
Published in Transactions on Machine Learning Research (02/2025)

The Elusive Pursuit of Reproducing PATE-GAN:
Benchmarking, Auditing, Debugging

Georgi Ganev georgi.ganev.16@ucl.ac.uk
University College London and SAS

Meenatchi Sundaram Muthu Selva Annamalai meenatchi.annamalai.22@ucl.ac.uk
University College London

Emiliano De Cristofaro emilianodc@cs.ucr.edu
University of California, Riverside

Reviewed on OpenReview: https://openreview.net/ forum?id=wcxrJcJ7vq

Abstract

Synthetic data created by differentially private (DP) generative models is increasingly used
in real-world settings. In this context, PATE-GAN has emerged as one of the most popular
algorithms, combining Generative Adversarial Networks (GANs) with the private training
approach of PATE (Private Aggregation of Teacher Ensembles).

In this paper, we set out to reproduce the utility evaluation from the original PATE-GAN
paper, compare available implementations, and conduct a privacy audit. More precisely,
we analyze and benchmark six open-source PATE-GAN implementations, including three
by (a subset of) the original authors. First, we shed light on architecture deviations and
empirically demonstrate that none reproduce the utility performance reported in the original
paper. We then present an in-depth privacy evaluation, which includes DP auditing, and
show that all implementations leak more privacy than intended. Furthermore, we uncover
19 privacy violations and 5 other bugs in these six open-source implementations. Lastly,
our codebase is available from: https://github.com/spalabucr/pategan-audit.

1 Introduction

Privacy-preserving synthetic data has been increasingly adopted to share data within and across organizations
while reducing privacy risks. The intuition is to train a generative model on the real data, draw samples
from the model, and create new (synthetic) data points. As the original data may contain sensitive and/or
personal information, synthetic data can be vulnerable to membership/property inference, reconstruction
attacks, etc. (Hayes et al., 2019; Hilprecht et al., 2019; Chen et al., 2020; Stadler et al., 2022; Annamalai
et al., 2024a; Ganev & De Cristofaro, 2023). Thus, models should be trained to satisfy robust definitions like
Differential Privacy (DP) (Dwork et al., 2006; Dwork & Roth, 2014), which bounds the privacy leakage from
the synthetic data. Combining generative models with DP has been advocated for or deployed by government
agencies (NIST, 2018; Abowd et al., 2022; ONS, 2023; Hod & Canetti, 2024), regulatory bodies (ICO, 2023;
FCA, 2024), and non-profit organizations (UN, 2023; OECD, 2023).

Numerous DP generative models have been proposed (Zhang et al., 2017; Xie et al., 2018; Zhang et al.,
2018; Jordon et al., 2019; McKenna et al., 2021; Zhang et al., 2021; McKenna et al., 2022), etc. Alas, new
DP models are often published without a public/thoroughly reviewed codebase. Correctly implementing
DP mechanisms and effectively communicating their properties are often very challenging tasks in the real
world (Cummings et al., 2021; Houssiau et al., 2022b). This prompts the need for rigorous reproducibility
efforts and auditing studies to confirm the utility and privacy claims of state-of-the-art DP generative models.

1

https://openreview.net/forum?id=wcxrJcJ7vq
https://github.com/spalabucr/pategan-audit

Published in Transactions on Machine Learning Research (02/2025)

original updated synthcity turing borealis smartnoise

AUROC ∆ -24.57% -50.80% -33.76% -77.38% -27.50% -26.92%

Table 1: Average reduction in AUROC (the random score 0.5 used as baseline) from the original paper (Jor-
don et al., 2019) across twelve classifiers and four datasets (ε = 1) for the six implementations.

Privacy Violations Other Bugs

Data Moments Laplace δ Labels
Implement. PATE Partition Accountant Metadata Noise Scale Distribution Teachers Processing

original X X X X X X
updated X X X X X
synthcity X X X X
turing X X X X X
borealis X X X
smartnoise X

Table 2: Overview of the privacy violations and bugs found in each implementation.

In this paper, we focus on PATE-GAN (Jordon et al., 2019), which combines Private Aggregation of Teacher
Ensembles (PATE) (Papernot et al., 2017; 2018) and Generative Adversarial Networks (GANs) (Goodfellow
et al., 2014) to train a generator in a privacy-preserving way using k teachers-discriminators and a student-
discriminator. PATE-GAN, published at ICLR’19, is among the two most popular DP generative models
for tabular data and the most popular deep learning model (with over 800 citations as of February 2025),
remaining widely used, extensively studied, and re-implemented by researchers and practitioners. Moreover,
PATE-GAN is very competitive vs. state-of-the-art models in terms of utility, privacy, and fairness, partic-
ularly for high dimensional datasets (Rosenblatt et al., 2020; Ganev et al., 2022; 2024; Du & Li, 2024). We
examine six public PATE-GAN implementations, including three by the original authors:

1. original1, the first public code release in 2019 alongside the paper (Jordon et al., 2019);
2. updated2, released in 2021 and linked to from the latest version of the paper (Jordon et al., 2019);
3. synthcity3, the most recent implementation, included in the popular synthetic data benchmarking

library synthcity (Qian et al., 2023);
4. turing4, developed by the Alan Turing Institute, part of the TAPAS library (Houssiau et al., 2022a);
5. borealis5, part of Borealis AI’s toolbox for private generation of synthetic data;
6. smartnoise6, included in OpenDP’s popular library for DP synthetic data (OpenDP, 2021).

Our reproducibility study has two main objectives. First, we set to reproduce the utility performance reported
in the original paper (Jordon et al., 2019) by studying and benchmarking the six implementations. Second,
we empirically estimate PATE-GAN’s privacy guarantees using DP auditing tools. In our experiments, we
use all four publicly available tabular datasets (two Kaggle and two UCI) used in the original evaluation, a
common image dataset (MNIST), and create a worst-case dataset as part of the DP auditing tests.

Our experimental evaluation yields several main findings:

• We fail to reproduce the utility performance reported in the original paper (Jordon et al., 2019) in
any of the six implementations we benchmark, with an average utility drop ranging from 25% to
77% across the four datasets (see Table 1);

• All six implementations leak more privacy than they should – i.e., the empirical privacy estimates
we obtain using black-box membership inference attacks are worse than the theoretical differential
privacy bounds;

1https://bitbucket.org/mvdschaar/mlforhealthlabpub/src/master/alg/pategan/PATE_GAN.py
2https://github.com/vanderschaarlab/mlforhealthlabpub/blob/main/alg/pategan/pate_gan.py
3https://github.com/vanderschaarlab/synthcity/blob/main/src/synthcity/plugins/privacy/plugin_pategan.py
4https://github.com/alan-turing-institute/reprosyn/blob/main/src/reprosyn/methods/gans/pate_gan.py
5https://github.com/BorealisAI/private-data-generation/blob/master/models/pate_gan.py
6https://github.com/opendp/smartnoise-sdk/blob/main/synth/snsynth/pytorch/nn/pategan.py

2

https://bitbucket.org/mvdschaar/mlforhealthlabpub/src/master/alg/pategan/PATE_GAN.py
https://github.com/vanderschaarlab/mlforhealthlabpub/blob/main/alg/pategan/pate_gan.py
https://github.com/vanderschaarlab/synthcity/blob/main/src/synthcity/plugins/privacy/plugin_pategan.py
https://github.com/alan-turing-institute/reprosyn/blob/main/src/reprosyn/methods/gans/pate_gan.py
https://github.com/BorealisAI/private-data-generation/blob/master/models/pate_gan.py
https://github.com/opendp/smartnoise-sdk/blob/main/synth/snsynth/pytorch/nn/pategan.py

Published in Transactions on Machine Learning Research (02/2025)

• As summarized in Table 2, we identify 19 privacy violations and 5 other bugs, predominantly in how
PATE is implemented, e.g., partitioning and feeding data to the teachers-discriminators, tracking
the privacy budget during model training, etc.

To facilitate open research and robust privacy (re-)implementations, we release our codebase, including the
utility benchmark and privacy auditing tools; see https://github.com/spalabucr/pategan-audit.

2 Preliminaries

Notation. In the rest of the paper, we denote a dataset containing N d-dimensional samples as D =
{(xi, yi)}Ni=1, where xi ∈ X (the feature space) and yi ∈ Y (the label space).

Differential Privacy (DP). DP is a mathematical formalization of privacy that limits the influence of the
input data points on the output of a function. In the context of machine learning, DP bounds the probability
of distinguishing whether any particular record was used to train a model. Formally, a randomized algorithm
A satisfies (ε, δ)-DP if, for all S ⊆ Range(A) and for all neighboring datasets, D and D′ differing in a single
data record, it holds that (Dwork et al., 2006; Dwork & Roth, 2014):

Pr[A(D) ∈ S] ≤ eε · Pr[A(D′) ∈ S] + δ

The privacy budget ε is a positive number quantifying the privacy leakage (the lower, the better), while δ is
a very small number representing the probability of failure. The post-processing property guarantees that a
DP mechanism’s output can be used arbitrarily without additional privacy leakage.

PATE. The Private Aggregation of Teacher Ensembles (PATE) framework (Papernot et al., 2017; 2018)
trains a DP discriminative model using semi-supervised learning techniques. A model trainer is assumed to
have access to a private dataset and an unlabelled public dataset. First, the private dataset is separated
into k disjoint partitions, and a teacher-classifier is trained on each partition (without privacy), then, the
teachers predict the labels of the public dataset. Next, the predictions are noisily aggregated through the
Laplace mechanism (Dwork et al., 2006) to get DP labels. Finally, a student-classifier is trained on the pairs
of public records and noisy (DP) labels. The student-classifier can be released as it satisfies DP through the
post-processing property (since it was trained on public data and DP labels).

PATE-GAN. In the context of synthetic data, a generative model G is typically fitted on D to capture
a probability representation and is later sampled to generate new data (of size N ′), S ∼ G(N ′). PATE-
GAN (Jordon et al., 2019) incorporates PATE into the standard mini-max generator vs. discriminator train-
ing in a Generative Adversarial Network (GAN) (Goodfellow et al., 2014). We report its pseudo-code in
Algorithm 1 in Appendix A.1. As before, D is first separated into k disjoint partitions. In each iteration,
k teachers-discriminators, T1 . . . Tk, are trained on their corresponding data partition. Instead of using a
public dataset, in PATE-GAN, the generator G generates samples that are labeled by the teachers as “real”
or “fake” through the PATE mechanism. The student-discriminator S is then trained on these generated
samples and noisy (DP) labels. Finally, the generator is trained by minimizing the loss on the student. Since
the generator is only exposed to the student-discriminator, which in turn sees only “fake” generated sam-
ples and noisy (DP) labels, PATE-GAN satisfies DP through the post-processing property. Throughout the
training, the privacy budget spent in each iteration is tracked by an adjusted moments accountant (Abadi
et al., 2016). In the accountant’s calculations (see lines 16-19 in Algorithm 1), λ denotes the scale of the
Laplace mechanism added by PATE when aggregating the teachers’ “fake” and “real” votes (n0 and n1,
respectively), while L is the number of moments. As explained in the original paper (Jordon et al., 2019),
finding the right balance between the noise level controlled by λ (where larger values result in less added
noise) and the number of teachers k is key to achieving meaningful aggregation. Finally, in Appendix A.2,
we discuss discrepancies between PATE-GAN and PATE (Papernot et al., 2017).

