediction tasks. The equivariant baselines,
EquiMOD, SIE, and SEN, exhibit improvements compared to the invariant baselines in some
of the augmentation prediction tasks. However, their degree of equivariance is much worse
compared to ContextSSL. Besides, aligning them with different targeted symmetry groups
requires retraining the entire model. In contrast, ContextSSL employs a single model
capable of learning equivariance to rotation and invariance to color (or vice versa) based on
the given context. As seen from the two rows corresponding to ContextSSL Table 1, when
the context corresponds to pairs of data with transformations sampled from the rotation
(color) group, the model adaptively learns to be invariant to color (rotation) while retaining
equivariance to rotation (color).
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Table 6: Quantitative evaluation of learned representations on equivariant (rotation prediction,
color prediction) tasks to predict individual latent values.

G Method Rotation prediction (R2) Color prediction (R2)

0 2 14 30 126 0 2 14 30 126

Invariant
SimCLR 0.791 0.137
SimCLR+(c=0) 0.773 0.061
SimCLR+ 0.544 0.498
VICReg 0.660 0.011
VICReg+(c=0) 0.615 0.061

Equivariant

R
ot

at
io

n
+ C

ol
or EquiMOD 0.712 0.221

SIE 0.760 0.972
SEN 0.617 0.888

R
ot

at
io

n EquiMOD 0.707 0.033
SIE 0.790 0.001
SEN 0.723 0.437
ContextSSL2 0.838 0.839 0.840 0.840 0.840 0.895 0.620 0.021 0.014 0.021

C
ol

or

EquiMOD 0.660 0.855
SIE 0.560 0.974
SEN 0.713 0.876
ContextSSL3 0.838 0.800 0.699 0.666 0.685 0.895 0.981 0.985 0.985 0.986

Results in Table 1 are the average value over three random seeds. We provide the standard
deviation for rotation and color prediction of ContextSSL in Table 7 and Table 8.

Table 7: Performance of ContextSSL in 3DIEBench in rotation prediction under the
environment of rotation, i.e. ContextSSL (rotation), and color, i.e. ContextSSL (color),
with standard deviations over three random seeds.

Method Rotation prediction (R2)

0 2 14 30 126

ContextSSL (rotation) 0.734 ± 0.002 0.740 ± 0.004 0.743 ± 0.001 0.743 ± 0.001 0.744 ± 0.001
ContextSSL (color) 0.735 ± 0.001 0.614 ± 0.108 0.389 ± 0.054 0.345 ± 0.040 0.344 ± 0.003

Table 8: Performance of ContextSSL in 3DIEBench in color prediction under the environ-
ment of rotation, i.e. ContextSSL (rotation), and color, i.e. ContextSSL (color), with
standard deviations over three random seeds.

Method Color prediction (R2)

0 2 14 30 126

ContextSSL (rotation) 0.908 ± 0.002 0.664 ± 0.166 0.037 ± 0.010 0.023 ± 0.001 0.046 ± 0.007
ContextSSL (color) 0.908 ± 0.002 0.981 ± 0.002 0.985 ± 0.001 0.986 ± 0.001 0.986 ± 0.001
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D.6.2. Equivariant Measures Based on Nearest Neighbours Retrieval

Similar to ??, we provide the performance of ContextSSL on MRR and H@k compared
to baseline methods with trained equivariance to rotation. While ?? uses the validation
set data as the retrieval library, Table 9 provides the results using the training set data.
ContextSSL outperforms the baseline models, and its performance on all the metrics
consistently improves with increasing context length, showing adaptation to rotation-specific
features.

Table 9: Quantitative evaluation of learned predictors equivariant to only rotation based on
Mean Reciprocal Rank (MRR) and Hit Rate H@k on training dataset. ContextSSL learns
to be more equivariant to rotation with context.

Method MRR (↑) H@1 (↑) H@5 (↑)

0 2 14 30 126 0 2 14 30 126 0 2 14 30 126

EquiMOD 0.17 0.06 0.24
SEN 0.17 0.06 0.24
ContextSSL 0.282 0.321 0.470 0.498 0.531 0.132 0.263 0.375 0.398 0.402 0.436 0.495 0.650 0.669 0.680

D.7. Role of Context Mask and Auxiliary Predictor

In this section, we provide additional results for the role of context mask and auxiliary
predictor.

