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Abstract

Mean aortic pressure (MAP) is a primary measurement
for monitoring blood and O2 delivery to major organs.
Prolonged periods of hypotension, low MAP, lead to low
tissue perfusion and subsequent end organ damage. Pa-
tients on mechanical circulatory support (MCS) devices,
such as the Impella CP, are managed to maintain sufficient
MAP for end-organ perfusion. Forecasting MAP is impor-
tant for early warning of clinically concerning events, in-
cluding hypotension and instability as well as device wean-
ing. Patients presenting with cardiogenic shock as a re-
sult of acute myocardial infarction (AMI/CGS) have in-
creased hemodynamic instability when compared to pa-
tients undergoing high-risk percutaneous coronary inter-
ventions (HRPCI). Existing deep sequence models for fore-
casting often focus on the same patient cohort and cannot
generalize across cohorts. In this paper, we examine how
deep sequence models respond to the distribution shift of
the MAP across the MCS patient cohorts during forecast-
ing. We propose conditional RNN, a deep sequence model
that learns to adapt to a different cohort by conditioning
on time-invariant cohort features. Our proposed model im-
proves the forecasting performance, achieving a 5.2 mmHg
- 6.1 mmHg RMSE for cross-cohort patients.

1. Introduction
Maintenance of a constant mean aortic pressure (MAP)
is vital to ensure adequate organ perfusion [1]. Studies
show that increase in the duration of time spent below
MAP threshold of 65 mmHg is associated with worse pa-
tient outcomes such as risk of mortality and organ dys-
function [2, 3]. Patients are monitored and treated to keep
MAP above 65 mmHg to avoid low end-organ perfusion.
Patients with severe multi-vessel coronary artery disease
(CAD), unprotected left main coronary artery stenosis, last
remaining patent vessel, and severely reduced left ventric-
ular (LV) ejection fraction (EF) are often turned down from
cardiac surgery and are increasingly referred for high-risk
percutaneous coronary intervention (HRPCI) [4]. Patients
with Cardiogenic Shock resulting from Acute Myocardial

Infarction (AMI/CGS) who are dependent on vasopressors
are recommended to be escalated to additional hemody-
namic support due to unstable, low blood pressures [5].
Many patients at risk for hemodynamic instability, such
as patients with AMI/CGS and those undergoing HRPCIs,
are treated with mechanical circulatory support (MCS). In
both the ICU and cardiac catheter lab (CCL), providing
an accurate, continuous MAP forecast would be signifi-
cant when monitoring hemodynamically unstable patients
at risk for decompensation.

For patients treated with MCS, MAP is a function of na-
tive heart blood output and the support level of the pump.
The challenges include the capability to predict MAP
trends across patients with diverse medical presentations
whose hemodynamics change throughout the care timeline
in response to clinical intervention. Deep sequence models
such as Recurrent Neural Networks (RNNs) have demon-
strated capability for time series forecasting [6], including
blood pressure predictions [7,8]. Existing studies on MAP
forecasting in critical care setting are mostly limited to a
specific patient population, hence their conclusions have
limited generality across patient cohorts.

The Impella CP is an implantable (percutaneously)
catheter-based left ventricular assist device (LVAD) that
provides hemodynamic support to the heart. In this paper,
we examine the generalization of deep sequence model-
ing for MAP forecasting across two Impella patient cohorts
with differing indications: HRPCI, AMI/CGS. We propose
conditional RNN, an extension of RNN that can adapt to
the MAP distribution shift across patient cohort. Using a
few examples from the new patient cohort, we can com-
pute certain time-invariant cohort features. By condition-
ing on these cohort-specific features, we can improve the
generalization performance of the deep sequence model.
We show that conditional RNN improves the forecasting
performance for several RNN models including LSTM [9]
and LMU [10].

2. Dataset
The left sided Impella devices pump blood from the left
ventricle (LV) into the ascending aorta across the aortic
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valve. Impella is indicated to provide MCS to patients
undergoing HRPCI, and patients with Cardiogenic Shock.
Impella device performance signals are collected from the
Automated Impella Controller (AIC) at 25 Hz. The signals
monitor aortic pressure (in mmHg) from an optical sensor
at the Impella outlet, motor current (mA) which modulates
with respect to dynamic pressure environment over cardiac
cycle to maintain constant speed, and motor speed (rpm)
of the pump impeller, and pump flow of blood through the
Impella cannula (L/min) as shown in Figure 1.

Figure 1. Sample Pump Performance (25 Hz) Data

HRPCI: Coronary artery disease (CAD) results from
damage in the arteries that supply blood to the heart. Pa-
tients with severe or complex disease who are not eligible
for open-heart surgery may undergo a HRPCI with hemo-
dynamic support from an Impella. During the procedure,
metrics including MAP and Cardiac Output (CO) are mon-
itored to track hemodynamic stablity. HRPCI procedure
restores blood flow to the heart for revascularization.

AMI/CGS: Cardiogenic shock occurs when a severe
impairment causes the heart to fail to pump enough blood
to sufficiently supply oxygen to critical organs. Many pa-
tients who experience cardiogenic shock do so after an
acute myocardial infarction [11]. An AMI results from a
blockage of the coronary arteries that supply blood to the
heart muscle, resulting in damaged tissue. This can lead to
cardiogenic shock where the heart enters a weakened state
and can no longer pump enough blood to maintain organ
perfusion. When compared to patients undergoing HRPCI,
AMI/CGS patients’ heart disease is more severe and have
increased hemodynamic instability.

Table 2 summarizes descriptive parameters of the Im-
pella cases per cohort used. The distribution of the cases is
shown in Figure 2.The cases occurred between December
2017-April 2020. The case samples were from 290 hospi-
tals across 32 regions of the USA, Germany, and Canada.
The HRPCI median case duration was 1.7 hours [1.2, 2.0]
and the AMI/CGS median case duration was 28.0 hours
[13.9, 52.1]. We split 50 AMI/CGS cases and 40 HRPCI
cases of the 463 cases for out of sample testing.

Figure 2. HRPIC and AMI/CGS distributions. Top left:
duration of cases; top right: pump (aortic) pressure; bot-
tom left: pump speed; bottom right: pump flow.

Table 1. Demographics of Patients in Cohorts
HRPCI AMI/CGS

Cases 213 250
Age (years) 72 [64, 79] 65 [58, 71]
Gender (M/F/U) 154/59/7 168/70/8
EF (%) 30 [20, 40] 20 [15, 30]
ECMO 1 15

3. Methods
Previously, [8] examined the problem of MAP forecast-
ing; they concluded that the LMU sequence to sequence
model worked the best within a patient cohort (HRPCI).
Their predictions in an out-of-sample test set in N = 10 pa-
tients using RNN-LMU reported a RMSE of 9.27 mmHg.
We expand on this work by addressing generalization tech-
niques to better learn patient cohort representations.

Features used were pump speed, pump pressure, pump
flow, as well as LV pressure. The input signal at a given
timestep is a rolling average over 10 seconds. Our se-
quence lengths are broken into 10 minutes. Each sequence
is then broken into half to form the input and ground truth,
respectively. The model takes an input signal of 5 min-
utes and outputs a sequence of 5 minutes. We catego-
rized the MAP sequences into 3 types based on trends: in-
creasing (I) sequences, decreasing (D) sequences, and sta-
tionary (S). In the clinical context, lower ranges in MAP
are concerning. For Impella patients, the ranges of MAP
can be binned as normal, managed, and critical. Normal
MAP ranges are 80 and above, managed is between 60-80
mmHg, and critical would be below 60 mmHg. Changes
in MAP in the managed and critical range are significant
and would warrant closer observation or intervention. To
bin prediction sequences as I, D, or S we perform a linear
regression to get the slope and the midpoint of the MAP
time series. A slope of ± 10 mmHg defines an I or D if the
midpoint of the linear projection is above 80 mmHg (nor-
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Table 2. Cross-cohort performance comparison. 5 minute forecasting RMSE (mmHg) of different training/testing cohort
combination with AMI/CGS(A), HRPCI(H) and both cohorts (B). Results are averaged over 3 random runs.

Train/Test A/H A/A A/B B/H B/A B/B H/H H/A H/B
CLMU-S2S 6.110 3.362 3.449 6.380 4.422 4.529 6.332 5.200 5.283
LMU-S2S 6.235 3.448 3.536 6.986 4.956 5.074 6.604 5.459 5.540
CLSTM-S2S 6.180 3.364 3.454 6.490 4.357 4.462 6.531 5.467 5.529
LSTM-S2S 6.188 3.408 3.497 6.679 4.675 4.782 6.560 5.387 5.453
LSTM-MLP 6.202 3.491 3.576 6.536 4.712 4.828 6.450 5.369 5.457

Table 3. Cross-cohort generalization performance comparison for each trend category. 5 minute Forecasting RMSE
(mmHg) for increasing (I), decreasing (D) and stationary (S) time series. Results are averaged over 3 random runs.

Train/Test A/H H/A
Category I D S I D S

CLMU-S2S 10.689 10.585 4.815 9.267 12.099 4.686
LMU-S2S 10.914 10.649 4.940 9.771 11.997 4.954

CLSTM-S2S 10.979 10.585 4.865 9.403 12.388 4.965
LSTM-S2S 10.724 10.723 4.880 9.548 12.575 4.862
LSTM-MLP 11.501 10.223 4.929 9.911 11.788 4.856

mal range). If below 80 mmHg (managed, critical), then a
slope of ± 5 mmHg is used. For HRPCI, the number of I,
D, and S samples is 7,260 , 7,534 , 67,569. For AMI/CGS,
the number of samples in each trend category is 109,522,
112,924, 2,578,005.

To generalize across patient cohorts, we introduce con-
ditioning of deep sequence models based on time invariant
cohort data. We take a cohort specific condition, and con-
dition the starting state of a RNN cell based on this for the
first timestep. An RNN cell generates the prediction by
propagating the hidden state over time. Given input xt at
time step t, an RNN uses the following equations to predict
the output yt. In the case of forecasting, yt = xt+1.

ht+1 = σ(Wht + Uxt + b), yt = σ(Wht+1)

Here W , U and b are the trainable parameters, and σ repre-
sents the activation function. We then encode our condition
variables with a multi-layer perceptron (MLP) to cohort-
specific features, which are learned. The encoding mod-
ule is simply a series of affine transformations followed by
tanh activation and batch normalization, as the magnitude
between condition features varies greatly. One such exam-
ple can be described as follows:

[h1, s1] = tanh(Wc+ b)

where c is the cohort-specific feature. We found that
the best conditioning parameters were the standard devi-
ation of each feature according to cohort. A sequence-to-
sequence model [12] consists of an encoder and a decoder,
both RNNs. The final hidden state of the encoder is used
as the starting state of the decoder. To condition on a co-
hort, we take a similar approach to learn the cohort-specific
features and initialize the state of both the encoder and the
decoder with the encoded conditional features. We can use

different type of RNN cells in the conditional RNN frame-
work, we used two variations: LSTM and LMU [10].

We evaluated the performance of deep sequence mod-
els on MAP forecasting across the HRPCI (H) cohort and
the AMI/CGS (A) cohort. We rotate training and testing
amongst the HRPCI, AMI/CGS, and a mixture of both pa-
tients cohorts (B). For the mixture of both, we train on an
equal amount of each cohort. Few shot domain adaptation
is the ability of a model to generalize to new cohorts de-
spite having only seen a few examples of a new cohort,
and having been primarily trained on a different popula-
tion. For example, by training on the entire HRPCI set,
with randomly selected AMI/CGS samples totaling 10%
of the HRPCI set.

4. Results
In cross-cohort testing, for example, we train on mainly
HRPCI samples, with only a few AMI/CGS samples, and
then testing on AMI/CGS samples, as described by Table
2. The conditional RNN is able to discern between co-
horts based on the condition encoding. The conditional
LMU outperformed the conditional LSTM by a significant
RMSE across most of the categories, including the few-
shot domain adaptation category. However, it is also ap-
parent that the conditional RNN models outperformed all
baselines in all categories consistently.

Table 3 indicates the performance of each model across
increasing/decreasing/stationary sequences cross-cohort.
We refer to the few-shot domain adaptation experiment for
each model. The conditional RNN is consistently the best
for stationary and increasing sequences, but does not per-
form the best across decreasing sequences. The best model
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Figure 3. Visualization of predictions using models trained on different cohorts

actually is the LSTM-MLP, for decreasing sequences on
both A/H and H/A. However, the CLMU still achieves de-
cent performance here, with the CLSTM slightly worse.
There is possibly a trade off in performance between do-
ing better on stationary sequences and doing worse on in-
creasing/decreasing sequences. As observed, the RMSE
is much higher in increasing/decreasing cases on average,
because these are less predictable/have more stochasticity.

Figure 3 visualizes the predictions of our Conditional
LMU-Seq2Seq (red) with one of the baselines, LMU
(blue) for different training and testing combinations, to
examine the advantage conditioning grants over the cor-
responding ordinary RNN architecture. We observe that
CLMU-S2S achieves noticeable improvement over the
baseline in forecasting increasing and stationary trends.
For the CLMU, the visualizations demonstrate that it pro-
vides relatively accurate predictions in and across cohort.

5. Conclusion
We examined the forecasting performance out to 5 min-
utes across patient cohorts with clinically different presen-
tations and interventions (HRPCI and AMI-CGS cohorts).
Through the conditional RNN, we introduced a method of
adapting model predictions and applying learning across
cohorts with few samples. This indicates that at least for
MAP Forecasting, there are learnings and features that we
can apply cross cohorts that may have been neglected so
far. In doing so, we improve performance overall and im-
prove forecasting to help anticipate changes in MAP.
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