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Abstract

We introduce MMaDA, a novel class of multimodal diffusion foundation models
designed to achieve superior performance across diverse domains such as textual
reasoning, multimodal understanding, and text-to-image generation. The approach
is distinguished by three key innovations: (i) MMaDA adopts a unified diffusion
architecture with a shared probabilistic formulation and a modality-agnostic design,
eliminating the need for modality-specific components. This architecture ensures
seamless integration and processing across different data types. (ii) We implement
a mixed long chain-of-thought (CoT) fine-tuning strategy that curates a unified CoT
format across modalities. By aligning reasoning processes between textual and vi-
sual domains, this strategy facilitates cold-start training for the final reinforcement
learning (RL) stage, thereby enhancing the model’s ability to handle complex tasks
from the outset. (iii) We propose UniGRPO, a unified policy-gradient-based RL al-
gorithm specifically tailored for diffusion foundation models. Utilizing diversified
reward modeling, UniGRPO unifies post-training across both reasoning and gener-
ation tasks, ensuring consistent performance improvements. Experimental results
demonstrate that MMaDA-8B exhibits strong generalization capabilities as a uni-
fied multimodal foundation model. It surpasses powerful models like LLaMA-3-7B
and Qwen2-7B in textual reasoning, outperforms Show-o and SEED-X in multi-
modal understanding, and excels over SDXL and Janus in text-to-image generation.
These achievements highlight MMaDA ’s effectiveness in bridging the gap between
pretraining and post-training within unified diffusion architectures, providing a
comprehensive framework for future research and development. We open-source
our code and trained models at: https://github.com/Gen-Verse/MMaDA

1 Introduction

Large language models (LLMs) have revolutionized natural language processing (NLP) by achieving
state-of-the-art performance in diverse tasks, from text generation (e.g., ChatGPT [1–3]) to complex
reasoning (e.g., DeepSeek-R1 [4]). Inspired by their success, the research community has extended
LLMs to the multimodal domain, giving rise to multimodal large language models (MLLMs) or vision-
language models (VLMs) [5–14], such as GPT-4 [15] and Gemini [12]. These models aim to provide
a unified framework for both understanding and generating across heterogeneous modalities—text,
images, and beyond.

Early multimodal approaches combined language models with diffusion models [16–19] to handle
discrete (e.g., text) and continuous (e.g., image) modalities separately. Subsequent autoregressive
(AR) methods simplified architectures by training a single transformer with next-token prediction,
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unifying discrete and continuous generation in a single model [12, 8, 9, 11, 10, 13, 14]. Another line
of work leverages modality-specific training objectives within a shared architecture: for example,
Show-o [20] and Transfusion [21] combine autoregressive and diffusion modeling for modeling
textual and visual semantics, respectively.

Table 1: Specific design choices employed by different unified multimodal foundation model fam-
ilies, including their core loss functions. The next-token prediction loss is defined as LNTP =
Exi

[− logPθ(xi | x<i)], representing the standard negative log-likelihood of generating the next
token xi conditioned on its preceding context x<i. The training objective for continuous diffusion
models is given by LDiff-cont = Et,x0∼q(x0),ϵ∼N (0,I),c

[
∥ϵ− ϵθ(xt, t, c)∥2

]
, where xt denotes the

noised version of the original data x0 at timestep t, and c is an optional conditioning signal. The
model learns to predict the noise ϵ added to the data, thereby enabling the reconstruction of x0

through an iterative denoising process defined as xt−1 = Fθ(xt, t). The discrete diffusion (masked
token prediction) loss is given by LDiff-disc = Ez∗

i

[
− 1

|M |
∑

i∈M log pθ(z
∗
i |z

(M)
masked)

]
, which measures

the average negative log-likelihood of correctly predicting the original discrete tokens z∗i at positions
masked by the set M , given the visible context provided by the masked sequence z

(M)
masked.

AR
(One Model)

AR + Diffusion
(Two Models)

AR + Diffusion
(One Model)

Ours MMaDA
(One Model)

Network Architecture
Language AR AR AR Diffusion
Vision AR Diffusion Diffusion Diffusion

Pre-training
Loss for Language LNTP LNTP LNTP LDiff-disc
Loss for Vision LNTP LDiff-cont LDiff-cont or LDiff-disc LDiff-disc

Sampling
Language xi ∼ Pθ(xi | x<i) xi ∼ Pθ(xi | x<i) xi ∼ Pθ(xi | x<i) xt−1 = Fθ(xt, t)
Vision xi ∼ Pθ(xi | x<i) xt−1 = Fθ(xt, t) xt−1 = Fθ(xt, t) xt−1 = Fθ(xt, t)
Language Scheduler - - - Semi-AR Remask [22]
Vision Scheduler - DDPM [23] DDPM [23]/Cosine [24] Cosine Remask [24]

Post-Training
Language CoT - - - Mixed Long-CoT
Language RL - - - UniGRPO with Diversified RM
Vision CoT - - - Mixed Long-CoT
Vision RL DPO [25] - - UniGRPO with Diversified RM

Tasks
Und. (with Reasoning) ✓(✗) ✓(✗) ✓(✗) ✓(✓)
Image Gen. (with Reasoning) ✓(✗) ✓(✗) ✓(✗) ✓(✓)
Text Gen. (with Reasoning) ✗(✗) ✗(✗) ✗(✗) ✓(✓)

Representative Models Emu3 [25], Janus [13, 14] DreamLLM [16] Transfusion [21], Show-o [20] MMaDA (Ours)

Although recent advancements have explored diffusion-based architectures for global context model-
ing and parallel generation [20, 21], existing unified multimodal foundation models predominantly
focus on model architecture design and pretraining strategies, leaving a critical gap in the exploration
of post-training methodologies, particularly in non-autoregressive settings.

To address this gap, we systematically investigate the design space for unified multimodal diffusion
foundation models, introducing a novel framework that advances both architectural and training
paradigms (a comprehensive comparison in Table 1). This work bridges the gap between pretraining
and post-training in unified multimodal diffusion models, offering a holistic framework for future
research in this emerging field. Our contributions can be summarized as:

• Unified Diffusion Foundation Architecture: We propose MMaDA, a class of diffusion-based
models that extend traditional generators into generalist task solvers via a shared probabilis-
tic formulation and modality-agnostic architecture. This design eliminates modality-specific
components while maintaining strong performance across tasks.

• Mixed Long-CoT Post-Training: We introduce mixed long chain-of-thought (CoT) finetun-
ing to enable cold-start training. By curating a unified CoT format across tasks, we align
reasoning processes between modalities (e.g., textual and visual), fostering cross-modal
synergy and learning intermediate reasoning before final output generation.

• Unified Reinforcement Learning (UniGRPO): We develop a unified diffusion-centric
reinforcement learning algorithm (UniGRPO) tailored for multimodal generation. This
approach leverages diversified reward modeling to enhance the model’s ability to perform
complex reasoning and maintain factual consistency in generation.
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Show-o:
Angle 2 measures 52 degrees.

Emu3: 
Angle 2 is equal to angle 1 due to the parallel lines 
AB and CD. Since angle 1 measures 52 degrees, 
angle 2 also measures 52 degrees.

Janus Pro 7B: 
Since line AB is parallel to line CD, corresponding 
angles are equal. Therefore, angle 1 and angle 2 are 
equal.
Since angle 1 measures 52 degrees, angle 2 also 
measures 52 degrees.
The answer is: 52

<think>
To find the value of (sin2 β − 3 sinβ cosβ + 4 cos2 β) given that 
tan β = 1/2, we can follow these steps:
1. **Express 𝒔𝒔𝒔𝒔𝒔𝒔𝜷𝜷 and 𝒄𝒄𝒄𝒄𝒄𝒄𝜷𝜷 :**

sinβ = tanβ / 1 + tan2 β = 1/2 / 1 + 1/2 2 = 1/ 5
cosβ = 1/ 1 + tan2 β = 2/ 5

2. **Calculate each term:**
sin2 β = 1/ 5

2
= 1/5

3 sin β cosβ = 3 ⋅ 1/ 5 ⋅ 2/ 5 = 3 ⋅ 2/5 = 6/5
4 cos2 β = 4 ⋅ 2/ 5

2
= 4 ⋅ 4/5 = 16/5

3. **Substitute and simplify:**
sin2 β − 3 sinβ cosβ + 4 cos2 β = 1/5− 6/5 + 16/5 = 11/5

Final Answer: 𝟏𝟏𝟏𝟏/𝟓𝟓
</think> 
The exact value is 11/5.

Answer from MMaDATask 1: Textual Reasoning Answers from Other Models

Answer from MMaDATask 2: Multimodal Reasoning Answers from Other Models

Show-o, Emu3 and Janus Pro 7B 
do not support this task.

Question: 

Given that

tanβ =
1
2

where β is an angle, determine the 
exact value of the following 
expression: 

sin2 β − 3 sinβ cosβ + 4 cos2 β

Task 3: World Knowledge-Aware
Text-to-Image Generation

Prompt: 
The most popular kind of animal 
among the people of Istanbul.

Images from Other Models
Emu3Show-o Janus Pro 7B

CoT and Image from MMaDA
<think>
The description states that the most 
popular animal among the people of 
Istanbul is the cat. This is because cats 
are a popular animal for companionship 
and people in the city.
</think>
A close-up of a cat with a light brown 
and white fur pattern.

<think>
To determine the measure of angle 2, we need to analyze the 
given information and use the properties of parallel lines and 
perpendicularity.
1. **Identify the given information:**
   - Line AB is parallel to line CD.
   - Points E and F are the intersections of line EF with lines AB 
and CD respectively.
   - Line EG is perpendicular to line EF, with point E as the foot of 
the perpendicular.
   - Line EG intersects line CD at point G.
   - Angle 1 measures 52 degrees.
2. **Understand the relationship between the angles:**
   - Since EG is perpendicular to EF, angle FEG is 90 degrees.
   - Therefore, angle 2 + angle 1 = 90 degrees.
3. **Determine the measure of angle 2:**
   - Angle 2 = 90 degrees - 52 degrees = 38 degrees.
So, the measure of angle 2 is 38 .
</think>
The measure of angle 2 is 38 degrees.

Question: 
In the diagram provided, lines AB 
and CD are parallel. The line EF 
intersects AB at point E and CD at 
point F. From point E, a 
perpendicular EG is drawn to EF, 
meeting CD at point G. Given that 
angle 1 is 52 degrees, what is the 
measure of angle 2?

Figure 1: Qualitative comparison across three tasks (more results in Appendix F and Appendix G.).

