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ABSTRACT

Modeling data supported on curved manifolds poses significant challenges due to
the need for geometric operations such as geodesic computations, parallel transport,
and geodesic distance, which are often intractable or ill-defined on general Rie-
mannian manifolds. To address this, we propose a novel framework for generative
modeling on manifolds that bypasses these limitations by operating directly on
the orthonormal frame bundle, a geometric space that retains manifold structure
while offering computational compatibility with Euclidean learning. Our method
introduces horizontal diffusion processes whose dynamics and score fields respect
the underlying geometry without requiring manifold-specific neural architectures.
A key insight is that standard Euclidean score networks can be lifted into the frame
bundle to yield geometry-consistent vector fields, enabling seamless integration
of manifold constraints with modern generative modeling techniques. Through
theoretical analysis and experiments on complex curved domains, including the
parametric surfaces and celestial bodies, we demonstrate that our approach achieves
high-quality generation while preserving geometric fidelity. This work provides a
general and scalable pathway for bridging differential geometry and score-based
generative models.

1 INTRODUCTION

Geometric modeling has become an essential paradigm in AI for Science, where data often inhabit
intrinsically curved or structured spaces such as molecules, astrophysical objects, quantum systems,
and materials with nontrivial topology or symmetry (Bronstein et al., 2021; Mathieu et al., 2019).
In these scientific domains, capturing and generating data requires models that faithfully respect
underlying geometric structures, whether they arise from molecular conformation spaces, orientation
groups, biological manifolds, or celestial mechanics. However, the range of geometric structures that
can be explored or modeled in practice has been limited by the structural assumptions and tractability
of existing generative approaches. Many traditional and modern methods remain fundamentally
constrained to spaces that admit global coordinates, explicit embeddings, or closed-form geometric
primitives, which excludes a wide variety of naturally occurring and scientifically relevant manifolds.
As a result, scientific generative modeling often falls short of harnessing the full richness of geometry
observed in real-world datasets, especially as complexity, dimensionality, or curvature increases.

A broad array of geometric generative methods including Riemannian flows, score-based diffusion
models, and manifold-aware normalizing flows have been proposed to address these challenges (Marin
et al., 2021; Brehmer & Cranmer, 2020; Poli et al., 2020; De Bortoli et al., 2022a; Huang et al.,
2022; Thornton et al., 2022; Jo et al., 2023; Bertolini et al., 2025; Courts & Kvinge, 2022). These
approaches typically rely on explicit Riemannian geometric constructions such as exponential and
logarithmic maps, geodesic distances, or volume forms, and often require closed-form geodesic
computation, parallel transport, or spectral analysis of the Laplace-Beltrami operator. While powerful
on highly symmetric or flat (e.g., spheres, flat-torus), such methods encounter fundamental obstacles
on general smooth manifolds: explicit geodesics or spectral decompositions are unavailable and
parallel transport is computationally intensive and not intrinsic to learned geometry. Consequently,
the scientific impact of geometric generative models is limited not only by technical but also by
foundational geometric barriers, restricting their reach in scientific applications.
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To move beyond these fundamental geometric barriers, we seek a truly intrinsic and scalable approach
that does not rely on explicit geodesic computations. An elegant solution is found in the geometric
and probabilistic machinery of the orthonormal frame bundle O(M) over a Riemannian manifold
(M, g), where Euclidean stochastic processes are lifted into tangent spaces via moving frames.
This perspective has deep roots in stochastic differential geometry, originating from the theory of
stochastic development and Brownian motion on manifolds (Eells & Sampson, 1964; Elworthy,
1982; Hsu, 2002). In this framework, the Levi-Civita connection induces a horizontal distribution on
O(M), enabling coordinate-free stochastic flows that preserve intrinsic geometry without relying
on geodesics or spectral decompositions (Kobayashi & Nomizu, 1963a; Elworthy, 1988; Malliavin,
1978). Our work builds on this classical foundation and extends it to the generative modeling setting,
providing a scalable and intrinsically consistent framework that bridges differential geometry with
modern learning paradigms. The main contribution of this work is two-folds:

• Connection-aware Riemannian Score-based Generative Modeling: We introduce the first score-
based generative modeling framework that operates on the orthonormal frame bundle, thereby
enabling efficient and geometrically consistent diffusion modeling on general Riemannian man-
ifolds. By leveraging the intrinsic geometry of the frame bundle, our method is applicable even
to manifolds lacking closed-form analytic structures, and thus overcomes fundamental scalability
limitations present in previous manifold diffusion models.

• Horizontal Lift of Euclidean Process for Training and Inference: We introduce a principled
parameterization that lifts standard Euclidean score networks into the frame bundle as gauge-
equivariant horizontal vector fields, ensuring intrinsic compatibility with manifold geometry and
fiber symmetries. This construction allows seamless adaptation of existing neural architectures for
manifold data, and supports fast, parallelizable sampling and training without requiring model-
specific architectural changes or geometric post-processing.

2 HORIZONTAL DIFFUSION MODELS

This section introduces the basic structure of horizontal diffusion model, together with its associated
training objective and geometric consistency induced by the frame bundle formulation. For notations
not explicitly defined in this section, we refer the reader to Section A.

Motivation. To motivate our construction, we begin by recalling the conventional formulation of
score-based generative modeling, which serves as the computational backbone for many diffusion
models. Given arbitrary potential ϕ• : [0, T ]×Rd → R, consider a following pair of linear stochastic
differential equations (SDEs) which defines a time-symmetric diffusion system in Rd:

dEt = −
1

2
∇ϕt(Et)dt+ dWt, dEs =

[
−1

2
∇ϕs(Es) +∇ log ϱs(Es)

]
ds+ dWs. (1)

These Euclidean forward–reverse SDEs have been widely employed in modern diffusion-based
generative models, where the reverse drift involves the score function∇ log ρt and is approximated
by a neural network sθ. In recent works Bortoli et al. (2022), this framework has been generalized to
Riemannian manifolds by replacing the Euclidean gradient ∇ with the Riemannian gradient ∇M,
yielding the Riemannian forward-reverse dynamics with Riemannian potential ϕ• : [0, T ]×M→ R:

dXt = −
1

2
∇Mϕt(Xt)dt+ dWM

t , dXs =

[
−1

2
∇Mϕs(Xs) +∇M log ρMs (Xs)

]
ds+ dWM

s ,

(2)
where the diffusion Xt ∈M is governed by Brownian motion on the manifold, and all vector fields
respect the intrinsic geometry. Despite providing a principled extension of diffusion modeling to
curved spaces, these models depend critically on explicit geometric operations such as geodesic
distance computations (dM), exponential and logarithmic maps, manifold-specific distribution
estimations (ρMt ), and tailored Riemannian score networks (sMθ ) as highlighted in Table 1. These
requirements introduce significant computational and analytical challenges, particularly for general
curved manifolds where closed-form geodesic and exponential solutions are unavailable (i.e., first
row). Moreover, the absence of Christoffel symbols (Γk

ij) and gauge symmetry (G) further restricts
their scalability and poses substantial obstacles to exploring more general manifold geometries, where
connection structures and fiber-wise symmetries become indispensable for accurate modeling.
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Method dM exp log ρMt sM g Γk
ij G sEuc

Closed-form? ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✓

De Bortoli et al. (2022b) ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗
Thornton et al. (2022) ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗
Chen & Lipman (2024) ✓ ✓ ✓ ✓ △ ✗ ✗ ✗ ✗
Diepeveen et al. (2025b) △ △ △ ✓ △ ✗ ✗ ✗ ✗

Ours ✗ ✗ △ ✗ ✗ ✓ ✓ ✓ ✓

Table 1: Comparison of geometric operators used in existing Riemannian generative models.

Our proposed framework uniquely addresses these limitations by avoiding explicit manifold-specific
computations while instead leveraging Euclidean score networks (sEuc

θ ). In particular, by operating
directly on the orthonormal frame bundle, we make use of horizontal lifts defined through connection
induced vector fields to ensure that the manifold’s intrinsic structures such as metric (g), Christoffel
symbols (Γk

ij), and gauge consistency (G) are naturally incorporated. As a result, the method not
only circumvents the need for costly manifold-dependent operations but also significantly enhances
scalability and computational efficiency, enabling high-quality generative modeling across diverse
and complex manifolds. Please refer to Section B for a detailed comparison.

Frame-Connection Geometry. For rigor, we review the geometric structure of the orthonormal
frame bundle, which underlies our construction of horizontal score flows. Additional notations not
included in the main paper are provided in the appendix. Let (M, g) be a connected, oriented, d-
dimensional Riemannian manifold. The orthonormal frame bundle O(M) is a principal O(d)-bundle
overM, with projection map π : O(M) → M. Each point U = (x, e) ∈ O(M) consists of a
base point x ∈ M and a linear isometry e : Rd → TxM, called a frame, which maps the standard
Euclidean basis to a basis of the tangent space at x satisfying e⊤g(x)e = I . The bundle admits a
natural right action by O(d): for h ∈ O(d), the action is given by U · h = (x, eh). This group action
preserves the orthonormality of frames and defines the structure of the principal bundle.

The Levi–Civita connection ∇M on a Riemannian manifold (M, g) induces a principal connection
on the orthonormal frame bundle O(M) via a so(d)-valued 1-form ωU(V ) := e−1 (∇π∗V e) for any
V ∈ TUO(M). A tangent vector V is said to be horizontal if ωU(V ) = 0, and the corresponding
horizontal distribution is given by HorU := kerωU ⊂ TUO(M). The canonical basis for this distri-
bution consists of horizontal vector fields {Ha := He[ε

a]}da=1, where each Ha satisfies ω(Ha) = 0
and π∗Ha = ea := e(εa), with {εa}da=1 the standard basis of Rd. To lift Euclidean forward–reverse
SDEs to the frame bundle in a geometry-consistent way, we define a family of horizontal vector
fields He(U)[w] that map directions w ∈ Rd to elements of the horizontal distribution HU at
U = (x, e). Each H[w] is characterized by π∗He(U)[w] = e(w) ∈ TxM and ωU(He(U)) = 0.
Hence, it represents the horizontal lift of the tangent vector e(w) ∈ TxM. In local coordinates, using
Christoffel symbols Γk

ij(x), the horizontal lift conditioned on Euclidean vector w can be written in
coordinate-free form as a differential operator acting on smooth functions f ∈ C∞(O(M)):

TUO(M) ∋ He(U)[w]f = waeia
∂f

∂xi
−
(
waΓk

ij(x)e
j
a

∂f

∂eki

)
Horizontal Lift←−−−−−−−−−−−→ w ∈ TwRd. (3)

The operator H is central to our construction, as it describes the horizontal lift of a Euclidean
vector field to the frame-valued vector fields, preserving the intrinsic geometry defined by the
Levi–Civita connection. This lift ensures that stochastic dynamics remain consistent with the
manifold geometry without the need for global geodesic or exponential maps. This construction will
serve as a computationally feasible mechanism for importing the Euclidean score-based framework
into manifold settings, without requiring well-known special geometric structure.

Horizontal Diffusion Models. To extend score-based generative modeling beyond Riemannian
settings, we formulate lifted score dynamics on the orthonormal frame bundle, where geometric
constraints are naturally encoded through horizontal flows. In this setting, the Riemannian gradient
∇M on the base manifold is replaced by the horizontal gradient∇Hor on the frame bundle, yielding
an intrinsic representation of the diffusion process that respects the manifold’s geometry through
horizontal flows.

iii



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Definition 2.1 (Horizontal Diffusion Models). Let ε = {ε1, . . . , εd} denote the standard basis of
Rd. The horizontal diffusion models are the system of forward-reverse Stratonovich SDEs on the
orthonormal frame bundle O(M), with local coordinate Ut = (xt, et) ∈ O(M), evolves according
to [

dUt

dUs

]
=

[
− 1

2∇
HorΦt(Ut)

1
2∇

HorΦs(Us) + sHor(s,Us)

] [
dt
ds

]⊺
+

[
Ha(Ut)
Ha(Us)

] [
◦ dW a

t
◦ dW a

s

]⊺
, (4)

Then, the horizontal score function sHor is defined as time-indexed horizontal vector fields

sHor(t,Ut) := ∇Hor log ρHor
t (Ut), (5)

which lies in the horizontal distribution HorUt
⊂ TUt

O(M) at each point Ut ∈ O(M). Here, ρHor
t

denotes a Markovian probability distribution with respect to forward frame dynamics, i.e.,Ut ∼ ρHor
t .

In this paper, we define horizontal diffusion models as pairs of noise and data generative processes
(Ut,Us) that extend the Riemannian formulation Bortoli et al. (2022) while preserving coordinate
invariance without requiring global charts or extrinsic parameterizations. The overall mechanism
follows the general principle of score-based diffusion models. The forward process first injects
noise until reaching a stationary distribution U∞ ∼ ρHor

∞ , whereas the reverse process progressively
removes noise to recover the original initial distribution U0 ∼ ρHor

0 . The canonical projection
π : O(M) →M, defined by π(x, e) = x for (x, e) ∈ O(M), ensures that the data distribution is
obtained by projecting the reversed horizontal diffusion trajectory, ρM0 = π#ρ

Hor
s→0. In this context,

the ultimate goal of score-based generative modeling is to approximate the true score function with
neural networks, i.e., sHor

θ ≈ sHor to reconstruct data distribution ρM0 . Before proceeding, one may
naturally ask how the probability distribution ρHor

t arises in this setting and how it relates to the data
distribution ρM on the manifold. Proposition D.4 and Corollary D.5 establish the existence of the
marginal distribution ρHor

t : O(M)→ R+ on the frame bundle. It is defined via the joint evolution
of the initial frame U0 and the lifted process Ut ∈ O(M), as follows:

ρHor
t (U) =

∫
O(M)

pHor
t (U | U0)ρ0(U0)dλ0(U0)

t→∞−−−→ exp (−Φ(U)) , (6)

where λ0 is the volume measure on O(M), ρ0 is the initial distribution, and pHor
t (U|U0) is the

conditional transition kernel of the lifted process. While our horizontal diffusion models are defined
on the orthonormal frame bundle O(M), the ultimate objective is to model distributions over the
base manifold M. The lifted process allows us to define the marginal manifold distribution by
pushing forward the frame bundle distribution: Xt ∼ ρMt (x) :=

∫
π−1(x)

ρHor
t (U)dHaar(U), where

Haar(U) is the Haar measure on the fiber π−1(x) ≃ O(d).

Horizontal Score-Matching. With the horizontal diffusion processes in place, we next introduce
the score-matching principle as the foundation of our learning objective. We aim to develop a
score-matching framework formulated directly on the frame bundle as an extended counterpart of
conventional approaches. In this setting, the learnable score field sHor is constrained to lie in the
horizontal distribution, and the discrepancy between forward and reverse drifts is evaluated within
this structure. To formalize, we introduce a geometry-aware divergence functional called a horizontal
Kullback–Leibler divergence as follows:

Proposition 2.2 (Horizontal KL Divergence). Let bt(Ut) and b̃t(Uθ
t ) be horizontal drift vector fields

on the frame bundle O(M), with path laws Ut ∼ νb and Uθ
t ∼ νb̃ representing distinct horizontal

diffusions. Let ∥ · ∥H denote the Sasaki metric norm on the horizontal subbundle HU , and ΓO(M) the
parallel transport operator. Given the projection PHor(Z) := Z − ω(Z)♯ · U ,a which maps tangent
vectors to the horizontal subspace HorU ⊂ TUO(M), the horizontal KL divergence is given by

KLHor[νb̃∥νb] =
1

2
Eνb̃

[∫ T

0

∥PHor(∆t)∥2H dt

]
, ∆t := Γ

O(M)

Uθ
t→Ut

(
b̃t(U

θ
t )
)
− bt(Ut). (7)

aHere, ω(Z)♯ denotes the fundamental vertical vector field associated with the Lie algebra element ω(Z) ∈
o(d). We follow the same notation suggested in Kobayashi & Nomizu (1963b).
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The projection operator PHor serves to constrain all vector fields within the horizontal distribution
during divergence computation, thereby guaranteeing both geometric consistency and invariance
under orthogonal transformations. However, despite the rigorous theoretical basis provided by
Proposition 2.2 for defining the horizontal KL divergence, practical numerical implementation
remains challenging, primarily due to the necessity of path-wise parallel transport computations. To
address this issue, we introduce a computationally feasible alternative leveraging gauge-equivariance,
thereby enabling efficient adaptation of standard Euclidean neural network architectures.

Horizontal Parameterization Trick. To address the computational issue in evaluating Horizontal
KL divergence, we propose a simple yet effective detour. Rather than directly comparing vector fields
on the frame bundle, we lift all geometric quantities via a horizontal lifting map Ψ1, which maps
Euclidean latent path E• ∈ C([0, T ],Rd) to gauge-equivariant quotient path space:

Ψ : C([0, T ],Rd)
He−−→ C([0, T ],O(M))

/
G, Ψ(E•) := [U•] = {U• · g• | g• ∈ G}, (8)

where G := C([0, T ], O(d)) denotes the group of time-dependent gauge transformations. This
embedding ensures that geometric evaluations are performed at canonical representatives in the
quotient space and eliminates the need for explicit parallel transport. We refer to this approach as
a parameterization trick, where the gradient of potential and the horizontal score function can be
parameterized as their euclidean counterparts:

Proposition 2.3 (Horizontal Lift of Gradients and Scores). Let Et ∈ Rd be the solution to
Euclidean Stratonovich SDE, and let Ut = (xt, et) ∈ O(M) be its horizontal lift defined by
dUt = Het(Ut)

[
◦ dEt

]
. Then, for every t ≥ 0,

∇HorΦ(Ut) = Het(Ut)
[
∇ϕ(Et)

]
, ∇Hor log ρHor

t (Ut) = Het(Ut)
[
∇ log ρt(Et)

]
, (9)

sHor(t,Ut) := ∇Hor log ρHor
t (Ut) = Het(Ut)

[
s(t,Et)

]
=

d∑
a=1

sa(t,Et)Ha(Ut). (10)

The result follows directly from the definition of the quotient mapping Ψ. Since horizontal vector
fields such as gradients and score functions are invariant under gauge transformations, their evaluation
can be consistently performed on any element within the equivalence class. Proposition 2.3 formalizes
this principle by demonstrating that the horizontal gradient and score at a lifted point Ut can be
obtained by applying the horizontal lift operator Het(Ut)[·] to Euclidean counterparts at Et.

This construction enables a practical simplification of the geometric framework. By expressing all
horizontal quantities in terms of the latent Euclidean process, the formulation avoids the need for
explicit parallel transport or projection operations, which are otherwise computationally expensive
and numerically sensitive. Consequently, the horizontal KL divergence introduced in equation 7
admits the following Euclidean-form objective, which remains faithful to the geometry O(M):

KLHor(θ) := KLHor[νb ∥ νb̃θ ] =
1

2

∫ T

0

σ2
tEEt∼ρt

[
∥s(t,Et)− sθ(t,Et)∥2E

]
dt, (11)

Here, b = 1
2∇

HorΦ+ sHor and b̃θ = 1
2∇

HorΦ+ sHor
θ denote the true (i.e., sHor) and model-induced

(i.e., sHor
θ ) reverse vector fields along horizontal trajectories, respectively. This result marks a key

advancement in manifold-based score modeling. It enables direct computation of the distribution in
equation 6 using the lifted Euclidean score, bypassing the need for explicit transition distribution ρHor

t
based on spectral decomposition. Most importantly, the path discrepancy in equation 11 simplifies to
a Euclidean score-matching loss, allowing the use of standard Euclidean score networks sθ without
architectural changes, while maintaining geometric consistency.

Horizontal Ornstein-Uhlenbeck Bridge Process. Extending the previously developed horizon-
tal diffusion framework and associated score-matching methodology, we now provide a rigorous
construction of the horizontal diffusion model by explicitly specifying both the potential function
and the parameterization of the lifted dynamics. We construct the Euclidean potential function ϕ in
equation 1, which characterizes latent Euclidean Ornstein-Uhlenbeck (OU) processes as follows:

ϕ(t, E) = − γt
σ2
t

∥E∥2 + 2λt
σ2
t

⟨vt, E⟩, dEt = [λte
−1
t vt − γtEt], dt+ σt ◦ dWt, E0 = 0, (12)

1For a detailed proof and definition, please refer to Proposition D.1 in Appendix.
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where the coefficients (γt, λt, σt) > 0 and the time-dependent vector vt ∈ Rd are judiciously chosen
to satisfy model requirements. Notably, this OU process admits a Gaussian transition density for
the forward process, i.e., Et ∼ N (0,Σt). Next, we lift this construction by harnessing the result in
Proposition 2.3 to define the horizontal Ornstein-Uhlenbeck bridge process on the frame bundle:

dUt =
∑
a

(
2γtε

a + σ2
t v

a
t

)
Ha(Ut)dt+

∑
a

σtHa(Ut) ◦ dW a
t , Σt = σ⊤

t σt, (13)

where Ha(Ut) := Het(Ut)[ε
a] denote fundamental horizontal vector fields. We specifically design

the coefficients such that γt, λt → 0 with γt ≪ λt. In this configuration, the drift components vanish,
and the horizontal diffusion asymptotically reduces to pure horizontal Brownian motion. Under
this design choice, the stationary distribution asymptotically converges to the uniform measure with
respect to the Sasaki volume (i.e., product measure of Volg and HaarO(d)):

dρHor
∞ (x, e) = dVolSas(x, e) = dVolg(x)⊗ dHaarO(d)(e). (14)

The samples from stationary distribution can be efficiently generated by independently drawing
base points from dVolg(x) and frames from dHaarO(d)(e), as summarized in Alg. 1. To ensure
that the reverse process drives samples toward the data distribution, we introduce the bridge vectors
vt = e−1

t logxt
(x0), which act as time-dependent attraction terms directing the dynamics back to the

initial state x0. These vectors satisfy the zero-mean property Ex•∼ρHor
•

[v•] = 0, as established in
Lemma C.3. As a result, the Euclidean score simplifies to s(t, E) = −ΣtE for some time-variant
covariance matrix Σt, and the corresponding reverse horizontal dynamics are given by

dUs = −
∑
a

(
2γsε

a + σ2
sv

a
s

)
Ha(Us)ds+ sHor(s,Us)ds+

∑
a

σsHa(Us) ◦ dW a
s , (15)

where the horizontal score function takes the form sHor(s,Us) := −
∑

a,b[Σs]abε
b
sHa(Us). In

practice, the logarithmic map logxt
(x0) is approximated by its second-order expansion involving as

logxt
(x0) ≈ −∆x +

1

2
Γ(xt)[∆x,∆x],

[
Γ(xt)[∆x,∆x]

]i
=
∑
j,k

Γi
jk(xt)(∆x)

j(∆x)
k. (16)

where ∆x := xt−x0 denotes the discrepancy between coordinates. In sampling the reverse horizontal
dynamics, we proceeds as follows: At each reverse step, we compute the bridge vector bs using the
above second-order approximation of Γ to evaluate the score function sHor, and apply the update
rule specified in the reverse SDE. Proposition D.2 shows that the reverse dynamics in equation 15
reconstruct the original data distribution ρM0 . Please refer to Alg. 5 for a detailed algorithm.

Training Neural Networks. To instantiate the proposed horizontal diffusion framework, we pa-
rameterize the learnable score field via neural networks lifted to the frame bundle. Specifically, the
horizontal score is defined as NNHor(t,U; θ) =

∑
a NN(t,Ea; θ)Ha, where NN(t, E) is a standard

Euclidean neural network and Ha are canonical horizontal vector fields. The network output decom-
poses as NN(t, E) = sθ(t, E) + v(t, θ), with v(t, θ) representing an auxiliary drift aligned with the
data-driven bridge vector. The training objective is

J (θ) = KLHor(θ) + Ex0,xt ∥v(t, θ)− vt(xt, x0)∥
2
, (17)

where KLHor(θ) is the horizontal KL divergence from Proposition 2.2, and the second term regular-
izes the auxiliary drift toward the analytic bridge vector. This composite objective enforces geometric
consistency while enabling efficient training. Importantly, as formalized below, the built-in gauge
equivariance of the horizontal score field induces an intrinsic symmetry that streamlines optimization.

Gauge Equivariance G. In the frame-connection geometry, gauge equivariance refers to the
invariance of geometric quantities under fiber-wise orthogonal transformations. Let us define the
map Rh : O(M) → O(M) as Rh(U) := U · h. A horizontal vector field V : O(M) → TO(M)
is said to be gauge-equivariant if it satisfies V (U · h) = (Rh)∗V (U) for all h ∈ O(d), where
(Rh)∗ : TUO(M) → TU ·hO(M) is the pushforward of the right action Rh. Importantly, this
geometric property is not only intrinsic to the frame bundle structure, but also plays a pivotal role
in the design of our learning framework. Gauge equivariance guarantees geometric consistency,
enables modeling on the quotient spaceO(M)/O(d), and enhances generalization while maintaining
full compatibility with standard Euclidean parameterizations. Corollary 2.4 shows that the gauge

vi
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equivariance is naturally incorporated into our model via equation 8 by construction, where the
horizontal score function is defined as the contraction of a Euclidean score with canonical horizontal
directions.

Proposition 2.4 (Gauge Equivariance of horizontal score function). The proposed horizontal score
function is gauge-equivariant in the sense that sHor(t, U · h) = (Rh)∗s

Hor(t, U) for all h ∈ O(d).

Corollary 2.5 (Isometry–equivariance of the base score). Let Isom :M→M be any isometry on
M. Then, the manifold score function satisfies the equivariance: sM

(
t, Isom(x)

)
= Isom∗s

M(t, x),
where Isom∗x : TxM→ TIsom(x)M denotes the differential (push-forward) of Isom at the point x.

Equivariance of score-based diffusion models in the Euclidean setting has been extensively studied to
ensure model robustness and efficiency under symmetry transformations Köhler et al. (2020); Hooge-
boom et al. (2022). Proposition 2.4 and Corollary 2.5 extend this essential notion of equivariance to
geometric manifolds, thus addressing a critical limitation in existing manifold-based diffusion frame-
works. Unlike previous methods De Bortoli et al. (2022a); Thornton et al. (2022); Diepeveen et al.
(2025a), which typically lack intrinsic compatibility with fiber symmetries (i.e., gauge-inequivariant)
and depend heavily on global geometric constructions, our proposed formulation inherently respects
fiber symmetries, resulting in a more principled and geometrically consistent approach.

The Price of Horizontal Lift. Despite its effectiveness in facilitating generative modeling on complex
manifolds via the lifting of Euclidean scores to the frame bundle, our methodology is subject to
inherent geometric distortions. The subsequent theorem rigorously characterizes the worst-case
horizontal KL divergence through a uniform generalization bound and elucidates how both the
expressivity of the neural parameterization and the intrinsic curvature of the manifold fundamentally
constrain the statistical performance of our approach.

Theorem 2.6 (informal). Assume the neural score networks θ ∈ Θ are parameterized as L-layer,
width W feedforward ReLU networks with spectral norm bounds. Assume the underlying manifold
M has bounded sectional curvature κmax and diameter DM := Diam(M). Let n be the number
of samples per time in evaluating objective function, M the number of time steps. Then for any
δ ∈ (0, 1), with probability at least 1− δ, the following holds:

sup
θ∈Θ

KLHor(θ) ≤
6CM(κmax, DM) · CNN(L,W )

n1/4
+

√
C2

SubG(σtm ,Σ) log(1/δ)

4nM
. (18)

where CM encodes the geometric dependency on the manifold, CNN depends on the neural score
network architecture and norm constraints, and CSubG is the sub-Gaussian complexity constant.

Here, CM is proportional to the maximal sectional curvature κmax, indicating that the generalization
error bound increases as the manifold becomes more curved or non-flat. Consequently, to achieve
accurate generalization on highly curved manifolds, a sufficiently large number of samples n is
required to guarantee statistical convergence of the KL bound. This highlights the increased sample
complexity and learning difficulty associated with nontrivial geometric structure. Please refer to
equation 89 in the appendix for the explicit expressions of all constants (i.e., CM, CNN, CSubG).

3 RELATED WORK

A broad range of methods has emerged to address the challenge of generative modeling on curved
manifolds, notably through the use of Riemannian flows, score-based diffusion models, and manifold-
aware normalizing flows. Brehmer & Cranmer (2020) developed flows designed for simultaneous
manifold learning and density estimation, significantly advancing manifold-aware generative model-
ing. Further contributions Poli et al. (2020) introduced Riemannian continuous normalizing flows.
De Bortoli et al. (2022b) expanded this direction with Riemannian score-based generative modeling,
combining diffusion models and Riemannian geometry. Chen & Lipman (2024) generalized flow-
matching on Riemannian manifolds. Huang et al. (2022) proposed Riemannian diffusion models
tailored for geometric data, and Thornton et al. (2022) explored Riemannian diffusion Schrödinger
bridges. Jo et al. (2023) developed generative models via mixtures of Riemannian bridge processes,
introducing a flexible approach to manifold-constrained generative modeling. Recently, Lou et al.
(2023) expanded these concepts to Riemannian manifolds, demonstrating how scalable diffusion
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Figure 1: Density Estimation on the torus and catenoid surfaces. For each surface, the ground truth
distribution (left) and the distribution generated by ours (right) are shown. Both surfaces are equipped with a
Gaussian mixture, and the generated samples closely match the true multi-modal density.

Model Density Qubit (CP1) Sphere (Sd) Torus (Td) Catenoid† Enner† Dupin†

Oracle ρ̄M 0.032 / 0.136 0.045 / 0.158 0.097 / 0.345 0.055 / 0.385 0.101 / 0.323 0.112 / 0.710

Riem SGM ρM 0.101 / 0.355 0.159 / 0.569 0.213 / 0.711 0.421 / 1.552 0.534 / 1.764 0.811 / 2.022
Riem CFM ρM 0.083 / 0.303 0.141 / 0.488 0.205 / 0.667 0.379 / 1.426 0.497 / 1.621 0.768 / 1.884
Bundle NF ρP (M) − − 0.196 / 0.635 − − 0.746 / 1.842
Scaling ρM 0.085 / 0.244 0.125 / 0.525 0.211 / 0.606 0.317 / 1.356 0.530 / 1.466 0.803 / 1.762
Pull NF ρM 0.138 / 0.431 0.192 / 0.714 0.284 / 0.918 0.531 / 2.051 0.677 / 2.264 1.082 / 2.699

HDM (Ours) ρHor 0.075 / 0.235 0.079 / 0.268 0.102 / 0.351 0.161 / 0.721 0.211 / 0.654 0.327 / 0.959

Table 2: Comparison of Density Estimation on Parametric Surfaces and Quantum State Manifold with
sliced 2-Wasserstein distance. Lower values indicate better performance. Prior results on Catenoid, Enner, and
Dupin marked with a dagger symbol† are highlighted in light red. Further details are provided in Section E.

models can facilitate generative modeling on manifolds by leveraging Riemannian score matching.
Courts & Kvinge (2022) presented generative models on bundle networks leveraging fiber bundles.

4 EXPERIMENTS

In this section, we empirically evaluate our framework on a diverse collection of manifolds, en-
compassing both analytically defined surfaces and real-world scientific domains. Specifically, our
experiments span (i) family of parametric surfaces and (ii) complex real-world geometric structures
parameterized by spherical harmonics. In all experiments, the quality of the generated samples
is evaluated using the (maximal) sliced 2-Wasserstein distance (i.e.,SW2,MSW2), which mea-
sures the discrepancy between the empirical and generated distributions. Section E contains the
implementation details on the experimental setup and additional experiments, ablation study.

Synthetic Dataset: Parametric Surfaces. As our first benchmark for generative modeling on curved
geometries, we construct synthetic datasets based on five analytically defined parametric surfaces:
Sphere, Torus, Catenoid, Enner, and Dupin where each surface is described by an explicit embedded
parametric equation. For the more intricate cases, the embeddings admit compact forms such as
Catenoid (u, v) 7→ (cosh v cosu, cosh v sinu, v), Enner (u, v) 7→ (cosu cos v, cosu sin v, sinu),
and Dupin (u, v) 7→

(
cosu

1+sin v ,
sinu

1+sin v ,
cos v

1+sin v

)
. Notably, with the exception of the sphere or flat torus,

explicit analytic forms for the probability density and geodesic equations are generally infeasible
for these parametric surfaces. For each surface, samples are drawn from a Riemannian GMM
pM(x) =

∑K
k=1 akNM(x;µk,Σk) where

∑
k ak = 1 and NM denotes the Gaussian distribution

defined on the manifold with Gaussian parameters (µk,Σk).

Real-world Dataset: Quantum Qubit. Utilizing the QDataSet Perrier et al. (2022), which provides
experimentally realistic quantum-control simulations, we construct datasets explicitly supported on
the qubit manifold CP1. Importantly, the raw QDataSet does not directly supply Bloch vectors, but
rather 18-dimensional expectation values of an informationally complete operator set. To recover
the underlying physical states, we perform a linear inversion tomography step: given measurement
operators {Vk}18k=1 and observed expectations Ek = Tr(ρVk), we solve an overdetermined least-
squares system to estimate the Bloch vector r = (rx, ry, rz), enforcing ∥r∥ ≤ 1. This procedure
yields the corresponding density matrices ρ = 1

2 (I + rxσx + ryσy + rzσz), thus projecting the
QDataSet outputs onto CP1 ∼= S2.

Fig. 1 and Table 2 summarize both the qualitative and quantitative generative modeling results on
these benchmark surfaces. ρ̄M is the oracle reference, which measures the sliced Wasserstein distance
between the ground-truth and reconstructed results using the theoretically exact reverse dynamics.
Existing geometric methods lack native support for complex surfaces, requiring additional geometric
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Figure 3: Density Estimation of Craters on Asteroid and Moon. (Left) Reconstructed crater density on the
Eros asteroid. (Second) True geological label-specific crater densities on the lunar surface. (Right two) Density
estimation results for IM and NC regions on the Moon, demonstrating label-conditional modeling performance.

Dataset Riem SGM Riem CFM Scaling NF Pull NF HDM (Ours)

Density ρS
2×R ρS

2×R ρS
2×R ρS

2×R ρHor

Eros 0.691 / 1.104 0.707 / 1.198 0.672 / 1.078 0.689 / 1.170 0.312 / 0.470
Moon (IM) 1.110 / 1.754 1.200 / 1.896 1.258 / 2.015 - 0.512 / 0.754
Moon (NC) 1.201 / 1.798 1.116 / 1.675 1.285 / 2.197 - 0.489 / 0.726
Anatomy 0.866 / 1.389 0.920 / 1.472 0.825 / 1.405 - 0.414 / 0.606

Table 3: Density Estimation on Astronomy and Anatomy Datasets. Each entry reports sliced 2-Wasserstein
distance (left) and maximal sliced 2-Wasserstein distance (right). Lower values indicate better performance.

projections to canonical manifolds (Sec E). While such projections inherently break isometry and
introduce additional distortion, it limits their performance. By contrast, our framework operates on
the frame bundle, eliminating the need for projection, achieving consistently superior results.

Real-world Dataset: Spherical Harmonics. A widely used technique for representing the geometry
of closed surfaces is the expansion of the radial function in spherical harmonics. In this approach,
parametrized surfaces are given as r(θ, φ) = r0(θ, φ) +

∑
l,m cl,mYl,m(θ, φ), where (θ, φ) are

spherical angular coordinates, Yl,m denote spherical harmonics of degree l and order m, and cl,m
are scalar coefficients. Upon this structure, the first experiment considers modeling density on the
surfaces of various celestial bodies, exemplified by the Moon and asteroids (i.e., Eros).

Figure 2: True (left) and gen-
erated (right) tumor probability
on human anatomy (i.e., Knee).

Figure 3 illustrates the modeling of crater densities on curved celes-
tial surfaces. The first image shows the density approximation of
craters on the asteroid Eros, generated by our model. The second
image visualizes the entire set of labeled craters on the Moon dataset,
where each crater is colored according to its class and plotted with
height information. The last two images present generated samples
for the IM and NC crater labels on the Moon surface. In the second
application, we consider the task of modeling tumor distributions on
human anatomical surfaces (i.e., knee). As summarized in Table 3
and Figures 3 and 2, our experimental results demonstrate that the
proposed method consistently achieves high-fidelity density estimation on a diverse set of surfaces,
ranging from celestial bodies (i.e., asteroid Eros and lunar craters) to human anatomical surfaces (i.e.,
knee tumors). While existing methods typically rely on embedding data into the ambient product
space S2 × R and subsequently projecting it back onto the target manifold, induced projection
distortions limit reconstruction quality. In contrast, our framework operates natively on the frame
bundle, preserving geometric integrity without projection-induced distortions. The consistently lower
sliced Wasserstein distances achieved by our approach underscore its superior capability to model
intricate data distributions across general geometry.

5 CONCLUSION

In this work, we introduced Horizontal Diffusion Models, a novel framework for generative modeling
on general Riemannian manifolds leveraging orthonormal frame bundles. By horizontally lifting
standard Euclidean diffusion processes to the frame bundle, our approach maintains geometric
consistency without explicit manifold-specific computations. Experiments across synthetic and
real-world manifold datasets demonstrate superior performance, validating our model’s scalability
and geometric fidelity. This establishes a robust, geometry-aware pathway for future generative
modeling research on complex, curved manifolds.
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A NOTATION TABLE

For the reader’s convenience, we provide a summary of the primary symbols and notation employed
in this work. The table below serves as a quick reference for all key terms and variables.

Symbol Meaning

M, g d-dimensional Riemannian manifold and its metric
π : O(M)→M Orthonormal frame bundle (principal O(d)-bundle)
(xi, eia) Local coordinates on O(M); ea is the a-th frame vector at x
ω Levi–Civita connection 1-form on O(M)

Ω = dω + 1
2 [ω, ω] Curvature 2-form of ω

He[w] Horizontal lift of w ∈ Rd at e, giving a vector in TUO(M)

Ut,Et Horizontal diffusion on O(M) and latent Euclidean process in Rd

νt = L(Ut,Et) Joint law of (Ut,Et) on O(M)× Rd

ρt Density of Et on Rd

ρHor
t (U) Density of Ut on O(M) (Sasaki volume)
ρMt (x) = π#ρ

Hor
t Induced marginal on M

sHor
θ (t, U) Learnable horizontal score field on O(M)

s∗, s True Euclidean score functions∇ log ρt

sM∗ , sM True manifold score functions∇M log ρMt
sHor
∗ , sHor True horizontal score functions∇Hor log ρHor

t

ν[0,T ], ν̃[0,T ] Path laws of forward / reverse horizontal SDEs on [0, T ]

HorU ,VerU Horizontal and vertical subspaces of TUO(M)

LE
t Generator of horizontal diffusion conditioned on latent path E[0,t]

pEt (U | U0) Conditional transition density on O(M) given E[0,t]

∇Hor Horizontal gradient;∇Horf = PHor(∇f)
PHor Projection TO(M)→ H onto horizontal subbundle
KLHor Geometry-aware horizontal Kullback–Leibler divergence
Wt, W̃s :=Ws Forward and reverse Rd Brownian motions
σ
(a)
t Ha Horizontal noise field in lifted SDE

Γk
ij , R

k
irs Christoffel symbols and Riemann curvature components of (M, g)

∥·∥g, ⟨·, ·⟩g Norm / inner product induced by g (Sasaki metric on H)
δU Dirac measure at U ∈ O(M)

LawP(X) Distribution of X under probability measure P
TUO(M) Tangent space of O(M) at U

Table 4: Summary of notation used throughout the paper.
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B TECHNICAL COMPARISON WITH EXISTING WORKS

Numerical Computation of ρMt . A principal technique in classical score-based generative modeling
on manifolds is the spectral decomposition of the Laplace–Beltrami operator. Given a compact
Riemannian manifoldM, the Laplace–Beltrami operator ∆M admits a discrete set of eigenpairs
{(λk, ρk)}∞k=0 such that

∆Mρk = λkρk, ρM(x) =

∞∑
k=0

ckρk(x), k = 0, 1, 2, . . . ,

with the eigenfunctions {ρk} forming an orthonormal basis ofL2(M). Existing methods approximate
probability densities or construct kernels on the manifold by expanding density ρM in spectral basis.

This facilitates analytic calculation of heat kernels and allows the construction of diffusion models via
explicit spectral representations. However, the effectiveness of this approach is fundamentally limited
to manifolds where the spectral data can be computed in closed form. For general, non-symmetric, or
high-curvature manifolds, such explicit decomposition is unavailable or infeasible. Therefore, these
methods struggle to scale to arbitrary geometric domains. In contrast, our framework obviates the
need for direct spectral decomposition by employing horizontal diffusion processes on the frame
bundle. In particular, as established in Proposition 2.3, the horizontal lifting of the Euclidean score
function enables an indirect yet scalable mechanism for approximating the data score function on the
manifold, irrespective of the analytic tractability or the spectral properties of the underlying space.

Neural Network Architecture. Conventional manifold-based diffusion models often require
geometry-specific neural network architectures, with model design and parameterization tailored indi-
vidually to the underlying manifold for spheres, tori, or more general curved spaces. In contrast, our
framework employs a single, unified neural network architecture across all experiments, irrespective
of the specific manifold geometry. This universality is made possible by the use of the horizontal
lift, which intrinsically adapts the representation of the score function to the manifold structure at
hand. As a result, our approach achieves geometric adaptability without necessitating bespoke neural
network designs for each manifold, enabling a consistent and scalable modeling paradigm.

Geometric Operations. A central feature of our approach is the definition of data dynamics through
frame rotations on the orthonormal frame bundle, thereby intrinsically modeling geodesic flows of
the underlying manifold. This construction is rooted in Elworthy’s stochastic development Elwor-
thy (1988), wherein the evolution of a point on the manifold is governed jointly with its moving
frame.Mathematically, the evolution of the frame et along a trajectory xt is described by the stochastic
differential equation:

det = −
∑
i,j,k

Γk
ij(xt) e

j
t ◦ dxitEk,

where Γk
ij(xt) are the Christoffel symbols of the Levi-Civita connection, and Ek denotes the standard

basis in Rd. This formulation ensures that the frame is parallel transported along the curve xt,
faithfully encoding the connection-induced geometry.

Through this coupled evolution of position and frame, our method is able to realize geodesic and
stochastic flows on the manifold in an intrinsic, coordinate-free manner. As a consequence, we
are able to model data dynamics without requiring access to global distance functions, explicit
geodesic computations. Instead, all essential geometric operations are performed intrinsically via
the connection and horizontal lift, emphasizing the mathematical and computational scalability of
our framework for generative modeling on general manifolds. In contrast, the heavy reliance of
most existing methods on global geometric operations critically limits their practical scalability and
application to broader classes of manifolds.
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C LEMMAS

Lemma C.1. Let He be the horizontal lift operator defined for w ∈ Rd, e ∈ Ox(M). Then, for
the differentiable test function f ∈ C∞(O(M)), this operator can be written in local coordinate as
follows:

He(U)[w]f = waeia
∂f

∂xi
− waΓk

ij(x)e
j
a

∂f

∂eki
, (19)

where U = (x, e) ∈ O(M), and Γk
ij(x) are the Christoffel symbols of the Levi-Civita connection at

x ∈M. Then, the map He : TwRd → TUO(M) is linear for all w ∈ Rd.

Proof. To verify linearity, it suffices to evaluate the action of the horizontal lift He(U)[w] on an
arbitrary smooth test function f ∈ C∞(O(M)) and confirm that it behaves linearly in w ∈ Rd.
Let w1, w2 ∈ Rd be arbitrary vectors, and λ ∈ R be a scalar. We consider the expression for
He[U ][w1 + λw2]f , and expand it using the definition in equation 19:

He(U)[w1 + λw2]f = (wa
1 + λwa

2)e
i
a

∂f

∂xi
− (wa

1 + λwa
2)Γ

k
ij(x)e

j
a

∂f

∂eki

= wa
1e

i
a

∂f

∂xi
− wa

1Γ
k
ij(x)e

j
a

∂f

∂eki

+ λ

(
wa

2e
i
a

∂f

∂xi
− wa

2Γ
k
ij(x)e

j
a

∂f

∂eki

)
= He[U ][w1]f + λHe[U ][w2]f.

Since this equality holds for arbitrary smooth functions f , it follows that the operators themselves
satisfy

He(U)[w1 + λw2]f = He(U)[w1]f + λHe(U)[w2]f.

This verifies that He : Rd → TUO(M) is indeed a linear map. Intuitively, this reflects the fact that
the horizontal vector field He(U)[w] lifts the direction w ∈ Rd into the tangent space of the frame
bundle in a manner that is linear in the input direction. The connection terms (involving Γk

ij) are
themselves linear in w and frame components eja, and do not interfere with the additive structure.
Thus, linear combinations of Euclidean directions lift to linear combinations of horizontal vectors,
preserving the vector space structure in the lifted geometry.

Lemma C.2. [Itô–Stratonovich equivalence for linear SDEs] Let Et ∈ Rd be a stochastic process
satisfying the following linear Itô SDE:

dEt = αtEtdt+ σ2
t dWt, (20)

where αt ∈ R and σ2
t ∈ R are deterministic scalar-valued, time-dependent coefficients, andWt ∈ Rd

is a standard d-dimensional Brownian motion with independent components. Then, the equivalent
Stratonovich SDE takes the same differential form:

◦dEt = αtEtdt+ σ2
t ◦ dWt. (21)

That is, the Itô and Stratonovich formulations are identical for this system.

Proof. To convert an Itô SDE to its Stratonovich form, we apply the classical Itô–Stratonovich
correction formula for vector-valued SDEs. Suppose an Itô SDE is given by

dEt = bt(Et)dt+Σt(Et)dWt,

where bt : Rd → Rd and Σt : Rd → Rd×m. Then the corresponding Stratonovich form is

◦dEt = bt(Et)dt+Σt(Et) ◦ dWt +
1

2

m∑
j=1

(
∂Σ

(·,j)
t

∂Et
· Σ(·,j)

t

)
dt,
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where Σ
(·,j)
t denotes the j-th column of Σt, and the derivative is applied componentwise. Now

consider our case:
bt(Et) = αtEt, Σt(Et) = σ2

t Id,

where Id is the d× d identity matrix. Importantly, Σt does not depend on Et, since both σ2
t and Id

are independent of the state. Thus, for each component i = 1, . . . , d, and each Brownian dimension
j = 1, . . . , d, we have:

∂Σ
(i,j)
t

∂Ek
t

= 0 for all i, j, k,

because Σ
(i,j)
t = σ2

t δij is a constant. Therefore, the Itô–Stratonovich correction term vanishes:

1

2

d∑
j=1

(
∂Σ

(·,j)
t

∂Et
· Σ(·,j)

t

)
= 0.

As a result, the Stratonovich form of equation 20 becomes:

◦dEt = αtEtdt+ σ2
t ◦ dWt,

which matches exactly the original form of the Itô SDE. This shows that when the diffusion coefficient
is constant depending only on time, the Itô and Stratonovich interpretations yield the same formal
expression.

Lemma C.3 (Zero mean of the bridge vector). Let (Ut,Et) = (xt, et,Et) be a weak solution
to the coupled system with deterministic initial condition x0 ∈ M . Define the bridge vector by
vt := e−1

t logxt
(x0) ∈ Rd. Then, the expectation of the bridge vector with respect to the data

distribution at time t vanishes, i.e.,Ext∼ρM
t
[vt] = 0.

Proof. For simplicity, we work on normal coordinates y = (y1, . . . , yd) centered at x0, so that
x = expx0

(y) with gij(0) = δij and Γk
ij(0) = 0. Write ∆x := xt − x0 in these coordinates and let

et ∈ O(d) be the orthonormal frame obtained by parallel transport along the trajectory x•. Define
the bridge vector

vt = e−1
t logxt

(x0), logxt
(x0) := −Ξ(∆x) ∈ Txt

M,

where the Riemannian logarithm enjoys the Christoffel–type expansion

Ξi(∆x) = (∆x)
i + 1

2Γ
i
jk(x0)(∆x)

j(∆x)
k +O

(
|∆x|3

)
.

Here ∂iΞj(0) = δji because, at the origin of normal coordinates, the logarithm coincides with
the identity on Tx0M , and ∂i∂jΞk(0) = Γk

ij(x0) since the second-order Taylor coefficient of the
logarithm is governed by the Christoffel symbols of the Levi–Civita connection. The position
increment obeys the Stratonovich SDE

d∆x = b(∆x)dt+ σdWt,

with an isotropic mean-reverting drift b : Rd → Rd given by b(h) = −λrad(|h|)h for some positive
radial rate λrad. Thus the function b points toward x0 and is an odd function of ∆x. Following by the
definition of horizontal distribution, the frame evolves according to

det = −et ◦ ω(et)dWt,

where ω(et) ∈ o(d) is the connection one-form evaluated along the horizontal lift. Applying Itô’s
formula to vt = e−1

t Ξ(∆x) gives

dvt = −e−1
t ω(et)Ξ(∆x)dWt − e−1

t ∂iΞ(∆x)b
i(∆x)dt−−1

t ∂iΞ(∆x)dWt

+
σ2

2
e−1
t ∂i∂jΞ(∆x)dt. (22)

The two stochastic integrals are centered martingales, so their expectations vanish. In the drift part
the factor ∂iΞ(∆x) = δi +O(|∆x|2) is even, whereas b(∆x) = −λ(|∆x|)∆x is odd; the product is
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therefore odd, and its expectation under the reflection-symmetric law of ∆x is zero. For the second
deterministic term we use ∂i∂jΞ(∆x) = Γij(x0) +O(|∆x|), an even function in ∆x, while e−1

t is
an O(d) matrix whose distribution is rotationally invariant owing to the isotropic driving noise on the
fibers, hence E[e−1

t ] = 0 and the expectation of this term also vanishes.

E[vt] = E[v0]− E
[∫ t

0

e−1
s ∂iΞ(∆x(s))b

i(∆x(s))ds

]
+
σ2

2
E
[∫ t

0

e−1
s ∂i∂jΞ(∆x(s))ds

]
. (23)

From the Christoffel expansion, ∂iΞ(∆x) = δi +O(∆x) is an even function of ∆x, whereas bi(∆x)
is odd. Thus, the integrand of second term in right-hand side of equation 23 is odd in ∆x and

E
[
e−1
s ∂iΞ(∆x(s))b

i(∆x(s))
]
= 0. (24)

The leading order of ∂i∂jΞk(∆x(s)) = Γk
ij(x0) +O(∆x) is symmetric in (i, j), and independent of

es. Since es is uniformly distributed by Haar measure with respect to the group O(d),

E
[
e−1
s

]
= 0, E

[
e−1
s ∂i∂jΞ(∆x(s))

]
= 0. (25)

Combining the above, both integrands vanish in expectation for all s, and thus

E[vt] = E[v0] = 0. (26)
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D PROOFS

The proof is organized into two main parts. First, Section D.1 characterizes the mathematical
properties of the horizontal diffusion model, including time-reversal, gauge equivariance, and the
structure of the horizontal lift. Second, Section D.2 presents the learning methodology for this model
and establish generalization bounds that hold for arbitrary underlying geometries.

D.1 THEORETICAL GROUNDS OF HORIZONTAL DIFFUSION MODELS

Proposition D.1 (Horizontal lift of gradients and scores). Let Et ∈ Rd be the solution to Eu-
clidean Stratonovich SDE, and let Ut = (xt, et) ∈ O(M) be its horizontal lift defined by
dUt = Het(Ut)

[
◦ dEt

]
. Then, for every t ≥ 0,

∇HorΦ(Ut) = Het(Ut)
[
∇ϕ(Et)

]
, ∇Hor log ρHor

t (Ut) = Het(Ut)
[
∇ log ρt(Et)

]
, (27)

sHor(t,Ut) := ∇Hor log ρHor
t (Ut) = Het(Ut)

[
s(t,Et)

]
=

d∑
a=1

sa(t,Et)Ha(Ut). (28)

Proof. Let E• = (Et)t∈[0,T ] ∈ C([0, T ],Rd) be a continuous Euclidean path, and let (x0, e0) ∈
O(M) be a fixed initial base point and frame. Define the horizontal lift path U• = (xt, et)t∈[0,T ] as
the solution to the Stratonovich SDE

U0 = (x0, e0), dUt = Het(Ut)
[
◦dEt

]
,

where Het(Ut) denotes the horizontal lift operator at Ut. Let G := C([0, T ], O(d)) denote the group
of time-dependent orthogonal gauge transformations, acting on U• by

(xt, et) · g• := (xt, etgt), for g• = (gt)t∈[0,T ] ∈ G.

Then, the horizontal lifting quotient map is defined by

Ψ : C([0, T ],Rd) −→ C([0, T ],O(M))
/
G

Ψ(E•) :=
[
HorLift(x0,e0)(E•)

]
=
{
HorLift(x0,e0)(E•) · g•

∣∣g• ∈ G} ,
where HorLift(x0,e0)(E•) denotes the unique horizontal lift path starting from (x0, e0). Now, given
a smooth scalar field ϕ : Rd → R, we can define its gauge-invariant extension to the frame bundle by

(Φ ◦Ψ)(E•)t = Φ(Ut) = ϕ(πE(Ut)) = ϕ(Et),

where the projection map is defined as πE : O(M)→ Rd, πE(x, e) := e−1(ξ) and ξ ∈ TxM is the
tangent vector whose Euclidean coordinates with respect to the frame e are E = e−1(ξ). Since any
right action e 7→ eg with g ∈ O(d) leaves E invariant, it follows that

Φ
(
(x, e) · g

)
= Φ(x, e), ∀g ∈ O(d),

so Φ is basic and constant along the vertical fibers. In particular, this construction implies that its
gradient is always horizontal, and for any U = (x, e) and w ∈ Rd, we have

He(U)[w]Φ = ⟨∇ϕ(E), w⟩Rd ,

whereE = e−1(ξ). While {Ha}da=1 is an orthonormal basis of HorUt and linear functional following
by Lemma C.2, the Riesz representation of linear functionals implies that there exists a pair of
functions (Φ, ϕ) such that following identification holds:

∇HorΦ(Ut) = Het(Ut)
[
∇ϕ(Et)

]
,

The equality establishes the first equality in equation 27. Let ρt denote the density of Et on Rd

and ρHor
t the density of Ut on O(M) with respect to the canonical Haar–Sasaki volume. Let O(M)

be equipped with the product measure dµ := dVolg ⊗ dHaarO(d), where dVolg is the Riemannian
volume on M and the right–Haar measure on O(d) is normalized so that the total mass of each fiber
is 1. Because the right action u 7→ u · g is an isometry of the Sasaki metric, dµ is invariant under this
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action: dµ(u) = dµ(u · g) for every g ∈ O(d). Hence for any integrable function F : O(M)→ R
the disintegration formula reads∫

O(M)

F (u)dµ(u) =

∫
M

(∫
O(d)

F
(
u · g

)
dHaarO(d)(g)

)
dVolg(x).

Applying this with F (u) = 1{u∈A} for any measurable A ⊂ O(M) shows that pushing µ forward
along the projection πE(u) = e−1(ξ) yields exactly the Lebesgue measure on Rd. Consequently, we
relate the both density representations for each t

ρHor
t (Ut) = ρt(Et), U• = Ψ(E•).

because the fiber integral over O(d) contributes the factor 1. This establishes that Ψ preserves
probability mass along the O(d)-fibers. Since Ψ is measure–preserving along fibers (i.e., the vertical
O(d)–orbit has unit Haar mass), the push–forward formula gives ρHor

t (Ut) = ρt(Et). Taking log
with ϕ = log ρt yields

∇Hor log ρHor
t (Ut) = Het(Ut)

[
∇ log ρt(Et)

]
,

which is the second equality in equation 27. Next, we define the Euclidean score s(t, E) :=
∇ log ρt(E). Combining results above, we finally have the parameterized representation of horizontal
score function.

sHor(t, Ut) := ∇Hor log ρHor
t (Ut) = Het(Ut)

[
s(t, Et)

]
.

Proposition D.2 (Gauge Equivariance of horizontal score function). The proposed horizontal score
function is gauge-equivariant in the sense that sHor(t, U · h) = (Rh)∗s

Hor(t, U) for all h ∈ O(d).

Proof. The frame bundleO(M) is a principalO(d)-bundle overMwith projection π : O(M)→M
and right action Rh. Fix an Ehresmann connection HU ⊂ TUO(M) satisfying the right-invariance
property dRh(HU ) = HU ·h. Denote by ω ∈ Ω1(O(M); o(d)) its connection one–form (i.e.,
ω|HU

= 0, R∗
hω = Adh−1 ω). For U = (x, e) ∈ O(M) and w ∈ Rd define the horizontal lift

H(U)[w] ∈ HU such that dπU
(
H(U)[w]

)
= ew. (29)

Right-invariance of the connection implies the fundamental identity

H
(
U · h

)
[w] = dRh

(
H(U)[h−1w]

)
, ∀h ∈ O(d). (30)

Let Et ∈ Rd be the latent Euclidean variable with Euclidean score s(t, Et) ∈ Rd. Following equa-
tion ??,

sHor(t, U) := H(U)
[
s(t, Et)

]
∈ HorU .

Because s(t, ·) depends only on the norm of Et, it is O(d)-invariant: s(t, Et) = s
(
t, (Et)h

−1
)

for
all h ∈ O(d). For the fixed h ∈ O(d), we use the result in equation 30 and the O(d)-invariance of s:

sHor
(
t, U · h

)
= H

(
U · h

)[
s(t, Et)

]
= dRh

(
H(U)

[
h−1s(t, Et)

])
= dRh

(
H(U)

[
s(t, Et)

])
= (Rh)∗s

Hor(t, U),

which is exactly the same result in statement. Furthermore, this transformation preserves the
horizontality of the score with respect to the transformed connection one-form. As a next step,
we show that the proposed horizontal score fields are compatible with connection 1-form under gauge
transformation, showing that transformed sHor preserves horizontality. Recall that given any gauge
transformation g : O(M) → O(d), the transformed connection one-form ( Kobayashi & Nomizu
(1996)) is defined as follows:

ωg := Adg−1 ω + g−1dg,
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and the transformed horizontal score is denoted by sHor
g := dRg(s

Hor) under right action. By the
principal bundle structure equation, for any X ∈ TUO(M), the transformed connection wg satisfies
the following relation:

ωg
(
dRg[X]

)
= Adg−1

(
ω(dRg[X])

)
+ (g−1dg)

(
dRg[X]

)
= Adg−1

(
Adg−1

(
ω(X)

))
+ g−1

(
dg ◦ dRg

)
[X]

= Adg−2

(
ω(X)

)
+ g−1d(g ◦Rg)[X]

= Adg−2

(
ω(X)

)
+ g−1

(
dg
)
[X · g].

(31)

The Maurer–Cartan form g−1dg on O(d) is locally given by g−1dg = (g−1)ikdg
k
j , where dgkj are

the coordinate 1-forms on O(d). A right-invariant vector field on the frame bundle O(M) can be
expressed as X = ξij

∂
∂gi

j
for ξ ∈ o(d). Evaluating the Maurer-Cartan form on such a vertical vector

gives

(g−1dg)

[
∂

∂gab

]
= (g−1)ik

∂gkj
∂gab

= (g−1)iaδ
b
j .

However, since g−1dg is a left-invariant 1-form on O(d), it vanishes on right-invariant vector fields:

(g−1dg)[X] = 0 ∀ X is vertical.
While w(X) = 0 by the property of X , it directly gives the vanishing Adg−2(w(X)) = 0, and
wg(sHor

g ) = 0 in Eq equation 31. Thus, the transformed score sHor
g remains horizontal with respect

to ωg . This establishes that the gauge-equivariant property is compatible with changes of connection,
and the horizontality of the score is preserved under general gauge transformations.

Corollary D.3 (Isometry–equivariance of the base score). Let Isom :M→M be any isometry on
M. Then, the manifold score function satisfies the equivariance: sM

(
t, Isom(x)

)
= Isom∗s

M(t, x),
where Isom∗x : TxM→ TIsom(x)M denotes the differential (push-forward) of Isom at the point x.

Proof. Given any orthonormal frame U = (x, e) ∈ O(M), where x ∈M , the isometry Isom to the
frame bundle is defined by

Ĩsom(U) :=
(
Isom(x), dIsomx ◦ e

)
,

where dIsomx : TxM → TIsom(x)M is the differential of Isom evaluated at x. Recall from
Proposition D.2 that the horizontal score field sHor is equivariant under bundle automorphisms
induced by isometries. In particular, for every U ∈ O(M) and all t ≥ 0,

sHor
(
t, Ĩsom(U)

)
= dĨsomU

[
sHor(t, U)

]
.

Here, dĨsomU is the differential of the lifted map Ĩsom at U . Next, consider the projection map
π : O(M)→M , given by π(x, e) = x. The pushforward of a horizontal vector under dπ yields a
tangent vector on M . Notably, the differentials intertwine with the action of the isometry via the
naturality property:

dπ
Ĩsom(U)

◦ dĨsomU = dIsomx ◦ dπU ,
where we used that dπ(x,e) is the projection from the frame to the base, and dIsomx is the tangent
map of Isom at x. The base score field is defined as the pushforward of the horizontal score:

sM(t, x) := dπU
[
sHor(t, U)

]
, U = (x, e).

Combining the result above, we have:

sM
(
t, Isom(x)

)
= dπ

Ĩsom(U)

[
sHor(t, Ĩsom(U))

]
= dπ

Ĩsom(U)
◦ dĨsomU

[
sHor(t, U)

]
= dIsomx ◦ dπU

[
sHor(t, U)

]
= dIsomx

[
sM(t, x)

]
.
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Thus, we obtain the desired equivariance property and completes the proof:

sM
(
t, Isom(x)

)
= Isom∗xs

M(t, x).

Proposition D.4 (Forward Markovian Density of Horizontal Diffusions on Frame-Bundle). Let
νt = L(Ut,Et) be law of joint dynamics Ut and Et and ρHor

t be its marginal distribution onM.
Then the horizontal transition distribution pEt (U | U0) for every x ∈M is well-defined and given as
follows:

dνt(U,E) =
[∫

O(M)

pEt (U | U0)ρ0(U0)dλ(U0)
]
N (mt,Σt;E)dEdλ(U). (32)

where pEt is Markovian transition between frame-valued states with respect to horizontal lift of dEt.
Furthermore, the reverse dynamics Us is a time-reversal process of Ut in the sense of Haussmann &
Pardoux (1986).

Remark. The expression of dνt can be regarded as an extension of the Euclidean lifted distribution
representation. In particular, the conditional distribution pEt (U | U0) on the frame bundle generalizes
the Euclidean transition by incorporating the horizontal lift structure associated with ◦dEt, while
the marginal distribution ρ0(U0) corresponds to the lifted initial distribution. This decomposition
preserves a structurally analogous form to the Euclidean lifted dynamics, now formulated on the
orthonormal frame bundle O(M) under the horizontal lifting framework.

Proof. In order to show the existence the Markovian transition pEt , we first show that there exists
a well-defined Kolmogorov equation ∂tpEt = (LE

t )
∗pEt such that pEt is solution to the equation.

A direct expansion with respect to the definition of horizontal lift yields the time-inhomogeneous
generator

LE
t = −Ea

t e
k
aΓ

l
jke

m
l

∂

∂emj
+Ea

t e
j
a

∂

∂xj

+
σ2
t

2

[
Ea

tE
b
te

i
ae

j
b

∂2

∂xi∂xj
− 2Ea

tE
b
te

i
aΓ

k
mje

j
b

∂2

∂xi∂emk
+Ea

tE
b
tΓ

k
ijΓ

l
mne

j
ae

n
b

∂2

∂eik∂e
m
l

]
.

Our goal is to show that the solution to Kolmogorov equation pEt is Markovian transition, which
ensures well-definedness of ρHor

t . In order to do this, we first show that the linear combination of
horizontal operators {Ha}1≤a≤d is still hypoelliptic.

Fix a local trivialization of the orthonormal frame bundle π : O(M) → M with local coordinates
(xi, eia), where 1 ≤ i, a ≤ d. Here, xi represent local coordinates on the base manifold M , while
eia denote the components of the frame e ∈ O(M), i.e., the i-th coordinate of the a-th orthonormal
vector in the frame. We denote by

ω ∈ ω1(O(M), o(d)), ω = dω +
1

2
[ω, ω]

the Levi–Civita connection one-form and its associated curvature two-form, respectively, defined
on the frame bundle. The connection one-form ω encodes the infinitesimal rotation of frames along
paths in the manifold, while ω captures the failure of parallel transport to be path-independent and
thus represents the intrinsic curvature of the manifold.

Since the Levi–Civita connection is torsion-free and metric-compatible, the associated horizontal
vector fields project to commuting vector fields on the base manifold. More concretely, let us define
ea := π∗Ha as the pushforward of the horizontal lift of the standard Euclidean basis vector εa ∈ Rd.
Then, by torsion-freeness of the connection, we have

[ea, eb] = ∇eaeb −∇ebea = 0.
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This implies that the projection of the Lie bracket of the corresponding horizontal vector fields on the
frame bundle vanishes:

π∗[He(U)[εa], He(U)[εb]] = π∗[Ha, Hb] = [ea, eb] = 0.

Hence, the Lie bracket [Ha, Hb] must be entirely contained in the vertical distribution VerU,
i.e., [Ha, Hb] ∈ Γ(VerU), which indicates that it encodes frame rotation rather than displacement
on the base. To compute this vertical component explicitly, we recall Cartan’s structure equation
for horizontal vector fields Y,Z ∈ Γ(HorU). Specifically, the curvature two-form is related to the
connection one-form:

ω(Y, Z) = dω(Y, Z) = Y (ω(Z))− Z(ω(Y ))− ω([Y, Z]).

Since Y,Z are horizontal, ω(Y ) = ω(Z) = 0, so this reduces to ω([Y,Z]) = −ω(Y,Z). Applying
this sign-reversing identity, one can obtain

ω([Ha, Hb]) = −ω(Ha, Hb) = −ω(ea, eb) := −ω(εa, εb), (33)

where we abuse notation and denote the evaluation on the frame bundle via Euclidean indices. To
proceed, we express the curvature two-form ω = (ωk

i) in local coordinates using the standard
decomposition into Riemann curvature components:

ωk
i =

1

2
Rk

irsdx
r ∧ dxs, Rk

irs = ∂rΓ
k
is − ∂sΓk

ir + Γk
lrΓ

l
is − Γk

lsΓ
l
ir

where the components of the Riemann curvature tensor are associated with the Levi–Civita connection
∇M. Next, to evaluate the curvature on the horizontal vector fields Ha and Hb, we recall that their
coordinate expressions satisfy dxr(Ha) = era and dxs(Hb) = esb , so the curvature form evaluates as

ω(a, b) = ωk
i(Ha, He,εb) = Rk

irse
r
ae

s
b.

The resulting value lies in the Lie algebra o(d), and its corresponding vertical lift defines a vertical
vector field:

ω(εa, εb)
∗ =

(
Rk

irse
r
ae

s
b

) ∂

∂eki
∈ Γ(V ),

which acts by infinitesimal rotation of the frame coordinates (eia) on the fiber. Since the connection
form ω : V → o(d) defines an isomorphism between vertical tangent vectors and elements of the
structure Lie algebra, we conclude from equation 33 that

[Ha, Hb] = −ω(εa, εb)∗ = −
(
Rk

irse
r
ae

s
b

) ∂

∂eki
,

which is an explicit expression in local coordinates for the Lie bracket of horizontal vector fields on
the frame bundle. Importantly, this expression reveals that the bracket does not contain any horizontal
contribution and is entirely vertical, in alignment with the earlier geometric interpretation. Since
the collection {Ha}da=1 spans the horizontal sub-bundle HU ⊂ TUO(M), and the collection of
their brackets {[Ha, Hb]}a<b spans the vertical sub-bundle VU as long as {ω(εa, εb)}a<b spans o(d)
which generically holds for non-degenerate curvature, we conclude that

Lie{H1, . . . ,Hd}U = HorU ⊕VerU = TUO(M), ∀U ∈ O(M),

thereby Hörmander’s bracket-generating condition guarantees the hypoellipticity of the diffusion
generator on the frame bundle. By Hörmander’s hypoelliptic theorem, the differential operator LE

t ,
which governs the evolution of frame-valued horizontal diffusions conditioned on a fixed latent path
E[0,t], is hypoelliptic. Therefore, for each fixed realization of the latent path, there exists a smooth
transition distribution pEt (U | U0) with respect to the canonical volume measure on O(M), which
satisfies the forward Kolmogorov (Fokker–Planck) equation ∂tpEt = (LE

t )
∗pEt , where (LE

t )
∗ denotes

the formal adjoint of LE
t . The evolution begins from the Dirac initial condition pE0 (U | U0) = δU

and satisfies the Chapman–Kolmogorov identity

∫
O(M)

pEs (Ut1 | U0)p
E
t−s(Ut2 | Ut1)dλ(Ut1) = pEt (Ut2 | U0),
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which expresses the semigroup structure of the transition law over time. In a local coordinate chart
(xi, eia) on O(M), the forward Kolmogorov equation can be written explicitly as a second-order
partial differential equation:

∂tp
E
t (x, e) = − ∂xj

(
Ea

t e
j
ap

E
t (x, e)

)
+ ∂emj

(
Ea

tΓ
l
jke

k
ae

m
l p

E
t (x, e)

)
+
σ2
t

2

{
∂xi∂xj

(
Ea

tE
b
te

i
ae

j
bp

E
t

)
− 2∂xi∂emk

(
Ea

tE
b
te

i
aΓ

k
mje

j
bp

E
t

)
+ ∂eik∂e

m
l

(
Ea

tE
b
tΓ

k
ijΓ

l
mne

j
ae

n
b p

E
t

)}
.

where each component of vector field Et is given as

Ea
t = eic[e

−1
t ]aj

∂Φ

∂xi
− Γk

ije
j
ce

i
b[e

−1
t ]al

∂Φ

∂ekb
.

The first-order terms in the equation capture deterministic drift components induced by the latent
dynamics Et, while the second-order terms encode stochastic dispersion through both position and
frame directions. The curvature terms contribute to nontrivial coupling between base and fiber
variables, reflecting the manifold geometry. Hence (Ut)t≥0 forms a strong Markov process when
E[0,t] is held fixed. Conditioning on the entire latent path E[0,t] and an initial frame U0 yields the
conditional path law

P
(
Ut ∈ dU | U0, E

)
= pEt (U | U0)dλ(U).

Averaging over the initial frame distribution ρ0(U0)dλ(U0) yields the marginal conditional law:

P
(
Ut ∈ dU | E

)
=

∫
O(M)

pEt (U | U0)ρ0(U0)dλ(U0)dλ(U). (34)

Since Et ∼ N (mt,Σt) independently of U0, the joint law factorizes as

dνt(U,E) =

[∫
O(M)

pEt (U | U0)ρ0(U0)dλ(U0)

]
N (mt,Σt;E)dEdλ(U). (35)

Marginalizing over latent Euclidean component E gives

νt(U) =

∫
Rd

νt(U,E)dE =

[∫
O(M)

p̄t(U | U0)ρ0(U0)dλ(U0)

]
dλ(U), (36)

where the transition density given initial U0 can be desribed as follows:

p̄t(U | U0) :=

∫
Rd

pEt (U | U0)N (mt,Σt;E)dE. (37)

Assuming constant temperature and a confining potential Φ such that the Gibbs measure

ν∞(dU) = Z−1e−Φ(U)dVolSas(U), Z =

∫
O(M)

e−Φ(U)dVolSas(U) (38)

is normalizable, and the lifted Langevin diffusion on O(M) is ergodic due to Hörmander’s bracket-
generating condition, the marginal law νt(U) converges uniformly to the unique invariant measure
ν∞(U) as t → ∞, i.e., νt(U) −−−→

t→∞
µ∞(U). Here, dVolSas denotes the canonical Riemannian

volume form on O(M) induced by the Sasaki metric, i.e., dVolSas := Volg ∧ Volfiber. Thus, the
stationary law is

ν∞(U) = Z−1e−Φ(U)dVolSas(U). (39)

As shown above, the generator LE
t = bαt ∂α + 1

2a
αβ
t ∂α∂β is hypoelliptic and possesses station-

ary law with a smooth heat kernel. Let us define the symmetric diffusion matrix as aαβt =

σ2
tE

a
t E

b
tH

α
a (U)Hβ

b (U), which can be obtained directly from the second-order coefficient of the
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generator. Then, we apply the Haussmann–Pardoux time-reversal theorem Haussmann & Pardoux
(1986) to the diffusion with generator LE

t and marginal density ρHor
t onO(M) yields, for 0 ≤ s ≤ T ,

b̃αs = −bαT−s + ∂βa
αβ
T−s + aαβT−s∂β log ρ

Hor
T−s, aαβT−s = σ2

T−sE
a
T−sE

b
T−sH

α
aH

β
b .

Decomposing b̃s into horizontal and vertical parts gives

b̃s =
1
2∇

HorΦs + sHor
s , sHor

s := ∇Hor log ρHor
s ,

so the time-reversed Stratonovich SDE reads

dǓs =
(1
2
∇HorΦs + sHor

s

)
ds+Ha(Ǔs) ◦ dW̄ a

s , dW̄ a
s = dW a

T−s.

In particular, the forward and reverse generators satisfy the following condition:

∂tρ
Hor
t = (LE

t )
∗ρHor

t , ∂sp
E
s = −LE

T−sp
E
s . (40)

Hence the forward–reverse pair (LE
t , (LE

T−t)
∗) satisfies Kolmogorov duality LE

t = (LE
T−t), and

the Chapman–Kolmogorov kernel pEs (U• | U0) retains the lifted Gaussian representation stated in
Proposition D.4.

Corollary D.5 (Marginal Density on the Base Manifold). Let νt = L(Ut,Et) denote the joint
distribution of the lifted frame-valued state Ut ∈ O(M) and the latent Euclidean path terminal value
Et ∈ Rd defined earlier, and let ρHor

t be the induced marginal distribution on the base manifold M .
Then for every x ∈M , the marginal distribution ρHor

t (x) is given by the fiber-wise integral

ρHor
t (x) =

∫
Ox(M)

∫
Rd

∫
O(M)

pEt (U | U0)ρ0(U0)N (mt,Σt;E)dΞ(U,U0, E),

where Ox(M) := π−1({x}) is the orthonormal frame fiber over x ∈M , and the joint measure Ξ is
defined by

Ξ := λ0 ⊗ LebRd ⊗ HaarO(d),

with λ0 denoting the reference volume measure on O(M), LebRd the Lebesgue measure on the latent
space, and HaarO(d) the normalized Haar measure on the orthonormal group fibers.

Proof. We begin from Proposition D.4, which expresses the joint law dνt(U,E) over O(M)×Rd as

dνt(U,E) =

[∫
O(M)

pEt (U | U0)ρ0(U0)dλ0(U0)

]
N (mt,Σt;E)dEdλ0(U).

To obtain the marginal distribution on M , we push forward the measure νt under the projection
π : O(M) → M . The disintegration theorem provides that for any x ∈ M , the marginal can be
written by integrating over the frame fiber Ox(M) = π−1({x}), yielding

ρHor
t (x) =

∫
Ox(M)

∫
Rd

∫
O(M)

pEt (U | U0)ρ0(U0)N (mt,Σt;E)dλ0(U0)dEdλ0(U).

The measure Ξ(U,U0, E) is introduced to collect all variables of integration into a single product
measure on O(M)×O(M)× Rd, i.e.,

dΞ(U,U0, E) := dλ0(U0)dEdλ0(U),

which reflects the assumed independence of U0, E, and the final state U prior to conditioning.
Furthermore, since the final marginal distribution is evaluated at a base point x ∈M , the integration
over U is restricted to the fiber Ox(M), and we assume that λ0 restricts to the normalized Haar
measure over each fiber, i.e., dλ0|Ox(M) = dHaarO(d). This ensures that the disintegration over
O(M) is well-defined and coordinate-invariant. Putting everything together, we obtain the desired
result.

ρHor
t (x) =

∫
Ox(M)

∫
Rd

∫
O(M)

pEt (U | U0)ρ0(U0)N (mt,Σt;E)dΞ(U,U0, E).
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Definition D.6 (Horizontal Diffusion Models). Let ε = {ε1, . . . , εd} denote the standard basis of
Rd. The horizontal diffusion models are the system of forward-reverse Stratonovich SDEs on the
orthonormal frame bundle O(M), with local coordinate Ut = (xt, et) ∈ O(M), evolves according
to [

dUt

dUs

]
=

[
− 1

2∇
HorΦt(Ut)

1
2∇

HorΦs(Us) + sHor(s,Us)

] [
dt
ds

]⊺
+

[
Ha(Ut)
Ha(Us)

] [
◦ dW a

t
◦ dW a

s

]⊺
, (41)

Then, the horizontal score function sHor is defined as time-indexed horizontal vector fields

sHor(t,Ut) := ∇Hor log ρHor
t (Ut), (42)

which lies in the horizontal distribution HorUt
⊂ TUt

O(M) at each point Ut ∈ O(M). Here, ρHor
t

denotes a Markovian probability distribution with respect to forward frame dynamics, i.e.,Ut ∼ ρHor
t .

We end this section by integrating the preceding theoretical results to comprehensively elucidate
the rationale of horizontal diffusion models. For a frame e : Rd ≃ TxM and a vector w ∈ Rd, the
horizontal lift He ∈ HorU:=(x,e) is defined by

ω(He) = 0, π∗He = e(w).

Recall that Et ∈ Rd is a latent Euclidean diffusion satisfying the forward Stratonovich SDE

dEt = −∇ϕt(Et)dt+ σt ◦ dWt, E0 ∼ ρ0.
The stochastic development Ut = (xt, et) ∈ O(M) of Et is defined as the solution of the
Stratonovich SDE

dUt = ∇HorΦt(Ut) + σtHa(Ut) ◦ dW (a)
t

= Het(Ut)[−∇ϕ(Et)]dt+ σtHa ◦ dW (a)
t ,

(43)

where the conversion between Euclidean and Horizontal potentials and their associated gradient is
detailed in Proposition D.1. Specifically, the horizontal lift of∇ϕs evaluated at Us becomes given
that wa = ∂Eaϕs(Es):

∇HorΦs(Us) =

d∑
a=1

(∂Eaϕs(Es))

(
eia

∂

∂xi
− Γk

ij(xs)e
j
a

∂

∂eki

)
. (44)

Alternatively, one may use the fact that the set {Ha}da=1 forms an orthonormal basis under the Sasaki
metric. Then, for any scalar function Φ on O(M), the horizontal gradient is expressed as:

∇HorΦs(Us) =
d∑

a=1

(HaΦs)Ha (45)

=

d∑
a=1

(
eia
∂Φs

∂xi
− Γk

ij(xs)e
j
a

∂Φs

∂eki

)(
ema

∂

∂xm
− Γr

pq(xs)e
q
a

∂

∂erp

)
. (46)

Now, suppose the scalar function on the frame bundle is given by Φs(Us) = ϕs(Es), where Es :=
e−1
s (ẋs) is the Euclidean representation of the velocity. Then, by chain rule,

∂Φs

∂xi
=

d∑
b=1

∂ϕs
∂Eb

· ∂

∂xi
(ejbẋ

j) =
∑
b

∂ϕs
∂Eb

· ebi, (47)

∂Φs

∂eki
=

d∑
b=1

∂ϕs
∂Eb

· ∂

∂eki
(ejbẋ

j) =
∑
b

∂ϕs
∂Eb

· δbkẋi =
∂ϕs
∂Ek

· ẋi. (48)

Substituting into the expression for the horizontal gradient yields the final form:

∇HorΦs(Us) =

d∑
a=1

(
∂ϕs
∂Ea

)[
eiae

m
a

∂

∂xm
− Γr

ij(xs)e
j
ae

m
a

∂

∂erm

]
. (49)
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This gives the coordinate representation of the lifted gradient field ∇HorΦ on the frame bundle,
derived from the base manifold function ϕ through its composition with the Euclideanized velocity
field Es. This shows that the lifted forward process on frame-bundle Ut can be written in local
coordinate as follows:

dUt =

d∑
a=1

(
∂ϕt
∂Ea

(Et) · ema
)(

eia
∂

∂xi
− Γk

ij(xt)e
j
a

∂

∂eki

)
dt

+ σt

d∑
a=1

(
eia

∂

∂xi
− Γk

ij(xt)e
j
a

∂

∂eki

)
◦ dW (a)

t .

(50)

Let ρt be the marginal distribution of Et at time t. Then, the horizontal lift of Euclidean dynamics
◦dEt can be further summarized as

Het(Ut)[−∇ϕs + σ2
s∇ log ρs] = −∇HorΦs + σ2

s∇Hor log ρHor
s

with ρHor
s denoting the marginal distribution of Us under the forward dynamics. As similar manner

with forward dynamics, the lifted reverse Stratonovich SDE on the frame bundle becomes

dUs =
[
−∇HorΦs(Us) + σ2

s∇Hor log ρHor
s (Us)

]
ds+ σsHes,εa(Us) ◦ dW (a)

s , (51)

where He denotes the horizontal lift of a vector w ∈ Rd with respect to the moving frame es at
xs = π(Us). Proposition D.4 establishes that Us constitutes the genuine time-reversal process of
Ut, and further demonstrates that the associated probability density admits a joint representation in
terms of both the latent process E and the data process U. Corollary D.5 subsequently characterizes
the resulting data density on the manifold, showing how it emerges under canonical projection from
the frame bundle. Finally, we observe that the horizontal score field sHor is gauge-equivariant in the
sense that for any smooth gauge transformation g : O(M)→ O(d) following by Proposition D.2,

sHor(t, Rg(U)) = dRg

(
sHor(t,U)

)
, (52)

where Rg denotes the right action of g on the frame bundle. This ensures that our construction is
consistent with the natural O(d)-equivariance structure of the frame bundle geometry.

xxvi



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

D.2 TRAINING HORIZONTAL DIFFUSION MODELS

Proposition D.7 (Horizontal KL Divergence). Let bt(Ut) and b̃t(Uθ
t ) be horizontal drifts on the

frame bundle O(M) with path laws νb and νb̃, and let PHor(Z) := Z − ω(Z)♯ · U projecta to the
horizontal subspace HorU ⊂ TUO(M) via the Levi–Civita connection ω, and ∥ · ∥H be the Sasaki
metric norm on HU , ΓO(M) be parallel transport. Then, the horizontal KL divergence is given by

KLHor[νb̃∥νb] =
1

2
Eνb̃

[∫ T

0

∥PHor(∆t)∥2H dt

]
, ∆t := Γ

O(M)

Uθ
t→Ut

(
b̃t(U

θ
t )
)
− bt(Ut),

aThe term ω(Z)♯ refers to the fundamental vertical vector field on the frame bundle associated with the Lie
algebra element ω(Z) ∈ o(d) Kobayashi & Nomizu (1963b).

Proof. Fix a latent Euclidean path E• ∈ C([0, T ],Rd) satisfying the solution to SDEs in equation 1,
and Et its canonical frame representation. The forward horizontal Stratonovich SDE on O(M) is

dUt = −∇HorΦt(Ut)dt+ σtHEt,εa(Ut) ◦ dW (a)
t , U0 ∼ µ0. (53)

whose path law ν[0,T ] := LawP(U•) lives on C([0, T ],O). Introducing a learnable horizontal score
function sHor

θ : [0, T ]×O → H we define the reverse Stratonovich SDE

dUs =
[
−∇HorΦs(Us) + σss

Hor(s, Us)
]
ds+

√
σsHes,εa(Us) ◦ dW̃ (a)

s , UT ