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Abstract

Acquiring high-quality datasets in medical and
biological research is costly and labor-intensive.
Traditional supervised learning requires extensive
labeled data and faces challenges due to diverse
imaging equipment and protocols. We propose
Entropy-guided Weighted Combinational FAISS
(EWC-FAISS), using foundation models trained
on natural images without fine-tuning, as feature
extractors in an efficient and adaptive k-nearest
neighbor search. Our approach shows superior
generalization across diverse conditions, achiev-
ing competitive performance compared to fine-
tuned DINO-based models and NMTune, whilst
reducing computational demands. Experiments
validate the effectiveness of EWC-FAISS for effi-
cient and robust cell image analysis.
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Figure 1: Prediction of EWC-FAISS on query images from
the LISC Dataset, the four nearest neighbors in the WBC
dataset and the ground truth labels.

1. Introduction
In medical and biological research, data acquisition is often
challenging and involves high costs and labor-intensive pro-
cesses (Johnson & Bourne, 2023). This is especially true
in cell image analysis, where traditional approaches rely
heavily on supervised learning techniques that require high-
quality, large-scale labeled datasets, which are expensive
and time-consuming to produce. Additionally, the hetero-
geneity of imaging equipment (e.g., different microscopes)
and protocols (e.g., varying media and lighting conditions)
introduces variability, complicating the task and degrading
the performance of narrowly trained models. Training these
models demands costly GPUs, extensive training time, and
frequent retraining for new tasks. Addressing these chal-
lenges necessitates methodologies that leverage existing
data more efficiently and generalize across diverse imag-
ing conditions without extensive retraining or fine-tuning.
Recent advancements in machine learning, particularly in
the development of foundation models (Bommasani et al.,
2021), present a promising solution. Foundation models,
characterized by their vast scale and versatility, are pre-
trained on a variety of abstract objectives, enabling them to
capture a wide array of features applicable across domains.
DINO (Caron et al., 2021; Oquab et al., 2024) leverages self-
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distillation, allowing the model to teach itself by comparing
different versions of the same image. Segment Anything
(SAM) (Kirillov et al., 2023) focuses on segmentation, learn-
ing to identify specific objects within an image based on
prompts such as points and bounding boxes. SWIN (Liu
et al., 2021; 2022a) builds a layered understanding of the
image through hierarchical feature maps and directs its at-
tention to specific regions using a shifted window approach.
ConvNeXT (Liu et al., 2022b; Woo et al., 2023) rethinks the
traditional convolutional neural network architecture. CLIP
(Radford et al., 2021) learns to associate image content with
natural language descriptions. Finally, ViTMAE (He et al.,
2022) employs a masked autoencoder technique, hiding
parts of the image and tasking the model to reconstruct them.
These diverse objectives and architectures enable these mod-
els to extract complementary and orthogonal information
from the data, potentially leading to better generalization
on unseen data outside the training distribution. In line with
the Platonic Representation Hypothesis (Huh et al., 2024),
we believe this makes them particularly suitable for tasks
like cell image analysis, where acquiring large amounts
of labeled data can be challenging. Following this ratio-
nale, this study explores the utility of various foundation
models without fine-tuning for the task of cell image anal-
ysis. We develop an automated pipeline, Entropy-guided
Weighted Combinational FAISS (EWC-FAISS), combining
different foundation models as pre-trained feature-extractors
to build an approximate Hierarchical Navigable Small World
(HNSW) (Malkov & Yashunin, 2020) FAISS index (Douze
et al., 2024). To enhance robustness, we propose an entropy-
based search for the optimal number of neighbors at runtime,
and to alleviate unbalanced settings through distribution-
reweighting. By building a FAISS index, model iteration
can be executed much faster compared to training a full pa-
rameterized classifier while still being able to benefit from
the generalization capabilities of sophisticated feature ex-
tractors (cf. Figure 1). Our contributions are four-fold. We
demonstrate the effectiveness of our approach in multiple
scenarios. First, we start by evaluating our approach on
the WBC dataset (Bodzas et al., 2023) containing stained
blood cell smears, as well as a transfer to the LISC dataset
(Rezatofighi et al., 2010). Second, we conduct an analysis of
EWC-FAISS on live cell state classification, with a transfer
from the Nanolive 3D Cell Explorer to the BioTek Lion-
heart FX microscopes. Third, we evaluate our approach on
live cell type classification, with a transfer from the BioTek
Lionheart FX to the Nanolive 3D Cell Explorer. Lastly, we
evaluate NMTune (Chen et al., 2024a) in these domains.

2. Related Work
The recent advancements in general foundation models,
particularly DINO and SAM, have significantly influenced
medical and cellular image processing domains. MedSAM

(Ma et al., 2024) has extended the utility of SAM to general
medical imaging tasks, while models like UNI (Chen et al.,
2024b), WTC-11 DINO (Doron et al., 2023), DINOBloom
(Koch et al., 2024) and scDINO (Pfaendler et al., 2023)
have adapted DINO-style approaches to histopathology and
(multi-channel) cellular image analysis. Israel et al. in-
troduced with CellSAM an adaptation of SAM specifically
designed for cell segmentation. Despite these advancements,
training foundation models specifically for medical appli-
cations often requires substantial computational resources
(Ma et al., 2024; Chen et al., 2024b; Kraus et al., 2024),
limiting accessibility for multiple iterations during model
development. In their work, Doron et al. (2023) showed
that ImageNet features can generalize in some settings more
effectively than fine-tuned models in the cellular domain,
especially in (rather) low-data regimes. This study also
revealed that DINO features could predict expert-defined
cellular phenotypes, enhance the prediction of compound
bioactivity, and facilitate unbiased profiling of cellular mor-
phology. Also, self-supervised masked autoencoders have
been shown to be capable of capturing cellular biology when
trained on massive datasets (Kraus et al., 2024). However,
our research indicates that combining features from multiple
foundation models, trained on natural images, can outper-
form single-model approaches, including DINO, in terms
of performance and transferability. The scDINO (Pfaendler
et al., 2023) model demonstrated that a k-nearest neighbor
(k-NN) search using DINO features, fine-tuned and adapted
to multi-channel cellular imaging, can be competitive with
other methods for cell classification tasks. Recent research
has also investigated how to best select foundation models
and hyperparameters for cost-efficient fine-tuning for the
task at hand (Arango et al., 2024) and how to make the gen-
eral features learned from foundation models more robust
for downstream tasks via covariance and dominant singular
value regularization (Chen et al., 2024a). Our proposed
approach stands orthogonal to this line of research by lever-
aging a combination of features from various foundation
models as feature extractors, even when trained on non-
domain specific data. This methodology aims to achieve
better generalization and adaptability in cell image analysis
without any fine-tuning typically required.

3. Datasets
We utilized two publicly available datasets and created four
new datasets (cf. Figure 3, details in Appendix A):

Stained White Blood Cells: The WBC dataset (Bodzas
et al., 2023) includes 14,424 images of stained white
blood cells from patients with acute myeloid and lymphoid
leukemia, as well as those without leukemic pathology.
They are categorized into neutrophil segments, neutrophil
bands, eosinophils, basophils, lymphocytes, monocytes,
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Figure 2: Embeddings for WBC with SAM+ConvNeXT+SWIN+CLIP (Best Combination). Samples from LISC in black.

normoblasts, myeloblasts, and lymphoblasts. The LISC
dataset (Rezatofighi et al., 2010) comprises 257 images of
white blood cells from healthy individuals, classified into
basophils, eosinophils, lymphocytes, monocytes, and neu-
trophils.

Live Cell State Imaging: The CELL DEATH NANOLIVE
dataset contains images of treated JIMT-1 breast cancer cells
categorized into living, dead, apoptotic, and necrotic cells. It
includes 7,420 with the Roboflow software manually anno-
tated and segmented images captured with a high-resolution
Nanolive microscope at 60× magnification. The CELL
DEATH LIONHEART dataset contains 59 images recorded
with the Lionheart automated microscope at 20×.

Live Cell Type Imaging: The CELL TYPE LIONHEART
dataset contains 456,366 images of K562 and Jurkat cancer
cells, extracted from homogeneous cell line images recorded
with a lower-resolution Lionheart automated microscope
at 20×. The CELL TYPE NANOLIVE contains 206,742
images of Jurkat cells captured with the Nanolive at 60×.

Figure 3: Used datasets: stained white blood cells of the
WBC (Original) and LISC dataset (Tansfer), live cell state
recorded by the Nanolive (Original) and BioTek Lionheart
FX microscopes (Transfer), and two cell lines recorded by
BioTek Lionheart FX (Original) and Nanolive (Transfer).

4. Method
Next, we outline how to build, train, and query a latent
embeddings database using EWC-FAISS.

Foundation Model Embedding Generation We utilize
a set of foundation models as encoders to generate embed-
dings for our data. Each foundation model Mi in the set
{M1,M2, . . . ,Mn} processes the input data X to produce
a corresponding embedding Ei = Mi(X). For a given en-
coder subset M ⊆ {M1,M2, . . . ,Mn}, we concatenate the
embeddings Ei from each encoder Mi ∈ M to form a full
feature representation E = [||m∈MEm]. This concatenated
embedding E serves as the input for subsequent tasks.

Database and FAISS Index Construction We construct
a database D consisting of embeddings {Ei|ni=1}c and
labels for each cell c (cf. Figure 2). This results in
D = {Ei|ni=1}Nc=1, where N is the total number of cells.
D is then used to train a HNSW FAISS index (Malkov &
Yashunin, 2020) on concatenated embeddings Ec.

Class Weight and Entropy Calculation To address the
issue of class imbalance in our training data, class weights
were calculated based on the frequency of each class once
after adding the embeddings to the index. The total number
of samples was divided by the product of the number of
classes and the count of each class. The fixed class weight
for class i is given by wi = N/(C · Ni), where N is the
total number of samples, C is the number of classes, and
Ni is the number of samples in class i in D. This approach
ensures that less frequent classes receive higher weights,
thereby reducing the impact of imbalance. We then quantify
the normalized entropy of labels from the nearest neighbors
to estimate the uncertainty in label distribution independent
from the re-weighting by:

Hnorm =
−
∑m

i=1 pi log(pi)

log(k)
, (1)

where pi is the probability of the i-th class and k is the
number of nearest neighbors. By normalizing the entropy, it
is scaled between 0 and 1 regardless of the number of drawn
neighbors. A lower entropy indicates a higher purity of the
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Figure 4: (top) The mean of cosine similarity scores for all cell embeddings per cell type for each foundation model.
(bottom) The mean of RBF CKA similarity scores between all foundation models and the RBF CKA similarity scores of the
best combination of models (Comb) compared to all single foundation models ordered by cell type (Baso = Basophil, Eso =
Eosinophil, L-Blast = Lymphoblast, Lymph = Lymphocyte, Mono = Monocyte, My-Blast = Myeloblast, Neut = Neutrophil,

Normo = Normoblast), where blue denotes low similarity and yellow high similarity of two embeddings.

neighborhood in terms of class labels, which is desirable for
accurate classification.

Nearest Neighbor Search and Prediction The core of
our method involves an adaptive nearest neighbor search
to determine the optimal number of neighbors (k) for clas-
sification. Starting from a minimum value, k is increased
exponentially until the entropy of the nearest neighbors falls
below a pre-defined threshold. This adaptive approach bal-
ances the need for accuracy and computational efficiency by
dynamically adjusting k based on the neighborhood’s label
distribution. During the search process, the class weights are
used to perform a weighted vote among the nearest neigh-
bors to account for minority classes. The predicted class
is then determined by the class with the highest weighted
vote:

ypred = argmax
l

k∑
j=1

wj · 1{yj = l}, (2)

where 1{yj = l} is an indicator function that is 1 if the label
of the j-th nearest neighbor yj is l and wj is the weight of
the j-th nearest neighbor’s class label.

5. Experiments
Since most related work uses DINO to represent cellu-
lar morphology, we compare EWC-FAISS with the best
combination of foundation models (optimized on a valida-
tion set) to a finetuned DINOv2-based vision transformer
model (DINO FT). We furthermore compare to NMTune,
a lightweight addendum to foundation models aiming at
making performances more robust on (unseen) downstream

tasks. Experimental details can be found in Appendix B.