• State-of-the-Art Performance: MMaDA achieves superior and balanced performance across
three critical tasks: textual reasoning, multimodal understanding, and text-to-image genera-
tion. Notably, it outperforms both autoregressive and diffusion-based baselines in terms of
accuracy, efficiency, and task adaptability.

2 Related Work

Recently, numerous studies [19, 26–28, 16, 29] have focused on developing unified multimodal
foundation models that excel in both understanding and generation. Approaches such as SEED-
X [19] and DreamLLM [16], along with others [5–14], represent all modalities as a series of
tokens and employ a unified transformer architecture to train the entire system end-to-end. For
example, Emu3 [25] trains a single transformer from scratch using a mixture of multimodal tokenized
sequences, optimized solely with next-token prediction. While these unified autoregressive models
show promise, they can struggle with visual generation tasks. Transfusion [21] and Show-o [20]
employ autoregressive modeling for text generation and diffusion modeling for visual generation.
Similarly, VAR-GPT [30] models visual understanding and generation with autoregressive modeling
and visual autoregressive modeling(VAR [31]), respectively. Nevertheless, they mainly focus on
pretraining strategies. Exploring effective post-training designs is still lacking for existing unified
multimodal foundation models. (More related works can be found in Appendix A)

3 MMaDA: Multimodal Large Diffusion Language Models

3.1 Pretraining with Unified Diffusion Architecture and Objective

Data Tokenization To establish a unified modeling framework capable of processing both textual
and visual data, we adopt a consistent discrete tokenization strategy across both modalities. This
design enables the model to operate under a single modeling objective, i.e., the prediction of discrete
masked tokens. For text tokenization, we utilize the tokenizer from LLaDA [22], which serves as the
backbone for our MMaDA model. For image tokenization, we leverage the pretrained image quantizer
adopted from Show-o [20], which is based on the MAGVIT-v2 [24] architecture and converts raw
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MLLM (Discrete Diffusion)

Text 
Tokenizer

Q: How many one-fourths are 
there in 7/2?

A: <think> Asking this question is 
the same as … </think> 14

Text 
Tokenizer

Q: What is the cat in the 
image doing?

Image
Tokenizer

A: <think> Okay, there’s a small white cat 
pushing… </think> The cat is pushing a small 
shopping cart.

Text 
Tokenizer

Q: Generate an image about a famous 
landmark building in Europe.

A: <think> The Eiffel Tower 
is …</think> Eiffel Tower is 
reaching for the sunny sky.
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Figure 2: An overview of MMaDA pipeline.

image pixels into sequences of discrete semantic tokens. Given an input image with dimensions
H × W , the encoder generates a token map with dimensions H

f ×
W
f , where f represents the

downsampling factor. In this implementation, we employ a downsampling factor of f = 16 and a
codebook size of 8192. This configuration transforms a 512× 512 pixel image into a sequence of
32×32 = 1024 discrete tokens. The transformed discrete image tokens are used in both understanding
and generation modeling tasks.

Unified Probabilistic Formulation for Pretraining Recent unified multimodal frameworks aim
to integrate multiple modeling objectives—such as autoregressive generation and diffusion-based
denoising—into a single architecture for joint understanding and generation tasks [20, 21] (see pre-
liminaries in Appendix B.1). However, these approaches often introduce complex hybrid mechanisms
that hinder model efficiency and coherence. In contrast, we propose a streamlined framework that not
only simplifies the architectural complexity but also introduces a unified diffusion objective to model
both visual and textual modalities under a shared probabilistic formulation. By aligning the noise
corruption and semantic recovery processes across modalities, we enable more effective cross-modal
interactions during pretraining, facilitating seamless integration of heterogeneous data sources.

Specifically, we formulate MMaDA as a mask token predictor (for both image and text tokens), a
parametric model pθ(·|xt) that takes xt as input and predicts all masked tokens simultaneously. The
model is trained with a unified cross-entropy loss computed only on the masked image/text tokens:

Lunify(θ) = −Et,x0,xt

[
1

t

L∑
i=1

I[xi
t = [MASK]] log pθ(xi

0|xt)

]
, (1)

where x0 is ground truth, the timestep t is sampled uniformly from [0, 1], and xt is obtained by
applying the forward diffusion process to x0. I[·] denotes the indicator function to ensure that the
loss is computed only over the masked tokens. Specific pretraining tasks are detailed in Section 4.
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3.2 Post-Training with Mixed Long-CoT Finetuning

Cold Start Long-CoT Data Curation We investigate how CoT mechanisms [32] can enhance
post-training for our unified multimodal diffusion framework and observe their effectiveness in
promoting cross-modal synergies. To this end, we curate a compact dataset of long CoT trajectories
across three core tasks: textual reasoning, multimodal reasoning, and text-to-image generation. This
dataset enables stable post-training of our pretrained MMaDA model through the following principles:

• Unified CoT Format: A critical challenge in vision-language foundation models is the
heterogeneity of output formats across tasks (e.g., text vs. image generation). We propose a
task-agnostic CoT format:

|<special_token>| < reasoning_process > |<special_token>| < result > .

The “<reasoning_process>” encodes step-by-step reasoning trajectories preceding the
final output. This unified structure bridges modality-specific outputs and facilitates knowl-
edge transfer between tasks. For instance, enhanced textual reasoning capabilities directly
improve the realism of generated images by aligning semantic logic with visual synthesis.

• Diversity, Complexity, and Accuracy: We leverage open-source large language and
vision-language models (LLM/VLMs) to generate diverse reasoning trajectories across
tasks (in Fig. 2). To ensure quality, we employ state-of-the-art models as verifiers to filter
out inaccurate or shallow reasoning, selecting only high-quality, long-form CoT samples.
Unlike prior unified models that focus on generic understanding and generation, our MMaDA
is explicitly designed for:

1. Reasoning-intensive tasks (e.g., mathematical problem-solving), and
2. World-knowledge-aware text-to-image generation, where factual consistency is critical.

Mixed Long-CoT Finetuning Leveraging our unified diffusion architecture and probabilistic
formulation, we develop a mixed-task long-CoT finetuning strategy to jointly optimize the model
across heterogeneous tasks. This approach not only enhances task-specific capabilities but also
creates a strong initialization for subsequent reinforcement learning (RL) stages. The training process
follows these steps:

1. Prompt Preservation and Token Masking: We retain the original prompt p0 and indepen-
dently mask tokens in the result (x0), denoted as rt.

2. Joint Input and Loss Computation: The concatenated input [p0, rt] is fed into our pre-
trained mask predictor to compute the loss. This enables the model to reconstruct masked
regions (r0) using contextual information from both the prompt and corrupted result.

The objective function is defined as:

LMixed-SFT = −Et,p0,r0,rt

1
t

L′∑
i=1

I[rit = [MASK]] log pθ(ri0|p0, rt)

 , (2)

where L′ denotes the sequence length. Here, [p0, r0] and [p0, rt] correspond to the clean data x0 and
its noisy counterpart xt, respectively. This formulation ensures the model learns to recover masked
tokens while maintaining alignment with the original prompt and task-specific reasoning logic.

3.3 Post-Training with Unified Reinforcement Learning

3.3.1 Unified GRPO for Diffusion Foundation Models

With our mixed long-CoT fine-tuning, MMaDA demonstrates the ability to generate unified and coherent
reasoning chains prior to final outputs. To further enhance its performance on knowledge-intensive
tasks and complex reasoning/generation scenarios, we propose UniGRPO, a novel policy-gradient-
based reinforcement learning algorithm tailored for diffusion foundation models. This approach
enables a diffusion-centric RL training framework that unifies task-specific objectives across diverse
modalities and reasoning paradigms. The method is structured into two core components: (1) a
unified mathematical formulation for diffusion-based RL, and (2) diversified reward modeling to
align policy gradients with task-specific rewards.
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Challenges in Adapting Autoregressive GRPO to Diffusion Models The original GRPO [33]
relies on computing token-level log-likelihoods πθ(oi,t|q, oi,<t) and sequence-level probabilities πθ

and πref (preliminary in Appendix B.2). In autoregressive (AR) LLMs, these metrics are efficiently
derived via the chain rule of generation. However, diffusion models introduce three critical challenges:
(1) Local Masking Dependency: Token-level log-likelihoods log πθ(oi,t|q, oi,<t) are only valid
within masked regions during the diffusion process, unlike AR models where all tokens are valid.
(2) Mask Ratio Sensitivity: A uniform mask ratio must be sampled for the response segment to
approximate the policy distribution πθ, as diffusion dynamics depend on masking patterns. (3)
Non-Autoregressive Sequence-Level Likelihoods: The sequence-level log-likelihood cannot be
directly accumulated from token-level probabilities due to the absence of an autoregressive chain
rule in diffusion models. Prior approaches address these issues with suboptimal strategies. LLaDA
[22] employs Monte Carlo sampling over numerous mask ratios (e.g., 128 samples), incurring high
computational costs for on-policy RL. d1 [34] fixes the mask ratio and randomizes question masking,
which reduces noise diversity and ignores the multi-step denoising nature of diffusion.

Unified Formulation for Diffusion GRPO To overcome these limitations, we introduce Uni-
GRPO, a computationally efficient approximation algorithm designed for diffusion architectures.
Given a batch of responses {oi}Gi=1 for a query q, each response is fixed during gradient updates to
ensure stable policy evaluation. We highlight three critical points of our UniGRPO as:

1. Structured Noising Strategy: For each oi, we sample a masking ratio pi ∈ [0, 1] uniformly
and construct a perturbed version õi,p by replacing tokens with [MASK]. The random seed
for pi varies across gradient steps, ensuring diverse masking patterns during training.

2. Efficient Log-Likelihood Approximation: We define the expected per-token log-likelihood
under the perturbed distribution as:

π′
θ(oi,t | q, õ, pi) = Epi∼[0,1] [I[oi,t,p = [MASK]] log pθ(oi,t,p|q)] (3)

The sequence-level log-likelihood is then approximated by averaging over masked tokens:

π′
θ =

1

M

∑
oi,t∈M

log pθ(oi,t|q), where M denotes the number of masked tokens. (4)

3. Policy Gradient Objective: The per-token reward is computed as the ratio between current
and old policy likelihoods: r′i,t(θ) =

π′
θ(oi,t|q,õ,pi)

π′
old(oi,t|q,õ,pi)

. The final UniGRPO objective integrates
clipped surrogate rewards and KL regularization:

JUniGRPO(θ) = E(q,a)∼D,{oi}G
i=1∼πθold (·|q),{pi∈[0,1]}G

i=1

[
1

G

G∑
i=1

1

|oi|

|oi|∑
t=1

(
min

(
r′i,t(θ)Âi,t,

clip
(
r′i,t(θ), 1− ε, 1 + ε

)
Âi,t

)
− βDKL(π

′
θ||π′

ref)

)]
,

(5)
where Âi,t denotes the advantage estimate, ε controls the clipping range, and β balances the
KL divergence penalty.

