
Improving Biomedical Abstractive Summarisation with Knowledge
Aggregation from Citation Papers

Chen Tang1, Shun Wang2, Tomas Goldsack2 and Chenghua Lin2,3∗

1Department of Computer Science, The University of Surrey, UK
2Department of Computer Science, The University of Sheffield, UK

3Department of Computer Science, The University of Manchester, UK
chen.tang@surrey.ac.uk, chenghua.lin@manchester.ac.uk

{swang209, tgoldsack1}@sheffield.ac.uk

Abstract

Abstracts derived from biomedical literature
possess distinct domain-specific characteris-
tics, including specialised writing styles and
biomedical terminologies, which necessitate
a deep understanding of the related literature.
As a result, existing language models strug-
gle to generate technical summaries that are
on par with those produced by biomedical ex-
perts, given the absence of domain-specific
background knowledge. This paper aims to
enhance the performance of language models
in biomedical abstractive summarisation by ag-
gregating knowledge from external papers cited
within the source article. We propose a novel
attention-based citation aggregation model that
integrates domain-specific knowledge from ci-
tation papers, allowing neural networks to gen-
erate summaries by leveraging both the paper
content and relevant knowledge from citation
papers. Furthermore, we construct and release
a large-scale biomedical summarisation dataset
that serves as a foundation for our research.
Extensive experiments demonstrate that our
model outperforms state-of-the-art approaches
and achieves substantial improvements in ab-
stractive biomedical text summarisation.

1 Introduction

Biomedical text summarisation plays a pivotal role
in facilitating the comprehension of the vast and
constantly expanding body of biomedical litera-
ture (Xie et al., 2022), which poses a significant
challenge for clinicians and domain experts who
strive to remain well-informed in their respective
fields. To address this challenge, the generation of
high-quality summaries from the extensive corpus
of biomedical literature holds immense potential in
supporting research and advancements within the
biomedical domain (DeYoung et al., 2021).

One of the key challenges in biomedical natu-
ral language generation (NLG) lies in effectively
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Figure 1: The overview of our proposed citation knowl-
edge aggregation framework. In this framework, lan-
guage models are trained to incorporate features from
both the content of the main paper and the abstracts of
its cited papers. The rationale behind this approach is
that the cited papers often share relevant research back-
grounds, terminologies and writing styles, which can be
used as a good template for the summary generation.

handling domain-specific terminologies that are
prevalent in biomedical texts. Consequently, a
plethora of research studies have been conducted
with a primary focus on enhancing language qual-
ity by better integrating domain-specific knowl-
edge in the biomedicine domain (Sotudeh Ghare-
bagh et al., 2020; Tangsali et al., 2022; An et al.,
2021; Tang et al., 2023b) However, most prior
works have predominantly attempted to incorporate
knowledge by leveraging additional annotations
within the paper content. These annotations include
frequent items (Givchi et al., 2022), named enti-
ties (Schulze and Neves, 2016; Peng et al., 2021),
entity relations (Shang et al., 2011), as well as exter-
nal knowledge systems such as biomedical ontolo-
gies (Chandu et al., 2017) and external terminology



searching tools (Gigioli et al., 2018). Surprisingly,
the inclusion of external knowledge derived from
citation papers has been rarely explored in previous
biomedical studies. Existing corpora for biomed-
ical text summarisation are typically constructed
in a manner that models solely rely on the source
article when generating a summary. However, as
shown in Figure 1, there exists strong connections
among papers in the citation network with shared
research backgrounds, terminologies, and abstract
styles, which will be a useful source of knowledge
for improving biomedical abstractive summarisa-
tion but not captured in existing datasets.

To address this gap in the existing biomedi-
cal summarisation dataset, we construct a novel
biomedical summarisation dataset utilising an open-
source biomedical literature corpus provided by the
Allen Institute1. During the dataset construction
process, we applied rigorous filtering criteria to
eliminate low-quality samples. Specifically, we dis-
carded samples with an insufficient number of cita-
tions (less than three distinct citations), as well as
unqualified papers whose unique identifiers (UIDs)
or citation UIDs were inaccessible within the cor-
pus. Additionally, we designed heuristic rules to
select and transform the unstructured raw data cor-
pus into a structured dataset in JsonL format. The
final dataset comprises over 10,000 instances, with
each instance having an average of 16 citations.
To the best of our knowledge, this is the largest
biomedical literature dataset2 specifically tailored
for citation paper-enhanced biomedical text sum-
marisation. Furthermore, we provide the corre-
sponding methods for collecting the citation net-
work, including cited papers and their associations.