DP Auditing. This entails empirically estimating the privacy leakage from a DP model, denoted as εemp,
and comparing it with the theoretical privacy budget, ε. One key goal is for the estimates to be tight
(i.e., εemp ≈ ε), so that the audit can be effectively used to validate the DP implementation or detect DP
violations in case εemp > ε (Bichsel et al., 2018; 2021; Niu et al., 2022). To estimate εemp, we use membership
inference attacks (MIAs) (Shokri et al., 2017; Hayes et al., 2019), whereby an adversary attempts to infer

3

https://github.com/spalabucr/pategan-audit

Published in Transactions on Machine Learning Research (02/2025)

whether a target record was part of the training data (i.e., (xT , yT) ∈ D), which closely matches the DP
definition. The MIA process is run repeatedly as a distinguishing game; we randomly select between D
and D′ = D \ (xT , yT), pass it to the adversary, and get their predictions Pred = {pred1, pred2, ...} and
Pred′ = {pred′1, pred′2, ...}. These yield a false positive rate α and a false negative rate β. 95% confidence
upper bounds for the α and β (α and β) are typically calculated using Clopper-Pearson intervals (Clopper &
Pearson, 1934), but recent work has shown that using Bayesian credible intervals instead can dramatically
improve the εemp estimates (Zanella-Béguelin et al., 2023). However, Nasr et al. (2023) note that using
Bayesian credible intervals may not produce statistically valid lower bounds, and therefore we mainly use
Clopper-Pearson bounds throughout the paper. Finally, the upper bounds are converted into the lower
bound εemp, as done in (Nasr et al., 2021):

εemp = max
{

log
(
(1− α− δ) / β

)
, log

(
(1− β − δ) / α

)
, 0
}

3 Related Work

DP Generative Models Benchmarks. There are multiple DP generative models for synthetic tabular
data, including copulas (Li et al., 2014; Gambs et al., 2021), graphical models (Zhang et al., 2017; McKenna
et al., 2021; Cai et al., 2021; Mahiou et al., 2022), workload/query-based (Vietri et al., 2020; Aydore et al.,
2021; Liu et al., 2021; Vietri et al., 2022; McKenna et al., 2022; Maddock et al., 2023a), and deep generative
models like VAEs (Acs et al., 2018; Abay et al., 2018), GANs (Xie et al., 2018; Zhang et al., 2018; Jordon
et al., 2019; Alzantot & Srivastava, 2019; Frigerio et al., 2019; Long et al., 2021), and others (Zhang et al.,
2021; Ge et al., 2021; Truda, 2023; Vero et al., 2024).

A few benchmarking studies (Rosenblatt et al., 2020; Tao et al., 2022; Ganev et al., 2024; Du & Li, 2024)
compare PATE-GAN to other DP generative models. Although PATE-GAN is not the best-performing
model at fidelity and in similarity-based evaluations, it is among the best at downstream classification (for
original, synthcity, smartnoise) compared to PrivBayes (Zhang et al., 2017), PrivSyn (Zhang et al.,
2021), MST (McKenna et al., 2021), DPGAN (Xie et al., 2018), DP-WGAN (Alzantot & Srivastava, 2019),
and TableDiffusion (Truda, 2023), especially on datasets with large number of columns (Rosenblatt et al.,
2020; Ganev et al., 2024; Du & Li, 2024). On the other hand, Tao et al. (2022) claim that PATE-GAN
(smartnoise) cannot beat simple baselines, although they only use narrow datasets (fewer than 25 columns).

None of these benchmarks use the datasets from the original paper (Jordon et al., 2019). Moreover, when
developing new PATE-GAN implementations, the authors do not compare them to previous ones. Therefore,
this prompts the need to evaluate them against each other and check how closely they resemble the original
model (Jordon et al., 2019) in terms of architecture and utility performance.

DP Generative Models Auditing. Recent research on DP auditing has focused on discriminative models
trained with DP-SGD (Abadi et al., 2016) in both central (Jayaraman & Evans, 2019; Jagielski et al., 2020;
Tramer et al., 2022; Nasr et al., 2021; 2023; Zanella-Béguelin et al., 2023; Steinke et al., 2023; Kong et al.,
2024; Annamalai & De Cristofaro, 2024; Cebere et al., 2024) and federated (Maddock et al., 2023b; Andrew
et al., 2024) settings. For generative models, Houssiau et al. (2022a) loosely audit MST (McKenna et al.,
2021) using Querybased, a black-box attack which runs a collection of random queries, while Annamalai
et al. (2024b) are the first to tightly audit PrivBayes (Zhang et al., 2017), MST (McKenna et al., 2021), and
DP-WGAN (Alzantot & Srivastava, 2019) (and detect several DP-related bugs) by proposing implementa-
tion specific white-box attacks and worst-case data records. Also, Lokna et al. (2023) find floating points
vulnerabilities in MST (McKenna et al., 2021) and AIM (McKenna et al., 2022).

PATE-GAN has been mostly overlooked by previous work on DP auditing. Using a novel shadow model-
based black-box attack and manually crafted worst-case target, GroundHog, Stadler et al. (2022) show that
PATE-GAN (original) leaks more privacy than it should, while van Breugel et al. (2023) show that PATE-
GAN (synthcity) is less private than non-DP models like CTGAN (Xu et al., 2019) and ADS-GAN (Yoon
et al., 2020) using a density-based MIA. However, neither work explores the underlying reasons. In this
work, we examine six PATE-GAN implementations to determine whether the privacy leakage is unique to a
single implementation and dig deeper into the underlying reasons behind DP bugs/violations. This number
is comparable to, and often exceeds, the number of implementations studied in previous privacy attacks vs.

4

Published in Transactions on Machine Learning Research (02/2025)

(Jordon et al., 2019) original updated synthcity turing borealis smartnoise

Using PATE? 3 7 3 3 7 3 3

Teachers N/1,000 - 10 10 - 10 N/1,000
λ - - 1 1e-3 - 1e-4 1e-3
α size (L) - - 20 100 - 100 100
δ 1e-5 1e-5 1e-5 1/(N

√
N) 1e-5 1e-5 1/(N

√
N)

Framework - TensorFlow TensorFlow PyTorch TensorFlow PyTorch PyTorch
Optimizer Adam Adam RMSProp Adam Adam Adam Adam
Learning Rate 1e-4 1e-4 1e-4 1e-4 1e-4 1e-4 1e-4
Batch Size 64 128 64 200 128 64 64
Max Iterations -† 10,000 -† 1,000 or -† 100 -† -†

Teachers Iterations 5 -‡ 1 1§ -‡ 5 5
Student Iterations 5 1 5 10§ 1 5 5
Generator Iterations 1 1 1 10§ 1 1 1
Teachers Layers 1 layer -‡ {1} {1} -‡ {d/2, 1} {2d/3, d/3, 1}
Student Layers 3 layers {d, d, 1} {d, 1} {100, 1} {d, d, 1} {d/2, 1} {2d/3, d/3, 1}
Noise Dimension - d/4 d d d/4 d/4 64
Generator Layers {d, d/2, d} {d, d, d} {4d, 4d, d} {100, d} {d, d, d} {2d, d} {64, 64, d}

†Until there is no available privacy budget. ‡There are no teacher-/student-discriminators (only a single discriminator). §Epochs.

Table 3: Architectures and hyperparameters of the six PATE-GAN implementations (N and d are the
number of data records and columns; the values in {} denote the width of the corresponding layer).

DP generative models for tabular data – six DP implementations (Annamalai et al., 2024b), three (Stadler
et al., 2022), and two (Houssiau et al., 2022a; van Breugel et al., 2023; Annamalai et al., 2024a).

Reproducibility Studies. Overall, papers aimed at reproducing the computational experiments of previ-
ously published work not only verify their empirical results but also ensure the reliability and trustworthiness
of their claims. This is particularly important in fields like machine learning and security, where individual
privacy may be at risk. For instance, recent work in this space includes (Nokabadi et al., 2024; Garg &
Tiwari, 2024; Feng et al., 2024; Chaudhuri et al., 2024).

4 PATE-GAN Implementations

This section reviews the six implementations under study, as also summarized in Table 3. Algorithm 1 in
Appendix A.1 reports the PATE-GAN algorithm as presented in the paper (Jordon et al., 2019), while we
highlight any deviations in the six implementations in Appendix E.

Architectures. In the first column of Table 3, we list the architecture and hyperparameters of the PATE-
GAN algorithm as explicitly stated in the original paper (Jordon et al., 2019). However, we find that
original, as well as turing, do not actually implement the PATE framework or a moments accountant;
rather, there is a single discriminator (not k teachers and a student; see lines 2, 9-10, and 17 in Algorithm 1)
that observes all the data and is trained for a given number of iterations since the privacy budget spent is
not tracked (lines 4, 18-21, and 29). This is a serious deviation that can compromise privacy. Also, updated
and synthcity, released by a subset of the original authors, do not use neural networks as teachers, but use
Logistic Regression classifiers that are (re-)fitted from scratch on every iteration (lines 8-10): while this does
not violate privacy, it might negatively affect the model’s utility. Moreover, updated uses the RMSProp
optimizer instead of Adam. Finally, borealis and smartnoise resemble the original algorithm the closest,
although they change the networks’ depth, with smartnoise opting for teachers with three layers instead
of the default one. Also, all implementations have different network depths and noise dimensions, mostly
depending on the input data.

Data Support and Processing. The implementations also differ in the kind of data types they support
and how they process the input data. For instance, original only runs on numerical and binary features,
i.e., categorical columns can have at most two distinct categories and are treated as numerical data. Only

5

Published in Transactions on Machine Learning Research (02/2025)

Dataset Paper (Jordon et al., 2019) original updated synthcity turing borealis smartnoise

Kaggle Credit 0.8737 0.5000 0.5000 0.5172 0.5000 0.6300 0.7358
Kaggle Cervical Cancer 0.9108 0.9265 0.8739 0.8584 0.5000 0.9431 0.8025
UCI ISOLET 0.6399 0.8342 0.5861 0.6292 0.5000 0.6219 0.6152
UCI Epileptic Seizure 0.7681 0.6867 0.6187 0.7165 0.7425 0.6730 0.6963

Table 4: Average AUROC scores of the different implementations over the 12 classifiers (ε = 1).

two implementations, turing and synthcity, preserve the original data types (such as integers) in the newly
generated synthetic data.

In terms of data processing, original and turing scale the numerical data between 0 and 1 while smartnoise
between -1 and 1. Also, synthcity transforms the numerical data and centers it around 0 by fitting a
Bayesian Gaussian Mixture model on every column and using a standard scaler on the clusters. On the
other hand, updated and borealis expect data that has already been processed/scaled and, consequently,
do not return synthetic data in the scale of the input data (we adjust these models and use min-max scaling,
similarly to the others). Apart from smartnoise, none of the implementations extract the data bounds in
a DP way, which has been proven to leak privacy (Stadler et al., 2022; Annamalai et al., 2024b). (Note, in
fact, that turing allows for the bounds to be passed as input).

Remarks. The main goals of this paper are to reproduce the empirical experiments in the original pa-
per (Jordon et al., 2019) and to test the privacy properties of the implementations as they were released,
without modifying them. We do so as these implementations are in the public domain and have been adopted
and used in practice (e.g., both synthcity and smartnoise libraries have average monthly downloads exceed-
ing 4,500).7 Specifically, we assume that the architectures, hyperparameters, and data processing decisions
the authors have chosen for their respective implementations are optimal and do not change them unless
stated otherwise. While we leave fixing discrepancies and bugs to future work, we have contacted the authors
regarding these issues (see Sections 6.3 and 7) and have offered to assist them with addressing the bugs.

5 Utility Benchmark

In this paper, we reproduce the utility experiments on all public datasets from the original paper (Jordon
et al., 2019), i.e., Kaggle Credit, Kaggle Cervical Cancer, UCI ISOLET, and UCI Epileptic Seizure (we also
use MNIST; see Appendix B.1).

Setup. We use the evaluation criteria from (Jordon et al., 2019): for every synthetic dataset, we fit
12 classifiers (see Appendix B.2) and report the Area Under the Receiver Operating Characteristic curve
(AUROC) and the Area Under the Precision-Recall Curve (AUPRC) scores. For the sake of comparison,
as done by the original authors in updated, we consider the best of the scores from 25 synthetic datasets,
training five models and generating five synthetic datasets per model. We use an 80/20 split, i.e., using 80%
of the records in the datasets to train the predictive/generative models and 20% for testing. Finally, we use
two training-testing settings:

• Setting A: train on the real training dataset, test on the real testing dataset;
• Setting B: train on the synthetic dataset, test on the real testing dataset (as done in (Esteban et al.,

2017));

Hyperparameters. We set δ = 10−5 (as in (Jordon et al., 2019)) and use the implementations’ default
hyperparameters, with a couple of exceptions. First, we set the maximum number of training iterations to
10,000 to reduce computation. In our experiments, this limit is only reached for borealis and smartnoise
with ε ≥ 10. Consequently, we train synthcity for a set of iterations rather than epochs. Second, for
updated, we use λ = 0.001 to prevent the model from spending its privacy budget in just a few iterations.
Finally, for all models, we set the number of teachers to N/1,000 following (Jordon et al., 2019), with the
only exception being Kaggle Credit, where we set it to N/5,000 due to computational constraints; regardless,
7As per https://pypistats.org/packages/synthcity and https://pypistats.org/packages/smartnoise-synth.