For further details on the UniGRPO algorithm, please refer to Appendix D and Appendix E.2.

3.3.2 Diversified Reward Modeling

We further simplify the optimization objective of UniGRPO (Eq. (5)) as follows:

Remark 1. General optimization objective of UniGRPO:

JUniGRPO(θ) = Eo∼πθ(·|q)[F(RUni(o))− βP (o)], (6)

where RUni(o) denotes the reward obtained from the model-generated response o, P (·) is the penalty
term, which denotes the KL divergence as specified in Eq. (5). This is a unified rule-based reward
system, where RUni(·) can be instantiated with diverse rewards for different tasks. To address
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Table 2: Evaluation on Multimodal Understanding Benchmarks.
Model POPE↑ MME↑ Flickr30k↑ VQAv2(test)↑ GQA↑ MMMU ↑ MMB ↑ SEED ↑
Understanding-Only

LLaVA-v1.5 [38] 85.9 1510.7 - 78.5 62.0 35.4 64.3 58.6
InstructBLIP [39] 78.9 1212.8 - - 49.5 - - -
Qwen-VL-Chat [40] - 1487.5 - 78.2 57.5 - 60.6 58.2
mPLUG-Owl2 [41] 85.8 1450.2 - 79.4 56.1 - - -
LLaVA-Phi [42] 85.0 1335.1 - 71.4 - - 59.8 -

Unified Understanding & Generation

DreamLLM [16] - - - 72.9 - - - -
SEED-X [19] 84.2 1435.7 52.3 - 47.9 35.6 - -
Chameleon [8] - - 74.7 66.0 - - - -
LWM [9] 75.2 948.4 - 55.8 44.8 - - -
Emu [11] - - 77.4 57.2 - - - -
Show-o [20] 80.0 1097.2 62.5 69.4 58.0 26.7 - -
Gemini-Nano-1 [12] - - - 62.7 - 26.3 - -
MMaDA (Ours) 86.1 1410.7 67.6 76.7 61.3 30.2 68.5 64.2

the varied requirements of different tasks, we have defined a range of rewards under the unified
formulation Eq. (6), providing tailored RL optimization directions for each task branch. We mainly
adopt three types of rewards:

• Textual Reasoning Rewards: We apply UniGRPO on the training split of the GSM8K [35]
dataset and define a composite reward. This includes a Correctness Reward of 2.0 for
a correct answer, and a Format Reward of 0.5 if the response adheres to our predefined
format: “<think>...</think>”.

• Multimodal Reasoning Rewards: For mathematical tasks such as GeoQA [36] and
CLEVR [37], we adopt the same Correctness and Format Rewards as in textual rea-
soning. In addition, for caption-based tasks, we further introduce a CLIP Reward of
0.1 · CLIP(image, text), where the original CLIP score measuring text-image alignment is
scaled by 0.1 to balance its influence.

• Text-to-Image Generation Rewards: For image generation tasks, we incorporate the same
CLIP Reward to assess text-image semantic alignment, alongside an Image Reward that
reflects human preference scores. Both rewards are scaled by a factor of 0.1 to ensure
balanced contribution during optimization.

4 Experiments

Datasets To train MMaDA, we utilized a diverse range of datasets tailored for corresponding training
stages as follows: (1) Foundational Language and Multimodal Data: For basic text generation
capabilities, we adopt the RefinedWeb [43] dataset. For multimodal understanding and generation
tasks, we incorporate image-text datasets including ImageNet-1k [44], CC12M [45], SA1B [46],
LAION-aesthetics-12M [47], and JourneyDB [48]. (2) Instruction Tuning Data: To enhance
instruction-following capabilities, we use Alpaca [49] for textual instructions and LLaVA-1.5 [38] for
visual instruction tuning. (3) Reasoning Data: For Mixed Long-CoT finetuning, we curated a diverse
set of reasoning datasets. For textual mathematical and logical reasoning, we employed LIMO [50],
s1k [51], OpenThoughts [52], and AceMath-Instruct [53]. For multimodal reasoning, we used the
LMM-R1 [54] model to generate responses on GeoQA [36] and CLEVR [37], and retained correctly
answered instances. Additionally, for world knowledge-aware image generation, we used GPT-4.1 to
synthesize factual item-description pairs spanning science, culture, and landmarks, formatted into
unified CoT-style traces.(4) Reinforcement Learning Data: For UniGRPO training, we adopt the
original mathematical and logical datasets used in Reasoning [55, 36, 37].

Evaluation and Baselines We evaluate our MMaDA on three distinct tasks using task-specific metrics
and baselines:(1) Multimodal Understanding: Following LLaVA [38], we evaluate on POPE, MME,
Flickr30k, VQAv2, GQA, and MMMU, and compare against understanding-only models [38–42],
as well as unified models [19, 16, 8, 9, 11, 20, 12]. (2) Image Generation: We assess generation
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Table 3: Evaluation on Image Generation Benchmarks.
Model Wise

(Natural)
↑ Image

Reward
↑ CLIP

Score
↑

GenEval↑
Single Obj. Two Obj. Counting Colors Position Color Attr. Overall

Generation-Only

LlamaGen [63] - 0.79 13.43 0.71 0.34 0.21 0.58 0.07 0.04 0.32
SDv1.5 [60] 0.34 0.84 23.54 0.97 0.38 0.35 0.76 0.04 0.06 0.43
SDv2.1 [60] 0.30 0.95 27.41 0.98 0.51 0.44 0.85 0.07 0.17 0.50
DALL-E 2 [61] - 0.83 25.20 0.94 0.66 0.49 0.77 0.10 0.19 0.52
SDXL [62] 0.43 1.13 32.12 0.98 0.74 0.39 0.85 0.15 0.23 0.55

Unified Understanding & Generation

DreamLLM [16] - 0.76 18.33 - - - - - - -
SEED-X [19] - 0.77 23.15 0.97 0.58 0.26 0.80 0.19 0.14 0.49
Chameleon [8] - 0.83 20.32 - - - - - - 0.39
LWM [9] - 0.78 26.21 0.93 0.41 0.46 0.79 0.09 0.15 0.47
Emu [11] - 0.81 22.29 - - - - - -
Show-o [20] 0.28 0.92 28.94 0.95 0.52 0.49 0.82 0.11 0.28 0.53
Janus [13] 0.16 1.03 29.45 0.97 0.68 0.30 0.84 0.46 0.42 0.61
Gemini-Nano-1 [12] - 0.89 24.58 - - - - - - -
VAR-GPT [30] - 0.94 28.85 0.96 0.53 0.48 0.83 0.13 0.21 0.53
MMaDA (Ours) 0.67 1.15 32.46 0.99 0.76 0.61 0.84 0.20 0.37 0.63

quality using 50K prompts from our test set to compute CLIP Score [56] and ImageReward [57] to
evaluate textual alignment and human preference alignment. We adopt GenEval [58] for general
evaluation and WISE [59] for evaluating world knowledge-based generation, comparing against
generation-specific models [60–63] and unified baselines [19, 16, 8, 9, 11, 13, 20, 12, 30]. (3) Text
Generation: we evaluate instruction-following and reasoning performance on MMLU, GSM8K,
and related benchmarks, comparing with LLaMA2-7B, Qwen2-7B, LLaDA-8B and Dream-7B [64].
We detail our inference mechanism for text and image generation in Appendix C.

Implementation Details We initialize MMaDA with LLaDA-8B-Instruct’s pretrained weights [22]
and an image tokenizer with Show-o’s pretrained ones. We perform joint training across three stages:
Stage1: The initial model is trained for 200K steps using foundational language and multimodal
data, including RefinedWeb for text generation, ImageNet-1k for class-conditional image generation,
and additional image-text datasets for captioning. This is followed by another 400K steps where
ImageNet is replaced with more diverse image-text pairs. Stage2: The model is then jointly trained
for 50,000 steps using Instruction Tuning Data and Reasoning Data. Stage3: This final stage consists
of UniGRPO training with Reinforcement Learning Data for 50,000 steps. Training is performed on
64 A100 (80GB) GPUs using a global batch size of 1,280. The AdamW optimizer is employed with
an initial learning rate of 5e-5 and a cosine learning rate scheduler.

Multimodal Understanding Table 2 reports the multimodal understanding performance of our
method on standard benchmarks, including POPE, MME, Flickr30k, VQAv2, GQA, and MMMU. For
outputs from MMaDA that contain reasoning traces, we use the final answer as the prediction. Compared
with dedicated understanding-only models such as LLaVA-v1.5, InstructBLIP, and Qwen-VL-Chat,
our model achieves comparable or superior results across most benchmarks, despite being trained
under a unified objective. When compared to other unified models (e.g., SEED-X, DreamLLM,
Janus, Emu3, and Show-o), our method consistently outperforms them across several benchmarks,
particularly benefiting from the proposed Mixed Long-CoT Finetuning and UniGRPO Reinforcement
Learning stages. Notably, this is the first demonstration of a diffusion-based MLLM exhibiting
strong understanding capabilities, highlighting the potential of our unified architecture in bridging
generation and understanding tasks. Qualitative results are in Appendix F and Appendix G.