Facilitated by our biomedical summarisation
dataset, we further propose a novel approach
to biomedical document summarisation whereby
we enhance neural models with external domain-
specific knowledge in the form of the abstracts
of cited papers. Accordingly, we introduce an
attention-based network (Vaswani et al., 2017) that
dynamically aggregates features extracted from the
citation abstracts with the encoded content features
of the main paper. This aggregation is achieved by
applying attention mechanisms to the associated
abstracts of all cited papers, which provides the
subsequent summary decoding process with addi-

1https://allenai.org/data/cord-19
2The sole viable dataset we have identified is The Text

Analysis Conference (TAC) 2014 Biomedical Summarization
track (Cohan et al., 2014) comprising mere 313 instances.

tional features derived from abstracts of the citation
papers. Within this framework, the base language
model can effectively leverage both the features of
the main paper and the additional domain-specific
knowledge obtained from cited papers. Conse-
quently, this integration leads to enhanced perfor-
mance in text summarisation. Extensive exper-
iments demonstrate that our model outperforms
state-of-the-art baselines in abstractive biomedical
text summarisation. We also conducted an in-depth
quantitative analysis to verify the performance gain
obtained by our attention-based citation knowledge
enhancement framework3. Our contributions are
summarised as follows:

• We construct a large-scale biomedical litera-
ture dataset, which can be used for enhancing
biomedical text summarisation with the ex-
tracted external knowledge from cited papers.

• We propose a novel framework that can effec-
tively leverage citation papers to enhance the
performance of large-scale language models
on abstractive summarisation of biomedical
literature.

• We conduct extensive experiments to evaluate
the effectiveness of our proposed framework,
including comparisons with SOTA models
and an in-depth analysis of the performance
gain achieved by aggregating different quanti-
ties of citations.

2 Related Work

In recent years, a variety of large-scale pre-trained
models (PLMs), such as BART (Lewis et al., 2019);
T5 (Raffel et al., 2020); GPT-2 (Radford et al.,
2019), have demonstrated remarkable performance
improvements across various tasks (Loakman et al.,
2023; Zhang et al., 2023; Zhao et al., 2023; Tang
et al., 2022b) in the Natural Language Genera-
tion (NLG) Domain. These PLMs have also been
widely applied to biomedical text summarisation.
These models, e.g. BioBERT (Lee et al., 2020)
and BioBART (Yuan et al., 2022), have achieved
remarkable performance by training on extensive
biomedical literature corpora, such as Pubmed4 and
MIMIC-III5. However, certain high-level knowl-
edge, e.g., the understanding of medical termi-
nologies, cannot be adequately captured solely

3Our code and data resources is accessible at https://
github.com/tangg555/biomed-sum.

4https://pubmed.ncbi.nlm.nih.gov/
5https://physionet.org/content/mimiciii/1.4/
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through the implicit modeling of word probabili-
ties. To address this limitation, the improvement of
biomedical background knowledge understanding
is able to necessitate the integration of additional
knowledge systems, such as conceptual ontologies.
These ontologies explicitly model representations
of domain-specific knowledge learned by neural
networks. Recent studies have proposed incorpo-
rating biomedical knowledge, including terminolo-
gies (Tang et al., 2023b)) and concepts (Chandu
et al., 2017), to enhance the performance of these
language models and bridge the gap between lan-
guage understanding and specialized biomedical
knowledge. Indeed, several notable works have
focused on enhancing summarisation through cita-
tions in the open domain, such as An et al. (2021)
and Yasunaga et al. (2019). However, it is impor-
tant to highlight that the progress of language mod-
els in the biomedical domain has been hindered by
the limited availability of datasets and resources.
This scarcity has impeded the further advancement
and improvement of pre-trained language models
(PLMs) specifically tailored for biomedical appli-
cations. In this study, we require a dataset that
contains retrievable citation papers, making tra-
ditional raw data corpora such as Pubmed and
MIMIC-III inadequate. To date, the sole public
dataset we could find is the Text Analysis Con-
ference (TAC) 2014 Biomedical Summarization
track (Cohan et al., 2014). However, this dataset
is limited in size comprising merely 313 instances,
and is somewhat outdated. Therefore, we con-
struct a novel dataset for investigating biomedical
citation-enhanced summarisation.

3 Dataset Construction

3.1 Construction Process

In order to create a dataset containing biomedical
literature and its associated citations, we process
a semi-structured raw corpus 6 released by Allen
Institute. We refer to this dataset as BioCiteDB
throughout the paper. The construction process
of the dataset is outlined in algorithm 1, where C
represents the raw corpus, and D represents the pro-
cessed dataset. To ensure the quality and relevance
of the data, the selected papers have to meet the fol-
lowing requirements: (1) The papers must include

6We select the latest version of CORD-19 Historical Re-
leases (2022-06-02 18.7 GB), which can be accessed at https:
//ai2-semanticscholar-cord-19.s3-us-west-2.
amazonaws.com/historical_releases.html.

