
Published in Transactions on Machine Learning Research (05/2024)

LeanVec: Searching vectors faster by making them fit

Mariano Tepperú mariano.tepper@intel.com
Ishwar Singh Bhatiú ishwar.s.bhati@intel.com
Cecilia Aguerrebere cecilia.aguerrebere@intel.com
Mark Hildebrand mark.hildebrand@intel.com
Ted Willke ted.willke@intel.com
Intel Labs

Reviewed on OpenReview: https: // openreview. net/ forum? id= wczqrpOrIc

Abstract

Modern deep learning models have the ability to generate high-dimensional vectors whose
similarity reflects semantic resemblance. Thus, similarity search, i.e., the operation of re-
trieving those vectors in a large collection that are similar to a given query, has become a
critical component of a wide range of applications that demand highly accurate and timely
answers. In this setting, the high vector dimensionality puts similarity search systems under
compute and memory pressure, leading to subpar performance. Additionally, cross-modal
retrieval tasks have become increasingly common, e.g., where a user inputs a text query to
find the most relevant images for that query. However, these queries often have di�erent
distributions than the database embeddings, making it challenging to achieve high accu-
racy. In this work, we present LeanVec, a framework that combines linear dimensionality
reduction with vector quantization to accelerate similarity search on high-dimensional vec-
tors while maintaining accuracy. We present LeanVec variants for in-distribution (ID) and
out-of-distribution (OOD) queries. LeanVec-ID yields accuracies on par with those from re-
cently introduced deep learning alternatives whose computational overhead precludes their
usage in practice. LeanVec-OOD uses two novel techniques for dimensionality reduction that
consider the query and database distributions to simultaneously boost the accuracy and the
performance of the framework even further (even presenting competitive results when the
query and database distributions match). All in all, our extensive and varied experimental
results show that LeanVec produces state-of-the-art results, with up to 3.7x improvement in
search throughput and up to 4.9x faster index build time over the state of the art.

1 INTRODUCTION

High-dimensional embedding vectors, stemming from deep learning models, have become the quintessential
data representation for unstructured data, e.g., for images, audio, video, text, genomics, and computer code
(e.g., Devlin et al., 2019; Radford et al., 2021; Shvetsova et al., 2022; Ji et al., 2021; Li et al., 2022). The
power of these representations comes from translating semantic a�nities into spatial similarities between
the corresponding vectors. Thus, searching over massive collections of vectors for the nearest neighbors to a
given query vector yields semantically relevant results, enabling a wide range of applications (e.g., Blattmann
et al., 2022; Borgeaud et al., 2022; Karpukhin et al., 2020; Lian et al., 2020; Grbovic et al., 2016).

Among other similarity search approaches, graph-based methods (e.g., Arya and Mount, 1993; Malkov and
Yashunin, 2018; Jayaram Subramanya et al., 2019) stand out with their high accuracy and performance for
high-dimensional data Wang et al. (2021). Here, the index consists of a directed graph, where each vertex
corresponds to a dataset vector and edges represent neighbor-relationships between vectors so that the graph
can be e�ciently traversed to find the nearest neighbors in sub-linear time (Fu et al., 2019).

ú
Equal contribution

1

https://openreview.net/forum?id=wczqrpOrIc

Published in Transactions on Machine Learning Research (05/2024)

(a)

Primary
vectors

Input
database
vectors

Secondary
vectors

Query
Construction
Search

Candidates

re-ranking

Nearest
neighbors

LVQ

LVQ

Dim.
reduction

Dim.
reduction

(b)

Figure 1: We propose LeanVec, a framework to accelerate similarity search for high-dimensional vectors,
including those produced by deep learning models. LeanVec combines a novel linear dimensionality reduc-
tion method for in-distribution and out-of-distribution use cases with Locally-adaptive Vector Quantization
(LVQ, Aguerrebere et al. (2023)) to achieve state-of-the-art performance and accuracy in graph-based index
construction and search. (a) For high dimensional vectors (e.g., D = 768), search performance scales with
the level of memory compression. Compared to the FP16 encoding, LVQ8 and LVQ4x8 compress the vectors
by 2x and ~4x for search, respectively, while LeanVec reduces the vector size by 9.6x (4.8x from dimen-
sionality reduction and 2x from LVQ8). At 72 threads (our system has 36 physical cores and 72 threads),
LeanVec provides a 8.5x performance gain over FP16 while consuming much less memory bandwidth (95
vs. 149GB/s). (b) The main search in LeanVec returns nearest neighbor candidates and is executed e�-
ciently using primary vectors, i.e., compressed with dimensionality reduction and vector quantization. The
candidates are then re-ranked using secondary vectors, i.e., quantized with LVQ.

Aguerrebere et al. (2023) have recently shown that, when properly implemented, graph search is bottlenecked
by the memory bandwidth of the system, which is mainly consumed by fetching database vectors from
memory in a random access pattern (due to the complexity in globally ordering high-dimensional vectors
and to the way any graph traversal works, i.e., hoping from one node to the other). Mainstream state-of-
the-art vector quantization techniques are either specifically designed for a sequential access pattern (André
et al., 2021; Guo et al., 2020), rendering them not suitable for graph search, or incur more expensive similarity
calculations by increasing the number of memory accesses (Jégou et al., 2011) (more details in Section 4).
To reduce these access times, Aguerrebere et al. (2023) introduce a lightweight method, Locally-adaptive
Vector Quantization (LVQ), that greatly accelerates the search and leads to state-of-the-art performance.
Although LVQ removes the memory bottleneck in vectors of moderate dimensionality (D ¥ 128), we observe
increased memory bandwidth and computational pressure for higher dimensional (e.g., D = 512, 768) deep
learning embedding vectors. Higher memory utilization drastically increases the memory latency (Srinivasan
et al., 2009) to access each vector and results in suboptimal search performance. Even masterful placement
of prefetching instructions in the software cannot hide the increased latency. These di�culties extend to
the time-consuming procedure of constructing a graph-based index as construction speed is proportional to
search speed. In a world where both academic and industrial deployments of similarity search overwhelmingly
use deep learning embedding vectors, it is paramount to address this performance gap.

An additional di�culty with modern applications of similarity search is cross-modal querying, i.e., where a
user uses a query from one modality to fetch similar elements from a di�erent modality (Radford et al., 2021;
Yu et al., 2022; Li et al., 2023). For instance, in text2image applications, text queries are used to retrieve
semantically similar images. Alternatively, sometimes queries and database vectors are produced by di�erent
models, e.g., in question-answering applications (Karpukhin et al., 2020). In these cases, queries come from a
statistical distribution di�erent from the one underlying the database vectors, which makes applying vector
compression techniques learned from the data itself a more challenging problem (Jaiswal et al., 2022).

In this work, we introduce LeanVec, a framework that combines linear dimensionality reduction with
Locally-adaptive Vector Quantization (LVQ) to accelerate similarity search for high-dimensional vectors,
making it suitable for applications with deep learning embedding vectors. LeanVec is inscribed in the stan-

2

Published in Transactions on Machine Learning Research (05/2024)

dard search-and-rerank paradigm popular in similarity search. We present LeanVec variants for the two
main cases: in-distribution (ID) and out-of-distribution (OOD) queries. LeanVec’s compression lowers the
required memory bandwidth and provides a proportional increase in search throughput. On the rqa-768-1M
dataset (refer to Table 1 for details), LeanVec compresses vectors by 9.6x (4.8x from the dimensionality
reduction and 2x from LVQ) over the baseline of FP16 vectors and provides a 8.5x performance gain while
consuming much less memory bandwidth (see Figure 1a). The performance gain increases even further as
the dimensionality increases. For instance, in the standard gist-960-1M dataset, LeanVec shows ~12x im-
provement over the uncompressed FP16 vectors (see Figure 12 in the appendix). We present the following
contributions:

• We show that linear dimensionality reduction can be e�ectively used on-the-fly to increase the performance
of graph-based similarity search, with no degradation in quality, and leads to state of the art results for
high-dimensional vectors, including those produced by deep learning models.

• We show that LeanVec can be used to build high-quality graph indices in a fraction of the time required
for the original vectors, yielding up to a 8.6x runtime improvement.

• For the ID case, LeanVec-ID improves upon previous work using principal component analysis (PCA)
(Jegou et al., 2010; Gong et al., 2012; Babenko and Lempitsky, 2014b; Wei et al., 2014) by combining it
with LVQ, bringing search speedups of up to 3.6x over the state of the art. LeanVec-ID does not make
any assumptions about the statistical distribution of the query vectors.

• For the OOD case, we present a new linear dimensionality reduction technique, LeanVec-OOD, that finds
the optimal projection subspaces for the dataset and a representative query set to reduce the errors in the
similarity computations. We present two lightweight and fast optimization algorithms for LeanVec-OOD.
We present a detailed convergence analysis for one of these variants (based on a non-convex Frank-Wolfe
algorithm). We show that LeanVec-OOD performs as good as LeanVec-ID in the ID case and is vastly
superior in the OOD case.

• For reproducibility, we will contribute the LeanVec implementation to Scalable Vector Search, an open
source library for high-performance similarity search.1 We also introduce and will open-source two new
datasets with di�erent types of OOD characteristics.2

The remainder of this work is organized as follows. We introduce LeanVec in Section 2, covering the overall
framework and the novel techniques for OOD dimensionality reduction. We then present in Section 3
extensive experimental results comparing LeanVec to its alternatives and showing its superiority across all
relevant metrics. In Section 4 we review the existing literature and its relation to our work. We provide a
few concluding remarks in Section 5.

2 LeanVec: a framework to accelerate similarity search for high-dimensional vectors

Notation. We denote vectors/matrices by lowercase/uppercase bold letters, e.g., v œ Rn and A œ Rm◊n.

We start from a set of database vectors X =
)

xi œ RD
*n

i=1 to be indexed and searched. We use maximum
inner product as the similarity search metric, where one seeks to retrieve for a query q the k database
vectors with the highest inner product with the query, i.e., a set N such that N ™ X , |N | = k, and
(’xk œ N , ’xi œ X \ N) Èq, xkÍ Ø Èq, xiÍ. Although maximum inner product is the most popular choice
for deep learning vectors, this choice comes without loss of generality as the common cosine similarity and
Euclidean distance we can be trivially mapped to this scenario by normalizing the vectors.

LeanVec accelerates similarity search for deep learning embedding vectors by using the approximation

Èq, xÍ ¥ ÈAq, quant(Bx)Í, (1)

where A, B œ Rd◊D are orthonormal projection matrices, d < D, and quant(v) is a method to quantize
each dimension in v. The projection matrices reduce the number of entries of the database vectors and the
quantization reduces the number of bits per entry. The reduced memory footprint decreases the time it takes

1https://github.com/IntelLabs/ScalableVectorSearch
2https://github.com/IntelLabs/VectorSearchDatasets

3

https://github.com/IntelLabs/ScalableVectorSearch
https://github.com/IntelLabs/VectorSearchDatasets

Published in Transactions on Machine Learning Research (05/2024)

to fetch each vector from memory. Furthermore, the lower dimensionality alleviates the algorithm’s com-
putational e�ort (i.e., requiring fewer fused multiply-add operations). This approximation enables e�cient
inner product calculations with individual database vectors (no batch-processing required), which makes it
ideal for the random memory-access pattern encountered in graph search.

For the quantization step, we use Locally-adaptive Vector Quantization (LVQ), recently introduced by Aguer-
rebere et al. (2023), as it is specifically designed to perform encoding/decoding with great e�ciency, while
incurring negligible search accuracy penalties.

The LeanVec framework is schematically depicted in Figure 1b and its constituents are described next. The
computation of the projection matrices will be presented in sections 2.1 to 2.4. In the following, we refer to
the set {quant(Bxi) | xi œ X } as primary vectors and to the set {quant(xi) | xi œ X } as secondary vectors.
Search. Here, the primary vectors are used for traversing the graph. We compensate for the errors in the
inner-product approximation by retrieving a number of candidates greater than k. Then, we use the set of
secondary vectors, i.e., {quant(xi) | xi œ X }, to re-compute the inner products for those candidates and to
return the top-k. The dimensionality reduction for the query, i.e., the multiplication Aq, is done only once
per search incurring a negligible overhead in the overall runtime.

Graph construction. Only the primary vectors are used for graph construction. The secondary vectors
are not used at this stage. Aguerrebere et al. (2023) had already analyzed the robustness of the graph
construction to quantization with LVQ. Notably, our experimental results show that the robustness extends
to a dimensionality reduction as well. It is important to note that searches are an essential part of the
graph construction process (Malkov and Yashunin, 2018; Fu et al., 2019). As such, our achieved search
acceleration directly translates into graph construction acceleration, as shown in our experimental results.
See Appendix A for a discussion on graph construction and its acceleration.

LeanVec does not use dimensionality reduction to decrease the memory footprint of the similarity search
index, but to accelerate its performance. LeanVec, in its current form, e�ectively increases the total footprint
by keeping both primary and secondary vectors in memory. Without loss of generality and in pursuit of a
reduced footprint, we could only store to D ≠ d dimensions for the secondary vectors (see the discussion in
Section 2.1) which would remove the current overhead. Alternatively, other encodings (e.g., Douze et al.,
2018) can be used for the secondary vectors.

2.1 Dimensionality reduction for in-distribution similarity search

Let us begin with a few standard definitions. The Stiefel manifold is the set of row-orthonormal matrices,
formally defined as St(D, d) = {U œ Rd◊D | UU€ = I}. Let Î•Îop denote the standard spectral norm,
defined as ÎAÎop = sup

)
ÎAvÎ2 / ÎvÎ2 | v œ RD

, v ”= 0
*

. The convex hull C of all row-orthonormal matrices
in St(D, d) is the unit-norm ball of the spectral norm, i.e.,

C = {A | ÎAÎop Æ 1}. (2)

In the in-distribution (ID) case, we compute the projection matrices from the set of database vectors X =)
xi œ RD

*n

i=1. Let d < D. We use a matrix M œ Rd◊D to obtain the low-dimensional representation

xi = M€Mxi + ei, (3)

where ei = (I ≠ M€M)xi is the representation error. A desirable characteristic for M would be to define a
d-dimensional orthogonal subspace of RD, i.e., MM€ = I. Notice that ei can be represented losslessly using
D ≠ d dimensions. Commonly, one would seek to find the matrix M that minimizes the errors ei by solving

min
MœSt(D,d)

...X ≠ M€MX
...

2

F
, (4)

where the matrix X œ RD◊n is obtained by horizontally stacking the database vectors. This is the traditional
Principal Component Analysis (PCA) problem, whose solution is given by keeping the d left singular vectors
of X that correspond to the singular values with larger magnitudes.

With our representation, we approximate Èq, xiÍ ¥ Èq, M€MxiÍ = ÈMq, MxiÍ and thus A = B = M.