Text-to-Image Generation Table 3 presents the evaluation results on text-to-image generation
benchmarks. Our model achieves the highest performance in both CLIP Score and ImageReward
across generation-only and unified models, attributed to the UniGRPO training stage with rewards
explicitly aligned to these metrics. Furthermore, our method demonstrates superior compositionality
and object counting capabilities on GenEval, benefiting from the reasoning-intensive training of the
understanding branch. Notably, on WISE [59] Natural benchmark, which is designed to evaluate
world knowledge-aware generation, our model significantly outperforms prior approaches, owing
to its joint training on text-based reasoning, which is typically absent in existing unified models.
Qualitative results are in Appendix F and Appendix G.
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Table 4: Evaluation on LLM Benchmarks.
Model Arch MMLU ARC-C TruthfulQA GSM8K MATH GPQA

LLaMA2-7B AR 45.9 46.3 39.0 14.3 3.2 25.7
LLaMA3-8B AR 64.5 53.1 44.0 53.1 15.1 25.9
Qwen2-7B AR 70.3 60.6 54.2 80.2 43.5 30.8

LLaDA-8B Diffusion 65.9 47.9 46.4 70.7 27.3 26.1
Dream-7B Diffusion 67.0 - - 81.0 39.2 33.0
MMaDA-8B (Ours) Diffusion 68.4 57.4 43.1 73.4 36.0 28.4

Textual Reasoning Table 4 details the language modeling performance of MMaDA across a range
of benchmarks, encompassing general tasks such as MMLU, ARC-C, and TruthfulQA, as well as
mathematical tasks including GSM8K, MATH, and GPQA. Despite being trained on limited task-
specific tokens and solely open-source text data, MMaDA achieves comparable performance compared
to strong baselines such as Qwen2-7B and LLaMA3-8B on MMLU, ARC-C, and consistently
outperforms LLaDA-8B on math benchmarks. Notably, MMaDA (Ours) pioneers the joint training
of a unified diffusion model for text generation, multimodal reasoning, and image generation—a
multi-task configuration rarely explored in prior unified architectures. These results underscore the
viability of diffusion-based models as general-purpose LLMs and indicate potential for stronger
future performance through enhanced text data and scaling. Qualitative results are in Appendix F.

5 Observations, Analysis and Conclusion

130K 200K
Training Steps

0.45

0.50

0.55

0.60

0.65

0.70

No
rm

al
ize

d 
Pe

rfo
rm

an
ce

Synergy Across Tasks During Joint Training

Text Generation (MMLU)
Multimodal Understanding (CLIP Score)
Image Generation (Image Reward)

Figure 3: Key Performance Metrics Across
Three Tasks.

Synergy Across Various Tasks Throughout the joint
training process, we observe a clear synergy across
the three task categories—text generation, multimodal
understanding, and image generation. As shown in
Fig. 3, all key performance metrics exhibit consistent im-
provements during Stage 2 (training steps 120K–200K),
reflecting the mutually beneficial nature of our uni-
fied training framework. This synergy is also evident
qualitatively: as illustrated in Fig. 4, the model’s re-
sponses—both textual and visual—become increasingly
complex and coherent. Specifically, textual outputs grow
more informative and logically structured, while visual
understanding yields more precise and grounded descrip-
tions. Consequently, for the same prompt, the gener-
ated images become more accurate, detailed, and better
aligned with the given instructions, demonstrating the effectiveness of joint optimization in enhancing
cross-modal alignment and compositionality.

A: A greenhouse is a long, narrow structure 
designed to grow plants. It is usually covered with 
a layer of plastic or made from fabric, which 
provides a controlled environment for plants and 
protects them from being made too exposed to 
the elements. Greenhouses can be used for a wide 
variety of fruits, vegetables, and other plants

Q: What does a greenhouse
look like? 

A: A greenhouse is a covered structure 
used to grow plants, flowers, and crops.

Text MMU Gen 

Steps  
10K 

Steps  
100K 

Q: Give a detailed 
description of  image

A close-up of a textured surface with a mix of green and brown 
hues, suggesting a blend of natural and artificial elements. the 
texture is intricate, with a variety of shapes and lines that 
create a sense of depth and dimensionality. the background is 
abstract, with a multitude of shapes and lines that give the 
impression of a complex, organic environment.

A: The image features a large greenhouse filled with many 
types of plants. The greenhouse is covered with a clear roof, 
which allows for ample natural light to enter the space. The 
plants are arranged in rows, creating a greenhouse-like 
environment. The style of the image is a close-up view, 
focusing on the plants and the greenhouse's structure. This 
style emphasizes the beauty and diversity of the plants and the 
greenhouse's design.

Prompt: a large greenhouse
filled with various plants

Figure 4: Qualitative Illustration of Synergy Across Modalities.
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Table 5: Generation performance of MMaDA under
different denoising steps. * Metrics: CLIP Score
for image generation and multimodal understand-
ing, MMLU accuracy for text generation.

Task Denoising Steps Metrics*

Image Generation
1024 32.8

50 32.0
15 31.7

Multimodal Understanding
1024 35.5
512 36.1
256 35.4

Text Generation
1024 66.9
512 66.3
256 65.7

Sampling Efficiency We identify sampling
efficiency as a key advantage of diffusion mod-
els over autoregressive (AR) approaches. Unlike
AR models, which generate tokens sequentially,
diffusion models enable parallel token genera-
tion within each denoising step, substantially
reducing the number of forward passes required.
To quantify this advantage, we evaluate the per-
formance of MMaDA under varying numbers of
denoising steps. In our setup, generation begins
from 1024 [MASK] tokens, allowing up to 1024
denoising steps—corresponding to a 512× 512
resolution image. As shown in Table 5, image
generation maintains strong performance even
with as few as 15 or 50 steps. For text and multimodal tasks, coherent outputs can be achieved
with just a quarter or half of the full steps. These results underscore the efficiency potential of
diffusion-based language models and suggest that future advances in sampling techniques could
further enhance their speed and quality.

The image 
features a 
beautiful blonde 
woman standing 
in a field of white 
flowers.

The image 
features a 
beautiful blonde 
woman standing 
in a field of 
white flowers.

The capital city of France 
is Paris. It is known for 
the Eiffel Tower and its 
rich cultural heritage.

The capital city of France 
is Paris. It is known for 
the Eiffel Tower and its 
rich cultural heritage.

Te
xt

 
U

nd
 

G
en

 A yellow racing 
car with sleek 
curves and tinted 
windows, parked 
on a bustling city 
street.

Figure 5: Inpainting Task Extension.

Task Extension A notable advantage of
diffusion-based models is their natural abil-
ity to perform inpainting and extrapolation
without requiring additional fine-tuning.
This stems from the fact that these tasks
can be formulated as masked token pre-
diction problems, which are inherently in-
tegrated into the training objective of dif-
fusion models. While prior work such as
Show-o demonstrates this property only in
the context of image generation, MMaDA ex-
tends it further to multimodal understand-
ing and text generation. As illustrated in
Figure 5, our model supports inpainting
across three modalities: (i) predicting miss-
ing spans in text sequences, (ii) completing
answers in visual question answering given
an image and partial input, and (iii) per-
forming image inpainting conditioned on
incomplete visual prompts. These exam-
ples showcase the flexibility and general-
ization capabilities of our unified diffusion architecture across diverse generation and reasoning
tasks.

6 Conclusion

This work introduces a unified diffusion foundation model, namely MMaDA, that integrates textual
reasoning, multimodal understanding, and generation within a single probabilistic framework. To
the best of our knowledge, MMaDA is the first to systematically explore the design space of diffusion-
based foundation models, proposing novel post-training strategies. Extensive experiments across
diverse vision-language tasks demonstrate that MMaDA is comparable to or even better than specialized
models, highlighting the potential of diffusion models as a next-generation foundation paradigm
for multimodal intelligence. For future work, we aim to improve this new multimodal foundational
framework and model from two perspectives: (i) we will try to scale both pre-training and post-
training setting for more extensive applications; (ii) we will utilize diffusion-centric reinforcement
learning algorithms (e.g., TraceRL [65]) to enhance the capabilities of multimodal large diffusion
language models.
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A More Related Works

Multimodal Large Language Models for Multimodal Understanding Recent developments in
large language models (LLMs) such as Gemini-2.0 [66], o1-preview [67], and DeepSeek-R1 [68]
have improved the evolution of multimodal large language models (MLLMs) [69–71]. Early efforts in
this domain, including LLaVA [72], MiniGPT-4 [73], and InstructBLIP [39], showcased impressive
capabilities in multimodal understanding. These studies advanced the integration of LLMs into
multimodal contexts by projecting features from pre-trained modality-specific encoders, such as CLIP
[56], into the input space of LLMs, thereby facilitating multimodal understanding and reasoning
within a unified transformer. Many efforts have been made for MLLMs regarding vision encoders,
alignment adapters, and curated datasets [74, 75, 40, 76], and most of them follow an autoregressive
generation paradigm that has been proven effective for text generation in LLMs. However, they
are usually not capable of performing textual and multimodal reasoning concurrently. In this work,
MMaDA develops diffusion foundation models to fill this gap.

Diffusion Models and Autoregressive Models for Visual Generation A large number of dif-
fusion models [60, 77, 61, 62, 78–82] have demonstrated notable success in visual generation. In
addition to the typical denoising diffusion process on the continuous space, a series of frameworks,
such as D3PM [83] and VQ-Diffusion [84], adopt discrete diffusion modeling [83, 85] for visual
generation. Specifically, the image is denoted as a sequence of discrete tokens using pretrained image
tokenizers [86, 87, 24, 88]. In tthe raining stage, the model is optimized to recover the original values
of a portion of these tokens that are randomly masked. Transformer series [89, 90, 1, 2, 91] has
demonstrated significant capabilities in autoregressive modeling for NLP tasks. Many approaches [92–
96] try to apply the autoregressive modeling to perform visual generation by modeling semantic
dependency within visual details. For example, LlamaGen [63] employs Llama architectures [91] and
refines codebook design to enhance the performance of discrete tokenizers in class-conditional image
generation. VAR [31] replaces the “next-token prediction” paradigm with “next-scale prediction” by
designing a multi-scale image tokenizer. However, existing autoregressive methods still lag behind
diffusion methods in terms of visual generation capabilities. In this work, MMaDA train diffusion
models to model textual and visual contents, and infer efficiently with AR or Semi-AR sampling.

B Preliminaries of Discrete Diffusion, PPO and GRPO

B.1 Discrete Diffusion and Mask Token Prediction

Discrete denoising diffusion models have emerged as a powerful paradigm for modeling discrete data
representations, particularly in visual and textual domains. Recent works such as VQ-Diffusion [97],
MaskGIT [98], and Muse [99] demonstrate their effectiveness in generating high-quality discrete
tokens. Building on these advancements, Show-o [20] unifies discrete diffusion and mask token
prediction into a single framework, enabling joint optimization of noise corruption and semantic
recovery. Below, we formalize the key components of this discrete diffusion process.

B.1.1 Forward and Reverse Diffusion Processes

The forward diffusion process progressively corrupts the initial data x0 (e.g., a sequence of visu-
al/textual tokens) into noisy latent variables x1, ...,xT via a fixed Markov chain q(xt|xt−1). At
each step, this process stochastically perturbs tokens—such as replacing them with uniform noise
or introducing a special [MASK] token. The reverse process, parameterized by a learned model pθ,
reconstructs x0 from xT by sequentially sampling q(xt−1|xt,x0).