Algorithm 1: Construction of BioCiteDB
Input: Samples ci ∈ C; Citation limit R
Output: Json objects di ∈ D

1 Initialise D ← ∅
2 foreach ci in C do
3 Initialise object di with ci
4 retrieve files fj to a queue q
5 Initialise object pi
6 foreach fj in q do
7 if fj missing elements then
8 break
9 end

10 extract distinct citations rn ∈ fi
11 if |rn| >= R then
12 rn.uid→ pi.citations
13 extend di with pi
14 break
15 end
16 end
17 D append di
18 end
19 foreach di in D do
20 foreach rn in di.citations do
21 if rn /∈ D then
22 exclude rn
23 end
24 end
25 end

Datasets Train Val Test

# Samples 9144 1143 1143
# Papers 18194 4762 4618

Avg. # Distinct Citations of Doc 6.28 6.23 6.26
Avg. # Total Citations of Doc 16.56 16.85 16.96
Avg. # Chunks in Doc 37.33 37.33 37.13
Avg. # Sentences in Doc 529.94 526.8 529.11
Avg. # Words in Doc 9858.09 9901.96 9907.31

Avg. # Sentences in Summary 13.96 13.98 13.69
Avg. # Words in Summary 220.25 222.04 217.28

Table 1: Data statistics of Biomed Ref dataset. Doc is
the abbr. of Document, and Intro is the abbr. of intro-
duction. Chunks are split by section and subsections in
a paper.

the "Introduction" section, as it is considered the
most crucial part for generating abstracts; (2) The
papers must have at least three distinct citations to
ensure the quality of curated data; (3) The essential
elements of the papers, including UID (Pubmed
id), Title, Abstract, Sections, and Citations, must
be accessible within the raw corpus. As a result of
this construction process, the dataset D comprises
structured data in JsonL7 format, with each sample
representing an individual paper.

3.2 Data Statistics
The statistical analysis of our processed dataset is
presented in Table 1. Additionally, the distribution

7https://manifold.net/doc/mfd9/jsonl.htm.

https://ai2-semanticscholar-cord-19.s3-us-west-2.amazonaws.com/historical_releases.html
https://ai2-semanticscholar-cord-19.s3-us-west-2.amazonaws.com/historical_releases.html
https://ai2-semanticscholar-cord-19.s3-us-west-2.amazonaws.com/historical_releases.html
https://manifold.net/doc/mfd9/jsonl.htm


Figure 2: A visulisation of the distribution of citations per paper and the data size associated with each split. To
avoid clutter and maintain clarity, we have excluded papers with over 50 citations from the visualization, as they
constitute a relatively small proportion of the dataset and fall into the long tail category. Some papers in our corpus
are only used as citations other than the papers in data splits, so we categorise them as “others”.

of citations per paper is visualized in Figure 2 (a),
(b), and (c), while the proportions of data size are
depicted in Figure 2 (d) of the same figure. The
results obtained from both the statistical analysis
and visual representations in Table 1 and Figure 2
both validate the data quality of the constructed
dataset, thus indicating the effectiveness of our data
construction process and the consistency of the
dataset splits. This validation supports the notion
that training and inference tasks conducted on this
dataset can be regarded as fair and reliable.

Algorithm 2: Extracting Citation Graph G.
Input: di ∈ D; hopmax; N
Output: The set of related papers P

1 Initialise current hop hopn = 0; a double-ended
queue DQ← (di.uid, hopn); a queue recording
visited nodes V Q;

2 while si in S do
3 pop uid and hopn from DQ
4 if hopn > hopmax then
5 return P
6 end
7 P ← (uid, hopn)
8 if |P | > N then
9 return P

10 end
11 get dj by uid
12 V Q← uid
13 foreach rn ∈ dj .citations do
14 if rn.uid /∈ vq and rn ∈ D then
15 P ← rn.uid and V Q← rn.uid
16 end
17 end
18 end

3.3 Extract Citation Graph
Scientific papers are intricately connected through
citation relationships, forming a network of inter-
connected nodes. This citation graph provides valu-
able insights into the relatedness of papers. In
order to retrieve relevant papers within this cita-

tion graph, we propose an algorithm outlined in
algorithm 2. hopmax defines the maximum num-
ber of hops between papers that the algorithm can
traverse, and N specifies the maximum number of
retrieved papers at each hop. As output, P repre-
sents papers as nodes, while citation relationships
are represented as edges in the network. Due to the
high computational cost of processing long doc-
uments for summarisation, we set hopmax to 1
and neighbormax to 12, taking into account the
limitations of our available computing resources.
However, it is worth noting that the attention-based
citation aggregation module can be extended to in-
corporate Graph Attention Networks (Zhou et al.,
2020), which have the capability to integrate multi-
layer citation graphs (Zhang et al., 2023).

4 Methodology

As illustrated in Figure 3, our proposed frame-
work is designed to enhance the performance of
the base language model by leveraging the collec-
tive knowledge from a set of citation papers. For
our experiments, we select BART (Lewis et al.,
2019), a widely-used summarization model that
has demonstrated promising results in the biomed-
ical domain (Goldsack et al., 2022, 2023), as the
base model. In this study, we adopt a strategy
where we concatenate the abstracts of the citation
papers with the input document to form the model’s
input. This approach is motivated by the goal of en-
abling the model to capture and emulate the writing
style present in relevant papers. By incorporating
this additional information, we aim to improve the
model’s ability to generate high-quality summaries
that align with the conventions and patterns ob-
served in the domain-specific literature.



Figure 3: The illustration of our proposed framework. doc is the abbr. of the input document referring to the paper
content. abs is the abbr. of the abstracts and absc denotes the abstracts of citation papers.

4.1 Task Definition

The task is formulated as follows: Given a paper
document di ∈ D as the input, where D repre-
sents the paper corpus, and di denotes the i-th
paper. In addition, the citations papers Dc =
{dc1, dc2, ..., dck} are also provided as the input. The
abstracts of dck ∈ Dc are denoted absck. Either
di or dcj consists of a sequence of words repre-
sented as X = {x1, x2, ..., xt} where xt denotes
t-th word in X . The goal is to generate a summary
Y = {y1, y2, ..., yt} by modeling the conditional
probability distribution P (Y |X ∈ di, X ∈ Dc).

4.2 Knowledge Aggregation from Citations

Input At the initial stage, both the input docu-
ment di and its retrieved N citation abstracts absc

are concatenated and encoded by language models.
Byte-Pair Encoding (Radford et al., 2019) is imple-
mented in the transformation from text into fixed
word embeddings:

Edoc = LMemb([Tok
CLS , xt ∈ di]) (1)

Eabscj
= LMemb([Tok

ABS , xt ∈ abscj ]) (2)

EQj = concat(Edoc, Eabscj
) (3)

where LMemb represents the module responsi-
ble for tokenising and converting words into sub-
word embeddings. TokCLS is a special token that
signifies the global context tag in the input text.
TokABS is a special token used to indicate the sep-
aration between the input document and the cited
abstracts. EQj denotes the embeddings generated
for the j-th (j ∈ [1, N ]) document abstract pair.

Encoding In order to capture the relevance of
each cited abstract, we employ an attention mecha-
nism to measure the importance of di with respect
to abscj . The attention score is denoted as attni

j ,
and the process of aggregating knowledge is illus-
trated as follows:

EQ = concat([EQ1 , ..., EQN
]) (4)

Q = LMenc(EQ), Q ∈ RN×L×M (5)

where EQ denotes the matrix of embeddings for all
composed Qj , and it is encoded by the language
model encoder to generate the encoded features Q.

QCLS = First_Pool(Q), QCLS ∈ RN×M (6)

Attn_logits = QCLSWQ, Attn ∈ RN×1 (7)

Attn = softmax(Attn), Attn ∈ RN×1 (8)

F = ATQ,F ∈ RL×M (9)

In the above equations, First_Pool collects fea-
tures that represent the global context of the input
di and abscj pairs. As the hidden states of the neu-
ral encoder, Q incorporates features from both the
documents and the abstracts. Therefore, the rep-
resentations of the first position in Q (represented
as QCLS) correspond to the global context token
TokCLS . The attention logits matrix is obtained
by applying a trainable parameter WQ ∈ RM×1 to
the features of QCLS . After applying the softmax
function for normalization, Attn represents the
importance of the input features and is used to
reweight the original encoded features Q, resulting
in the final features F .



4.3 Summary Generation

In line with other abstractive summarization sys-
tems, we employ an auto-regressive decoder to
generate summary tokens yt in a sequential manner.
The process is described as follows:

Ht = Decoder(y<t, F ) (10)

P (yt|y<t, X) = softmax(HtW
D) (11)

yt
sampling←− P (yt|y<t, F ) (12)

where t represents the current time step. X corre-
sponds to the input, consisting of the words from
di and absc1, ..., abs

c
j , provided to the neural model.

Ht refers to the hidden state of the decoder module
at time step t. This state is computed by the lan-
guage models using the infused features F , which
encapsulate the information from the input docu-
ment and its cited abstracts, along with the previ-
ously predicted tokens y<t. WD denotes a train-
able parameter, and P (yt|y<t, F ) represents the
probability distribution over the vocabulary, which
includes special tokens. Employing a sampling
strategy, such as argmax, we obtain the predicted
token yt.

4.4 Training and Inference

Finally, as shown in Figure 3, the neural model is
trained to fit on the citation-enhanced training set
by the following objective function:

L = − 1

N

N∑
t=1

logP (yt|y<t, X) (13)

where L is the cross-entropy loss employed to train
the model in modeling the conditional probabilities
over the token sequence P (yt|y<t, F ). By min-
imizing L, the language model learns to predict
the referenced abstract corresponding to the input
document.

5 Experiment

5.1 Experimental Setup

Baselines We include a range of competitive
PLM models as our baselines. We also provide the
results of two rule-based systems, namely LEAD-3
and ORACLE, which serve as benchmarks rep-
resenting the upper and lower bounds of model
performance. LEAD-3 extracts the first 3 sen-
tences from the input as the summary, which can

be considered as the lower bound of the perfor-
mance. ORACLE select sentences from the in-
put document and compose a summary with the
highest score8, which is the upper bound of ex-
tractive summarisation systems. The PLM models
serve as baselines for abstractive biomedical sum-
marisation. The Long-Document Transformer
(LED) is a Transformer-based models which are
able to process long sequences due to their self-
attention operation (Beltagy et al., 2020). PE-
GASUS (Zhang et al., 2020) is pre-training large
Transformer-based encoder-decoder models on
massive text corpora with a new self-supervised
objective, which is tailored for abstractive text sum-
marisation. BART (Lewis et al., 2019) is a widely
used PLM model based on a denoising autoencoder
that has proved effective for long text generation
tasks. Pubmed-X refers to several PLM-based
baselines that have been pre-trained on a large-
scale biomedical literature corpus Pubmed (Cohan
et al., 2018) (the size of the dataset is 215k), where
X denotes the name of a PLM. Additionally, we
include ChatGPT for comparison. However, as
it is close-source and very expensive for training,
we were unable to use ChatGPT as the base lan-
guage model to fine-tune on our dataset. Instead,
we compare the outputs of ChatGPT in a zero-shot
setting.

Evaluation Metrics In the domain of text sum-
marisation (Sun et al., 2021; Tang et al., 2022a; Xie
et al., 2022), ROUGE (Lin, 2004) is the most used
metric for the evaluation of generated summaries.
For evaluating the quality of the generated sum-
maries, we implement the ROUGE metric with the
python package of rouge_score. Specifically, we
report the unigram and bigram overlaps (ROUGE-1
and ROUGE-2, respectively) between the gener-
ated summaries and the reference (golden) sum-
maries. Additionally, we include the longest com-
mon subsequence (ROUGE-L) metric to evaluate
the fluency of the generated summaries. For each
ROUGE metric, we provide fine-grained measure-
ments of precision, recall, and F-values, offering
a comprehensive assessment of the summarisation
performance.

In addition to the ROUGE metric, we conduct an
extensive automatic evaluation utilising a broader
range of evaluation metrics. Specifically, we em-

8In this study, the score referenced by ORACLE is cal-
culated as the mean value of the ROUGE-1, ROUGE-2, and
ROUGE-L scores.



Models PPL↓ ROUGE-1↑ ROUGE-2↑ ROUGE-L↑
Precision Recall F-value Precision Recall F-value Precision Recall F-value

LEAD-3 - 0.5512 0.1838 0.2645 0.2039 0.0647 0.0941 0.4979 0.1646 0.2374
ORACLE - 0.5669 0.4121 0.4676 0.2478 0.1764 0.2015 0.5195 0.3762 0.4276
ChatGPT - 0.4965 0.3899 0.4242 0.1720 0.1358 0.1471 0.4551 0.3564 0.3880

LED 11.36 0.3250 0.3129 0.3150 0.0940 0.0909 0.0912 0.2934 0.2822 0.2844
PEGASUS 12.54 0.3063 0.3036 0.3003 0.0837 0.0833 0.0821 0.2715 0.2681 0.2657
BART 10.89 0.3581 0.2963 0.3171 0.0862 0.0709 0.0760 0.3276 0.2719 0.2907
Pubmed-LED 11.01 0.3462 0.3394 0.3395 0.0877 0.0860 0.0859 0.3109 0.3044 0.3047
Pubmed-PEGASUS 18.27 0.3806 0.2463 0.2926 0.0980 0.0635 0.0752 0.3438 0.2188 0.2618
Pubmed-BART 10.80 0.3789 0.3242 0.3426 0.1027 0.0875 0.0926 0.3464 0.2963 0.3134

Pubmed-BART
- w one citation 11.51 0.3816 0.3288 0.3461 0.1070 0.0926 0.0971† 0.3473 0.2998 0.3154
- w citation agg. 10.54 0.3758 0.3427† 0.3522† 0.1039 0.0946† 0.0973† 0.3450 0.3143† 0.3233†

Table 2: Automatic evaluation based on ROUGE scores. LEAD-3, ORACLE, and ChatGPT were excluded from the
performance comparisons as they were not trained on the datasets. However, we use them as reference models to
provide insights into the potential performance achievable on our datasets. For each metric, the best overall score is
highlighted in bold, and the baseline score is underlined. ↑ / ↓ indicates the higher/lower the better, respectively.
- w one citation to denote the input configuration where the document is composed with one randomly selected
citation abstract. - w citation agg. denotes our proposed citation abstract aggregation framework. † denotes that the
citation-enhanced model results are statistically significant with respect to the base model (Pubmed-BART) by way
of Mann-Whitney U test.

ploy BERTScore (Zhang et al., 2019) (BeS) and
BartScore (Yuan et al., 2021) (BaS) to assess the
quality of the generated outputs. We also intro-
duce some readability metrics, e.g. Flesch-Kincaid
(FLK) and Coleman-Liau Index (CLI), to evaluate
the readability of the generated text. This com-
prehensive evaluation allows for a more robust as-
sessment of the summarisation performance across
multiple dimensions.

5.2 Implementation Details
All of the pre-trained models used are restored
from the publicly available checkpoints on Hug-
ging Face9. The checkpoints we selected include:
LED10, PEGASUS11, BART12, Pubmed-LED13,
Pubmed-PEGASUS14, and Pubmed-BART15.

To make the comparison fair, all input text is
chunked according to the minimal input size lim-
itation of selected language models. In our ex-
periments, it is BART (1024 tokens). Models are
trained for up to 10 epochs on a Tesla A40 ma-
chine, which has 40 GB GPU memory, and the
best checkpoints are kept based on the perplexity
of generated responses during validation for the

9https://huggingface.co/models
10https://huggingface.co/allenai/

led-base-16384
11https://huggingface.co/google/pegasus-x-base
12https://huggingface.co/facebook/bart-base
13https://huggingface.co/Blaise-g/led_pubmed_

sumpubmed_1
14https://huggingface.co/google/pegasus-pubmed
15https://huggingface.co/mse30/

bart-base-finetuned-pubmed

Model Referenced Unreferenced
BeS↑ BaS↑ FLK↓ CLI↓

Golden 100 -0.27 16.49 15.69
ChatGPT 85.56 -3.11 16.19 16.31

Pubmed-LED 82.85 -3.37 16.33 15.31
Pubmed-PEGASUS 81.97 -3.42 15.78 14.52
Pubmed-BART 83.34 -3.36 14.45 13.32

Pubmed-BART
- w one citation 83.34 -3.36 14.78 13.51
- w citation agg. 83.60 -3.35 13.82 13.20

Table 3: Automatic evaluation on more metrics. BeS
and BaS denote the F1 values of BERTScore and
BartScore, respectively. FLK and CLI denote the read-
ability scores of Flesch-Kincaid and Coleman-Liau In-
dex, respectively.

generation on the testset. The batch size is set to
16, and the learning rate is 1e−4, with the Adam
optimizer selected for training. For more details,
please refer to the Appendix A.1.

5.3 Automatic Evaluation

The results of all experiments are presented in
Table 2. It can be observed that our proposed
framework (-w citation agg.) significantly outper-
forms all baseline models across all ROUGE scores
(F1 scores), indicating substantial enhancements in
the summarisation capability of biomedical papers.
To be more specific, the incorporation of citation
knowledge has contributed to a substantial improve-
ment in recall, with ROUGE-1 exhibiting a 5.7%
increase and ROUGE-2 demonstrating an 8.1% in-
crease. This suggests that the integration of citation

https://huggingface.co/models
https://huggingface.co/allenai/led-base-16384
https://huggingface.co/allenai/led-base-16384
https://huggingface.co/google/pegasus-x-base
https://huggingface.co/facebook/bart-base
https://huggingface.co/Blaise-g/led_pubmed_sumpubmed_1
https://huggingface.co/Blaise-g/led_pubmed_sumpubmed_1
https://huggingface.co/google/pegasus-pubmed
https://huggingface.co/mse30/bart-base-finetuned-pubmed
https://huggingface.co/mse30/bart-base-finetuned-pubmed


knowledge has facilitated the utilisation of more
similar expressions extracted from the reference
abstracts.

In addition, within our framework, the lan-
guage model achieves substantially lower perplex-
ity (PPL) and ROUGE-L scores, signifying an im-
provement in the language quality and reduced con-
fusion during summary generation. We hypothesise
that the decrease in PPL and ROUGE-L indicates
that the language model has learned writing styles
and relevant biomedical terminologies by referring
to the abstracts of cited papers.

Regarding the ablation study, -w one citation
yields a slight improvement compared to the base-
line model Pubmed-BART but exhibits a higher
perplexity. This observation suggests that the direct
inclusion of random citation content may introduce
certain noise. In contrast, our attention-based mech-
anism enables the neural networks to dynamically
select and aggregate important information from
multiple citations, effectively addressing confusion
issues associated with additional inputs.

In Table 3, we present the results of additional
evaluation metrics. BertScore and BartScore, as
machine learning-based metrics, measure the se-
mantic similarity between the generated summaries
and the reference abstracts. Flesch-Kincaid and
Coleman-Liau metrics assess text readability on
a vocabulary level. Across all these metrics, -w
citation agg. outperforms all baseline models,
showcasing the advantages of introducing citation
knowledge with our framework. Further analysis
within the "Pubmed-BART" model reveals that us-
ing a single citation results in a slight decrease in
BERTScore and BartScore, along with a slightly
higher Flesch-Kincaid score (14.78) and Coleman-
Liau Index score (13.51). However, employing
citation aggregation leads to improvements across
all metrics, with BERTScore (83.60), BartScore (-
3.35), Flesch-Kincaid score (13.82), and Coleman-
Liau Index score (13.20). This analysis confirms
our initial hypothesis, that directly introducing a
random citation may introduce noise that hampers
model performance, while our aggregation model
comprehensively considers all citation papers, ef-
fectively reducing the random noise introduced by
a single citation.

5.4 Human Evaluation

In order to obtain a more comprehensive evaluation
of the generated summaries, we also incorporate

Score (1 to 5) Human Evaluation
Flu Rea Rel Inf

Golden 4.86∗ 4.70∗ 5.0∗ 5.0∗

ChatGPT 3.80 3.77 4.33∗ 4.33∗

Pubmed-LED 2.70 2.67 3.83∗ 3.70
Pubmed-PEGASUS 2.33 2.33 3.53∗ 3.27
Pubmed-BART 2.73 2.73 3.77∗ 3.57

Pubmed-BART
- w one citation 2.87 2.77 3.93∗ 3.63
- w citation agg. 2.96 2.93 4.0∗ 3.83∗