6

https://pypistats.org/packages/synthcity
https://pypistats.org/packages/smartnoise-synth

Published in Transactions on Machine Learning Research (02/2025)

Classifier (Jordon et al., 2019) original updated synthcity turing borealis smartnoise

Logistic Regression - 0.5109 0.5198 0.5271 0.5816 0.5304 0.5414
Random Forest - 0.9529 0.7362 0.8187 0.9574 0.8283 0.8832
Gaussian Naive Bayes - 0.3864 0.5385 0.9126 0.5000 0.6515 0.6551
Bernoulli Naive Bayes - 0.6524 0.5185 0.9283 0.9680 0.5141 0.6517
Linear SVM - 0.5181 0.5214 0.5333 0.5220 0.5460 0.5384
Decision Tree - 0.6359 0.6614 0.7470 0.7003 0.6818 0.6769
LDA - 0.5086 0.5229 0.5341 0.6226 0.5420 0.5440
AdaBoost - 0.9162 0.6752 0.7588 0.9151 0.8582 0.7572
Bagging - 0.8339 0.7446 0.8285 0.8635 0.8187 0.8386
GBM - 0.9376 0.6512 0.7097 0.9188 0.7387 0.8235
MLP - 0.5202 0.6194 0.7204 0.5682 0.5439 0.6267
XGBoost - 0.8678 0.7149 0.5797 0.7927 0.8227 0.8194

Average 0.7681 0.6867 0.6187 0.7165 0.7425 0.6730 0.6963

Table 5: Performance comparison of 12 classifiers in Setting B (train on synthetic, test on real) in terms of
AUROC on UCI Epileptic Seizure (ε = 1). Baseline performance: 0.5000. Setting A (train on real, test on
real) performance: 0.8103.

10 2 10 1 100 101 102

epsilon (with delta = 10 5)

0.4

0.5

0.6

0.7

0.8

AU
RO

C

baseline
Paper

original
updated

synthcity
turing

borealis
smartnoise

Figure 1: Performance comparison of 12 classifiers (averaged) in Setting B (train on synthetic, test on real)
in terms of AUROC with various ε (with δ = 10−5) on UCI Epileptic Seizure.

note that the difference in performance in the original paper (Jordon et al., 2019) is negligible. As done
in (Jordon et al., 2019), we also consider the data bounds to be public, i.e., we do not extract the bounds of
the data in a DP manner (see Section 4) for smartnoise, thus saving its budget for the model training.

Analysis. In Table 4, we report the AUROC scores for all datasets and implementations for ε = 1. The
AUROC scores are averaged over the 12 classifiers (recall that, for each classifier, we consider the best of the
scores from the 25 synthetic datasets). For completeness, we also list the scores reported in the paper (Jordon
et al., 2019). Due to space limitations, we defer additional/more detailed results to Appendix C – more
precisely, in Table 8–9 and Figure 6–7 for Kaggle Credit, Table 10–11 and Figure 8–9 for UCI Epileptic
Seizure, and Figure 10 for MNIST. Except for three cases (two of which with original), all experiments
underperform the results from (Jordon et al., 2019) (by 40.15% on average).

Kaggle Credit. Looking closer at Kaggle Credit, which is (Jordon et al., 2019)’s main focus, we note that, out
of the implementations that either do not use neural networks as teachers or do not implement PATE correctly
(original, updated, synthcity, and turing), only synthcity performs slightly better than random, i.e.,
AUROC of 0.5. This is not surprising due to the extreme imbalance of the dataset (only 0.17% of the instances
have a positive label) and the known disparate effect of DP (Bagdasaryan et al., 2019; Farrand et al., 2020;
Ganev et al., 2022). In other words, even a moderate data imbalance can cause a disproportionate utility
drop on the underrepresented class, which is well captured by the AUROC metric. Although borealis
and smartnoise achieve better results (0.6300 and 0.7358, respectively), thus supporting previous claims

7

Published in Transactions on Machine Learning Research (02/2025)

original
Dataset Paper (Jordon et al., 2019) Non-Conditional Conditional

Kaggle Credit 0.8737 0.5000 0.8760
Kaggle Cervical Cancer 0.9108 0.9265 0.9330
UCI ISOLET 0.6399 0.8342 0.6927
UCI Epileptic Seizure 0.7681 0.6867 0.7029

AUROC ∆ - -24.57% -3.34%

Table 6: Average AUROC scores of (non-)conditional original over the 12 classifiers (ε = 1) and reduction
in AUROC (0.5 used as baseline) from the original paper (Jordon et al., 2019).

that PATE offers a reduced disparate effect (Uniyal et al., 2021; Ganev, 2022), there is still a considerable
gap to the results reported in (Jordon et al., 2019), i.e., 0.8737. After further examining original (and
the OpenReview discussion (Jordon et al., 2019)), we find that the implementation expects the synthetic
data label distribution to be provided, and this is done to exactly match the counts in the training data.
We consider this unaccounted privacy leakage, which violates the privacy of the training data, and in our
experiments, we do not pass the label distribution.

UCI Epileptic Seizure. Next, we focus on the UCI Epileptic Seizure experiments as this: i) has the second
most records (11.5k), ii) is high dimensional (179 columns), and iii) has the smallest imbalance (20%). For
ε = 1, we report the AUROC scores in Table 5, and the scores for ε varying between 0.01 and 50 in Figure 1.
Again, none of the implementations come close to the results reported in (Jordon et al., 2019) – note that,
for UCI Epileptic Seizure, the authors only report the average scores across the 12 classifiers. Apart from
original, which does not implement PATE, the only implementation that consistently achieves better utility
with increasing ε is synthcity. In fact, borealis and smartnoise’s AUROC peak at ε = 1 then slightly drop
to around 0.6, while for ε > 1, updated and turing’s drop significantly approaching the random baseline.
This is unexpected and could be due to various reasons, e.g., overfitting and mode collapse. Moreover,
synthcity has an early stopping criterion, which might be another contributing factor. Also note that,
even with DP processing disabled, smartnoise cannot be trained for ε < 0.5. Additionally, in Figure 8 in
Appendix C, we plot the mean AUROC scores across the 12 classifiers (rather than the maximum) alongside
their standard errors to further confirm that the none of the implementations can reach the results reported
in (Jordon et al., 2019) even when accounting for randomness.

Effect of Number of Teachers. We also experiment with different numbers of teachers-discriminators
{N/50, N/100, N/500, N/1, 000, N/5, 000}, similar to the original paper (Jordon et al., 2019), on UCI Epilep-
tic Seizure and present the results in Table 11. While the best AUROC scores for all implementations occur
at N/1, 000, as claimed by (Jordon et al., 2019), not all models behave consistently. Only synthcity and
borealis show improved results as the number of teachers is reduced from N/50 to N/1, 000, with perfor-
mance decreasing thereafter. By contrast, updated and smartnoise behave more randomly.

Effect of Conditional Generation. As mentioned earlier, unlike (Jordon et al., 2019), we do not use the
training labels distribution when generating synthetic data, as this would result in unaccounted privacy
leakage. Nevertheless, we compare the performance of non-conditional and conditional generation in Table 6
in an attempt to reach the results in (Jordon et al., 2019). Across all datasets, we observe that conditional
generation gets closer to them, most notably for Kaggle Credit, where the AUROC score improves beyond
random performance. Overall, the utility drop decreases from -24.57% with non-conditional generation to
-3.34% with conditional, effectively reproducing the performance reported in (Jordon et al., 2019).

Effect of Default Hyperparameters. For completeness, we also evaluate all implementations using the hyper-
parameters (and networks depths) specified in the original paper (Jordon et al., 2019), which are listed in the
first column of Table 3). The results for all datasets are reported in Table 12 in Appendix C. As expected,
the utility of all implementations drops by an average of 17.5% compared to when their respective default
hyperparameters are used.

Comparison with DPGAN. Finally, we compare the AUROC results of the six implementations to DP-
GAN (Xie et al., 2018) as reported in (Jordon et al., 2019) (Kaggle Credit: 0.8578, Kaggle Cervical Cancer:

8

Published in Transactions on Machine Learning Research (02/2025)

0 1 2 3 4
teacher

0

200

400

600

updated

0 1 2 3 4
teacher

synthcity

0 1 2 3 4
teacher

borealis

0 1 2 3 4
teacher

smartnoise

data records only teacher has seen data records other teachers have seen

Figure 2: Data records seen by the five teachers-discriminators (ε = 1) on Kaggle Cervical Cancer.

0 50 100 150
iteration

0.01

0.02

cr
os

s e
nt

ro
py

updated

0 5 10 15
iteration

0.01

0.02

synthcity

0 500 1000
iteration

0.0

0.2

0.4

0.6

borealis

0 100 200
iteration

0.0

0.2

0.4

0.6

smartnoise

teacher-discrimantor loss on first data subset seen other teachers-discrimantors loss on same data subset

Figure 3: Cross entropy of the five teachers-discriminators on a fixed subset of data (ε = 1).

0.8699, UCI ISOLET: 0.5577, UCI Epileptic Seizure: 0.6718). For ε = 1, the PATE-GAN implementa-
tions perform better in 13 of the 24 experiments, which contradicts the claim in (Jordon et al., 2019) that
PATE-GAN is uniformly better than DP-GAN.

6 Privacy Evaluation

In this section, we perform an in-depth privacy evaluation of the six PATE-GAN implementations.

6.1 PATE-GAN Training

We start by tracking different aspects of the model’s training procedure – namely, the records seen by
the teachers, the teachers’ losses, and the accountant’s moments. We do so over a single training run on
an average-case dataset, i.e., Kaggle Cervical Cancer. We fix ε = 1, except for the moments accountant
evaluation, in which we train the models for a fixed 1,000 iterations thus obtaining large ε values. We also
set δ = 10−5, k = 5, λ = 0.001, and use all other default hyperparameters.

Analysis. First, in Figure 2, we report the number of distinct data points provided as input to the five
teachers. We observe that only borealis and smartnoise correctly partition the data into disjoint subsets
and feed them to the corresponding teachers. While updated initially separates the data, an indexing bug
in the implementation results in all teachers only seeing the last teacher’s data (the rest is not used at all).
On the other hand, synthcity samples records at each iteration, and every teacher ends up seeing all the
data. Unfortunately, for updated and synthcity, this breaks one of the main PATE assumptions (i.e., every
teacher can only see a disjoint partition of the data).

Next, in Figure 3, we report the losses of the teachers during training, i.e., the cross entropy of one
teacher on its first seen data subset vs. the average of the others on the same subset. Since updated
and synthcity use Logistic Regression instead of neural networks, their initial losses are much lower com-
pared to borealis/smartnoise (around 30 times lower) as they are (re-)fitted until convergence at every

9

Published in Transactions on Machine Learning Research (02/2025)

100 101 102 103

iteration

100

102

104

106

108

es
tim

at
ed

 e
ps

ilo
n

updated

100 101 102 103

iteration

synthcity

100 101 102 103

iteration

borealis

100 101 102 103

iteration

smartnoise

1 25 50 75 100
moments accountant

minimum estimated epsilon

Figure 4: Moments accountant values for 1,000 training iterations.

iteration. Whereas, for updated, the two losses are exactly the same since the classifiers are fitted on the
same data, the losses of synthcity are much “jumpier” because the data changes at each iteration. As for
borealis and smartnoise, their performance is as expected, with the loss on seen data (the blue line in the
plot) being initially lower than the one on unseen data (orange line), and both smoothly getting lower with
more iterations before converging to approximately the same value. In Figure 11 in Appendix C, we plot
the losses over 10 training runs, and observe the same patterns.

Finally, in Figure 4, we plot the 100 moments of the moments accountant over 1,000 iterations. Their
scale is very different, with only borealis and smartnoise’s values being identical. The first moment
of synthcity (corresponding to the estimated privacy budget) is much lower compared to updated, i.e.,
at iteration 1,000, synthcity is 30k vs. 50k for updated. After manually inspecting the code, we find an
indexing bug for synthcity, which, unfortunately, makes it severely underestimate ε. By contrast, borealis
and smartnoise massively overestimate ε, to around 320k (a multiple of 6 compared to updated) after 1,000
iterations. This is due to another bug in the privacy accountant, as a term is not scaled by the log operator.
We (re-)list all the violations in Section 6.3.

6.2 DP Auditing of PATE-GAN

Our DP auditing procedure uses/adapts two membership inference attacks – namely, GroundHog (Stadler
et al., 2022) and Querybased (Houssiau et al., 2022a) – and derives εemp via the distinguishing game (An-
namalai et al., 2024b) discussed in Section 2.

Adversarial Model. DP auditing is typically performed in one of two models: black-box, where the
MIA adversary only has access to the synthetic data, or white-box, where they can also observe the trained
generative model and its internal parameters.8 For the sake of our experiments, we focus on the former using
two black-box attacks (GroundHog and Querybased). We do so as black-box models are considered more
realistic to execute in the real world, even though they yield less tight audits (as shown in (Houssiau et al.,
2022a; Annamalai et al., 2024b)). In other words, auditing PATE-GAN implementations in the black-box
model provides us with a measuring stick for privacy leakage.

GroundHog and Querybased attacks rely on different approaches to featurize, or reduce the dimensionality
of, the input synthetic datasets. For the former, we use Fnaive, which extracts every column’s min, max,
mean, median, and standard deviation. For the latter, we run every possible query, i.e., all values in the
dataset’s domain (although, in practice, we limit the domain), and count the number of occurrences in the
synthetic data. Once the features are extracted, we fit a Random Forest classifier to get Pred and Pred′.

Setup & Hyperparameters. We run GroundHog on an average-case dataset, i.e., Kaggle Cervical Cancer,
choosing a real target from the dataset by running “mini”-MIAs as done in previous work (Meeus et al.,
8E.g., in a white-box attack vs. GANs like LOGAN (Hayes et al., 2019), the adversary directly leverages the discriminator –
trained using DP-SGD and therefore private – to observe its output on the target record (higher confidence usually indicates
that the record was part of the training data). However, this approach does not directly apply to PATE-GAN, as the adversary
cannot query the individual teachers, which are non-private, but only the student, which is already DP.

10

Published in Transactions on Machine Learning Research (02/2025)

0 1 2 3 4
emp

original

updated

synthcity

turing

borealis

smartnoise

theoretical epsilon Querybased

(a) Querybased on worst-case dataset

0 1 2 3 4
emp

original

updated

synthcity

turing

borealis

smartnoise

theoretical epsilon GroundHog

(b) GroundHog on Kaggle Cervical Cancer

Figure 5: DP auditing with different black-box MIAs (ε = 1, as per the dashed red lines).

2023; Annamalai et al., 2024b). This entails running MIAs a limited number of times (we select 100) on a
collection of records furthest away from the rest (we choose 64) and selecting the record yielding the highest
AUC as the target. For Querybased, we manually craft a worst-case dataset, consisting of 4 repeated (0, 0,
0) records, and a worst-case target record – (1, 1, 1). This limits the number of queries run on the dataset,
i.e., all possible combinations, to 8. We run both attacks for 1,000 iterations, using the first 400 outputs to
fit the classifier, the next 200 for validation (adjusting the optimal decision boundary), and the final 400 for
testing. Finally, note that even if the adversary is 100% correct, the maximum attainable εemp is around
4.7, a limitation coming from the statistical power of the Clopper-Pearson method (Nasr et al., 2021).

We train all models with ε = 1, δ = 10−5, and λ = 0.001. For Querybased, we use two teachers since there
are only four/five records, while for GroundHog we use five teachers. To reduce computation, we set the
maximum number of training iterations per generative models to 1,000, as we train 2,000 shadow models
per setting (24,000 in total).

Analysis. In Figure 5, we plot the empirical privacy estimates (εemp) obtained with the different MIAs.
For the Querybased attack (see Figure 5a), we run the MIA on a worst-case dataset and a manually crafted
target residing outside the bounds of the data, as previous work (Nasr et al., 2021; 2023; Annamalai et al.,
2024b) has shown that these (strong assumptions) are needed to audit DP-SGD and other DP generative
models tightly. For all PATE-GAN implementations, we see that εemp � ε, which means that we detect
privacy violations across all of them.

Next, we relax the adversarial model by running MIAs on an average-case dataset, Kaggle Cervical Cancer,
and a real target selected from the data. Running GroundHog results in εemp � ε for all implementations (see
Figure 5b). This strongly suggests we are successfully detecting other privacy violations beyond worst-case
datasets/targets, which is the main auditing setting used by (Stadler et al., 2022; Annamalai et al., 2024b)
against other DP generative models (as discussed in Section 3). Overall, the fact that we obtain εemp � ε
(implying large privacy leakage) against PATE-GAN implementations, even in a black-box model, further
points to the severity of the privacy violations. The very significant privacy leakage observed in borealis
and smartnoise might seem surprising, but it might be due to algorithmic and privacy analysis differences
between PATE-GAN and the original PATE (Papernot et al., 2017), as discussed in Appendix A.2.

We repeat both experiments using the Bayesian credible intervals from (Zanella-Béguelin et al., 2023) (see
Figure 12 in Appendix C), and, similarly to the Clopper-Pearson method, we always get εemp � ε. We even
achieve slightly higher estimates on 9 out of 12 occasions.

Remarks. Overall, our DP auditing procedure follows that of (Annamalai et al., 2024b) and uses elements
of (Stadler et al., 2022; Houssiau et al., 2022a; Zanella-Béguelin et al., 2023; Meeus et al., 2023).

Nevertheless, Annamalai et al. (2024b) only audit PrivBayes (Zhang et al., 2017), MST (McKenna et al.,
2021), and DP-WGAN (Alzantot & Srivastava, 2019), while we audit PATE-GAN. They show that tight
auditing for these models – necessary to effectively identify privacy violations – is only possible with worst-

11

Published in Transactions on Machine Learning Research (02/2025)

case datasets/targets and white-box access to the model. Furthermore, while they detect a handful of privacy
violations, they do not thoroughly explore why/where these violations happen.

In contrast, we discover numerous privacy violations across all six implementations using only average-case
datasets and black-box access to the model (Figure 5b), which are much more conservative and realistic
assumptions. Additionally, we provide an in-depth analysis of these privacy violations, including finding the
specific lines of code where they occur (Section 6.3).

6.3 Summary of Privacy Violations

We now provide an overview of the bugs and privacy violations we discover, also reported in Table 2. When
applicable, we highlight them in Algorithms 2, 3, 4, 5, 6, and 7 in Appendix E.

As discussed, original and turing do not actually implement PATE – no teachers/student (only a single
discriminator) and no moments accountant. Both use the Gaussian mechanism (McSherry & Talwar, 2007)
instead of Laplace and have errors in the δ scale, resulting in lower sensitivity. More precisely, original uses
the XOR operator (∧) instead of power (**) in Python, turing uses multiplication instead of division. Also,
updated ingests less noise than necessary as it uses Laplace with standard deviation of λ instead of 1/λ.
In terms of data partition, neither original, updated, synthcity, nor turing separate the data correctly
into disjoint sets and/or feed them to the teachers accordingly. Also, updated and synthcity use Logistic
Regression instead of neural networks for the teachers. Moreover, synthcity, borealis, and smartnoise
have errors in the moments accountant – the former has an indexing bug while the latter two skip a log
operator. At generation, original feeds the unperturbed training labels distribution.

Finally, we find that the majority of implementations (original, updated, synthcity, borealis) directly
extract the data bounds from the data in a non-DP way. Also, updated and borealis do not return synthetic
data in the original scale, while turing rounds down all integer values when processing the generated data
back to the original bounds.

7 Conclusion

This paper presented a benchmark evaluation of six popular implementations of PATE-GAN (Jordon et al.,
2019), aiming to 1) reproduce their analysis of the synthetic data’s utility on downstream classifiers analysis
and 2) perform a deeper privacy analysis. Alas, none of the implementations reproduces the utility reported
in (Jordon et al., 2019), achieving, on average, 40% lower AUROC scores. Moreover, our privacy evaluation
(including DP auditing) specific to PATE-GAN exposes privacy violations and bugs in all six implementations
(cf. Table 2).

Numerous privacy-preserving technologies, including DP synthetic data, are already deployed in critical
industries such as healthcare and finance (NHS, 2021; Giuffrè & Shung, 2023; FCA, 2024). Ensuring robust
privacy protection in these applications is essential, as failures could lead to catastrophic breaches and the
exposure of individuals’ sensitive data. However, implementing DP mechanisms correctly in practice is highly
complex, as many privacy-related bugs can be easily overlooked, or worse, challenging or even impossible
to detect through manual code review. Papers like ours help automate the testing and verification of DP
implementations’ theoretical protections, or uncover discrepancies. Our auditing scheme can serve as an
inspiration for researchers and developers to validate their own DP implementations. As a result, we believe
our work will encourage more reproducible research and greater trust in the field.

Acknowledgements. We are grateful to the TMLR Action Editor and reviewers for their valuable feedback
and suggestions, which helped us to significantly improve our paper. We also thank Bogdan Kulynych for
pointing us to discrepancies between PATE-GAN and PATE.

Responsible Disclosure. In the spirit of responsible disclosure, in June 2024, we contacted the authors of
the six implementations, sharing the detected DP violations via emails and GitHub issues, along with the
exact lines of code where they occur and potential fixes. More specifically, we sent emails to the authors of
original and turing and raised 11 GitHub issues (see Table 13 in Appendix D). As of February 2025, none
of the bugs have been fixed.

12

Published in Transactions on Machine Learning Research (02/2025)

References
Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov, Kunal Talwar, and Li Zhang.
Deep Learning with Differential Privacy. In CCS, 2016.

Nazmiye Ceren Abay, Yan Zhou, Murat Kantarcioglu, Bhavani Thuraisingham, and Latanya Sweeney. Pri-
vacy preserving synthetic data release using deep learning. In ECML PKDD, 2018.

John M Abowd, Robert Ashmead, Ryan Cumings-Menon, Simson Garfinkel, Micah Heineck, Christine Heiss,
Robert Johns, Daniel Kifer, Philip Leclerc, Ashwin Machanavajjhala, et al. The 2020 census disclosure
avoidance system topdown algorithm. Harvard Data Science Review, 2022.

Gergely Acs, Luca Melis, Claude Castelluccia, and Emiliano De Cristofaro. Differentially private mixture of
generative neural networks. IEEE TKDE, 2018.

Moustafa Alzantot and Mani Srivastava. Differential Privacy Synthetic Data Generation using WGANs.
https://github.com/nesl/nist_differential_privacy_synthetic_data_challenge, 2019.

Galen Andrew, Peter Kairouz, Sewoong Oh, Alina Oprea, H Brendan McMahan, and Vinith Suriyakumar.
One-shot Empirical Privacy Estimation for Federated Learning. In ICLR, 2024.

Ralph G. Andrzejak, Klaus Lehnertz, Florian Mormann, Christoph Rieke, Peter David, and Christian E.
Elger. Indications of nonlinear deterministic and finite-dimensional structures in time series of brain
electrical activity: Dependence on recording region and brain state. Phys. Rev. E, 2001.

Meenatchi Sundaram Muthu Selva Annamalai and Emiliano De Cristofaro. Nearly Tight Black-Box Auditing
of Differentially Private Machine Learning. In NeurIPS, 2024.

Meenatchi Sundaram Muthu Selva Annamalai, Andrea Gadotti, and Luc Rocher. A linear reconstruction
approach for attribute inference attacks against synthetic data. In USENIX Security, 2024a.

Meenatchi Sundaram Muthu Selva Annamalai, Georgi Ganev, and Emiliano De Cristofaro. “What do you
want from theory alone?” Experimenting with Tight Auditing of Differentially Private Synthetic Data
Generation. In USENIX Security, 2024b.

Sergul Aydore, William Brown, Michael Kearns, Krishnaram Kenthapadi, Luca Melis, Aaron Roth, and
Ankit A Siva. Differentially private query release through adaptive projection. In ICML, 2021.

Eugene Bagdasaryan, Omid Poursaeed, and Vitaly Shmatikov. Differential privacy has disparate impact on
model accuracy. In NeurIPS, 2019.

Benjamin Bichsel, Timon Gehr, Dana Drachsler-Cohen, Petar Tsankov, and Martin T. Vechev. DP-Finder:
Finding Differential Privacy Violations by Sampling and Optimization. CCS, 2018.

Benjamin Bichsel, Samuel Steffen, Ilija Bogunovic, and Martin Vechev. DP-Sniper: Black-Box Discovery of
Differential Privacy Violations using Classifiers. In IEEE S&P, 2021.

Kuntai Cai, Xiaoyu Lei, Jianxin Wei, and Xiaokui Xiao. Data synthesis via differentially private markov
random fields. PVLDB, 2021.

Tudor Cebere, Aurélien Bellet, and Nicolas Papernot. Tighter Privacy Auditing of DP-SGD in the Hidden
State Threat Model. arXiv:2405.14457, 2024.

Kamalika Chaudhuri, Chuan Guo, Laurens van der Maaten, Saeed Mahloujifar, and Mark Tygert. Guaran-
tees of confidentiality via hammersley-chapman-robbins bounds. TMLR, 2024.

Dingfan Chen, Ning Yu, Yang Zhang, and Mario Fritz. Gan-leaks: a taxonomy of membership inference
attacks against generative models. In ACM CCS, 2020.

Tianqi Chen and Carlos Guestrin. XGBoost: A scalable tree boosting system. In KDD, 2016.
Charles J Clopper and Egon S Pearson. The use of confidence or fiducial limits illustrated in the case of the
binomial. Biometrika, 1934.

Ron Cole and Mark Fanty. ISOLET. UCI Machine Learning Repository, 1994.
Rachel Cummings, Gabriel Kaptchuk, and Elissa M Redmiles. "I need a better description": an investigation
into user expectations for differential privacy. In ACM CCS, 2021.

13

https://github.com/nesl/nist_differential_privacy_synthetic_data_challenge

Published in Transactions on Machine Learning Research (02/2025)

Yuntao Du and Ninghui Li. Towards Principled Assessment of Tabular Data Synthesis Algorithms.
arXiv:2402.06806, 2024.

Cynthia Dwork and Aaron Roth. The algorithmic foundations of differential privacy. Foundations and
Trends in Theoretical Computer Science, 2014.

Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to sensitivity in private
data analysis. In TCC, 2006.

Cristóbal Esteban, Stephanie L Hyland, and Gunnar Rätsch. Real-valued (medical) time series generation
with recurrent conditional gans. arXiv:1706.02633, 2017.

Tom Farrand, Fatemehsadat Mireshghallah, Sahib Singh, and Andrew Trask. Neither private nor fair:
Impact of data imbalance on utility and fairness in differential privacy. In PPMLP, 2020.

FCA. Using Synthetic Data in Financial Services. https://www.fca.org.uk/publication/corporate/
report-using-synthetic-data-in-financial-services.pdf, 2024.

Yunzhen Feng, Tim GJ Rudner, Nikolaos Tsilivis, and Julia Kempe. Attacking bayes: On the adversarial
robustness of bayesian neural networks. TMLR, 2024.

Kelwin Fernandes, Jaime S Cardoso, and Jessica Fernandes. Transfer Learning with Partial Observability
Applied to Cervical Cancer Screening. In IbPRIA, 2017.

Lorenzo Frigerio, Anderson Santana de Oliveira, Laurent Gomez, and Patrick Duverger. Differentially private
generative adversarial networks for time series, continuous, and discrete open data. In IFIP SEC, 2019.

Sébastien Gambs, Frédéric Ladouceur, Antoine Laurent, and Alexandre Roy-Gaumond. Growing synthetic
data through differentially-private vine copulas. PETS, 2021.

Georgi Ganev. DP-SGD vs PATE: Which Has Less Disparate Impact on GANs? PPAI, 2022.
Georgi Ganev and Emiliano De Cristofaro. On the Inadequacy of Similarity-based Privacy Metrics: Recon-
struction Attacks agains “Truly Anonymous Synthetic Data”. arXiv:2312.05114, 2023.

Georgi Ganev, Bristena Oprisanu, and Emiliano De Cristofaro. Robin Hood and Matthew Effects: Differ-
ential privacy has disparate impact on synthetic data. In ICML, 2022.

Georgi Ganev, Kai Xu, and Emiliano De Cristofaro. Graphical vs. Deep Generative Models: Measuring the
Impact of Differentially Private Mechanisms and Budgets on Utility. In ACM CCS, 2024.

Shivank Garg and Manyana Tiwari. Unmasking the Veil: An Investigation into Concept Ablation for Privacy
and Copyright Protection in Images. TMLR, 2024.

Chang Ge, Shubhankar Mohapatra, Xi He, and Ihab F. Ilyas. Kamino: Constraint-Aware Differentially
Private Data Synthesis. PVLDB, 2021.

Mauro Giuffrè and Dennis L Shung. Harnessing the power of synthetic data in healthcare: innovation,
application, and privacy. NPJ Digital Medicine, 2023.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. Generative adversarial nets. NeurIPS, 2014.

Jamie Hayes, Luca Melis, George Danezis, and Emiliano De Cristofaro. Logan: membership inference attacks
against generative models. In PoPETs, 2019.

Benjamin Hilprecht, Martin Härterich, and Daniel Bernau. Monte carlo and reconstruction membership
inference attacks against generative models. In PoPETs, 2019.

Shlomi Hod and Ran Canetti. Differentially Private Release of Israel’s National Registry of Live Births.
arXiv:2405.00267, 2024.

Florimond Houssiau, James Jordon, Samuel N Cohen, Owen Daniel, Andrew Elliott, James Geddes, Callum
Mole, Camila Rangel-Smith, and Lukasz Szpruch. Tapas: a toolbox for adversarial privacy auditing of
synthetic data. NeurIPS Workshop on Synthetic Data for Empowering ML Research, 2022a.

Florimond Houssiau, Luc Rocher, and Yves-Alexandre de Montjoye. On the difficulty of achieving differential
privacy in practice: user-level guarantees in aggregate location data. Nature Communications, 2022b.

14

https://www.fca.org.uk/publication/corporate/report-using-synthetic-data-in-financial-services.pdf
https://www.fca.org.uk/publication/corporate/report-using-synthetic-data-in-financial-services.pdf

Published in Transactions on Machine Learning Research (02/2025)

ICO. Privacy-enhancing technologies (PETs). https://ico.org.uk/media/for-organisations/
uk-gdpr-guidance-and-resources/data-sharing/privacy-enhancing-technologies-1-0.pdf, 2023.

Matthew Jagielski, Jonathan Ullman, and Alina Oprea. Auditing Differentially Private Machine Learning:
How Private is Private SGD? NeurIPS, 2020.

Bargav Jayaraman and David Evans. Evaluating differentially private machine learning in practice. In
USENIX Security, 2019.

James Jordon, Jinsung Yoon, and Mihaela Van Der Schaar. PATE-GAN: Generating synthetic data with
differential privacy guarantees. In ICLR, 2019.

William Kong, Andres Medina, Monica Ribero, and Umar Syed. DP-Auditorium: A Large Scale Library for
Auditing Differential Privacy. In IEEE S&P, 2024.

Yann LeCun, Corinna Cortes, and CJ Burges. MNIST handwritten digit database. ATT Labs, 2010.
Haoran Li, Li Xiong, and Xiaoqian Jiang. Differentially private synthesization of multi-dimensional data
using copula functions. In EDBT, 2014.

Terrance Liu, Giuseppe Vietri, and Steven Z Wu. Iterative methods for private synthetic data: Unifying
framework and new methods. NeurIPS, 2021.

Johan Lokna, Anouk Paradis, Dimitar I Dimitrov, and Martin Vechev. Group and Attack: Auditing Differ-
ential Privacy. In CCS, 2023.

Yunhui Long, Boxin Wang, Zhuolin Yang, Bhavya Kailkhura, Aston Zhang, Carl A. Gunter, and Bo Li.
G-PATE: Scalable differentially private data generator via private aggregation of teacher discriminators.
In NeurIPS, 2021.

Samuel Maddock, Graham Cormode, and Carsten Maple. FLAIM: AIM-based Synthetic Data Generation
in the Federated Setting. arXiv:2310.03447, 2023a.

Samuel Maddock, Alexandre Sablayrolles, and Pierre Stock. CANIFE: Crafting Canaries for Empirical
Privacy Measurement in Federated Learning. In ICLR, 2023b.

Sofiane Mahiou, Kai Xu, and Georgi Ganev. dpart: Differentially Private Autoregressive Tabular, a General
Framework for Synthetic Data Generation. TPDP, 2022.

Ryan McKenna, Gerome Miklau, and Daniel Sheldon. Winning the NIST Contest: a scalable and general
approach to differentially private synthetic data. JPC, 2021.

Ryan McKenna, Brett Mullins, Daniel Sheldon, and Gerome Miklau. Aim: An adaptive and iterative
mechanism for differentially private synthetic data. PVLDB, 2022.

Frank McSherry and Kunal Talwar. Mechanism design via differential privacy. In FOCS, 2007.
Matthieu Meeus, Florent Guepin, Ana-Maria Cretu, and Yves-Alexandre de Montjoye. Achilles’ Heels:
vulnerable record identification in synthetic data publishing. arXiv:2306.10308, 2023.

Milad Nasr, Shuang Songi, Abhradeep Thakurta, Nicolas Papernot, and Nicholas Carlin. Adversary Instan-
tiation: Lower Bounds for Differentially Private Machine Learning. In IEEE S&P, 2021.

Milad Nasr, Jamie Hayes, Thomas Steinke, Borja Balle, Florian Tramèr, Matthew Jagielski, Nicholas Carlini,
and Andreas Terzis. Tight Auditing of Differentially Private Machine Learning. In USENIX Security, 2023.

NHS. A&E synthetic data. https://data.england.nhs.uk/dataset/a-e-synthetic-data, 2021.
NIST. 2018 Differential privacy synthetic data challenge. https://www.nist.gov/ctl/pscr/
open-innovation-prize-challenges/past-prize-challenges/2018-differential-privacy-synthetic, 2018.

Ben Niu, Zejun Zhou, Yahong Chen, Jin Cao, and Fenghua Li. DP-Opt: Identify High Differential Privacy
Violation by Optimization. In WASA, 2022.

Fatemeh Nourilenjan Nokabadi, Jean-François Lalonde, and Christian Gagné. Reproducibility Study on
Adversarial Attacks Against Robust Transformer Trackers. TMLR, 2024.

OECD. Emerging privacy-enhancing technologies. https://www.oecd-ilibrary.org/content/paper/
bf121be4-en, 2023.

15

https://ico.org.uk/media/for-organisations/uk-gdpr-guidance-and-resources/data-sharing/privacy-enhancing-technologies-1-0.pdf
https://ico.org.uk/media/for-organisations/uk-gdpr-guidance-and-resources/data-sharing/privacy-enhancing-technologies-1-0.pdf
https://data.england.nhs.uk/dataset/a-e-synthetic-data
https://www.nist.gov/ctl/pscr/open-innovation-prize-challenges/past-prize-challenges/2018-differential-privacy-synthetic
https://www.nist.gov/ctl/pscr/open-innovation-prize-challenges/past-prize-challenges/2018-differential-privacy-synthetic
https://www.oecd-ilibrary.org/content/paper/bf121be4-en
https://www.oecd-ilibrary.org/content/paper/bf121be4-en

Published in Transactions on Machine Learning Research (02/2025)

ONS. Synthesising the linked 2011 Census and deaths dataset while
preserving its confidentiality. https://datasciencecampus.ons.gov.uk/
synthesising-the-linked-2011-census-and-deaths-dataset-while-preserving-its-confidentiality/, 2023.

OpenDP. SmartNoise SDK: Tools for Differential Privacy on Tabular Data. https://github.com/opendp/
smartnoise-sdk, 2021.

Nicolas Papernot, Martín Abadi, Ulfar Erlingsson, Ian Goodfellow, and Kunal Talwar. Semi-supervised
knowledge transfer for deep learning from private training data. In ICLR, 2017.

Nicolas Papernot, Shuang Song, Ilya Mironov, Ananth Raghunathan, Kunal Talwar, and Úlfar Erlingsson.
Scalable private learning with pate. In ICLR, 2018.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay.
Scikit-learn: Machine Learning in Python. JMLR, 2011.

Andrea Dal Pozzolo, Olivier Caelen, Reid A. Johnson, and Gianluca Bontempi. Calibrating Probability with
Undersampling for Unbalanced Classification. In IEEE SSCI, 2015.

Zhaozhi Qian, Rob Davis, and Mihaela van der Schaar. Synthcity: a benchmark framework for diverse use
cases of tabular synthetic data. In NeurIPS Datasets and Benchmarks Track, 2023.

Lucas Rosenblatt, Xiaoyan Liu, Samira Pouyanfar, Eduardo de Leon, Anuj Desai, and Joshua Allen. Differ-
entially private synthetic data: Applied evaluations and enhancements. arXiv:2011.05537, 2020.

Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. Membership Inference Attacks against
Machine Learning Models. In IEEE S&P, 2017.

Theresa Stadler, Bristena Oprisanu, and Carmela Troncoso. Synthetic data – anonymization groundhog day.
In USENIX Security, 2022.

Thomas Steinke, Milad Nasr, and Matthew Jagielski. Privacy Auditing with One (1) Training Run. In
NeurIPS, 2023.

Yuchao Tao, Ryan McKenna, Michael Hay, Ashwin Machanavajjhala, and Gerome Miklau. Benchmarking
differentially private synthetic data generation algorithms. In PPAI, 2022.

Florian Tramer, Andreas Terzis, Thomas Steinke, Shuang Song, Matthew Jagielski, and Nicholas Carlini.
Debugging Differential Privacy: A Case Study for Privacy Auditing. arXiv:2202.12219, 2022.

Gianluca Truda. Generating tabular datasets under differential privacy. arXiv:2308.14784, 2023.
UN. The United Nations Guide on privacy-enhancing technologies for official statistics. https://unstats.un.
org/bigdata/task-teams/privacy/guide/2023_UN%20PET%20Guide.pdf, 2023.

Archit Uniyal, Rakshit Naidu, Sasikanth Kotti, Sahib Singh, Patrik Joslin Kenfack, Fatemehsadat
Mireshghallah, and Andrew Trask. DP-SGD vs PATE: which has less disparate impact on model ac-
curacy? PPML, 2021.

Boris van Breugel, Hao Sun, Zhaozhi Qian, and Mihaela van der Schaar. Membership Inference Attacks
against Synthetic Data through Overfitting Detection. AISTATS, 2023.

Mark Vero, Mislav Balunović, and Martin Vechev. CuTS: Customizable Tabular Synthetic Data Generation.
ICML, 2024.

Giuseppe Vietri, Grace Tian, Mark Bun, Thomas Steinke, and Steven Wu. New oracle-efficient algorithms
for private synthetic data release. In ICML, 2020.

Giuseppe Vietri, Cedric Archambeau, Sergul Aydore, William Brown, Michael Kearns, Aaron Roth, Ankit
Siva, Shuai Tang, and Steven Z Wu. Private synthetic data for multitask learning and marginal queries.
NeurIPS, 2022.

Liyang Xie, Kaixiang Lin, Shu Wang, Fei Wang, and Jiayu Zhou. Differentially private generative adversarial
network. arXiv:1802.06739, 2018.

Lei Xu, Maria Skoularidou, Alfredo Cuesta-Infante, and Kalyan Veeramachaneni. Modeling tabular data
using conditional gan. NeurIPS, 2019.

16

https://datasciencecampus.ons.gov.uk/synthesising-the-linked-2011-census-and-deaths-dataset-while-preserving-its-confidentiality/
https://datasciencecampus.ons.gov.uk/synthesising-the-linked-2011-census-and-deaths-dataset-while-preserving-its-confidentiality/
https://github.com/opendp/smartnoise-sdk
https://github.com/opendp/smartnoise-sdk
https://unstats.un.org/bigdata/task-teams/privacy/guide/2023_UN%20PET%20Guide.pdf
https://unstats.un.org/bigdata/task-teams/privacy/guide/2023_UN%20PET%20Guide.pdf

Published in Transactions on Machine Learning Research (02/2025)

Jinsung Yoon, Lydia N Drumright, and Mihaela Van Der Schaar. Anonymization Through Data Synthesis
Using Generative Adversarial Networks (ADS-GAN). JBHI, 2020.

Santiago Zanella-Béguelin, Lukas Wutschitz, Shruti Tople, Ahmed Salem, Victor Rühle, Andrew Paverd,
Mohammad Naseri, Boris Köpf, and Daniel Jones. Bayesian estimation of differential privacy. In ICML,
2023.

Jun Zhang, Graham Cormode, Cecilia M Procopiuc, Divesh Srivastava, and Xiaokui Xiao. Privbayes: private
data release via bayesian networks. ACM TODS, 2017.

Xinyang Zhang, Shouling Ji, and Ting Wang. Differentially private releasing via deep generative model
(technical report). arXiv:1801.01594, 2018.

Zhikun Zhang, Tianhao Wang, Jean Honorio, Ninghui Li, Michael Backes, Shibo He, Jiming Chen, and Yang
Zhang. PrivSyn: Differentially Private Data Synthesis. In USENIX Security, 2021.

17

Published in Transactions on Machine Learning Research (02/2025)

A PATE-GAN Algorithm and Differences with PATE

A.1 PATE-GAN Algorithm

Algorithm 1 reports the original PATE-GAN training procedure (Jordon et al., 2019) discussed in Section 2.

Algorithm 1 Pseudo-code of PATE-GAN
1: Input: δ,D, nT , nS , batch size n, number of teachers k, noise size λ
2: Initialize: θG, θ1

T , . . . , θkT , θS , α(l) = 0 for l = 1, . . . , L
3: Partition dataset into k subsets D1, . . . ,Dk of size |D|k
4: while ε̂ < ε do
5: for t2 = 1, . . . , nT do
6: Sample z1, . . . , zn

i.i.d.∼ PZ
7: for i = 1, . . . , k do
8: Sample u1, . . . ,un

i.i.d.∼ Di
9: Update teacher, Ti, using SGD
10: ∇θi

T
−
[∑d

j=1 log(Ti(uj)) + log(1− Ti(G(zj)))
]

11: end for
12: end for
13: for t3 = 1, . . . , nS do
14: Sample z1, . . . , zn

i.i.d.∼ PZ
15: for j = 1, . . . , n do
16: ûj ← G(zj)
17: rj ← PATEλ(ûi) for j = 1, . . . , n
18: Update moments accountant
19: q ← 2+λ|n0−n1|

4 exp(λ|n0−n1|)
20: for l = 1, . . . , L do
21: α(l)← α(l) + min{2λ2l(l + 1), log((1− q)

(
1−q

1−e2λq

)l
+ qe2λl)}

22: end for
23: Update the student, S, using SGD
24: ∇θS −

∑n
j=1 rj logS(ûj) + (1− rj) log(1− S(ûj))

25: end for
26: Sample z1, . . . , zn

i.i.d.∼ PZ
27: Update the generator, G, using SGD
28: ∇θG [

∑n
i=1 log(1− S(G(zj))]

29: ε̂← min
l

α(l)+log(1
δ)

l

30: end for
31: end while
32: Output: G

A.2 Differences between PATE-GAN and PATE

We now highlight key differences between the privacy analyses of PATE-GAN (Jordon et al., 2019) and
PATE (Papernot et al., 2017) (recall that the former is directly based on the latter).

First, the notation used by (Jordon et al., 2019) and (Papernot et al., 2017) are inconsistent with each other.
Specifically, in Section 3.2 (Jordon et al., 2019) define the PATEλλλ mechanism to add noise Lap(λλλ) and
satisfy (1

λ
1
λ
1
λ , 0)-DP. However, in Theorem 2, (Papernot et al., 2017) originally define the PATEγγγ mechanism

to add noise Lap(1
γ
1
γ
1
γ) and satisfy (2γ2γ2γ, 0)-DP.9 This has two consequences: i) it is unclear why PATE-GAN’s

privacy analysis is different by a factor of 2, and ii) the noise parameter λλλ in PATE-GAN is inversely related
9Notation is bolded here for emphasis but in the original papers appear unbolded.

18

Published in Transactions on Machine Learning Research (02/2025)

to γγγ in PATE. However, the privacy analysis of PATE-GAN – specifically, the moments accountant (lines
18-21 in Algorithm 1) and Theorem 5 in (Jordon et al., 2019), both based on Theorem 3 and Lemma 4
in (Papernot et al., 2017) – directly substitutes λλλ for γγγ (not 1

γ
1
γ
1
γ) and includes the factor 2. Moreover, updated

and synthcity, the two implementations from the original authors implementing PATE, are inconsistent
with each other. When aggregating the teachers’ votes, the former adds noise Lap(λλλ), while the latter
Lap(1

λ
1
λ
1
λ). Then, both update their accountants according to Algorithm 1 (i.e., using λλλ). Overall, while the

notations in PATE-GAN (Jordon et al., 2019)/updated/synthcity might be inconsistent, synthcity seems
to follow PATE (Papernot et al., 2017) the closest (but still omits the factor 2).

Next, we examine the moments accountant updates (line 21 in Algorithm 1). Theorem 5 in (Jordon et al.,
2019) overlooks a condition for q, namely, q < e2γ−1

e4γ−1 , as stated by Theorem 3 in (Papernot et al., 2017).
Additionally, PATE-GAN’s accountant update takes the minimum over two factors, whereas PATE’s imple-
mentation includes a third one, γl.10

Finally, PATE (Papernot et al., 2017) explains that since the privacy budget analysis is data-dependent, ε
should itself be released in a DP way. Their implementation follows this principle,10 whereas PATE-GAN
overlooks it and outputs the unperturbed ε.

Overall, during our utility and privacy experiments, we follow PATE-GAN’s analysis from (Jordon et al.,
2019) and leave the analysis and resolution of these discrepancies with PATE (Papernot et al., 2017) for
future work.

B Additional Preliminaries

B.1 Datasets

We use four of the original six datasets from (Jordon et al., 2019) as the other two are not publicly available
– specifically, Kaggle Credit (Pozzolo et al., 2015), Kaggle Cervical Cancer (Fernandes et al., 2017), UCI
ISOLET (Cole & Fanty, 1994), UCI Epileptic Seizure (Andrzejak et al., 2001). We also use MNIST (LeCun
et al., 2010), the popular digits dataset. The main characteristics of these datasets are summarized in
Table 7. When needed, we follow (Jordon et al., 2019) to convert the downstream tasks associated with the
datasets into binary classification.

Kaggle Credit is a dataset consisting of 284,807 credit card transactions labeled as fraudulent or not. Besides
the labels, there are 29 numerical features. The dataset is highly imbalanced, only 492 transactions (0.17%)
are actually fraudulent.

Kaggle Cervical Cancer contains the demographic information and medical history of 858 patients. There
are 35 features, 24 binary/11 numerical, and a biopsy status label. Only 55 patients (6.4%) have positive
biopsies.

The UCI ISOLET dataset has 7,797 featurized pronunciations (617 numerical features) of a letter of the
alphabet (the label). We transform the task to classifying vowels vs. consonants. Out of the 7,797 letters,
there are 1,500 (19.2%) vowels.

UCI Epileptic Seizure includes the brain activities encoded into 178 numerical vectors of 11,500 patients.
Originally, there were five distinct labels, which we transformed into a binary one to indicate whether there
was a seizure activity. This results in 2,300 (20%) records with a positive label.

MNIST is a benchmark image dataset consisting of 60,000 grayscale handwritten digits, each of size 28×28
pixels. The associated task is digit classification. This is the most balanced dataset, with the ratio of the
least to the most frequent digit being 80.4%.

10As per: https://github.com/tensorflow/privacy/blob/master/research/pate_2017/analysis.py.

19

https://github.com/tensorflow/privacy/blob/master/research/pate_2017/analysis.py

Published in Transactions on Machine Learning Research (02/2025)

Dataset N d Imbalance AUROC AUPRC

Kaggle Credit 284,807 30 0.0017 0.8176 0.5475
Kaggle Cervical Cancer 858 36 0.0641 0.9400 0.6192
UCI ISOLET 7,797 618 0.1924 0.9678 0.9002
UCI Epileptic Seizure 11,500 179 0.2000 0.8103 0.7403
MNIST 60,000 785 0.8042 0.9960 0.9792

Table 7: Summary of the datasets used in our evaluations.

B.2 Classifiers and Evaluation Metrics

Following the original PATE-GAN paper (Jordon et al., 2019), we use the same 12 predictive models to eval-
uate PATE-GAN’s utility performance. Eleven of them are from the popular Python library scikit-learn (Pe-
dregosa et al., 2011); we list them with the names of the algorithms as found in the library in brackets –
Logistic Regression (LogisticRegression), Random Forest (RandomForestClassifier), Gaussian Naive Bayes
(GaussianNB), Bernoulli Naive Bayes (BernoulliNB), Linear Support Vector Machine (LinearSVC), De-
cision Tree (DecisionTreeClassifier), Linear Discriminant Analysis Classifier (LinearDiscriminantAnalysis),
Adaptive Boosting (AdaBoostClassifier), Bootstrap Aggregating (BaggingClassifier), Gradient Boosting Ma-
chine (GradientBoostingClassifier), Multi-layer Perceptron (MLPClassifier). The twelfth model is XGBoost
(XGBRegressor) from the library xgboost (Chen & Guestrin, 2016).

As done in (Jordon et al., 2019), we report the Area Under the Receiver Operating Characteristic curve
(AUROC) and the Area Under the Precision-Recall Curve (AUPRC) scores to quantify their performance
on the classification task.

Finally, all experiments are run on an AWS instance (m4.4xlarge) with a 2.4GHz Intel Xeon E5-2676 v3
(Haswell) processor, 16 vCPUs, and 64GB RAM.

C Additional Experimental Results

In this Appendix, we present the AUROC and AUPRC scores for Kaggle Credit in Table 8–9 and Figure 6–7,
and for UCI Epileptic Seizure in Table 10 and Figure 8–9. We also show the effect of number of teachers-
discriminators and default hyperparameters in Table 11 and 12, respectively. We discuss them in Section 5.
Additionally, we present further privacy results in Figure 11 and 12, which are discussed in Section 6.

Kaggle Credit. On Kaggle Credit, in Setting A (train on real, test on real), we get a lower AUROC score
(0.8176) compared to both the original paper’s (Jordon et al., 2019) Setting A (0.9438) and Setting B (0.8737)
scores. This could be due to two reasons: 1) we set aside 20% of the data for testing, while the updated’s
authors do it with around 50% and 2) we fit the data preprocessor (min-max scaling) on the training data
only; while they do on the combined training and test.

MNIST. Finally, we evaluate utility on MNIST. Unlike the four datasets studied thus far, MNIST is i)
balanced, with all labels approximately equally represented, and ii) more complex, requiring high-level
correlations typically present in image data to be captured by the generative model. In Figure 10, we report
the AUROC scores of the six implementations at varying ε levels.

In contrast to the performance observed on the other datasets, there is a distinct difference between original,
turing and the remaining implementations. The first two achieve significantly higher utility, which is
expected, as they do not implement PATE correctly. Consistent with prior observations, synthcity, shows
slight improvement with higher ε values, while updated, borealis, and smartnoise experience performance
drops between ε = 1 and ε = 10. Overall, none of the six implementations demonstrate promising results on
MNIST.

20

Published in Transactions on Machine Learning Research (02/2025)

(Jordon et al., 2019) original updated synthcity turing borealis smartnoise

Logistic Regression 0.8728 0.5000 0.5000 0.2997 0.5000 0.8720 0.8158
Random Forest 0.8980 0.5000 0.5000 0.7809 0.5000 0.5076 0.7980
Gaussian Naive Bayes 0.8817 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000
Bernoulli Naive Bayes 0.8968 0.5000 0.5000 0.6392 0.5000 0.5480 0.6003
Linear SVM 0.7523 0.5000 0.5000 0.2599 0.5000 0.8622 0.8168
Decision Tree 0.9011 0.5000 0.5000 0.6068 0.5000 0.5721 0.7013
LDA 0.8510 0.5000 0.5000 0.2596 0.5000 0.5000 0.8192
AdaBoost 0.8952 0.5000 0.5000 0.5588 0.5000 0.5975 0.7749
Bagging 0.8877 0.5000 0.5000 0.7006 0.5000 0.5051 0.7688
GBM 0.8709 0.5000 0.5000 0.5342 0.5000 0.5928 0.6987
MLP 0.8925 0.5000 0.5000 0.3242 0.5000 0.8822 0.8144
XGBoost 0.8904 0.5000 0.5000 0.7426 0.5000 0.6202 0.7213

Average 0.8737 0.5000 0.5000 0.5172 0.5000 0.6300 0.7358

Table 8: Performance comparison of 12 classifiers in Setting B (train on synthetic, test on real) in terms of
AUROC on Kaggle Credit (ε = 1). Baseline performance: 0.5000. Setting A (train on real, test on real)
performance: 0.8176.

(Jordon et al., 2019) original updated synthcity turing borealis smartnoise

Logistic Regression 0.3907 0.0017 0.0017 0.0013 0.0017 0.4847 0.2401
Random Forest 0.3157 0.0017 0.0017 0.0493 0.0017 0.0701 0.0370
Gaussian Naive Bayes 0.1858 0.0017 0.0017 0.0017 0.0017 0.0219 0.0017
Bernoulli Naive Bayes 0.2099 0.0017 0.0017 0.0359 0.0017 0.4027 0.1506
Linear SVM 0.4466 0.0017 0.0017 0.0012 0.0017 0.4027 0.2506
Decision Tree 0.3978 0.0017 0.0017 0.0023 0.0017 0.0023 0.0055
LDA 0.1852 0.0017 0.0017 0.0012 0.0017 0.0017 0.2699
AdaBoost 0.4366 0.0017 0.0017 0.1678 0.0017 0.2073 0.0927
Bagging 0.3221 0.0017 0.0017 0.0051 0.0017 0.0119 0.0564
GBM 0.2974 0.0017 0.0017 0.0572 0.0017 0.1866 0.0222
MLP 0.4693 0.0017 0.0017 0.0020 0.0017 0.4453 0.1840
XGBoost 0.3700 0.0017 0.0017 0.0590 0.0017 0.1254 0.0986

Average 0.3351 0.0017 0.0017 0.0320 0.0017 0.1635 0.1174

Table 9: Performance comparison of 12 classifiers in Setting B (train on synthetic, test on real) in terms of
AUPRC on Kaggle Credit (ε = 1). Baseline performance: 0.0017. Setting A (train on real, test on real)
performance: 0.5475.

10 2 10 1 100 101 102

epsilon (with delta = 10 5)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

AU
RO

C

baseline
Paper

original
updated

synthcity
turing

borealis
smartnoise

Figure 6: Performance comparison of 12 classifiers (averaged) in Setting B (train on synthetic, test on real)
in terms of AUROC with various ε (with δ = 10−5) on Kaggle Credit.

21

Published in Transactions on Machine Learning Research (02/2025)

(Jordon et al., 2019) original updated synthcity turing borealis smartnoise

Logistic Regression - 0.4329 0.4717 0.4800 0.4543 0.4765 0.5152
Random Forest - 0.8902 0.5754 0.6157 0.8789 0.6936 0.7572
Gaussian Naive Bayes - 0.2568 0.4938 0.8621 0.2000 0.4338 0.5881
Bernoulli Naive Bayes - 0.4435 0.2409 0.7970 0.8982 0.2282 0.4415
Linear SVM - 0.4872 0.4713 0.4843 0.4922 0.5060 0.5128
Decision Tree - 0.4045 0.4067 0.5138 0.4371 0.4304 0.3759
LDA - 0.4676 0.4725 0.4835 0.3695 0.4990 0.4861
AdaBoost - 0.7766 0.5808 0.4836 0.8035 0.7116 0.6086
Bagging - 0.7213 0.5172 0.5548 0.6946 0.6269 0.7092
GBM - 0.8563 0.5224 0.4861 0.7030 0.5548 0.6892
MLP - 0.4780 0.5739 0.6487 0.4375 0.4867 0.5601
XGBoost - 0.8094 0.5442 0.3615 0.6587 0.7136 0.6846

Average 0.6512 0.5854 0.4892 0.5643 0.5856 0.5301 0.5774

Table 10: Performance comparison of 12 classifiers in Setting B (train on synthetic, test on real) in terms of
AUPRC on UCI Epileptic Seizure (ε = 1). Baseline performance: 0.2000. Setting A (train on real, test on
real) performance: 0.7403.

10 2 10 1 100 101 102

epsilon (with delta = 10 5)

0.0

0.1

0.2

0.3

AU
PR

C

baseline
Paper
original
updated

synthcity
turing
borealis
smartnoise

Figure 7: Performance comparison of 12 classifiers (averaged) in Setting B (train on synthetic, test on real)
in terms of AUPRC with various ε (with δ = 10−5) on Kaggle Credit.

10 2 10 1 100 101 102

epsilon (with delta = 10 5)

0.2

0.4

0.6

0.8

AU
RO

C

baseline
Paper

original
updated

synthcity
turing

borealis
smartnoise

Figure 8: Performance comparison of 12 classifiers (averaged) in Setting B (train on synthetic, test on real) in
terms of mean (not maximum) and standard error AUROC with various ε (with δ = 10−5) on UCI Epileptic
Seizure.

22

Published in Transactions on Machine Learning Research (02/2025)

10 2 10 1 100 101 102

epsilon (with delta = 10 5)

0.0

0.2

0.4

0.6
AU

PR
C

baseline
Paper

original
updated

synthcity
turing

borealis
smartnoise

Figure 9: Performance comparison of 12 classifiers (averaged) in Setting B (train on synthetic, test on real)
in terms of AUPRC with various ε (with δ = 10−5) on UCI Epileptic Seizure.

10 2 10 1 100 101

epsilon (with delta = 10 5)

0.4

0.5

0.6

0.7

AU
RO

C

baseline

original
updated

synthcity
turing

borealis
smartnoise

Figure 10: Performance comparison of 2 classifiers (Logistic Regression and Random Forest, averaged) in
Setting B (train on synthetic, test on real) in terms of AUROC with various ε (with δ = 10−5) on MNIST.

Implementation N/50 N/100 N/500 N/1, 000 N/5, 000

updated 0.6170 0.5944 0.6077 0.6187 0.6180
synthcity 0.6230 0.6447 0.6643 0.7165 0.6428
borealis 0.6170 0.6230 0.6332 0.6730 0.6363
smartnoise 0.6625 0.6275 0.6653 0.6963 0.6270

Table 11: Tradeoff between number of teachers and performances of 12 classifiers (averaged) in Setting B
(train on synthetic, test on real) in terms of AUROC (with ε = 1 and δ = 10−5) on UCI Epileptic Seizure.

original updated synthcity turing borealis smartnoise
Dataset D P D P D P D P D P D P

Kaggle Credit 0.5000 0.5000 0.5000 0.5000 0.5172 0.5437 0.5000 0.5000 0.6300 0.6616 0.7358 0.5867
Kaggle Cervical 0.9265 0.8531 0.8739 0.6581 0.8584 0.6867 0.5000 0.5000 0.9431 0.8140 0.8025 0.7699
UCI ISOLET 0.8342 0.8355 0.5861 0.6001 0.6292 0.6091 0.5000 0.5000 0.6219 0.5980 0.6152 0.6009
UCI Epileptic 0.6867 0.6876 0.6187 0.6223 0.7165 0.6888 0.7425 0.5000 0.6730 0.6069 0.6963 0.6768

AUROC ∆ - -4.23% - -13.69% - -17.78% - -25.00% - -20.49% - -24.10%

Table 12: Average AUROC scores of using the default hyperparameters (denoted as D) per implementation
and the hyperparameters specified in the paper (Jordon et al., 2019) (P) over the 12 classifiers (ε = 1) as
well as reduction in AUROC from D to P.

23

Published in Transactions on Machine Learning Research (02/2025)

0 50 100 150
iteration

0.00

0.01

0.02

0.03

cr
os

s e
nt

ro
py

updated

0 5 10 15
iteration

0.00

0.01

0.02

0.03

synthcity

0 500 1000
iteration

0.0

0.2

0.4

0.6

0.8
borealis

0 100 200
iteration

0.0

0.2

0.4

0.6

0.8
smartnoise

teacher-discrimantor loss on first data subset seen other teachers-discrimantors loss on same data subset

Figure 11: Cross entropy of the five teachers-discriminators on a fixed subset of data (ε = 1) over 10 runs.

0 1 2 3 4 5
emp

original

updated

synthcity

turing

borealis

smartnoise

theoretical epsilon Querybased

(a) Querybased on worst-case dataset

0 1 2 3 4 5
emp

original

updated

synthcity

turing

borealis

smartnoise

theoretical epsilon GroundHog

(b) GroundHog on Kaggle Cervical Cancer

Figure 12: DP auditing using Bayesian credible intervals (Zanella-Béguelin et al., 2023) with different black-
box MIAs (ε = 1, as per the dashed red lines).

D Responsible Disclosure

As mentioned in Section 7, we sent emails to the authors of original and turing, detailing our privacy
concerns, and raised 11 GitHub issues, as detailed in Table 13.

Implementation Privacy Violation/Bug GitHub Issue Link

updated Data Partition https://github.com/vanderschaarlab/mlforhealthlabpub/issues/29
updated Teachers https://github.com/vanderschaarlab/mlforhealthlabpub/issues/30
updated Processing & Metadata https://github.com/vanderschaarlab/mlforhealthlabpub/issues/31
updated Laplace Noise https://github.com/vanderschaarlab/mlforhealthlabpub/issues/36
synthcity Data Partition https://github.com/vanderschaarlab/synthcity/issues/275
synthcity Moments Accountant https://github.com/vanderschaarlab/synthcity/issues/276
synthcity Teachers https://github.com/vanderschaarlab/synthcity/issues/277
synthcity Metadata https://github.com/vanderschaarlab/synthcity/issues/278
borealis Moments Accountant https://github.com/BorealisAI/private-data-generation/issues/11
borealis Processing & Metadata https://github.com/BorealisAI/private-data-generation/issues/12
smartnoise Moments Accountant https://github.com/opendp/smartnoise-sdk/issues/596

Table 13: Summary of the GitHub issues raised and their corresponding privacy violation or bug.