To formalize this, consider a single token xi
0 at position i in x0, where xi

0 ∈ {1, 2, ...,K} corresponds
to an entry in a codebook. For simplicity, we omit the index i in subsequent derivations. The
transition probabilities between consecutive tokens are defined by a matrix Qt ∈ RK×K , with
[Qt]mn = q(xt = m|xt−1 = n). The forward Markov process for the entire token sequence is then
expressed as:

q(xt|xt−1) = v⊤(xt)Qtv(xt−1), (7)

where v(x) is a one-hot vector of length K (with 1 at position x). The categorical distribution over
xt is derived from Qtv(xt−1).
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A critical property of the Markov chain allows us to marginalize intermediate steps and compute the
direct transition from x0 to xt:

q(xt|x0) = v⊤(xt)Qtv(x0), with Qt = QTQT−1 · · ·Q1. (8)

Furthermore, the posterior distribution conditioned on x0 is analytically tractable:

q(xt−1|xt, x0) =
q(xt|xt−1, x0)q(xt−1|x0)

q(xt|x0)
=

(
v⊤(xt)Qtv(xt−1)

) (
v⊤(xt−1)Qt−1v(x0)

)
v⊤(xt)Qtv(x0)

.

(9)

This property is essential for deriving the variational lower bound of the diffusion process.

B.1.2 Transition Matrix Design and Masking Strategy

The design of the transition matrix Qt is pivotal to the success of discrete diffusion models. Early
works [100, 101] propose injecting uniform noise into the categorical distribution, leading to:

Qt =


αt + βt βt · · · βt

βt αt + βt · · · βt

...
...

. . .
...

βt βt · · · αt + βt

 , (10)

where αt ∈ [0, 1] controls the retention probability, and βt = (1− αt)/K ensures uniform diffusion
across all K categories. However, this approach often introduces abrupt semantic changes due to
aggressive replacement of tokens with unrelated categories.

To address this limitation, Show-o adopts a **mask-and-replace** strategy inspired by masked
language modeling. A special [MASK] token is introduced, expanding the token space to K + 1
states. The transition matrix is redefined as:

Qt =


αt + βt βt · · · βt 0

βt αt + βt · · · βt 0
...

...
. . .

...
...

βt βt · · · αt + βt 0
γt γt · · · γt 1

 , (11)

where: - Ordinary tokens have a probability αt to remain unchanged, βt to be uniformly diffused,
and γt to be replaced by [MASK]. - The [MASK] token retains its state with probability 1.

This design explicitly signals corrupted positions during the forward process, enabling the reverse
network to focus on reconstructing masked regions. The parameters satisfy αt + Kβt + γt = 1,
ensuring proper normalization.

B.1.3 Variational Objective and Loss Simplification

Following the D3PM framework [101], the variational lower bound for the discrete diffusion process
is derived as:

Eq(x0)[log pθ(x0)] ≥ −LELBO(x0, θ) ≥
T∑

t=1

Eq(x0,xt)[log pθ(x0|xt)] + C. (12)

To simplify training, Show-o leverages the mask token prediction objective. Specifically, the model
learns a neural network pθ to reconstruct masked tokens in x0 from the noised xt, following the
methodology of MaskGIT [98]. This approach avoids explicit modeling of the full posterior and
instead focuses on recovering only the corrupted regions, significantly reducing computational
complexity.

B.2 Proximal Policy Optimization and Group Relative Policy Optimization

Proximal Policy Optimization (PPO) [102] is a widely adopted reinforcement learning algorithm that
balances policy updates with stability through a clipped surrogate objective. The core idea of PPO lies
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in constraining policy changes to a proximal region around the previous policy, thereby preventing
large, destabilizing updates. This is achieved by introducing a clipping mechanism that bounds the
importance sampling ratio during optimization. Specifically, PPO maximizes the following objective:

JPPO(θ) = E(q,a)∼D,o≤t∼πθold (·|q)[
min

(
πθ(ot | q, o<t)

πθold(ot | q, o<t)
Ât, clip

(
πθ(ot | q, o<t)

πθold(ot | q, o<t)
, 1− ε, 1 + ε

)
Ât

)]
,

(13)

where (q, a) denotes a question-answer pair sampled from the dataset D, ε is the clipping threshold,
and Ât is the estimated advantage at time step t. The advantage Ât is typically computed using
Generalized Advantage Estimation (GAE) [103], which combines multiple temporal differences with
discounting and mixing parameters (γ, λ):

Â
GAE(γ,λ)
t =

∞∑
l=0

(γλ)lδt+l, with δl = Rl + γV (sl+1)− V (sl). (14)

This formulation ensures robustness against high-variance estimates while maintaining compatibility
with off-policy data.

In contrast, Group Relative Policy Optimization (GRPO) [33] introduces two key innovations to
address limitations in PPO’s value function dependency and global advantage estimation. First,
GRPO eliminates the explicit modeling of the value function V (s) and instead computes advantages
in a group-relative manner. For each (q, a) pair, the behavior policy πθold generates G responses
{oi}Gi=1, and the advantage of each response is normalized relative to its group:

Âi,t =
ri −mean({Ri}Gi=1)

std({Ri}Gi=1)
, (15)

where ri represents the raw reward for response oi. This design enables GRPO to focus on relative
performance within a local context, reducing sensitivity to absolute reward scales.

Second, GRPO extends PPO’s clipped objective by incorporating an explicit KL divergence penalty
term between the current policy πθ and a reference policy πref. The final objective is defined as:

JGRPO(θ) = E(q,a)∼D,{oi}G
i=1∼πθold (·|q)[

1

G

G∑
i=1

1

|oi|

|oi|∑
t=1

(
min

(
ri,t(θ)Âi,t, clip

(
ri,t(θ), 1− ε, 1 + ε

)
Âi,t

)
− βDKL(πθ||πref)

)]
,

(16)
where ri,t(θ) =

πθ(oi,t|q,oi,<t)
πθold (oi,t|q,oi,<t)

is the importance sampling ratio at time t. Notably, GRPO computes
the loss at the sample level: for each sequence, the per-token loss is averaged first, followed by
averaging across all sequences in the group. This hierarchical aggregation enhances stability in
multi-response settings.

C Sampling Details

Text Generation For text generation, we adopt the semi-autoregressive denoising strategy intro-
duced in LLaDA [22], which integrates autoregressive decoding with diffusion-based denoising.
Specifically, the output sequence is partitioned into multiple blocks and generated from left to
right. Within each block, logits are computed for all masked positions, and a subset of tokens is
selected—either randomly or based on confidence scores—for denoising. The masking schedule
follows a linear schedule, consistent with LLaDA. The denoising process is repeated for given steps.

In our evaluation, we set the total sequence length to N = 1024 and perform N
2 = 512 denoising

steps. The sequence is divided into blocks of 64 tokens. At each step, we unmask the 2 tokens with the
lowest confidence within the current block, irrespective of their positions. Once all tokens in a block
are denoised, the process proceeds to the next block. A qualitative comparison is provided below.
As shown, a semi-autoregressive denoising strategy tends to generate more intricate and detailed
descriptions, whereas non-autoregressive fixed-length generation often produces very short responses.
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This observation is consistent with findings reported for LLaDA. For instruction-tuned models, given
that the training process incorporates a substantial number of |EOS| tokens, directly applying the
lowest-confidence remasking strategy without dividing into blocks leads to an unnaturally high
frequency of |EOS| tokens in the generated sentences.

Qualitative Comparison of Different Sampling strategy

Prompt: Please describe this image in detail.

Fix-length Generation ( Length = 1024, Steps = 512, Block Size = 1024)
The image is a detailed oil painting depicting a still life scene.

Semi-Autoregressive ( Length = 1024, Steps = 512, Block Size = 64)
The painting depicts a serene still life scene on a tablecloth with a textured, multicolored pattern. In the
center, there is a rustic, cream-colored ceramic pitcher with brown accents, holding a vibrant bouquet
of sunflowers. The sunflowers, with their bright yellow petals and deep brown centers, are arranged
in a way that they seem to burst forth from the pitcher, creating a sense of abundance and vitality. To
the right of the pitcher, there is a small, ornate glass vase with a patina finish, adding an element of
contrast and visual interest to the composition. In the foreground, a sliced loaf of bread is placed on
the tablecloth, with a piece of bread and a knife nearby, suggesting a meal or snack. The background
is softly blurred, focusing attention on the main elements of the painting. The overall composition is
balanced and harmonious, with the warm tones of the sunflowers and ceramic pitcher complementing
the cooler bronze of the vase and the soft pastels of the bread.

Image Generation For image generation, we adopt a low-confidence remasking strategy and follow
a cosine noise schedule, consistent with the setup in MagViT v2. In contrast to text generation, we
do not employ a semi-autoregressive approach; instead, the entire output sequence is treated as a
single generation block. During evaluation, we generate sequences of length 1024, corresponding
to 512×512 resolution images. The denoising process consists of 50 timesteps, and we apply
classifier-free guidance with a guidance scale set to 3.5.

D Details of UniGRPO

In this section, we detail our UniGRPO training process and illustrate the differences compared to
LLaDA and d1 (diff-GRPO) [34]. Notably, LLaDA does not incorporate a reinforcement learning
procedure, yet it includes an algorithm for computing log probabilities. Diff-GRPO introduced the
first GRPO-style RL algorithm for diffusion language models and proposed an alternative method to
compute log probabilities for a given question-answer pair. We first outline the methodologies of
these two prior works:

(1) LLaDA While LLaDA does not employ an RL process, it offers a method to estimate the log
probability of a given pair (q, a) using Monte Carlo simulation. For a given answer, N mask ratios
are randomly sampled from the interval (0, 1) (where N = 128 in the original work). Subsequently,
a batch of N inputs is constructed. Each input instance consists of the original question tokens
concatenated with the answer, where a portion of the answer tokens (corresponding to the sampled
mask ratio) is replaced by [MASK] tokens. A model forward pass is performed on this batch, and the
logits corresponding to the masked regions are collected and averaged to obtain the log probability
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Algorithm 1 UniGRPO Policy Gradient Optimization

Require: Reference model πref, prompt distribution D, number of completions per prompt G,
number of inner updates µ, diffusion steps T

1: Initialize policy πθ ← πref
2: while not converged do
3: πold ← πθ

4: Sample a prompt q ∼ D
5: Sample G completions oi ∼ πold(· | q), for i ∈ [G]
6: For each oi, compute reward ri and advantage Ak

i (πold) using Eq. (15)
7: Sample a starting timestep t0 ∼ U(0, T − 1)
8: Generate µ− 1 uniformly spaced timesteps t1, . . . , tµ−1 from [t0, T ]
9: for gradient update iterations n = 1, . . . , µ do

10: if n = 1 then
11: Sample a starting mask ratio r1 ∼ U(0, 1) and compute initial timestep t1 = ⌊r1 · T ⌋
12: else
13: Uniformly divide remaining timesteps: tn = ⌊ (n−1)

(µ−1) · (T − t1) + t1⌋
14: Construct input (q,masked oi) using timestep tn (with q always unmasked)
15: For πθ, πold, πref, estimate log-probabilities of masked tokens in oi at tn
16: Compute UniGRPO objective Eq. (5) and update πθ via gradient descent
17: return πθ

log p(q, a). The principal drawback of this method is its significant computational overhead, rendering
it impractical for on-policy RL algorithms.