Table 4: Results of Human Evaluation. Flu, Rea, Rel
and Inf denote Fluency, Readability, Relevance, and
Informativeness, respectively. The best scores are in
bold, and the second best are underlined. ChatGPT
and Golden are not included in comparison. We cal-
culate Fleiss’ Kappa κ for each metric. The majority
of results demonstrate a moderate level of agreement
(κ ∈ (0.4, 0.6]), and results with a higher level of agree-
ment are marked with ∗.

human evaluation. This evaluation focuses on four
key aspects: fluency, readability, relevance, and
informativeness. Fluency assessment aims to mea-
sure the overall quality of the language used in
the summaries. Readability evaluation determines
the extent to which the summaries are easily un-
derstandable by readers. Relevance assessment
examines whether the content of the summaries is
pertinent and aligned with the content of the input
document. Informativeness measurement evaluates
the extent to which the generated summaries pro-
vide sufficient and meaningful information derived
from the given input. By incorporating human eval-
uation, we can assess subjective aspects of sum-
mary quality that automated metrics may not fully
capture.

Considering the difficulty of evaluating gener-
ated summaries, which requires a thorough under-
standing of the content in both the source papers
and the summaries, it is imperative that human eval-
uators possess a strong background in academic
writing and biomedical knowledge. We invite 3
qualified evaluators by snowball sampling to rate
30 randomly sampled instances from the testset.
In order to minimise biases and increase inter-
annotator agreement, the evaluators were provided
with the same annotation guide (see Appendix A.3).
The results of the human evaluation are presented
in Table 4. It can be observed that both the - w
one citation and - w citation agg. models exhibit
superior performance compared to other baseline
models, thereby affirming the effectiveness of our
proposed framework.



Figure 4: (a), (b) and (c) illustrate the bar charts depicting the performance enhancement achieved by the -w citation
agg. method over the PubmedBART model. The improvement is calculated as the difference between the scores
obtained by -w citation agg. and PubmedBART. In these bar charts, we report the ROUGE F1 scores. Additionally,
Figure 1(d) exhibits the smoothed curve of the ROUGE scores data, obtained using Gaussian kernel smoothing
technique. Due to the limit of GPU memory, we limit the input of the citation aggregation network to 12 citation
papers.

To delve further into the evaluation, the metrics
of Relevance and Informativeness underscore the
improved capability to extract relevant information
from the input content and generate comprehensive
abstracts. Additionally, the fluency and readabil-
ity metrics assess the language quality, indicating
that the language model generates abstracts that
are more coherent and natural. However, it is im-
portant to note that the tested Pretrained Language
Models (PLMs) exhibited a notable disparity in lan-
guage quality when compared to the performance
of ChatGPT. This discrepancy can be attributed to
the substantial difference in model size, with Chat-
GPT having 130 billion parameters, whereas the
tested PLMs have less than 5 billion parameters.

5.5 In-depth Analysis

To further investigate the impact of the citation
knowledge aggregation module, we conduct an
evaluation to assess the improvement in the gener-
ated abstracts. This evaluation involves comparing
the performance of our proposed framework, de-
noted as -w citation agg., against the base model
Pubmed-BART using ROUGE scores. The results,
presented in Figure 4 as (a), (b), and (c), illustrate
the increase in ROUGE scores (F value) for differ-
ent numbers of citations. The inclusion of citations
is shown to have a positive effect on the abstract
generation process. The Gaussian kernel smoothed
increasing curve, depicted in Figure 4 (d), indi-
cates a clear trend: as more citation abstracts are
introduced, the language model exhibits greater
improvements. The results highlight the potential
of leveraging citation information to enhance the
quality of generated abstracts.

6 Conclusion

In conclusion, we proposed a novel attention-
based citation aggregation model that incorporates
domain-specific knowledge from citation papers.
By integrating this additional information, our
model enables neural networks to generate sum-
maries that benefit from both the paper content and
the associated knowledge extracted from citation
papers. Furthermore, we introduced a specialized
biomedical summarisation dataset, which served as
a valuable resource for evaluating and advancing
our research. The effectiveness of our approach
was demonstrated through extensive experiments,
where our model consistently outperformed state-
of-the-art methods in biomedical text summarisa-
tion. The results highlight the significant improve-
ments achieved by leveraging knowledge from ci-
tation papers and the potential for our model to
enhance the understanding of biomedical literature
through natural language generation techniques.
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Limitations

In the field of text summarisation, two main ap-
proaches are commonly employed: extractive sum-
marisation and abstractive summarisation. While
extractive summarisation composes summaries by
directly selecting sentences from the input content,
abstractive summarisation generates summaries



that are not bound to the input content, providing
greater flexibility but posing challenges in manage-
ment and control. In this work, due to resource
and time constraints, we focused on implementing
an abstractive summarisation model and did not
further conduct experiments to develop an extrac-
tive summarisation counterpart using our proposed
algorithm. However, it is worth noting that our
proposed approach has shown promising results,
emphasizing the importance of leveraging citation
papers to enhance the performance of language
models in generating high-quality biomedical sum-
maries. Theoretically, the aggregation of knowl-
edge from citation papers can also be beneficial for
extractive summarization approaches.
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A Appendices

A.1 Implementation Details
ChatGPT Prompts The performance of Chat-
GPT is highly reliable on the quality of input
prompts. We manually design and test prompts
of abstract summarisation, and select the best cases
as the experimental results.