Embeddings We compare the similarities among cell em-
beddings within one foundation model exemplary for the
WBC dataset in Figure 4 (top) by the mean of the cosine
similarity scores of all embeddings per cell type projected
via Principal Component Analysis (PCA) to 100 dimensions.
The best combination of foundation models achieves the
highest intra-class similarity with a mean diagonal similarity
of 0.355 and the lowest inter-class similarity with a mean
off-diagnoal similarity of −0.043 (details in Appendix C).
In contrast, the ViTMAE model shows the noisiest results,
indicating less distinct feature separation. Additionally, we
study the similarity across foundation model representations,
using Radial Basis Function (RBF) Centered Kernel Align-
ment (CKA) (Kornblith et al., 2019) in Figure 4 (bottom).
ConvNeXT and SWIN achieve the highest similarity com-
pared to the best combination of models (being part of the
best combination SAM+ConvNeXT+SWIN+CLIP).

Classification An overview of the classification results
over five runs is given in Table 1. In terms of inner dataset
distribution performance, EWC-FAISS is on par with the
baselines (rank second for WBC, rank first for cell state
classification from Nanolive and rank third for cell type
classification from Lionheart). However, EWC-FAISS can
handle domain shift from transfer to different imaging de-
vices and scenarios better than both DINO FT and NMTune.
NMTune is on par or better than DINO FT. Furthermore,
after embedding generation, building EWC-FAISS is multi-
ple orders of magnitudes faster than training DINO FT (∼ 6
minutes compared to > 10 hours, cf. Figure 5).
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Table 1: Classification Results. Models were trained on
ORIGINAL and evaluated on test and TRANSFER sets.

METHOD MACRO ACCURACY MACRO PRECISION

ORIGINAL: WBC (8 CLASSES)
DINO FT 93.96± 0.85 97.77± 1.98
NMTUNE 98.43± 0.45 98.05± 0.88
EWC-FAISS 97.60± 0.23 97.94± 0.00

TRANSFER: LISC (7 CLASSES)
DINO FT 16.59± 1.37 32.46± 2.37
NMTUNE 52.10± 10.32 59.44± 5.62
EWC-FAISS 78.47± 0.34 81.93± 0.47

ORIGINAL: CELL DEATH NANOLIVE (4 CLASSES)
DINO FT 89.49± 0.85 88.45± 1.23
NMTUNE 88.39± 0.61 88.97± 1.20
EWC-FAISS 90.07± 0.00 91.75± 0.00

TRANSFER: CELL DEATH LIONHEART (2 CLASSES)
DINO FT 64.95± 11.44 79.92± 21.23
NMTUNE 80.62± 7.36 80.14± 6.01
EWC-FAISS 86.11± 0.98 84.86± 0.75

ORIGINAL: CELL TYPE LIONHEART (2 CLASSES)
DINO FT 91.88± 0.14 91.98± 0.14
NMTUNE 92.14± 0.21 91.91± 0.12
FAISS 87.32± 0.01 86.50± 0.01

TRANSFER: CELL TYPE NANOLIVE (1 CLASS)
DINO FT 24.54± 0.93 −
NMTUNE 62.61± 3.97 −
EWC-FAISS 85.08± 0.01 −

Figure 6 shows exemplary for the WBC dataset an evalua-
tion of the best found combinations of foundation models
from the power set, as well as an ablation and a comparison
to all single-models. As can be seen, combining features
clearly leads to better performances.

6. Discussion and Conclusion
Our results show, that adaptive k-NN search on fixed fea-
tures from combinations of foundation models can yield on
par or better performances in the domain of cellular imag-
ing. However, it is no panacea and except for the WBC
dataset, we had to adapt the combinations and hyperparam-
eters when transferring to a new device. Nonetheless, we
were always able to find a good working combination in
the realm of minutes instead of hours of training fully fine-
tuned models, even for full iterations over the whole power
set. This highlights the versatility and accessibility of the
proposed framework, as performing several development
cycles is very cost-effective and fast; all experiments have
been executed on consumer hardware, specifically an AMD
Ryzen 9 7950X3 CPU and an NVIDIA GeForce RTX 4090.
NMTune on the best found set of foundation models also
is a well-performing alternative to a fully-trained classifica-
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tion model, although the generalization capabilities towards
out-of-distribution samples appear to be inferior compared
to approximate k-NN search. Given the current pace of
development, upcoming or recently introduced foundation
models, such as CellSAM, should be incorporated into the
proposed framework moving forward.