4

Published in Transactions on Machine Learning Research (05/2024)

2.2 Query-aware dimensionality reduction for out-of-distribution similarity search

From the ID approximation in Equation (3), we get

Èq, xiÍ ≠ ÈMq, MxiÍ = Èq, eiÍ. (5)

The smaller the magnitude of Èq, eiÍ is, the more accurate the approximation becomes. Observe, however,
that Problem (4) can only produce guarantees about Èq, eiÍ when the queries and the database vectors
are identically distributed. To address this problem, given database vectors X =

)
xi œ RD

*n

i=1 and query
vectors Q =

)
xj œ RD

*m

j=1, we propose to minimize the magnitude of Èqj , eiÍ directly.

Thus, given a representative set of query vectors Q =
)

qj œ RD
*m

j=1, we propose the alternative model

xi = A€Bxi + Ái, (6)

where Ái = (I ≠ A€B)xi is the new representation error. We can now minimize Èqj , ÁiÍ2 for all i, j, yielding
the main optimization problem of this work,

min
A,BœSt(D,d)

...Q€A€BX ≠ Q€X
...

2

F
. (7)

where X œ RD◊n and Q œ RD◊m are obtained by horizontally stacking the database and query vectors,
respectively. We refer to this dimensionality reduction model as LeanVec-OOD. We use LeanVec-OOD for
similarity search with the approximation Èq, xiÍ ¥ ÈAq, BxiÍ, where the lower dimensionality alleviates the
algorithm’s computational burden (i.e., requiring fewer fused multiply-add operations) while simultaneously
reducing memory bandwidth pressure and footprint.

LeanVec-OOD allows suitable matrices for dimensionality reduction to be found and is specifically designed
for the case where X and Q are not drawn from the same distribution. However, if X and Q are drawn from
the same distribution, how does LeanVec compare to PCA? The following proposition addresses this question,
showing that the LeanVec will perform similarly to PCA in the ID case (the proof is in Appendix B).
Proposition 1. Problem (7) is upper bounded by the singular value decomposition of X.

Proposition 1 ensures that one can run LeanVec-OOD safely, without checking if the query and dataset
sets are iso-distributed or not. Of course, LeanVec-OOD comes with the additional requirement of having
a representative query set for training. Thankfully, this is not a ominous requirement as the standard
calibration of the similarity search system (i.e., finding a suitable operating point in the accuracy-speed
trade o� for a given application) already requires having a suitable query set.

Interestingly, for the searches performed as part of the graph construction process, database vectors are
used as queries implying that, even for OOD use cases, the construction algorithm works with ID data.
Proposition 1 ensures that graph construction can be executed with LeanVec-OOD.

E�ciency. Developing the squared Frobenius norm, we can equivalently write Problem (7) as

min
A,BœC

Tr
1

AKQA€BKXB€ + KQKX ≠ 2KQA€BKX
2

, where KQ = QQ€
, KX = XX€ (8)

Before solving this problem, we can precompute the D ◊ D matrices KQ and KX. This removes the
optimization’s dependency in the number of database and query vectors and enables dealing with large
data and query sets with great e�ciency. Additionally, relying on the second-order statistics KQ and KX
prevents from overfitting the query training set. Moreover, the error between a sample covariance matrix
and its expectation converges very quickly (Koltchinskii and Lounici, 2017) with a growing sample size. We
can thus safely use uniform subsampling to compute KQ and KX, as observed in figures 15 and 16 of the
appendix. We need a minimum of D samples (D query and D database vectors) to ensure that these matrices
are not artificially rank-deficient. Using m = 104 queries and n = 105 database vectors for training amounts
to a 13x (20x) query oversampling for D = 512 (D = 768) over the minimum number of samples D.

5

Published in Transactions on Machine Learning Research (05/2024)

Algorithm 1: Frank-Wolfe BCD optimization for
Problem (9) with factor – œ (0, 1).
1 Let A(0)

, B(0) œ C, e.g., A(0) Ω 0 and B(0) Ω 0;
2 for t = 0, . . . , T do
3 “ Ω 1/(t + 1)–;
4 S(t)

A Ω argmax
SœC

ÈS, ≠ ˆ
ˆA f(A(t)

, B(t))Í; Û Eq. (13)

5 A(t+1) Ω (1 ≠ “)A(t) + “S(t)
A ;

6 S(t)
B Ω argmax

SœC
ÈS, ≠ ˆ

ˆB f(A(t+1)
, B(t))Í; Û Eq. (13)

7 B(t+1) Ω (1 ≠ “)B(t) + “S(t)
B ;

1 6 12 17 23 28 34 39 45 51

Iterations

105

106

Lo
ss

10°25

10°19

10°13

10°7

10°1

R
el

at
iv

e
or

th
og

on
al

it
y

er
ro

r

kAA> ° Ik2
F/d

kBB> ° Ik2
F/d

Figure 2: Algorithm 1 converges in 51 itera-
tions for open-images-512-1M with D = 512 and
d = 128. The total runtime is 4 seconds, respec-
tively. Relaxing the orthogonality constraint in-
curs a relatively small error of 10≠3.

2.3 Optimizing the LeanVec-OOD loss with a Frank-Wolfe algorithm

Optimizing Problem (7) is not trivial as it is a constrained optimization problem with a non-convex loss
function. Additionally, its constraints are non-convex as the Stiefel manifold is a non-convex set.3 Here, in
order to make the optimization of Problem (7) more amenable, we define the relaxed problem

min
A,BœC

f(A, B), (9)

where f(A, B) =
...Q€A€BX ≠ Q€X

...
2

F
. (10)

Here, we replace the non-convex constraints involving the Stiefel manifold by convex constraints involving
its convex hull, Equation (2). Now, Problem (9) is convex and has a smooth loss function on A for a fixed
B and vice versa. Not only that, but, as we will see next, these convex problems can be solved e�ciently.
We can thus recur to a block coordinate descent (BCD) method, iteratively fixing one of the variables and
updating the other one.

For these subproblems, we use the Frank-Wolfe algorithm (a.k.a. conditional gradient), a classical optimizer
for solving a problem with a convex and continuously di�erentiable loss function f where the variable belongs
to a convex set D (Frank et al., 1956). Given an initial solution y(0) œ D, the optimization procedure is
given by the following iterations for t = 0, . . . , T ,

s Ω argmax
sœD

Ès, ≠Òf(y(t))Í (11)

y(t+1) Ω (1 ≠ “)y(t) + “s. (12)

Equation (11) computes the direction in D that yields the steepest descent, i.e., the one more aligned
with ≠Òf(y(t)). The update in Equation (12) guarantees that the iterates remain in D by using a convex
combination of elements in D.

The function f in Equation (10) has continuous partial derivatives given by (KQ, KX defined in Problem (8))

ˆ
ˆA f(A, B) = 2BKXB€AKQ ≠ 2BKXKQ, and ˆ

ˆB f(A, B) = 2AKQA€BKX ≠ 2AKQKX. (13)

We now show that Equation (11) has an e�cient solution for our particular subproblems. We can write
both updates as supÎSÎopÆ1ÈS, CÍ, where È·, ·Í is the standard matrix inner product and C œ Rd◊D stands
in either for the d ◊ D gradient matrices ≠ ˆ

ˆA f(A, B) or ≠ ˆ
ˆB f(A, B). This linear problem has a solution

3
Recently, Ablin et al. (2023) proposed e�cient optimization methods on the Stiefel manifold. We leave the study of this

option as future work.

6

Published in Transactions on Machine Learning Research (05/2024)

Algorithm 2: Eigenvector search op-
timization for Problem (15).
1 Find — œ [0, 1] that minimizes the

loss in Problem (14) with
P Ω projection(—);

2 Procedure projection(—)
3 return the matrix P œ St(D, d)

formed by the d eigenvectors of
K— = 1≠—

m KQ + —
n KX with the

largest eigenvalues, where
KQ = QQ€ and KX = XX€;

Figure 3: The loss in Problem (14) is a smooth function of —

when P = eigsearch(—) and has a unique minimizer (di�erent for
each d). Algorithm 2 finds the minimum (marked with a circle)
of this loss. Additional results in Figure 17 of the appendix.

given by S = UV€, where U�V€ = C is the singular value decomposition of C (Jaggi, 2013). This update
is very e�cient for large datasets by working on d ◊ D matrices.