Others The Gaussian kernel smoothing used in
Figure 4 is implemented with the gaussian_filter1d
function from the python package of scipy.ndimage.
The ROUGE score evaluation is implemented

with the python package rouge_score. The
readability scores such as Flesch-Kincaid (FLK)
and Coleman-Liau Index (CLI), are implemented
with the python package py-readability-metrics.
BertScore is bert_score, and BartScore is from
the GitHub repository of https://github.com/
neulab/BARTScore.

A.2 Automatic Evaluation

Table 6 shows the full results of BertScore and
BartScore.

A.3 Human Evaluation

In addition to automatic evaluation metrics, we
conducted a comprehensive human evaluation to
assess the quality of biomedical summarization
generated by the different models. The human
evaluation aimed to capture important aspects of
summarization, including fluency, readability, and
relevance.

For the human evaluation, we recruited a group
of expert annotators with a strong background in
biomedical research. The annotators were provided
with a set of summaries generated by each model
and were asked to rate them on a Likert scale rang-
ing from 1 to 5. The Likert scale allowed anno-
tators to provide a subjective assessment of the
summaries based on their expertise and judgment.
The four aspects evaluated in the human evaluation
were as follows:
Fluency: Annotators assessed the language quality
and coherence of the summaries. They considered
factors such as grammar, sentence structure, and
overall fluency of the generated text. Higher ratings
on the Likert scale indicated better fluency.
Readability: Evaluators focused on the readabil-
ity and comprehensibility of the summaries. They
assessed whether the generated summaries were
clear, concise, and understandable to a non-expert
audience. Higher ratings indicated better readabil-
ity.
Relevance: An important criterion was the rele-
vance of the summaries to the original input doc-
uments. Annotators evaluated whether the sum-
maries captured the main ideas, key findings, and
important concepts present in the source docu-
ments. Higher ratings indicated greater relevance.
Informativeness: Evaluate the extent to which the
generated summaries provide sufficient and mean-
ingful information derived from the given input.
Assess the comprehensiveness and completeness

https://github.com/neulab/BARTScore
https://github.com/neulab/BARTScore


Index Target Template

1 Generate Summaries Write a summary according to given paper content, which is part of a medical
scientific paper (A). The length of generated summary is expected to be larger
than 130 words and less than {MAXABSLEN} words. \n\n The paper
content of (A) is: {DOC} \n\n Output:

2 Generate the Human
Evaluation Guideline

Write a detailed humam evaluation guideline based on the following content:
{X}

Table 5: The examples of ChatGPT prompt templates. The variable in the brackets {} will be replaced by the actual
text during the utilisation.

Model BerS-P↑ BertS-R↑ BertS-F1↑ BartS↑

Golden 100 100 100 -0.26
ChatGPT 86.46 84.71 85.56 -3.11

Pubmed-LED 82.91 82.83 82.85 -3.37
Pubmed-PEGASUS 82.55 81.43 81.97 -3.42
Pubmed-BART 84.26 82.49 83.35 -3.38

Pubmed-BART
- w one citation 84.20 82.54 83.34 -3.36
- w citation agg. 84.33 82.92 83.60 -3.35

Table 6: BeS and BaS denote of BERTScore and
BartScore, respectively. P, R, F1 represents the pre-
cision, recall and F1 values, respectively.

of the summary. Consider the inclusion of impor-
tant details and relevant facts.

By utilising a Likert scale with a range of 1 to 5,
we were able to capture nuanced evaluations from
the annotators. This human evaluation provided
valuable insights into the overall performance of
the models from the perspectives of fluency, read-
ability, and relevance, allowing us to gain a deeper
understanding of their summarization capabilities
in the biomedical domain.

A.4 Future Works

In this paper, we propose a novel framework de-
signed to enhance the performance of biomedi-
cal text summarisation using pre-trained language
models. Recent years have witnessed the emer-
gence of increasingly potent open-source language
models, exemplified by Llama 217 and Baichuan18.
However, the practical implementation of our ap-
proach on these immensely large-scale models has
been constrained by high computational demands.
Consequently, we anticipate the need for more ad-
vanced GPU hardware or optimised models, such
as distilled models (Yang et al., 2023b), to render
the training of these models feasible. Presently,
there are two primary ways for advancing our re-

17https://ai.meta.com/llama/.
18https://github.com/baichuan-inc/Baichuan2

search in citation network-enriched text summari-
sation:

and we have to wait for more advanced GPU de-
vices or more optimised models (e.g. distilled mod-
els) to make training those models to be practical.
Currently, there are two main direction to further
improve our citaion networks enhanced text sum-
marisation: (1) The development of a more efficient
neural network that can effectively incorporate the
graph-based features derived from citations (Tang
et al., 2023a; Yang et al., 2023a). (2) The iden-
tification and extraction of key information from
both the input document and its associated citations
to enhance language understanding (Huang et al.,
2022; Tang et al., 2022c). We defer the exploration
of these directions to future research endeavors.

https://ai.meta.com/llama/
https://github.com/baichuan-inc/Baichuan2