(2) d1 (diff-GRPO) The d1 framework [34] introduced the first GRPO-style RL algorithm for
diffusion language models. To overcome the efficiency issues of LLaDA, d1 employs a novel masking
strategy. In each iteration, only a single forward pass is performed, eschewing Monte Carlo simulation.
The input is constructed by applying a random mask to the question tokens and completely masking
all answer tokens. The stochasticity is intended to be achieved by selecting different tokens for
masking across different iterations, even with the same mask ratio. While this approach in d1 enables
GRPO training, we identify potential limitations:

• Question Masking: The random masking of question tokens is of unclear practical sig-
nificance. In typical question-answering scenarios, the question is always fully observed
during both training and inference. We argue that such random masking of questions
serves primarily to introduce stochasticity without direct relevance to the task’s practical
application.

• Answer Masking Strategy: By consistently masking the entire answer, the model is
effectively trained only on the initial denoising step (i.e., predicting the full sequence from
a fully masked state). We contend that this approach provides insufficient learning depth,
potentially causing the model to behave more like a single-step predictive AR model rather
than leveraging the multi-step denoising capabilities inherent to diffusion models. This
underutilizes the diffusion model’s unique strengths.

As introduced in Section 3.3.1, our UniGRPO addresses the masking issues with the following key
modifications:

1. Unmasked Questions: In UniGRPO, all question tokens remain unmasked during training.
This aligns the training process with the inference conditions and practical use-cases where
the question is always fully provided.

2. Iteratively Varied Answer Masking: We apply a random mask ratio to the answer tokens.
Crucially, this mask ratio, denoted ρa, varies uniformly with the training iteration µ (e.g.,
ρa ∼ U(0, 1) sampled anew or cycled through discrete steps each iteration). This strategy
aims to preserve stochasticity while ensuring the model is exposed to various stages of the
diffusion denoising process, from nearly fully masked to nearly fully denoised answers. By
doing so, UniGRPO learns from multi-step denoising information, which is consistent with
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conventional training methodologies for diffusion models and allows for the full utilization
of their multi-step generative power.

Through this design, UniGRPO captures the essential multi-step denoising dynamics of diffusion
models. By allowing the model to predict answers under diverse masking conditions while preserving
the natural structure of the input, it avoids the pitfalls of both computational inefficiency (as in
LLaDA) and oversimplified prediction (as in d1). The training procedure of UniGRPO is outlined
in Algorithm 1. At each iteration, we sample a mask ratio rµ uniformly from a predefined range,
apply this ratio to the answer tokens, and perform a single forward pass using the unmasked question
and masked answer. We then compute token-level log-likelihoods in the masked regions, apply the
GRPO objective, and update the policy accordingly.

E Ablation Studies

E.1 General Ablations on Mixed Long-CoT Fine-tuning and UniGRPO

We present quantitative ablation results of our MMaDA across different training stages: Mixed Long-
CoT fine-tuning and UniGRPO. All results generated follow the sampling process in Appendix C. As
shown in the Table 6, after Stage 1, our model still lags behind most baselines. In Stage 2, Mixed
Long-CoT fine-tuning substantially enhances the model’s reasoning capabilities, particularly in
mathematical and geometric domains. In Stage 3, UniGRPO further improves performance, allowing
the model to achieve results comparable to state-of-the-art methods across various tasks, including
mathematical reasoning, geometric problem-solving, and image generation benchmarks such as
CLIP Score and ImageReward. These results demonstrate that UniGRPO effectively boosts both the
model’s understanding/reasoning and generative capabilities.

Table 6: Ablations on Mixed Long-CoT fine-tuning and UniGRPO
Model GSM8K MATH500 GeoQA CLEVR CLIP Score ImageReward

MMaDA After Stage 1 17.4 4.2 8.3 10.3 23.1 0.69
+ Mixed Long-CoT Finetuning 65.2 26.5 15.9 27.5 29.4 0.84
+ UniGRPO (MMaDA) 73.4 36.0 21.0 34.5 32.5 1.15
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Figure 6: Comparison of different masking strategies on GSM8K reward trends during training.

E.2 Design Choices of UniGRPO

Effect of General Masking Strategy To evaluate the impact of our proposed masking strategy,
we first conduct a comparative analysis with d1 [34] within our reinforcement learning framework.
Given the substantial computational cost associated with large-scale ablation studies, we perform
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these experiments on the GSM8K dataset, utilizing 8 A100 GPUs. Both the original d1 methodology
and our UniGRPO approach are applied to this dataset, starting from the same pre-trained checkpoint
of our MMaDA. We present the reward trends during training in Fig. 6. As shown in the figure, our
method consistently achieves higher reward values during training, aligning well with our theoretical
analysis. In contrast to d1, UniGRPO removes masking from the question and applies partial masking
to the answer rather than masking it entirely. This results in input sequences that retain partial
noise, encouraging the model to learn across multiple denoising timesteps. Consequently, this better
leverages the intrinsic characteristics of diffusion models and improves the overall learning capacity.

Effect of Uniformly Random masking In place of fully random masking across iterations, we
adopt a uniformly random masking strategy for the answer portion. Specifically, we first sample a
random starting timestep, and then uniformly generate the remaining denoising timesteps across the
full diffusion timesteps (set to 1000 in our experiments). For instance, given a randomly selected
starting timestep of 100 and a total of 5 training iterations, the remaining timesteps are uniformly
spaced and set to 300, 500, 700, and 900. This design ensures a more consistent coverage of the
diffusion process while retaining randomness.

We illustrate the training reward trends resulting from this structured masking strategy in Fig. 7. As
shown, the baseline approach with fully random timestep selection tends to introduce instability
during training, leading to more frequent reward fluctuations and requiring a greater number of
steps to converge. In contrast, our uniformly spaced sampling strategy effectively approximates the
behavior of Monte Carlo averaging in log-likelihood estimation, resulting in improved stability and
faster convergence.
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Figure 7: Comparison of different random masking strategies on GSM8K reward trends during training.
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F Qualitative Comparisons (with Reasoning CoT)

Qualitative Comparison of World Knowledge-Aware Text-to-Image Generation (1)

Prompt: The largest terrestrial carnivore from the Arctic.

Other models:
Show-o Emu3 Janus Pro 7B

MMaDA:
<think>
largest terrestrial carnivore from the Arctic is the Polar Bear.
</think>
A majestic polar bear stands on a snowy landscape, its fur glowing against the icy backdrop.

Qualitative Comparison of World Knowledge-Aware Text-to-Image Generation (2)

Prompt: A famous landmark building in Europe.

Other models:
Show-o Emu3 Janus Pro 7B

MMaDA:
<think>
A famous landmark building in Europe is likely the Eiffel Tower.
</think>
The Eiffel Tower is hollow, with a cloudy and muted sky.
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Qualitative Comparison of World Knowledge-Aware Text-to-Image Generation (3)

Prompt: A traditional strong spirit from Russia.

Other models:
Show-o Emu3 Janus Pro 7B

MMaDA:
<think>
The user is describing a traditional strong spirit from Russia. A well-known spirit that fits
this description is vodka.
</think>
An silver bottle of vodka sits next to a decanter and a halved lime.

Qualitative Comparison of World Knowledge-Aware Text-to-Image Generation (4)

Prompt: A famous statue gifted to the United States by France.

Other models:
Show-o Emu3 Janus Pro 7B

MMaDA:
<think>
The description refers to a well-known landmark that was given from France to the United States.
This is known as the Statue of Liberty.
</think>
A low-angle shot of the Statue of Liberty against a blue sky with a few wispy clouds.
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Qualitative Comparison of Textual Reasoning (1)

Question: How many plums will balance one pear, given that 3 apples and one pear weigh as much as
10 plums, and one apple and 6 plums balance one pear? Assume that fruits of the same kind have the
same weight.

Show-o:
< Show-o does not support this task >

Emu3:
< Emu3 does not support this task >

Janus Pro 7B:
< Janus Pro 7B does not support this task >

MMaDA:
<think>
Okay, let’s see. I need to figure out how many plums are needed to balance the weight of a single
pear. The problem gives me some information. Let me try to parse it step by step.
First, the problem says: 3 apples together with a pear have the same weight as 10 plums. Then,
the combination of one apple and 6 plums weighs the same as a pear. I need to find out how many
plums are needed to equal the weight of a single pear. Since all fruits are equal in weight,
probably the same.
Let me start by writing this down. Let’s assign variables. Let’s let A represent the weight
of an apple, R as the weight of a pear, and M as the weight of a plum. So, based on the first
statement given:
3A + R = 10M
Right, because 3 apples plus a pear equals 10 plums.
Second, saying one apple and 6 plums weigh the same as a pear. So, A + 6M = R
That’s because all apples and plums are equal. So,
A = R - 6M
So, now we have two equations:
1) 3A + R = 10M
2) A + 6M = R
Our goal is to find out how many plums are needed to balance one pear. That is, we need to find
the value of n in R = nM.
From equation (2): A + 6M = R =⇒ A = R − 6M.
Now substitute this value of A into equation (1):
3A + R = 10M 3(R - 6M) + R = 10M 3R - 18M + R = 10M 4R - 18M = 10M 4R = 28M R = 7M
So one pear weighs as much as 7 plums.
Let’s check with equation (2): A + 6M = R A = R - 6M But if R = 7M, then A = 7M − 6M = M.
So an apple weighs as much as 1 plum, which works when we check the first equation: 3A + R = 10M
3(M) + 7M = 10M 3M + 7M = 10M
So both equations are satisfied.
Therefore, the answer is 7 plums.
</think>

To determine how many plums are to balance a single pear, we set up the equations based on the
given conditions:
1. Let A represent the weight of an apple, R represent the weight of a pear, and M the weight
of a plum.
2. The equations are:
- Equation 1: 3A + R = 10M
- Equation 2: A + 6M = R (1 apple + 6 plums equals a pear)
**Step 1: Solve for A in terms of R and M**
From Equation 2: A = R − 6M
**Step 2: Substitute A into Equation 1**
3(R − 6M) + R = 10M
3R − 18M + R = 10M
4R − 18M = 10M
4R = 28M
R = 7M
**Final Answer:**
7 plums are needed to balance the weight of a single pear.
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Qualitative Comparison of Textual Reasoning (2)

Question: How many positive divisors does the integer n possess, where n = 73 × 112 × 134?