Equipped with these tools, we can pose the complete optimization procedure in Algorithm 1. There,
we update A (resp. B) given a fixed B (resp. A) by running one Frank-Wolfe update. The factor
– œ (0, 1), proposed by Wai et al. (2017) for the step size “ = 1/(t + 1)–, can be replaced by a line
search to speed up the optimization. In our experiments we did not observe a need for such a perfor-
mance tuning. In practice, we use early termination in Algorithm 1, i.e., we stop the iterations whenever---f

1
A(t+1)

, B(t+1)
2

≠ f

1
A(t)

, B(t)
2--- /f

1
A(t)

, B(t)
2

Æ 10≠3, yielding a fast runtime, see Figure 2. In Ap-
pendix C, we prove the convergence rate of Algorithm 1 to a stationary point of Problem (9).

2.4 Optimizing the LeanVec-OOD loss with eigenvector search

In this section, we assume A = B. This assumption leads to a new optimization technique for the LeanVec-
OOD loss. Given P = A = B and eliminating constant factors, Problem (8) can be rewritten as

min
PœSt(D,d)

Tr
1

PKQP€PKXP€ ≠ 2KQP€PKX
2

. (14)

Here, we can see that it would be desirable to align P with both the d leading eigenvectors of KQ and with
those of KX. An intuitive idea would be to set P using the d leading eigenvectors of KQ + KX.

However, the matrices KQ and KX are summations over two di�erent numbers of samples (i.e., n and m are
not necessarily equal). This asymmetry would artificially give more weight, for example, to KX if n ∫ m.
We compensate this imbalance by scaling the loss Problem (14) by the constant 1

nm , obtaining

min
PœSt(D,d)

Tr
1

P
! 1

m KQ
"

P€P
! 1

n KX
"

P€ ≠ 2
! 1

m KQ
"

P€P
! 1

n KX
"2

. (15)

Now, we could set P to the d leading eigenvectors of 1
m KQ + 1

n KX. Although an improvement, this equal
weighting is not empirically optimal. We thus add a scalar factor — œ R+ and examine the eigenvectors of

K— = 1≠—
m KQ + —

n KX. (16)

Empirically, we observe in Figure 3 that the loss in Problem (15) is a smooth function of — when P œ Rd◊D is
formed by the d leading eigenvectors of K— . Moreover, it has a unique minimizer. Our resulting optimization,
summarized in Algorithm 2, uses a derivative-free scalar minimization technique (Brent, 2013) to find the
value of — that provides the optimum balance.

In the ID case, we have 1
m KQ = 1

n KX in expectation. The eigenvectors of K— are invariant to the value of
—. Hence, in this case, Algorithm 2 o�ers a seamless fallback, becoming equivalent to Problem (4).

7

Published in Transactions on Machine Learning Research (05/2024)

Table 1: Evaluated datasets, where n is the number of database vectors and D their dimensionality. In
all cases, we select the target dimensionality d that yields maximum performance at 90% accuracy (10-
recall@10). The datasets are originally encoded using 32-bits floating-point values. We use separate learning
and test query sets, each with 10K entries. The datasets introduced in this work are marked with a star.

I
n

-d
is

t
r
ib

u
t
io

n Dataset D n Similarity d

gist-960-1M 960 1M Euclidean 160

deep-256-1M 256 1M Euclidean 96

open-images-512-1M 512 1M Cosine 160

open-images-512-13M 512 13M Cosine 160

O
u

t
-o

f-
d

is
t
r
ib

u
t
io

n

Dataset D n Similarity d

t2i-200-1M 200 1M Inner prod. 192

t2i-200-10M 200 10M Inner prod. 192

ı
wit-512-1M 512 1M Inner prod. 256

laion-512-1M 512 1M Inner prod. 320

ı
rqa-768-1M 768 1M Inner prod. 160

ı
rqa-768-10M 768 10M Inner prod. 160

Algorithm 2 is highly e�cient and achieves good local minima of the LeanVec-OOD loss but, so far, lacks
theoretical guarantees. However, we can use Algorithm 1 to shed light on the quality of the solution P given
by Algorithm 2. If we set A(0) Ω P and B(0) Ω P in Algorithm 1, Algorithm 1 converges in a handful
of iterations, improving the loss by less than 2% as observed in Figure 18 of the appendix (we use line
search for the gradient step “, to ensure that we stay within the same basin). We observe empirically that
the theoretical guarantees of Algorithm 1 translate to the solutions of Algorithm 2 and posit that further
theoretical analysis may help clarify its empirical performance. Lastly, we point out that both algorithms
perform similarly in the end-to-end similarity search evaluation (see Figure 18 of the appendix).

3 Experimental results

We integrated the proposed LeanVec into the state-of-the-art Scalable Vector Search (SVS) library (Aguer-
rebere et al., 2023) and now present its performance improvements over the state-of-the-art techniques and
open-source libraries for graph search and construction. Diverse ablation studies show the impact of the
di�erent hyperparameters such as, for example, the target dimensionality d and the quantization level.

Datasets. We evaluate the e�ectiveness of our method on a wide range of datasets with varied sizes (n = 1M
to n = 13M) and medium to high dimensionalities (D = 200 to D = 960), containing in-distribution (ID) and
out-of-distribution (OOD) queries, see Table 1. For ID and OOD evaluations, we use standard and recently
introduced datasets (Zhang et al., 2022; Babenko and Lempitsky, 2021; Schuhmann et al., 2021; Aguerrebere
et al., 2024). We also introduce new datasets with di�erent types of OOD characteristics: cross-modality
with wit-512-1M and question-answering with rqa-768-1M and 10M. See Appendix E for more details.

Setup. Throughout the experiments, LeanVec uses LVQ8 for the primary vectors and FP16 for the secondary
vectors. For each dataset, we use the dimensionality d that yields the highest search performance at 90%
accuracy (see Table 1). For LeanVec-OOD, we present the results using Algorithm 1 (Algorithm 2 performs
similarly as shown in Figure 13 of the appendix.) To prevent overfitting, we use two separate query sets
(see Appendix E): one to learn the LeanVec-OOD projection matrices and to calibrate the runtime search
parameters in SVS, and one to generate our results. As standard (Aumüller et al., 2020a), we report the
best out of 10 runs for each method. Further experimental details can be found in Appendix D, including a
discussion on hyperparameter selection in Appendix D.2.

Search performance. For this study, we use the graph built with uncompressed FP16 vectors to evalu-
ate the search performance gains provided by LeanVec over the state-of-the-art methods in SVS on high-
dimensional embedding vectors. Figures 4 and 5 show the search performance on datasets with in-distribution
(ID) and out-of-distribution queries, respectively. In the ID datasets, both LeanVec-ID and LeanVec-OOD
show similar performance, confirming Proposition 1 in practice. LeanVec-OOD provides up to 10.2x and 3.7x
performance gains over FP16 and LVQ, respectively, at a 10-recall@10 of 0.90 on gist-960-1M as it has the
highest dimensionality amongst the evaluated datasets (recall is defined in Appendix D.3). LeanVec-OOD
shines on the OOD datasets, outperforming LeanVec-ID and LVQ by up to 1.5x and 2.8x, respectively, at a

8

Published in Transactions on Machine Learning Research (05/2024)

Figure 4: For in-distribution (ID) datasets, LeanVec-ID and LeanVec-OOD show similar performance and
vast gains of up to 10.2x and 3.7x over FP16 and LVQ, respectively, for 10-recall@10 of 0.90.

Figure 5: Search performance of LeanVec-OOD shines on out-of-distribution (OOD) datasets, outperforming
LeanVec-ID and LVQ by up to 1.5x and 2.8x, respectively, for 10-recall@10 of 0.90.

10-recall@10 of 0.90 on rqa-768-1M. Note that the performance advantage of LeanVec diminishes when the
dimensionality of the dataset is small, as in the case of t2i-200-1M. Lastly, LeanVec does not show significant
gains in laion-512-1M. In this case, linear dimensionality reduction significantly impacts the accuracy of the
search. We plan to address this issue in future work.

Index construction. LeanVec builds graphs up to 8.6x and 4.9x faster than FP16 and LVQ (Figure 6)
without degrading their quality, i.e., their search accuracy and speed (see Figure 14 in the appendix). The
accuracy preservation is a surprising fact, as the graph, being related to the Delaunay graph, is heavily
related to the local topology of the data. Further theoretical studies to understand this phenomenon are
required. In LeanVec’s construction timings, we include the time to learn the projection matrices. We point
out that the LeanVec-OOD learning (Section 2.2) is implemented in Python, which can be easily optimized.

Comparison with the state of the art. In addition to the state-of-the-art SVS-LVQ (Aguerrebere et al.,
2023), we compare LeanVec to three widely adopted methods: HNSWlib (Malkov and Yashunin, 2018),
Vamana (Jayaram Subramanya et al., 2019), and FAISS-IVFPQfs (Johnson et al., 2021). See Appendix D
for further experimental details and configurations. Here, we use LeanVec-OOD as it achieves equal or
better performance than LeanVec-ID in all cases. As shown in Figure 7, the combination of LeanVec with
the SVS library achieves a significant performance lead over the other prevalent similarity search methods on
high-dimensional datasets. SVS-LeanVec provides 1.1x, 1.9x, 2.8x, and 3.7x performance boost on t2i-200-
1M, deep-256-1M, rqa-768-1M, and gist-960-1M, respectively, at a 10-recall@10 of 0.90 over the second-best
method, SVS-LVQ, and 2.4x, 3.8x, 7.8x, and 8.5x, respectively, over the third-best method, FAISS-IVFPQfs.
Note that the advantage gets higher as the dimensionality increases.

LeanVec scaling on larger datasets. We run LeanVec on three datasets of 13 and 10 million vectors:
open-images-512-13M, rqa-768-10M, and t2i-200-10M. As shown in Figure 8, LeanVec continues to show
performance gains in larger datasets. LeanVec-OOD achieves 2x and 2.4x performance benefits over LVQ
in open-images-512-13M and rqa-768-10M, respectively, at a 10-recall@10 of 0.90. Leaving SVS-LVQ aside,
LeanVec-OOD provides much higher benefits when compared to the next best performing methods: 7.9x
and 13.7x over HNSWlib in open-images-512-13M and rqa-768-10M, respectively. On t2i-200-10M, the
benchmark dataset for the OOD track of the NeurIPS’23 Big-ANN competition (Simhadri et al., 2024), we

9

Published in Transactions on Machine Learning Research (05/2024)

Figure 6: LeanVec accelerates graph construction compared to the state-of-the-art SVS runtimes (by up to
8.6x and 4.9x over FP16 and LVQ, respectively). For OOD datasets, the increase in construction time with
LeanVec-OOD over LeanVec-ID brings faster search performance.

Figure 7: The combination of the state-of-the-art SVS library with LeanVec outperforms other mainstream
similarity search methods by a large margin. Compared to FAISS-IVFPQfs, the second-best method outside
SVS, SVS-LeanVec provides up to 8.5x performance gain at a 10-recall@10 of 0.90.

consider the track winner RoarANN (Chen et al., 2024). SVS-LeanVec-OOD and SVS-LVQ perform similarly
due to the original low-dimensionality (D = 200) and outperform RoarANN by 2x at a 10-recall@10 of 0.90.

Ablation study: The target dimensionality. The target dimensionality d required to provide optimal
search performance at a given accuracy depends on multiple factors like the system and dataset character-
istics. As expected, a lower dimensionality yields higher search throughput at the cost of some accuracy
loss. As shown in Figure 9, the performance using values of d that are either too low (d = 128) or too high
(d = 320) for LeanVec-OOD depart from the sweet spot, which is dataset-dependent. With low d, this is
due to a loss in accuracy, which we compensate by retrieving more neighbor candidates for the re-ranking
step. For high d, the memory and computation costs outweigh the diminishing accuracy improvements. For
instance, in gist-960-1M and rqa-768-1M the best performance is reached at d = 160, while in wit-512-1M
the best performance is attained with d = 256.

Ablation study: The level of vector quantization. LeanVec uses dimensionality-reduced primary
vectors to fetch nearest neighbor candidates and secondary vectors to re-rank these candidates (see Section 2).
Both vectors can be quantized using LVQ. In Figure 10, we study the e�ect of using di�erent levels of
quantization. For the primary vectors, using LVQ outperforms not using compression (FP16) and comes
with a lower memory footprint. However, sometimes LVQ4 (using 4 bits per value) is not su�cient, requiring
longer search windows to reach the same as LVQ8 (using 8 bits per value). For the secondary vectors, LVQ8
and FP16 provide similar performances except for t2i-200-1M where FP16 does slightly better. If memory
footprint is important, we recommend using LVQ8 for the secondary vectors at a minimal cost.

Ablation study: Re-ranking. Figure 11 compares the recall of LeanVec variants with two recent neural
network based dimensionality reduction techniques: NN-MDS (Canzar et al., 2021) and CCST (Zhang
et al., 2022). To remove confounding factors, we perform exhaustive search for this experiment. NN-MDS
and CCST only support the Euclidean distance, thus, for inner-product datasets, we used the transformation
by Bachrach et al. (2014) to convert the vectors. Dimensionality is reduced by 4x for each dataset except

10

Published in Transactions on Machine Learning Research (05/2024)

Figure 8: LeanVec exhibits superior performance on large-scale datasets. SVS-LeanVec-OOD achieves perfor-
mance gains of up to 2.4x over SVS-LVQ and 13.7x over HNSWlib at a 10-recall@10 of 0.90. On t2i-200-10M,
compared to RoarANN (Chen et al., 2024), the OOD track winner of the NeurIPS’23 Big-ANN competition
(Simhadri et al., 2024), SVS-LeanVec and SVS-LVQ provide 2x performance gain at a 10-recall@10 of 0.90.

d=128

d=160
d=192

d=256

d=320

SVS-LVQ0.80 0.85 0.90 0.95
10 recall@10

0K

200K

400K

th
ro

ug
hp

ut
 (

Q
P

S
) gist-960-1M

0.80 0.85 0.90 0.95
10 recall@10

0K

200K

400K
wit-512-1M

0.80 0.85 0.90 0.95
10 recall@10

0K

100K

200K

300K rqa-768-1M

Figure 9: The level of dimensionality reduction at which LeanVec provides the best performance varies for
each dataset. However, in all cases, LeanVec brings clear performance improvements over SVS-LVQ, a state-
of-the-art solution that does not involve dimensionality reduction. There is a tradeo� between the accuracy
and search performance at di�erent target dimensionalities d. In most cases, setting d = 256 is a reasonable
compromise with 2-3x bandwidth reduction.

t2i-200-1M where we reduce by 2x.4 For all three methods, the recall at 10 is unacceptably low (e.g., below
0.90). However, the recall at 50 improves drastically. This observation supports the use of re-ranking, as
we can obtain 50 candidates, recompute their distance using secondary vectors to yield a recall at 10 on par
with the recall at 50. LeanVec-OOD shows higher recalls than LeanVec-ID on datasets with OOD queries
(t2i-200-1M and rqa-768-1M). Note that NN-MDS and CCST use complex neural networks to transform the
vectors in low dimensionality, precluding their use for search as the query transformation time is exorbitant.