Impact Statement
Our research introduces Entropy-guided Weighted Com-
binational FAISS (EWC-FAISS) to tackle the high costs
and labor-intensive processes of cell image analysis. By
leveraging foundation models without fine-tuning, EWC-
FAISS significantly reduces computational and temporal re-
sources, lowering hurdles for researchers from non-technical
fields. This approach demonstrates adaptability across di-
verse imaging settings and devices, making cell image anal-
ysis more accessible and efficient. Validated on multiple
datasets, EWC-FAISS provides a practical solution for real-
world medical research and diagnostics. Its ability to gener-
alize well in various conditions is a step towards robust and
reliable performance, offering significant advancements in
medical image analysis.
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A. Dataset Details
We split the original datasets to 90% train, 9% validation, and 1% test sets and used the transfer datasets only for evaluation.

WBC The WBC dataset includes 14,424 cell images from microscopic blood smear images from 36 leukemic and 45
non-leukemic peripheral blood smears, collected from 78 anonymized patients. This cohort includes 18 patients with acute
myeloid leukemia, 15 with acute lymphoid leukemia, and 45 with no leukemic pathology. Blood smears were stained using
May-Grünwald and Giemsa-Romanowski solutions, and blast cell lineage was determined by flow cytometry. Images were
captured using an Olympus BX51 microscope with a Basler acA5472-17uc camera, achieving a resolution of approximately
42 pixels per 1µm under a magnification of 100×. The dataset contains nine different annotated blood cell types: neutrophil
segments, neutrophil bands, eosinophils, basophils, lymphocytes, monocytes, normoblasts, myeloblasts, and lymphoblasts.
Due to the low number of neutrophil bands, we have merged them with the neutrophil segments.

LISC The LISC dataset contains hematological images from peripheral blood of 8 healthy individuals, resulting in 257
white blood cell images from 100 microscope slides. These slides were stained using the Gismo-Right technique, imaged
with a Microscope-Axioskope 40 at 100× magnification, and recorded by a Sony SSCDC50AP digital camera in BMP
format. Each image was collected from the Hematology-Oncology and BMT Research Center at Imam Khomeini Hospital,
Tehran. A hematologist classified the images into five normal leukocyte categories (basophil, eosinophil, lymphocyte,
monocyte, and neutrophil).

CELL DEATH NANOLIVE This dataset comprises 7,420 images of JIMT-1 cells, captured at 40× magnification using a
Nanolive 3D microscope. The dataset is categorized into Dead (728), Living (4,613), Apoptotic (707), and Necrotic (1,372)
cells. An additional test set includes 1,122 images, with Dead (255), Living (500), Apoptotic (99), and Necrotic (268) cells.
The images are 2D projections from the 3D microscope. JIMT-1 cells were cultivated using Dulbecco’s modified eagle
medium (DMEM) FluoroBrite (Gibco), supplemented with 10% fetal bovine serum (FBS; Gibco), 1x L-glutamine (Gibco),
and 1% Pen Strep (10,000 Units/ml penicillin, 10,000 µg/ml streptomycin; Gibco). For each image, we use contrast limited
adaptive histogram equalization (CLAHE) to normalize its contrast. Examples can be found in Figure 7.

CELL DEATH LIONHEART This dataset contains 59 annotated test images, categorized into dead (23) and living cells
(36). The breast carcinoma cell line JIMT-1 (ACC 589, DSMZ) was used as adherent cells. JIMT-1 cells were cultivated
using Dulbecco’s modified eagle medium (DMEM) (Gibco), supplemented with 10% fetal bovine serum (FBS; Gibco),
1x L-glutamine (Gibco), and 1% Pen Strep (10,000 Units/ml penicillin, 10,000 µg/ml streptomycin; Gibco). Cells were
incubated at 37°C in a humidified atmosphere containing 5% CO2 and passaged twice a week. For treatment, JIMT-1 cells
were seeded in an 8-well chip (Ibidi) and either left untreated or treated with 25 µM of Etoposide (Sigma Aldrich) for 72
hours. Propidium Iodide (0.25 µg/ml, Sigma Aldrich) was used as a fluorescence marker to stain dead cells. Brightfield and
fluorescence images were acquired every 2 hours using a Biotek Lionheart Fx automated microscope. Examples can be
found in Figure 7.

CELL TYPE LIONHEART The CELL TYPE LIONHEART dataset includes 456,366 images of homogeneous K562
(264,904) and Jurkat cell images (191,462), captured using a Lionheart automated microscope at 20× magnification, and
206,742 images of Jurkat cells captured with a 3D Nanolive microscope. Each image was segmented using SAM, and the
type of each crop was assigned accordingly. Contrast normalization was applied to each image using CLAHE. Jurkat and
K562 cells were cultivated in RPMI 1640 medium (Gibco), supplemented with 10% FBS, 1x L-glutamine, and 1% Pen
Strep. All cells were incubated at 37°C in a humidified atmosphere containing 5% CO2 and passaged twice a week. The cell
images were segmented and masked using SAM, where we cropped 224× 224 pixel crops around the centers of the found
cell masks. Examples can be found in Figure 7.

Magnification Adaption We adapt the resolution between Lionheart and Nanolive microscopes. The Lionheart micro-
scope, operating at 20× with a field of view of 291x394 µm2, generates images of 904x1224 pixels, corresponding to
approximately 0.322 µm/pixel. In contrast, the Nanolive microscope, set at 60× with a field of view of 85x85 µm2, produces
images of 448x448 pixels, resulting in a resolution of about 0.19 µm/pixel. To match the resolution of the images from the
Nanolive microscope to those from the Lionheart microscope, a scaling factor of 0.59 is applied, calculated by dividing the
Nanolive pixel size by the Lionheart pixel size.
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(a) Nanolive image of JIMT-1 breast cancer cells. (b) Nanolive image of Jurkat cells.

(c) Lionheart image of JIMT-1 cells. (d) Lionheart image of K562 cells. (e) Lionheart image of Jurkat cells.

Figure 7: Stitched images from our Nanolive and Lionheart microscopes showing various cell types.

B. Hyperparameters
DINO FT Since most related work are using DINO to represent cellular morphology, as baseline, we use a pre-trained
DINOv2 vision transformer model, which was finetuned for 50 epochs using the Adamw optimizer with cosine learning
rate decay with warm-up (from lr=10−5 to lr=0). We employ horizontal flipping, normalization and color jitter as data
augmentations.

FM Zoo + NMTune As proposed in (Chen et al., 2024a), we set λ = 0.01 for feature consistency, covariance, and
dominant singular value regularization and use a two-layer MLP with 800 units for all our experiments. To save costs, we
perform PCA on the embeddings to 200 components. We use Adam with lr=10−3 for 10 epochs.

EWC-FAISS The best-performing index for the WBC dataset used a combination of SAM, ConvNeXT, SWIN, and CLIP
with k between 3 and 1000, an entropy threshold of 0.3, and L2-distance. For the transfer to LISC, we use a combination
of DINO, ConvNeXT, SWIN, and ViTMAE. For the cell state classification from the Nanolive microscope, we use a
combination of SAM, ConvNeXT, SWIN, CLIP and ViTMAE with k between 3 and 100, an entropy threshold of 0.6 and
Canberra distance. For the transfer to the Lionheart microscope, we set k between 10 and 1000 and an entropy threshold of
0.1. For the cell type classification from the Lionheart microscope, as well as for the transfer to the Nanolive microscope,
we use a combination of SAM, DINO, ConvNeXT, and CLIP, with k between 20 and 1000, an entropy threshold of 0.2 and
L2-distance.
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C. Feature Analysis
Table 2 shows the mean intra-class similarities and Table 3 the mean inter-class similarities (in terms of cosine similarity) of
all foundation models and their best combination for the embeddings of the WBC dataset.

Model Intra-class Similarity

Best Combination 0.355
SWIN 0.349

ConvNeXT 0.33
CLIP 0.244
DINO 0.183

ViTMAE 0.179
SAM 0.144

Table 2: Mean intra-class similarities.

Model Inter-class Similarity

Best Combination −0.043
SWIN −0.041

ConvNeXT −0.04
CLIP −0.027

ViTMAE −0.021
SAM −0.019
DINO −0.014

Table 3: Mean inter-class similarities.
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