E PATE-GAN Implementations

In Algorithms 2, 3, 4, 5, 6, and 7 we highlight the deviations between the six implementations and the
original paper’s Algorithm 1 (Jordon et al., 2019).

24

https://github.com/vanderschaarlab/mlforhealthlabpub/issues/29
https://github.com/vanderschaarlab/mlforhealthlabpub/issues/30
https://github.com/vanderschaarlab/mlforhealthlabpub/issues/31
https://github.com/vanderschaarlab/mlforhealthlabpub/issues/36
https://github.com/vanderschaarlab/synthcity/issues/275
https://github.com/vanderschaarlab/synthcity/issues/276
https://github.com/vanderschaarlab/synthcity/issues/277
https://github.com/vanderschaarlab/synthcity/issues/278
https://github.com/BorealisAI/private-data-generation/issues/11
https://github.com/BorealisAI/private-data-generation/issues/12
https://github.com/opendp/smartnoise-sdk/issues/596

Published in Transactions on Machine Learning Research (02/2025)

Algorithm 2 Pseudo-code of PATE-GAN; original

1: Input: δ,D, nT , nS , batch size n, number of teachers k, noise size λ
2: Initialize: θG, θ1

T , . . . , θkT , θS , α(l) = 0 for l = 1, . . . , L
3: Partition dataset into k subsets D1, . . . ,Dk of size |D|k
4: while ε̂ < ε do
5: for t2 = 1, . . . , nT do
6: Sample z1, . . . , zn

i.i.d.∼ PZ
7: for i = 1, . . . , k do
8: Sample u1, . . . ,un

i.i.d.∼ Di
9: Update teacher, Ti, using SGD
10: ∇θi

T
−
[∑d

j=1 log(Ti(uj)) + log(1− Ti(G(zj)))
]

11: end for
12: end for
13: for t3 = 1, . . . , nS do
14: Sample z1, . . . , zn

i.i.d.∼ PZ
15: for j = 1, . . . , n do
16: ûj ← G(zj)
17: rj ← PATEλ(ûi) for j = 1, . . . , n
18: Update moments accountant
19: q ← 2+λ|n0−n1|

4 exp(λ|n0−n1|)
20: for l = 1, . . . , L do
21: α(l)← α(l) + min{2λ2l(l + 1), log((1− q)

(
1−q

1−e2λq

)l
+ qe2λl)}

22: end for
23: Update the student, S, using SGD
24: ∇θS −

∑n
j=1 rj logS(ûj) + (1− rj) log(1− S(ûj))

25: end for
26: Sample z1, . . . , zn

i.i.d.∼ PZ
27: Update the generator, G, using SGD
28: ∇θG [

∑n
i=1 log(1− S(G(zj))]

29: ε̂← min
l

α(l)+log(1
δ)

l

30: end for
31: end while
32: Output: G

25

Published in Transactions on Machine Learning Research (02/2025)

Algorithm 3 Pseudo-code of PATE-GAN; updated

1: Input: δ,D, nT , nS , batch size n, number of teachers k, noise size λ
2: Initialize: θG, θ1

T , . . . , θkT , θS , α(l) = 0 for l = 1, . . . , L
3: Partition dataset into k subsets D1, . . . ,Dk of size |D|k
4: while ε̂ < ε do
5: for t2 = 1, . . . , nT do
6: Sample z1, . . . , zn

i.i.d.∼ PZ
7: for i = 1, . . . , k do
8: Sample u1, . . . ,un

i.i.d.∼ Di
9: Update teacher, Ti, using SGD
10: ∇θi

T
−
[∑d

j=1 log(Ti(uj)) + log(1− Ti(G(zj)))
]

11: end for
12: end for
13: for t3 = 1, . . . , nS do
14: Sample z1, . . . , zn

i.i.d.∼ PZ
15: for j = 1, . . . , n do
16: ûj ← G(zj)
17: rj ← PATEλ(ûi) for j = 1, . . . , n
18: Update moments accountant
19: q ← 2+λ|n0−n1|

4 exp(λ|n0−n1|)
20: for l = 1, . . . , L do
21: α(l)← α(l) + min{2λ2l(l + 1), log((1− q)

(
1−q

1−e2λq

)l
+ qe2λl)}

22: end for
23: Update the student, S, using SGD
24: ∇θS −

∑n
j=1 rj logS(ûj) + (1− rj) log(1− S(ûj))

25: end for
26: Sample z1, . . . , zn

i.i.d.∼ PZ
27: Update the generator, G, using SGD
28: ∇θG [

∑n
i=1 log(1− S(G(zj))]

29: ε̂← min
l

α(l)+log(1
δ)

l

30: end for
31: end while
32: Output: G

26

Published in Transactions on Machine Learning Research (02/2025)

Algorithm 4 Pseudo-code of PATE-GAN; synthcity

1: Input: δ,D, nT , nS , batch size n, number of teachers k, noise size λ
2: Initialize: θG, θ1

T , . . . , θkT , θS , α(l) = 0 for l = 1, . . . , L
3: Partition dataset into k subsets D1, . . . ,Dk of size |D|k
4: while ε̂ < ε do
5: for t2 = 1, . . . , nT do
6: Sample z1, . . . , zn

i.i.d.∼ PZ
7: for i = 1, . . . , k do
8: Sample u1, . . . ,un

i.i.d.∼ Di
9: Update teacher, Ti, using SGD
10: ∇θi

T
−
[∑d

j=1 log(Ti(uj)) + log(1− Ti(G(zj)))
]

11: end for
12: end for
13: for t3 = 1, . . . , nS do
14: Sample z1, . . . , zn

i.i.d.∼ PZ
15: for j = 1, . . . , n do
16: ûj ← G(zj)
17: rj ← PATEλ(ûi) for j = 1, . . . , n
18: Update moments accountant
19: q ← 2+λ|n0−n1|

4 exp(λ|n0−n1|)
20: for l = 1, . . . , L do
21: α(l)← α(l) + min{2λ2l(l + 1), log((1− q)

(
1−q

1−e2λq

)l
+ qe2λl)}

22: end for
23: Update the student, S, using SGD
24: ∇θS −

∑n
j=1 rj logS(ûj) + (1− rj) log(1− S(ûj))

25: end for
26: Sample z1, . . . , zn

i.i.d.∼ PZ
27: Update the generator, G, using SGD
28: ∇θG [

∑n
i=1 log(1− S(G(zj))]

29: ε̂← min
l

α(l)+log(1
δ)

l

30: end for
31: end while
32: Output: G

27

Published in Transactions on Machine Learning Research (02/2025)

Algorithm 5 Pseudo-code of PATE-GAN; turing

1: Input: δ,D, nT , nS , batch size n, number of teachers k, noise size λ
2: Initialize: θG, θ1

T , . . . , θkT , θS , α(l) = 0 for l = 1, . . . , L
3: Partition dataset into k subsets D1, . . . ,Dk of size |D|k
4: while ε̂ < ε do
5: for t2 = 1, . . . , nT do
6: Sample z1, . . . , zn

i.i.d.∼ PZ
7: for i = 1, . . . , k do
8: Sample u1, . . . ,un

i.i.d.∼ Di
9: Update teacher, Ti, using SGD
10: ∇θi

T
−
[∑d

j=1 log(Ti(uj)) + log(1− Ti(G(zj)))
]

11: end for
12: end for
13: for t3 = 1, . . . , nS do
14: Sample z1, . . . , zn

i.i.d.∼ PZ
15: for j = 1, . . . , n do
16: ûj ← G(zj)
17: rj ← PATEλ(ûi) for j = 1, . . . , n
18: Update moments accountant
19: q ← 2+λ|n0−n1|

4 exp(λ|n0−n1|)
20: for l = 1, . . . , L do
21: α(l)← α(l) + min{2λ2l(l + 1), log((1− q)

(
1−q

1−e2λq

)l
+ qe2λl)}

22: end for
23: Update the student, S, using SGD
24: ∇θS −

∑n
j=1 rj logS(ûj) + (1− rj) log(1− S(ûj))

25: end for
26: Sample z1, . . . , zn

i.i.d.∼ PZ
27: Update the generator, G, using SGD
28: ∇θG [

∑n
i=1 log(1− S(G(zj))]

29: ε̂← min
l

α(l)+log(1
δ)

l

30: end for
31: end while
32: Output: G

28

Published in Transactions on Machine Learning Research (02/2025)

Algorithm 6 Pseudo-code of PATE-GAN; borealis

1: Input: δ,D, nT , nS , batch size n, number of teachers k, noise size λ
2: Initialize: θG, θ1

T , . . . , θkT , θS , α(l) = 0 for l = 1, . . . , L
3: Partition dataset into k subsets D1, . . . ,Dk of size |D|k
4: while ε̂ < ε do
5: for t2 = 1, . . . , nT do
6: Sample z1, . . . , zn

i.i.d.∼ PZ
7: for i = 1, . . . , k do
8: Sample u1, . . . ,un

i.i.d.∼ Di
9: Update teacher, Ti, using SGD
10: ∇θi

T
−
[∑d

j=1 log(Ti(uj)) + log(1− Ti(G(zj)))
]

11: end for
12: end for
13: for t3 = 1, . . . , nS do
14: Sample z1, . . . , zn

i.i.d.∼ PZ
15: for j = 1, . . . , n do
16: ûj ← G(zj)
17: rj ← PATEλ(ûi) for j = 1, . . . , n
18: Update moments accountant
19: q ← 2+λ|n0−n1|

4 exp(λ|n0−n1|)
20: for l = 1, . . . , L do
21: α(l)← α(l) + min{2λ2l(l + 1), log((1− q)

(
1−q

1−e2λq

)l
+ qe2λl)}

22: end for
23: Update the student, S, using SGD
24: ∇θS −

∑n
j=1 rj logS(ûj) + (1− rj) log(1− S(ûj))

25: end for
26: Sample z1, . . . , zn

i.i.d.∼ PZ
27: Update the generator, G, using SGD
28: ∇θG [

∑n
i=1 log(1− S(G(zj))]

29: ε̂← min
l

α(l)+log(1
δ)

l

30: end for
31: end while
32: Output: G

29

Published in Transactions on Machine Learning Research (02/2025)

Algorithm 7 Pseudo-code of PATE-GAN; smartnoise

1: Input: δ,D, nT , nS , batch size n, number of teachers k, noise size λ
2: Initialize: θG, θ1

T , . . . , θkT , θS , α(l) = 0 for l = 1, . . . , L
3: Partition dataset into k subsets D1, . . . ,Dk of size |D|k
4: while ε̂ < ε do
5: for t2 = 1, . . . , nT do
6: Sample z1, . . . , zn

i.i.d.∼ PZ
7: for i = 1, . . . , k do
8: Sample u1, . . . ,un

i.i.d.∼ Di
9: Update teacher, Ti, using SGD
10: ∇θi

T
−
[∑d

j=1 log(Ti(uj)) + log(1− Ti(G(zj)))
]

11: end for
12: end for
13: for t3 = 1, . . . , nS do
14: Sample z1, . . . , zn

i.i.d.∼ PZ
15: for j = 1, . . . , n do
16: ûj ← G(zj)
17: rj ← PATEλ(ûi) for j = 1, . . . , n
18: Update moments accountant
19: q ← 2+λ|n0−n1|

4 exp(λ|n0−n1|)
20: for l = 1, . . . , L do
21: α(l)← α(l) + min{2λ2l(l + 1), log((1− q)

(
1−q

1−e2λq

)l
+ qe2λl)}

22: end for
23: Update the student, S, using SGD
24: ∇θS −

∑n
j=1 rj logS(ûj) + (1− rj) log(1− S(ûj))

25: end for
26: Sample z1, . . . , zn

i.i.d.∼ PZ
27: Update the generator, G, using SGD
28: ∇θG [

∑n
i=1 log(1− S(G(zj))]

29: ε̂← min
l

α(l)+log(1
δ)

l

30: end for
31: end while
32: Output: G

30