Show-o:
< Show-o does not support this task >

Emu3:
< Emu3 does not support this task >

Janus Pro 7B:
< Janus Pro 7B does not support this task >

MMaDA:
<think>
Okay, so I need to figure out how many positive divisors the integer n has, where n is given as
7 cubed times 11 squared times 13 to the fourth power. Hmm, let me think. I remember that the
number of divisors of a number is related to its prime factorization exponents. Let me try to
recall the general formula here.
First, right that if a number is expressed in a product of primes, like a number in the form
n = pa

1 × pb
2 × . . . × pc

k, then the number of positive divisors is (a + 1)(b + 1)...(c + 1). Right?
Because for each exponent in the prime factorization, you add 1, then multiply them all together
for the total number of divisors.
Let me verify that. Take an example: if n is 21 × 31, then the positive divisors are 1, 2, 3, 6.
Using the formula, (1+1)*(1+1) = 2*2 = 4, which checks out. Another example: like 22 × 31. Then
the divisors are 1, 2, 4, 3, 6, 12. That makes 6 divisors. The formula gives (2+1)*(1+1) = 3*2 =
6, so that’s correct. Another example: 22 × 52. Then divisors count is (2+1)*(2+1) = 3*3=9. So
the formula seems correct.
So, applying this formula to n in the given problem: n is 73 × 112 × 134. Here, the exponents are
3, 2, and 4. So, applying the number of divisors formula should be (3 + 1)(2 + 1)(4 + 1). Let’s
compute that step by step.
First, calculate each exponent plus one: 3 + 1 is 4. 2 + 1 is 3. 4 + 1 is 5. Then, multiplying
those results together: 4 * 3 * 5. Let me check that. 4 times 3 is 12, then 12 times 5 is 60.
So the number of positive divisors is 60.
Wait, but let me make sure I didn’t make a mistake in the multiplication. Let me verify the steps
again. 4*3 is 12, 12*5 is 60. Yes, that seems correct.
But just to be thorough, let me write the original number n as 73 × 112 × 134. The prime factors
are 7, 11, 13. Each raised to the exponents 3, 2, and 4, respectively. Since they are all prime,
the formula for divisors uses the exponents as factors plus 1. Then multiplying the results:
4*3*5=60.
Is there any possible way this could be wrong? Well, maybe if the exponents were different, but
the original expression is already in its exponential form. Let me check if I misread. For
example, if one of the exponents was not what is stated, but the problem writes 73 times 112 times
134, so the exponents are 3, 2, 4, that’s correct.
Alternatively, could there be a mistake in the multiplication? Let me check 4*3*5 again. 4*3 is
12, 12*5 is 60. Correct. So 60 is the correct answer.
Wait, just to be thorough, let’s list the combinations: any divisor is 7a × 11b × 13c, where 0 ≤
a ≤ 3, 0 ≤ b ≤ 2, and 0 ≤ c ≤ 4. The number of choices for a is 4, for b is 3, for c is 5, so
4*3*5 = 60 possible positive divisors. Perfect.
I don’t see any mistakes here. The answer is 60.
</think>

**Solution:**
The integer n is given as n = 73 × 112 × 134. To determine the number of positive divisors of n,
we use the formula for the number of divisors: if a number is in the form pa

1 × pb
2 × · · · × pc

k, then
it has (a + 1)(b + 1) . . . (c + 1) divisors.
**Step-by-Step Solution:**
1. **Identify the Exponent:**
- 73: Exponent = 3
- 112: Exponent = 2
- 134: Exponent = 4
2. **Apply the Divisor Formula:**
- For each prime exponent, (a + 1), and then multiply:
- For exponent 3: 3 + 1 = 4
- For exponent 2: 2 + 1 = 3
- For exponent 4: 4 + 1 = 5
- Multiply the results: 4 × 3 × 5 = 60

**Answer:** The integer n has 60 positive divisors.
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Qualitative Comparison of Textual Reasoning (3)

Question: A "Hope Number" is a natural number with an odd number of positive divisors. Find the
largest "Hope Number" within 1000.

Show-o:
< Show-o does not support this task >

Emu3:
< Emu3 does not support this task >

Janus Pro 7B:
< Janus Pro 7B does not support this task >

MMaDA:
<think>
Okay, so I need to find the largest "Hope Number" which is a natural number with an odd number of
positive divisors. Let me start by recalling what a Hope Number is. The question says a number
has an odd number of divisors. Hmm, that means a number has an odd number of different divisors.
First, I remember that numbers have divisors related to their prime factorization. If a number
has the prime factorization n = p

a1
1 p

a2
2 . . . p

ak
k , the number of divisors is (a1+1)(a2+1) · · · (ak+1).

This product is odd if and only if every ai + 1 is odd, i.e., if every exponent ai is even. That
means the number itself is a perfect square (since each exponent is even).
To check: for example, take 9. Its prime factorization is 32. Its divisors are 1, 3, 9. That’s
three divisors, which is odd. Another example, 16. Prime factorization is 24. Its divisors are
1, 2, 4, 8, 16. That’s five divisors, which is odd. How about 15? Its prime factorization is
3 × 5, which is not a perfect square. Its divisors are 1, 3, 5, 15—that’s four divisors, which is
even. Therefore, only perfect squares have an odd number of divisors.
Therefore, all Hope Numbers less than 1000 are perfect squares.
Therefore, the problem reduces to finding the largest perfect square less than or equal to 1000.
Let’s compute that.
The square root of 1000 is approximately 31.62. So we need to check the largest integer n such
that n2 ≤ 1000. Let’s check 31.
312 = 961. 322 = 1024, which is greater than 1000.
So 312 = 961 is the largest perfect square within 1000. Therefore, 961 is the largest Hope Number
within 1000.
But wait, let me confirm that 961 is indeed a Hope Number. Let’s count its divisors. Its prime
factorization is 312, and 31 is prime. The exponents are all even, so the number of divisors is
2 + 1 = 3: 1, 31, 961, which is odd. That checks out.
And to be thorough, is there a perfect square between 961 and 1000? 322 = 1024 > 1000, so there
are none.
Therefore, the largest Hope Number within 1000 is 961.
</think>

The largest "Hope Number" within 1000 is **961**.
**Step-by-Step Explanation:**
1. **Understanding Hope Property:** A Hope Number has an odd number of positive divisors. A
number has an odd number of divisors **if and only if it is a perfect square** (because in the
divisor formula, all exponents must be even so all ai + 1 are odd, and their product is odd).
2. **Largest Hope Number:** Compute perfect squares ≤ 1000. 312 = 961 and 322 = 1024. Since
322 > 1000, the largest one is 312 = 961.
3. **Verification:** Any non-square number below 1000 has an even number of divisors; only
perfect squares have an odd number of divisors.
**Answer:** 961
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Qualitative Comparison of Textual Reasoning (4)

Question: What is the result of (20−16)×(12+8)
4

?

Show-o:
< Show-o does not support this task >

Emu3:
< Emu3 does not support this task >

Janus Pro 7B:
< Janus Pro 7B does not support this task >

MMaDA:
<think>
Okay, let me try to figure out the result of this expression: (20−16)×(12+8)

4 . Hmm, let’s break
this down step by step. First, I need to make sure I apply the order of operations correctly.
Right, order of operations: parentheses first, then multiplication and division from left to
right, then addition and subtraction from left to right. Let me write the expression again to
visualize it better: (20−16)×(12+8)

4 .
So, the parentheses are within the numerator, which is part of the fraction, and the denominator
is 4. According to PEMDAS, I should handle the parentheses first before doing the multiplication
and division. Let me look at the parentheses part: (20 - 16) and (12 + 8). Both of those are
inside parentheses, so I should compute each part separately.
Starting with the first parentheses: 20 - 16. That’s straightforward. 20 minus 16 equals 4.
Okay, so that part simplifies to 4.
Next, the second part inside the parentheses: 12 + 8. That’s addition, so 12 plus 8 is 20. So
now, the numerator becomes 4 × 20.
So now, the numerator is 4 × 20. Let me do that multiplication. 4 times 20 is 80. So the
numerator simplifies to 80.
Now the entire expression is 80

4 . Dividing that number by 4. Let me check that division. 4 goes
into 80 twenty times (since 4 × 20 is 80), so 80 ÷ 4 = 20. So the result is 20.
Wait a second, let me verify that again to make sure I didn’t make a mistake. Let’s go through
each step again.
Original expression: (20−16)×(12+8)

4 .
First parentheses: 20 - 16 = 4. Check.
Second parentheses: 12 + 8 = 20. Check.
Multiply those two: 4 × 20 = 80. Check.
Divide by 4: 80 ÷ 4 = 20. Yep, that seems right.
But wait, maybe there’s another way to approach this. Sometimes with order of operations,
parentheses are easier to catch. Let’s see. The original expression is (20−16)×(12+8)

4 . The
parentheses in the numerator give us multiplication, and the denominator is 4. You could write it
as 4×20

4 . Simplifying, 4 × 20 = 80, then 80 divided by 4 is 20. Alternatively, you could factor
out the 4 in the numerator and cancel with the denominator, but in this case, the result is still
20. So that’s a good way. Either way, multiplication and division are done from left to right.
Alternatively, let’s check if there’s any possibility that the entire numerator is being divided.
Let’s see. The entire expression is 4×20

4 , so 4 × 20 is 80, then 80 divided by 4 is 20. So
that’s another way to see it, which is reassuring. So that seems consistent.
Another way to check: look at it by using properties of operations. But in this case, since the
expression is written with multiplication and division, the order of operations tells us to do all
calculations in the numerator first, then divide by the denominator. All steps lead to 20.
Another check: let me verify the multiplication. 4 × 20 = 80. Then 80 divided by 4 is 20. So
no errors in the operations.
Hmm, I think that’s solid. The answer should be 20. Let me just make sure there’s no alternative
interpretation. Let’s write the original expression again:
Original expression: (20−16)×(12+8)

4 .
The numerator is 4 × 20 = 80, denominator is 4. So 80 divided by 4 is 20. Yep, exactly, that’s
correct.
Therefore, I’m confident that the answer is 20.
</think>

The result of (20−16)×(12+8)
4 is calculated as follows:

1. **Simplify the parentheses inside the numerator:**
- 20 − 16 = 4
- 12 + 8 = 20
2. **Multiply the simplified results:**
- 4 × 20 = 80
3. **Divide by 4:**
- 80

4 = 20

**Final Answer:** 20
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Qualitative Comparison of Multimodal Reasoning (1)

Question: In the given figure, a square ABCD is inscribed in a circle with center O. Point P is located
on side CD. What is the value of angle APB?