D.7.1. Role of Context Mask

(a) (b) (c)

Figure 6: Role of context mask to avoid context based shortcuts in ContextSSL under
color context

In addition to Figure 3, we provide the performance of the rotation and color prediction
tasks with varying masking probabilities under the environment of color in Figure 6. We
observed that as masking probability increases, performance on both classification and
prediction tasks initially improves but later declines, reaching optimal performance at a
masking probability of 90%.

Results in Figure 3 and Figure 6 are the average value over three random seeds. We
provide the standard deviation for rotation and color prediction of ContextSSL in Table 10
and Table 11.
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Table 10: Performance of ContextSSL rotation prediction tasks in 3DIEBench under
different random masking probabilities, with standard deviations over three random seeds.

Context Probability Rotation prediction (R2)

0 2 14 30 126

Rotation

0.00 0.677 ± 0.004 0.677 ± 0.002 0.673 ± 0.009 0.682 ± 0.003 0.683 ± 0.003
0.20 0.710 ± 0.002 0.721 ± 0.006 0.727 ± 0.002 0.729 ± 0.001 0.729 ± 0.001
0.50 0.725 ± 0.001 0.738 ± 0.005 0.743 ± 0.001 0.743 ± 0.001 0.744 ± 0.001
0.75 0.734 ± 0.002 0.738 ± 0.006 0.742 ± 0.004 0.741 ± 0.004 0.741 ± 0.002
0.90 0.734 ± 0.002 0.740 ± 0.004 0.743 ± 0.001 0.743 ± 0.001 0.744 ± 0.001
0.98 0.726 ± 0.002 0.725 ± 0.003 0.726 ± 0.002 0.726 ± 0.003 0.726 ± 0.003

Color

0.00 0.677 ± 0.004 0.676 ± 0.005 0.620 ± 0.019 0.569 ± 0.019 0.655 ± 0.010
0.20 0.710 ± 0.002 0.689 ± 0.013 0.427 ± 0.031 0.336 ± 0.007 0.282 ± 0.022
0.50 0.725 ± 0.001 0.683 ± 0.006 0.390 ± 0.031 0.282 ± 0.013 0.287 ± 0.002
0.75 0.734 ± 0.002 0.718 ± 0.002 0.499 ± 0.035 0.378 ± 0.054 0.472 ± 0.015
0.90 0.735 ± 0.001 0.614 ± 0.108 0.389 ± 0.054 0.345 ± 0.040 0.344 ± 0.003
0.98 0.726 ± 0.002 0.508 ± 0.127 0.529 ± 0.141 0.571 ± 0.125 0.665 ± 0.023

Table 11: Performance of ContextSSL color prediction tasks in 3DIEBench under different
random masking probabilities, with standard deviations over three random seeds.

Context Probability Color prediction (R2)

0 2 14 30 126

Rotation

0.00 0.981 ± 0.002 0.940 ± 0.033 0.613 ± 0.123 0.406 ± 0.125 0.807 ± 0.080
0.20 0.975 ± 0.001 0.866 ± 0.171 0.465 ± 0.113 0.194 ± 0.057 0.124 ± 0.027
0.50 0.971 ± 0.002 0.904 ± 0.086 0.699 ± 0.028 0.205 ± 0.054 0.091 ± 0.016
0.75 0.980 ± 0.001 0.727 ± 0.351 0.358 ± 0.233 0.162 ± 0.021 0.076 ± 0.009
0.90 0.908 ± 0.002 0.664 ± 0.166 0.037 ± 0.010 0.023 ± 0.001 0.046 ± 0.007
0.98 0.982 ± 0.001 0.674 ± 0.368 0.309 ± 0.139 0.303 ± 0.118 0.253 ± 0.033

Color

0.00 0.981 ± 0.002 0.986 ± 0.002 0.989 ± 0.001 0.989 ± 0.001 0.989 ± 0.001
0.20 0.975 ± 0.001 0.984 ± 0.002 0.987 ± 0.001 0.987 ± 0.001 0.987 ± 0.001
0.50 0.971 ± 0.002 0.982 ± 0.002 0.986 ± 0.002 0.987 ± 0.002 0.988 ± 0.001
0.75 0.980 ± 0.001 0.983 ± 0.001 0.987 ± 0.001 0.987 ± 0.001 0.988 ± 0.001
0.90 0.908 ± 0.002 0.981 ± 0.002 0.985 ± 0.001 0.986 ± 0.001 0.986 ± 0.001
0.98 0.982 ± 0.001 0.982 ± 0.001 0.981 ± 0.001 0.981 ± 0.001 0.981 ± 0.001

D.7.2. Role of Auxiliary Predictor

We provide the complete results corresponding to Figure 4 in Table 12 to demonstrate
that the auxiliary predictor is crucial for the model to achieve equivariance. In its absence,
while the model retains its performance on the invariant classification task, it fails to learn
equivariance, performs similarly to the invariant models, and cannot effectively adapt to
different contexts.

D.8. Qualitative Assessment of Adaptation to Task-Specific Symmetries

D.8.1. Comparison with Baseline Approaches

We provide additional results to the qualitative assessment comparing with different models
in Figure 7. The nearest neighbors of invariance models (SimCLR and VICReg) have
random rotation angles. Equivariance baselines (SEN, SIE, EquiMOD) correctly generate the
target rotation angle for some of the 3-nearest neighbors but fail in others. ContextSSL
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Table 12: Performance of ContextSSL on classification, rotation and color prediction tasks
in 3DIEBench with and without the auxiliary predictor

Method Rotation prediction (R2) Color prediction (R2) Classification (top-1)

0 2 14 30 126 0 2 14 30 126 Representation

SimCLR 0.227 -0.004 85.3
SimCLR+ (c=0) 0.230 -0.004 83.4
SimCLR+ 0.245 0.028 42.3
ContextSSL (w/o) (rotation) 0.227 0.227 0.226 0.226 0.227 -0.003 -0.003 -0.003 -0.004 -0.004 80.8
ContextSSL (w/o) (color) 0.227 0.227 0.226 0.226 0.227 -0.003 -0.003 -0.003 -0.004 -0.004 80.8
ContextSSL (rotation) 0.734 0.740 0.743 0.743 0.744 0.908 0.664 0.037 0.023 0.046 80.4
ContextSSL (color) 0.735 0.614 0.389 0.345 0.344 0.908 0.981 0.985 0.986 0.986 80.4

outperforms by successfully identifying the correct angle in all 3-nearest neighbors while
remaining invariant to color variations.

SIESEN CONTEXTSSLEquiMODVICReg
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N

Figure 7: Nearest neighbors of different methods taking as input the source image and
rotation angle. ContextSSL aligns best with the rotation angle of the target image.

D.8.2. Nearest Neighbour Retrieval with Varying Context

In this section, we conduct a qualitative assessment of model performance by taking the
nearest neighbors of the predictor output when inputting a source image and a transformation
variable, and show the change in retrieving quality in Figure 8, Figure 9, and Figure 10. We
observe that the nearest neighbors have a closer rotation angle (color) to the target image
under rotation (color) context as context length increases, indicating ContextSSL’s ability
to adapt to the given context as context length increases.

D.9. Expanding to Diverse Data Transformations

Unlike 3DIEBench where meta-latents for each data are available, we manually construct
positives by applying augmentations like crop and blur on CIFAR10. The results for the
combinations of crop and blur are reported in ??. We additionally provide the results for
the combinations of crop and color in Table 14 and crop and blur in ??. Consistent with
our previous results, while almost retaining the classification performance as SimCLR, Con-
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Figure 8: Nearest neighbors of ContextSSL taking as input the source image and rotation
angle at different context lengths. As context increases, ContextSSL aligns better with
the rotation angle (color) of the target image when the context is based on rotation (color).
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Figure 9: Nearest neighbors of ContextSSL taking as input the source image and rotation
angle at different context lengths. As context increases, ContextSSL aligns better with
the rotation angle (color) of the target image when the context is based on rotation (color).

textSSL learns to adaptively enforce equivariance and invariance to different environments
depending upon the context.

In addition to the results for predicting relative latent values between pairs of image
embeddings as input in ??, Table 14, and Table 13, we provide the evaluation of learned
representations on equivariant tasks (rotation and color prediction) to predict individual
latent values, as shown in Table 15, Table 17, and Table 16 respectively. Both results lead
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Figure 10: Nearest neighbors of ContextSSL taking as input the source image and rotation
angle at different context lengths. As context increases, ContextSSL aligns better with
the rotation angle (color) of the target image when the context is based on rotation (color).

Table 13: CIFAR-10 Color-Blur. Performance of ContextSSL on invariant (classifi-
cation) and equivariant (color prediction, blur prediction) tasks in CIFAR-10 under the
environment of color, i.e. ContextSSL (color), and blur, i.e. ContextSSL (blur).

Method Color prediction (R2) Blur prediction (R2) Classification (top-1)

0 2 14 30 126 0 2 14 30 126 Representation

SimCLR 0.154 0.371 89.1
SimCLR+ (c=0) 0.054 0.361 88.9
SimCLR+ 0.318 0.444 59.9
ContextSSL (color) 0.518 0.519 0.519 0.519 0.519 0.916 0.793 0.699 0.735 0.823 88.9
ContextSSL (blur) 0.518 0.353 0.241 0.259 0.333 0.916 0.916 0.916 0.916 0.917 88.8

Table 14: CIFAR-10 Crop-Color. Performance of ContextSSL on invariant (classi-
fication) and equivariant (crop prediction, color prediction) tasks in CIFAR-10 under the
environment of crop, i.e. ContextSSL (crop), and color, i.e. ContextSSL (color).

Method Crop prediction (R2) Color prediction (R2) Classification (top-1)

0 2 14 30 126 0 2 14 30 126 Representation

SimCLR 0.459 0.154 89.1
SimCLR+ (c=0) 0.448 0.054 88.9
SimCLR+ 0.362 0.318 59.9
ContextSSL (crop) 0.606 0.606 0.607 0.607 0.607 0.522 0.378 0.253 0.264 0.301 87.5
ContextSSL (color) 0.605 0.467 0.387 0.466 0.511 0.523 0.525 0.527 0.527 0.527 87.5

to the same conclusion, that ContextSSL is able to adaptively enforce equivariance and
invariance to different environments depending upon the context.
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Table 15: CIFAR-10 Crop-Blur. Performance of ContextSSL on equivariant (crop
prediction, blur prediction) tasks in CIFAR-10 under the environment of crop, i.e. Con-
textSSL (crop), and blur, i.e. ContextSSL (blur), to predict individual latent values.

Method Crop prediction (R2) Blur prediction (R2)

0 2 14 30 126 0 2 14 30 126

SimCLR 0.382 0.122
SimCLR+ (c=0) 0.375 0.111
SimCLR+ 0.202 0.322
ContextSSL (crop) 0.576 0.575 0.576 0.576 0.576 0.835 0.795 0.630 0.644 0.663
ContextSSL (blur) 0.575 0.504 0.463 0.443 0.474 0.835 0.835 0.836 0.837 0.837

Table 16: CIFAR-10 Color-Blur. Performance of ContextSSL on equivariant (color
prediction, blur prediction) tasks in CIFAR-10 under the environment of color, i.e. Con-
textSSL (color), and blur, i.e. ContextSSL (blur), to predict individual latent values.

Method Color prediction (R2) Blur prediction (R2)

0 2 14 30 126 0 2 14 30 126

SimCLR 0.121 0.122
SimCLR+ (c=0) 0.039 0.111
SimCLR+ 0.242 0.322
ContextSSL (color) 0.488 0.488 0.488 0.488 0.488 0.837 0.711 0.628 0.672 0.730
ContextSSL (blur) 0.488 0.376 0.286 0.309 0.362 0.837 0.838 0.838 0.838 0.837

Table 17: CIFAR-10 Crop-Blur. Performance of ContextSSL on equivariant (crop
prediction, color prediction) tasks in CIFAR-10 under the environment of crop, i.e. Con-
textSSL (crop), and color, i.e. ContextSSL (color), to predict individual latent values.

Method Crop prediction (R2) Color prediction (R2)

0 2 14 30 126 0 2 14 30 126

SimCLR 0.382 0.121
SimCLR+ (c=0) 0.375 0.039
SimCLR+ 0.202 0.242
ContextSSL (crop) 0.570 0.572 0.572 0.572 0.572 0.495 0.417 0.342 0.356 0.373
ContextSSL (color) 0.570 0.490 0.447 0.492 0.515 0.495 0.496 0.497 0.497 0.497

D.10. Context World Models Beyond Self-Supervised Learning

We report classification performance along with rotation and color prediction equivariant
measures. The results for predicting relative values are shown in Table 5 and the results
for predicting individual latent values are shown in Table 18. The equivariance (invariance)
performance of ContextSSL improves with increased context.
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Table 18: Context-Dependent Labels Classification Task. Performance of Con-
textSSL on equivariant (rotation prediction, color prediction) tasks for context-dependent
labels to predict individual latent values. As context length increases, ContextSSL becomes
more equivariant to color (or rotation) and more invariant to rotation (or color) within the
respective environment.

Method Rotation prediction (R2) Color prediction (R2)

0 2 14 30 126 0 2 14 30 126

SimCLR 0.781 0.058
SimCLR+ (c=0) 0.478 -0.003
SimCLR+ 0.695 0.267
ContextSSL (color) 0.751 0.751 0.750 0.750 0.749 0.915 0.973 0.980 0.981 0.981
ContextSSL (rotation) 0.750 0.778 0.797 0.795 0.795 0.915 0.375 0.104 0.091 0.090

D.11. Performance on Encoder Representations and Predictor Embedding

We analyze the difference between the performance on representation and the performance on
predictor embedding for both the invariance (classification) task and equivariance (rotation
prediction) task in Table 19 and Table 20. ContextSSL maintains almost the same
performance for rotation prediction using either representations or embeddings, while the
performance of all other baselines drops significantly when using the embeddings. Similar
conclusions apply to the classification case, except for SimCLR+, for which the classification
accuracy for both representations and embeddings is low.

Table 19: Model performance in rotation prediction task, within the rotation-equivariant
environment. The R2 values are calculated for both the representations and the embeddings
(output of projection head for invariant models (VICReg, SimCLR) or predictor for equivari-
ant models (SEN, EquiMod, SIE, ContextSSL). Unlike other models, which experience
a significant performance drop between representations and embeddings, ContextSSL
maintains consistent performance.

Method Rotation prediction (R2)

Representations Embeddings Change

VICReg 0.37 0.23 -0.14
SimCLR 0.51 0.23 -0.28
SEN 0.63 0.39 -0.24
EquiMod 0.51 0.39 -0.12
SIE 0.67 0.60 -0.07
ContextSSL (rotation) 0.74 0.74 -0.00

D.12. Enforcing Invariance or Equivariance to the Same Transformation Using
Context

Apart from adaptively learning equivariance to a subset of transformation groups and
invariance to the rest as shown in Table 1, we extend ContextSSL to operate within
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Table 20: Performance of ContextSSL on accuracy of predictor embeddings for context-
dependent labels.

Method Classification (top-1)

0 2 14 30 126 Representation Change

SimCLR 52.7 85.3 -32.6
SimCLR+ (c=0) 72.4 83.4 -11.0
SimCLR+ 41.8 42.3 -0.5
ContextSSL (rotation) 76.6 76.9 75.6 76.9 77.5 80.4 -2.9
ContextSSL (color) 76.6 75.3 71.7 72.6 76.5 80.4 -3.9

environments characterized by a single transformation. Motivated by this, we ask the question:
Can ContextSSL adapt to learn equivariance or invariance to the same transformation
depending on the context?. At training, we randomly sample one of these environments.
If the environment corresponds to enforcing equivariance, we construct our context in the
same way as before i.e. pairs of positives transformed using augmentations sampled from
the transformation group. However, if the environment corresponds to enforcing invariance,
we maximize alignment between positives transformed by augmentation sampled from
the transformation group without conditioning on that augmentation. Take rotation in
3DIEBench as an example. As shown in Table 21, similar to our results in two transformation
setting (rotation and color) in Table 1, ContextSSL effectively adapts to enforce invariance
and equivarance to rotation depending on the context. Results for predicting individual
latents are provided in Table 22.

Table 21: Single Transformation Setting. Performance of ContextSSL in 3DIEBench
under the equivariant environment, i.e. ContextSSL (rotation), and the invariant environ-
ment, i.e. ContextSSL (none), with respect to rotation.

Method Rotation prediction (R2) Classification (top-1)

0 2 14 30 126 Representation

SimCLR 0.506 85.3
SimCLR+ (c=0) 0.478 83.4
SimCLR+ 0.247 42.3
ContextSSL (rotation) 0.737 0.737 0.736 0.737 0.738 80.6
ContextSSL (none) 0.737 0.717 0.477 0.377 0.473 80.6
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Table 22: Single Transformation Setting. Performance of ContextSSL in 3DIEBench
under the equivariant environment, i.e. ContextSSL (rotation), and the invariant environ-
ment, i.e. ContextSSL (none), with respect to rotation, to predict the individual latent
values.

Method Rotation prediction (R2)

0 2 14 30 126

SimCLR 0.791
SimCLR+ (c=0) 0.773
SimCLR+ 0.544
ContextSSL (rotation) 0.778 0.777 0.767 0.768 0.777
ContextSSL (none) 0.839 0.829 0.721 0.667 0.698
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