4 Related Work

The application of linear dimensionality reduction for approximate nearest neighbor search is not new (Deer-
wester et al., 1990; Ailon and Chazelle, 2009). A few studies (Jegou et al., 2010; Gong et al., 2012; Babenko
and Lempitsky, 2014b; Wei et al., 2014) used it for ID queries while the OOD case has been largely ignored.

Hashing (Indyk and Motwani, 1998; Jafari et al., 2021) and learning-to-hash (Wang et al., 2018; Luo et al.,
2023) techniques often struggle to simultaneously achieve high accuracy and high speeds.

Product Quantization (PQ) (Jégou et al., 2011) and other related methods (Ge et al., 2013; Babenko and
Lempitsky, 2014a; Zhang et al., 2014; André et al., 2015; Matsui et al., 2018; Guo et al., 2020; Wang and
Deng, 2020; Johnson et al., 2021; André et al., 2021; Ko et al., 2021) were introduced to handle large datasets
in settings with limited memory capacity (e.g., Jayaram Subramanya et al., 2019; Jaiswal et al., 2022).
With these techniques, the similarity between (partitions of) the query and each corresponding centroid is
precomputed to create a look-up table of partial similarities. The complete similarity computation can then
be posed as a set of indexed gather and accumulate operations on this table, which are generally quite slow
(Pase and Agelastos, 2019). This is exacerbated with an increased dimensionality D: the lookup table does
not fit in L1 cache, which slows down the gather operation even further. Quicker ADC (André et al., 2021)

4
t2i-200-1M requires d > 100 to reach acceptable recalls, but CCST only allows the reduction in factors of 2.

11

Published in Transactions on Machine Learning Research (05/2024)

Figure 10: LeanVec-OOD performance sensitivity to di�erent compression schemes used for the primary
and secondary vectors. Primary vectors show higher performance when compressed with LVQ8. For the
secondary vectors, LVQ8 and FP16 yield similar performance except t2i-200-1M where FP16 does better.

Figure 11: The recall at 10 of all dimensionality reduction techniques su�er (blue bars). However, recall at
50 remains strong. Thus, after selecting 50 candidates and re-ranking them, recall at 10 reaches optimal
levels. Like other state-of-the-art techniques, both LeanVec variants show perfect recall on ID datasets, while
LeanVec-OOD proves superior in OOD datasets. NN-MDS and CCST employ neural networks for non-linear
dimensionality reduction, whose computational complexity precludes their use for search.

o�ers a clever fix by optimizing these table lookup operations using AVX shu�e and blend instructions to
compute the similarity between a query and multiple database elements in parallel. This parallelism can only
be achieved if the database elements are stored contiguously in a transposed fashion. This transposition,
and Quicker ADC by extension, are ideally suited for inverted indices (Johnson et al., 2021) but are not
compatible with the random memory access pattern in graph-based similarity search.

Dimensionality reduction is deeply related to metric learning (Bellet et al., 2013). In the ID case, any
metric learned for the main dataset will be equally suitable for similarity search. However, this metric may
be unsuitable for similarity search in the OOD case. As an instance of deep metric learning (Kaya and
Bilge, 2019), CCST (Zhang et al., 2022) uses transformers to reduce the dimensionality of deep learning
embedding vectors. However, the computational complexity of transformers precludes their usage for search
and circumscribes their application to index construction, where they lead to significant performance gains.
LeanVec outperforms CCST for index construction (Figure 11) and can be equally used for search.

Lastly, He et al. (2021) and Izacard et al. (2020) used PCA in the context of retrieval-augmented language
models, showing that their perplexity score is maintained and their overall speed is boosted. However, they
treat the similarity search system as a black box and do not address out-of-distribution aspects.

5 CONCLUSIONS

In this work, we presented LeanVec, a framework that combines linear dimensionality reduction with vector
quantization to accelerate similarity search on high-dimensional vectors, including those produced by deep
learning models. Additionally, LeanVec speeds up the time-consuming construction of the index used to
conduct the search. We presented LeanVec variants for in-distribution (ID) and out-of-distribution (OOD)
queries, both leading to state-of-the-art results. LeanVec-OOD uses two novel techniques for dimensionality
reduction that consider the query and database distributions to simultaneously boost the accuracy and the

12

Published in Transactions on Machine Learning Research (05/2024)

performance of the framework even further (even matching the performance of LeanVec-ID in the ID setting).
Overall, our extensive and varied experiments show that LeanVec yields state-of-the-art results, with an up
to 3.7x improvement in search throughput and up to 4.9x faster index build time over the best alternatives.

As future work, we will investigate why laion-512-1M is resistant to higher levels of linear dimensionality
reduction (and whether this behavior extends to other datasets) and propose a solution. We also plan to
optimize the LeanVec-OOD learning algorithm, implementing it in C++ using Intel® OneMKL (2023).

References

Ablin, P., Vary, S., Gao, B. and Absil, P.-A. (2023), ‘Infeasible deterministic, stochastic, and variance-
reduction algorithms for optimization under orthogonality constraints’, preprint arXiv:2303.16510 .

Aguerrebere, C., Bhati, I., Hildebrand, M., Tepper, M. and Willke, T. (2023), ‘Similarity search in the blink
of an eye with compressed indices’, Proceedings of the VLDB Endowment 16(11), 3433–3446.

Aguerrebere, C., Hildebrand, M., Bhati, I., Willke, T. and Tepper, M. (2024), ‘Locally-adaptive quantization
for streaming vector search’, Unpublished manuscript .

Ailon, N. and Chazelle, B. (2009), ‘The fast Johnson–Lindenstrauss transform and approximate nearest
neighbors’, SIAM Journal on Computing 39(1), 302–322.

André, F., Kermarrec, A.-M. and Scouarnec, N. L. (2021), ‘Quicker ADC : Unlocking the hidden potential
of product quantization with SIMD’, IEEE Transactions on Pattern Analysis and Machine Intelligence
43(5), 1666–1677.

André, F., Kermarrec, A.-M. and Le Scouarnec, N. (2015), ‘Cache locality is not enough: High-performance
nearest neighbor search with product quantization fast scan’, Proceedings of the VLDB Endowment
9(4), 288–299.

Arya, S. and Mount, D. M. (1993), Approximate nearest neighbor queries in fixed dimensions, in ‘ACM-SIAM
Symposium on Discrete algorithms’, Vol. 93, pp. 271–280.

Aumüller, M., Bernhardsson, E. and Faithfull, A. (2020a), ‘ANN-Benchmarks: A benchmarking tool for
approximate nearest neighbor algorithms’, Information Systems 87, 101374.

Aumüller, M., Bernhardsson, E. and Faithfull, A. (2020b), ‘Benchmarking nearest neighbors’, http:
//ann-benchmarks.com/index.html. GitHub code: http://github.com/erikbern/ann-benchmarks/.
Accessed: 20 Oct. 2023.

Babenko, A. and Lempitsky, V. (2014a), Additive quantization for extreme vector compression, in ‘IEEE
Conference on Computer Vision and Pattern Recognition’, pp. 931–938.

Babenko, A. and Lempitsky, V. (2014b), ‘The inverted multi-index’, IEEE transactions on pattern analysis
and machine intelligence 37(6), 1247–1260.

Babenko, A. and Lempitsky, V. (2021), ‘Benchmarks for billion-scale similarity search’, https://research.
yandex.com/blog/benchmarks-for-billion-scale-similarity-search. Accessed: 15 Feb. 2023.

Bachrach, Y., Finkelstein, Y., Gilad-Bachrach, R., Katzir, L., Koenigstein, N., Nice, N. and Paquet, U.
(2014), Speeding up the Xbox recommender system using a euclidean transformation for inner-product
spaces, in ‘ACM Conference on Recommender systems’.

Bellet, A., Habrard, A. and Sebban, M. (2013), ‘A survey on metric learning for feature vectors and structured
data’, preprint arXiv:1306.6709 .

Blattmann, A., Rombach, R., Oktay, K., Müller, J. and Ommer, B. (2022), ‘Retrieval-augmented di�usion
models’, Advances in Neural Information Processing Systems 35, 15309–15324.

13

http://ann-benchmarks.com/index.html
http://ann-benchmarks.com/index.html
http://github.com/erikbern/ann-benchmarks/
https://research.yandex.com/blog/benchmarks-for-billion-scale-similarity-search
https://research.yandex.com/blog/benchmarks-for-billion-scale-similarity-search

Published in Transactions on Machine Learning Research (05/2024)

Borgeaud, S., Mensch, A., Ho�mann, J., Cai, T., Rutherford, E., Millican, K., Van Den Driessche, G. B.,
Lespiau, J.-B., Damoc, B., Clark, A. et al. (2022), Improving language models by retrieving from trillions
of tokens, in ‘International Conference on Machine Learning’, pp. 2206–2240.

Brent, R. P. (2013), Algorithms for minimization without derivatives, Courier Corporation.

Canzar, S., Do, V. H., JeliÊ, S., Laue, S., MatijeviÊ, D. and Prusina, T. (2021), ‘Metric multidimensional
scaling for large single-cell data sets using neural networks’, preprint bioRxiv:2021.06.24.449725 .

Chen, M., Chen, Y., Ma, R., Zhang, K., Cai, Y., Shi, J., Chen, Y. and Zheng, W. (2024), ‘RoarANN:
Projected bipartite graph for e�cient cross-modal approximate nearest neighbor search’, https://github.
com/matchyc/mysteryann.

Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K. and Harshman, R. (1990), ‘Indexing by latent
semantic analysis’, Journal of the American Society for Information Science 41(6), 391–407.

Devlin, J., Chang, M.-W., Lee, K. and Toutanova, K. (2019), BERT: pre-training of deep bidirectional
transformers for language understanding, in ‘Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies’, pp. 4171–4186.

Douze, M., Sablayrolles, A. and Jégou, H. (2018), Link and code: Fast indexing with graphs and compact
regression codes, in ‘Proceedings of the IEEE conference on computer vision and pattern recognition’,
pp. 3646–3654.

Frank, M., Wolfe, P. et al. (1956), ‘An algorithm for quadratic programming’, Naval Research Logistics
Quarterly 3(1-2), 95–110.

Fu, C., Xiang, C., Wang, C. and Cai, D. (2019), ‘Fast approximate nearest neighbor search with the navi-
gating spreading-out graph’, Proceedings of the VLDB Endowment 12(5), 461–474.

Ge, T., He, K., Ke, Q. and Sun, J. (2013), ‘Optimized product quantization’, IEEE transactions on Pattern
Analysis and Machine Intelligence 36(4), 744–755.

Gidel, G., Pedregosa, F. and Lacoste-Julien, S. (2018), Frank-Wolfe splitting via augmented lagrangian
method, in ‘International Conference on Artificial Intelligence and Statistics’, pp. 1456–1465.

Gong, Y., Lazebnik, S., Gordo, A. and Perronnin, F. (2012), ‘Iterative quantization: A procrustean approach
to learning binary codes for large-scale image retrieval’, IEEE transactions on pattern analysis and machine
intelligence 35(12), 2916–2929.

Grbovic, M., Djuric, N., Radosavljevic, V., Silvestri, F., Baeza-Yates, R., Feng, A., Ordentlich, E., Yang, L.
and Owens, G. (2016), Scalable semantic matching of queries to ads in sponsored search advertising, in
‘International ACM SIGIR conference on Research and Development in Information Retrieval’, pp. 375–
384.

Guo, R., Sun, P., Lindgren, E., Geng, Q., Simcha, D., Chern, F. and Kumar, S. (2020), Accelerating large-
scale inference with anisotropic vector quantization, in ‘International Conference on Machine Learning’,
pp. 3887–3896.

He, J., Neubig, G. and Berg-Kirkpatrick, T. (2021), ‘E�cient nearest neighbor language models’, preprint
arXiv:2109.04212 .

Indyk, P. and Motwani, R. (1998), Approximate nearest neighbors: towards removing the curse of dimen-
sionality, in ‘ACM Symposium on Theory of Computing’, pp. 604–613.

Intel® OneMKL (2023), ‘Developer reference for intel® oneAPI Math Kernel Library - C’, https://www.
intel.com/content/www/us/en/docs/onemkl/developer-reference-c/2023-2/overview.html.

Izacard, G., Petroni, F., Hosseini, L., De Cao, N., Riedel, S. and Grave, E. (2020), ‘A memory e�cient
baseline for open domain question answering’, preprint arXiv:2012.15156 .

14

https://github.com/matchyc/mysteryann
https://github.com/matchyc/mysteryann
https://www.intel.com/content/www/us/en/docs/onemkl/developer-reference-c/2023-2/overview.html
https://www.intel.com/content/www/us/en/docs/onemkl/developer-reference-c/2023-2/overview.html

Published in Transactions on Machine Learning Research (05/2024)

Jafari, O., Maurya, P., Nagarkar, P., Islam, K. M. and Crushev, C. (2021), ‘A survey on locality sensitive
hashing algorithms and their applications’, preprint arXiv:2102.08942 .

Jaggi, M. (2013), Revisiting Frank-Wolfe: Projection-free sparse convex optimization, in ‘International Con-
ference on Machine Learning’, pp. 427–435.

Jaiswal, S., Krishnaswamy, R., Garg, A., Simhadri, H. V. and Agrawal, S. (2022), ‘OOD-DiskANN: E�cient
and scalable graph anns for out-of-distribution queries’, preprint arXiv:2211.12850 .

Jayaram Subramanya, S., Devvrit, F., Simhadri, H. V., Krishnawamy, R. and Kadekodi, R. (2019),
‘DiskANN: Fast accurate billion-point nearest neighbor search on a single node’, Advances in Neural
Information Processing Systems 32.

Jegou, H., Douze, M., Schmid, C. and Perez, P. (2010), Aggregating local descriptors into a compact image
representation, in ‘IEEE Conference on Computer Vision and Pattern Recognition’, IEEE, pp. 3304–3311.

Ji, Y., Zhou, Z., Liu, H. and Davuluri, R. V. (2021), ‘DNABERT: pre-trained bidirectional encoder repre-
sentations from transformers model for DNA-language in genome’, Bioinformatics 37(15), 2112–2120.

Johnson, J., Douze, M. and Jégou, H. (2021), ‘Billion-Scale similarity search with GPUs’, IEEE Transactions
on Big Data 7(3), 535–547.

Jégou, H., Douze, M. and Schmid, C. (2011), ‘Product quantization for nearest neighbor search’, IEEE
Transactions on Pattern Analysis and Machine Intelligence 33(1), 117–128.

Karpukhin, V., Oguz, B., Min, S., Lewis, P., Wu, L., Edunov, S., Chen, D. and Yih, W.-t. (2020), Dense
passage retrieval for open-domain question answering, in ‘Conference on Empirical Methods in Natural
Language Processing’, pp. 6769–6781.

Kaya, M. and Bilge, H. �. (2019), ‘Deep metric learning: A survey’, Symmetry 11(9), 1066.

Ko, A., Keivanloo, I., Lakshman, V. and Schkufza, E. (2021), ‘Low-precision quantization for e�cient nearest
neighbor search’, preprint arXiv:2110.08919 .

Koltchinskii, V. and Lounici, K. (2017), ‘Concentration inequalities and moment bounds for sample covari-
ance operators’, Bernoulli pp. 110–133.

Kuznetsova, A., Rom, H., Alldrin, N., Uijlings, J., Krasin, I., Pont-Tuset, J., Kamali, S., Popov, S., Malloci,
M., Kolesnikov, A., Duerig, T. and Ferrari, V. (2020), ‘The Open Images Dataset V4: Unified image clas-
sification, object detection, and visual relationship detection at scale’, International Journal of Computer
Vision 128(7), 1956–1981.

Lacoste-Julien, S. (2016), ‘Convergence rate of Frank-Wolfe for non-convex objectives’, preprint
arXiv:1607.00345 .

Li, J., Li, D., Savarese, S. and Hoi, S. (2023), ‘Blip-2: Bootstrapping language-image pre-training with frozen
image encoders and large language models’, preprint arXiv:2301.12597 .

Li, Y., Choi, D., Chung, J., Kushman, N., Schrittwieser, J., Leblond, R., Eccles, T., Keeling, J., Gimeno, F.,
Dal Lago, A. et al. (2022), ‘Competition-level code generation with AlphaCode’, Science 378(6624), 1092–
1097.

Lian, D., Wang, H., Liu, Z., Lian, J., Chen, E. and Xie, X. (2020), LightRec: A memory and search-e�cient
recommender system, in ‘The Web Conference’, pp. 695–705.

Luo, X., Wang, H., Wu, D., Chen, C., Deng, M., Huang, J. and Hua, X.-S. (2023), ‘A survey on deep hashing
methods’, ACM Transactions on Knowledge Discovery from Data 17(1), 1–50.

Malkov, Y. A. and Yashunin, D. A. (2018), ‘E�cient and robust approximate nearest neighbor search
using hierarchical navigable small world graphs’, IEEE Transactions on Pattern Analysis and Machine
Intelligence 42(4), 824–836.

15

Published in Transactions on Machine Learning Research (05/2024)

Matsui, Y., Uchida, Y., Jegou, H. and Satoh, S. (2018), ‘A survey of product quantization’, ITE Transactions
on Media Technology and Applications 6(1), 2–10.

Pase, D. M. and Agelastos, A. M. (2019), ‘Performance of gather/scatter operations’.
URL: https://www.osti.gov/biblio/1761952

Peng, L. and Vidal, R. (2023), ‘Block coordinate descent on smooth manifolds’, preprint arXiv:2305.14744 .

Qu, Y., Ding, Y., Liu, J., Liu, K., Ren, R., Zhao, W. X., Dong, D., Wu, H. and Wang, H. (2021), Rock-
etQA: An optimized training approach to dense passage retrieval for open-domain question answering, in
‘Conference of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies’, pp. 5835–5847.

Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G., Askell, A., Mishkin,
P., Clark, J. et al. (2021), Learning transferable visual models from natural language supervision, in
‘International Conference on Machine Learning’, pp. 8748–8763.

Ra�el, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou, Y., Li, W. and Liu, P. J. (2020),
‘Exploring the limits of transfer learning with a unified text-to-text transformer’, The Journal of Machine
Learning Research 21, 140:1–140:67.

Reimers, N. and Gurevych, I. (2020), Making monolingual sentence embeddings multilingual using knowledge
distillation, in ‘Conference on Empirical Methods in Natural Language Processing’.

Schuhmann, C., Vencu, R., Beaumont, R., Kaczmarczyk, R., Mullis, C., Katta, A., Coombes, T., Jitsev,
J. and Komatsuzaki, A. (2021), ‘LAION-400M: open dataset of clip-filtered 400 million image-text pairs’,
Data Centric AI NeurIPS Workshop .

Shvetsova, N., Chen, B., Rouditchenko, A., Thomas, S., Kingsbury, B., Feris, R. S., Harwath, D., Glass,
J. and Kuehne, H. (2022), Everything at once-multi-modal fusion transformer for video retrieval, in
‘IEEE/CVF Conference on Computer Vision and Pattern Recognition’, pp. 20020–20029.

Simhadri, H. V., Aumüller, M., Baranchuk, D., Douze, M., Liberty, E., Ingber, A., Liu, F. and Williams, G.
(2024), ‘NeurIPS 2023 BigANN challenge - practical vector search’, https://big-ann-benchmarks.com/
neurips23.html.

Srinivasan, S., Zhao, L., Ganesh, B., Jacob, B., Espig, M. and Iyer, R. (2009), CMP memory modeling: How
much does accuracy matter?, in ‘Workshop on Modeling, Benchmarking and Simulation’.

Wai, H.-T., Lafond, J., Scaglione, A. and Moulines, E. (2017), ‘Decentralized Frank–Wolfe algorithm for
convex and nonconvex problems’, IEEE Transactions on Automatic Control 62(11), 5522–5537.

Wang, J., Zhang, T., Song, J., Sebe, N. and Shen, H. T. (2018), ‘A survey on learning to hash’, IEEE
Transactions on Pattern Analysis and Machine Intelligence 40(4), 769–790.

Wang, M., Xu, X., Yue, Q. and Wang, Y. (2021), ‘A comprehensive survey and experimental com-
parison of graph-based approximate nearest neighbor search’, Proceedings of the VLDB Endowment
14(11), 1964–1978.

Wang, R. and Deng, D. (2020), ‘DeltaPQ: Lossless product quantization code compression for high dimen-
sional similarity search’, Proceedings of the VLDB Endowment 13(13), 3603–3616.

Wei, B., Guan, T. and Yu, J. (2014), ‘Projected residual vector quantization for ANN search’, IEEE Multi-
Media 21(3), 41–51.

Yu, J., Wang, Z., Vasudevan, V., Yeung, L., Seyedhosseini, M. and Wu, Y. (2022), ‘CoCa: Contrastive
captioners are image-text foundation models’, preprint arXiv:2205.01917 .

Zhang, H., Tang, B., Hu, W. and Wang, X. (2022), Connecting compression spaces with transformer for
approximate nearest neighbor search, in ‘European Conference on Computer Vision’, pp. 515–530.

Zhang, T., Du, C. and Wang, J. (2014), Composite quantization for approximate nearest neighbor search,
in ‘International Conference on Machine Learning’, pp. 838–846.

16

https://big-ann-benchmarks.com/neurips23.html
https://big-ann-benchmarks.com/neurips23.html

	INTRODUCTION
	LeanVec: a framework to accelerate similarity search for high-dimensional vectors
	Dimensionality reduction for in-distribution similarity search
	Query-aware dimensionality reduction for out-of-distribution similarity search
	Optimizing the LeanVec-OOD loss with a Frank-Wolfe algorithm
	Optimizing the LeanVec-OOD loss with eigenvector search

	Experimental results
	Related Work
	CONCLUSIONS
	Speeding up graph construction with dimensionality reduction
	Proof of
	Convergence analysis of the Frank-Wolfe algorithm for LeanVec-OOD
	Experimental setup.
	Baseline approaches
	Finding the optimal target dimensionality d
	Metrics
	System setup

	Datasets
	New text-to-image dataset with OOD queries
	New question-answering dataset with ID and OOD queries