Show-o:
The angle APB is 90 degrees.

Emu3:
The question seems to be a mix of letters and numbers, not a coherent question or statement. If
you meant "is" or "are", the correct statement would be "The measure of angle APB is" or "The
measure of angle APB is". If you meant "is" or "are", the correct statement would be "The measure
of angle APB is" or "The measure of angle APB is".

Janus Pro 7B:
To find the measure of angle APB, we can use the properties of the square and the circle.
1. **Square ABCD**: The square is circumscribed around the circle, meaning all its sides are
tangent to the circle. This implies that the diagonal of the square is equal to the diameter of
the circle.
2. **Circle O**: The center of the circle is also the center of the square.
3. **Diagonals of a Square**: The diagonals of a square bisect each other and are equal in
length.
4. **Angle APB**: Since ABCD is a square, angle APB is a right angle (90 degrees).
Therefore, the measure of angle APB is 90 degrees.

MMaDA:
<think>
To determine the measure of angle APB, we start by noting that square ABCD is circumscribed within
circle O. This means that the circle is the circumcircle of the square, and the center of the
circle is the same as the center of the square. Let’s denote the center of the circle as O.
Since ABCD is a square, the diagonals AC and BD are equal in length and bisect each other at right
angles. This means that angle AOB is 90 degrees because the diagonals of a square are equal and
bisect each other at right angles.
Now, consider triangle APB. Since P lies on side CD, we can use the property of the circle that
the angle subtended by a chord at the center is twice the angle subtended at any point on the
circumference on the same side. In this case, AP and BP are chords of the circle meeting at point
P on CD (which is opposite AB). Points A and B are at adjacent vertices, and P is on CD.
The key point is that when P moves along CD, angle APB is fixed, as AB is a fixed chord and P
moves along the arc opposite AB. For a square inscribed in a circle, the arc AB subtends a right
angle at any point on the circle opposite AB (i.e., on arc CD). Therefore, for any point P on CD,
angle APB is always 45°. This follows because ∠APB is half the degree of the arc AB, which is
90°, so:

∠APB =
1

2
× 90

◦
= 45

◦

Thus, the measure of angle APB is 45
◦ .

</think>

The measure of angle APB is 45
◦ .
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Qualitative Comparison of Multimodal Reasoning (2)

Question: In the diagram, triangle ABC is shown. Points D and E are located on segments AB and AC,
respectively. Lines BE and CD intersect at point F. Given that angle BAC is 60°, angle DCA is 40°, and
angle EBA is 30°, what is the measure of angle CFE?

Show-o:
The angle measure of angle CFE is 60°.

Emu3:
To solve for the degree measure of angle CFE, we can utilize the properties of triangles and
angles. Since angle ABE measures 30°, angle ACD measures 40°, and angle ABC measures 60°, we can
find angle ACD by subtracting angle A and angle ABE from 180°: 180° - 40° - 30° = 110°. Since
triangle ABC is an isosceles triangle, angle BAC measures 40°. Therefore, angle CFE can be found
by subtracting angle BAC from angle ABC: 40° - 110° = -30°. However, angles cannot have negative
measures, so we take the positive value, giving us 60°. Therefore, the degree measure of angle
CFE is 60°.

Janus Pro 7B:
To find the measure of angle CFE, we can use the properties of triangles and the given angles.
First, we know that angle ABE is 30°. Since angle ABE and angle ACD are adjacent angles in the
same triangle, they are supplementary. Therefore, angle ACD is 180° - 30° = 150°.
Next, we know that angle A is 60°. Since angle A and angle ACD are adjacent angles in the same
triangle, they are supplementary. Therefore, angle C is 180° - 60° = 120°.
Now, we can find angle CFE. Angle CFE is the supplement of angle C, so angle CFE = 180° - 120° =
60°.
Therefore, the degree measure of angle CFE is 60°.

MMaDA:
<think>
To determine the measure of angle CFE, we need to analyze the given information and use the
properties of triangles and angles.
1. **Identify the given angles:**
- Angle A = 60°
- Angle ACD = 40°
- Angle ABE = 30°
2. **Use the fact that the sum of the angles in a triangle is 180°:**
- In a triangle, the sum of the angles is 180°. Therefore, we have:

60
◦
+ ∠ADC + 40

◦
= 180

◦

60
◦
+ ∠AEB + 30

◦
= 180

◦

3. **Determine the measure of angle CFE:**
- Since angle AEB is an exterior angle to triangle CEF, it is equal to the sum of the two
non-adjacent interior angles. Therefore, angle AEB = angle ACD + angle CFE = 40° + angle CFE
= 90°.
- Therefore, angle CFE = 90° - 40° = 50°.
Thus, the measure of angle CFE is 50 .
</think>

The measure of angle CFE is 50 .
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Qualitative Comparison of Multimodal Reasoning (3)

Question: What number of large things are the same material as the purple cylinder?

Show-o:
There are two large things that are the same material as the purple cylinder.

Emu3:
2

Janus Pro 7B:
There is one large object that shares the same material as the purple cylinder, which is the large
green cylinder.
Answer: 1.

MMaDA:
<think>
To determine the number of items in the image, let’s analyze the objects present:
1. The large green cylinder is made of a material that appears to be rubber.
2. The large yellow cube is made of a material that appears to be metal.
3. The small gray cube is made of a material that appears to be rubber.
4. The small cyan sphere is made of a material that appears to be metal.
5. The small cyan cylinder is made of a material that appears to be metal.
6. The small purple cylinder is made of a material that appears to be rubber.
The green cylinder is the only large object made of a material that is the same as the small
purple cylinder. Therefore, there is 1 large object made of the same material as the purple
cylinder.
</think>

The number of large things that are the same material as the purple cylinder is 1.

Qualitative Comparison of Multimodal Reasoning (4)

Question: Divide 24 apples equally among the people in the picture, how many apples can each person
get?

Show-o:
In the image, there are four people, each with a different number of apples. The person with the
most apples has the most apples.

Emu3:
24.
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Janus Pro 7B:
To divide 24 apples equally among the four people in the picture, you would divide 24 by 4.
24 / 4 = 6
Each person can get 6 apples.

MMaDA:
<think>
To determine how many apples each person can get, we need to divide the total number of apples by
the number of people.
24 ÷ 4 = 6
So, each person can get 6 apples.
</think>

Each person can get 6 apples.

G Qualitative Examples (without Reasoning CoT)

MMaDA can also efficiently handle general and simple tasks without generating CoT.

Qualitative Example of Text-to-Image Generation
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Qualitative Example of Multimodal Understanding (1)

Prompt: Please describe this image
in detail.

MMaDA:
The image captures a serene and picturesque scene of a group
of dolphins swimming in the ocean during sunset. The sky is
painted with hues of orange, yellow, and pink, transitioning
into a deep blue as it meets the horizon. The sun is setting on
the horizon, casting a warm glow that reflects off the water’s
surface, creating a shimmering effect. The dolphins are posi-
tioned in the foreground, with their bodies partially submerged
in the water, their heads and upper bodies visible above the
surface. The water appears calm, with gentle ripples around
the dolphins, adding to the tranquil atmosphere. The overall
composition of the image conveys a sense of peace and natural
beauty.

Qualitative Example of Multimodal Understanding (2)

Prompt: Please describe this image
in detail.

MMaDA:
The image is a vibrant and colorful landscape painting that
captures the essence of a sunset over a field of yellow flowers.
The sky is a stunning blend of warm, soft hues, transitioning
from deep purples and blues at the top to warm oranges and
yellows near the horizon. The sun is positioned low on the
horizon, casting a golden glow that illuminates the sky and
the field below. The field of yellow flowers, likely sunflowers,
stretches across the foreground, creating a sea of color that
contrasts beautifully with the cooler tones of the sky. The paint-
ing is executed with broad, expressive brushstrokes, giving it a
dynamic and lively feel. The overall composition is balanced
and harmonious, capturing the tranquility and beauty of the
natural world.

Qualitative Example of Multimodal Understanding (3)

Prompt: Please describe this image
in detail.

MMaDA:
The image depicts a modern dining area with a minimalist
aesthetic. The centerpiece is a long dining table with a sleek,
dark finish, supported by four sturdy legs. The table is set with
a few items, including a black vase, a few books, and a small
decorative object, adding a touch of elegance to the space. The
table is surrounded by four blue velvet chairs with wooden legs,
providing a striking contrast to the dark tones of the table. The
room has a clean, open feel with light-colored walls and large
windows that allow natural light to flood in, creating a bright
and airy atmosphere. The left is a round mirror with a simple
frame, enhancing the modern look of the room.
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Qualitative Example of Multimodal Understanding (4)

Prompt: Please describe this image
in detail.

MMaDA:
The image depicts a charming, narrow street in a European
city, likely in, given the architectural style and the presence of
a red tram car. The street is lined with tall, narrow buildings
painted in soft pastel colors, including shades of pink, green,
and beige. The buildings have ornate balconies and shutters,
adding to the quaint charm of the scene. The street is paved
with cobblestones, and there tram tracks run down the center,
indicating that this is a tram lane. A red tram car is parked on
the right. The tram is stationary, and the overall atmosphere is
serene and picturesque.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Please see the details in the abstract and introduction sections.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Please refer to the conclusion and limitation part.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: This paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Please refer to the details in Section 4.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: Please see the details in supplemental material.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Please refer to the details in Section 4.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Please refer to the details in Section 4.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Please refer to the details in Section 4.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Please see the whole paper and supplemental material.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: There is no societal impact of the work performed.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Please see the whole paper and supplemental material.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [Yes]

Justification: Please see the whole paper and supplemental material.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
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Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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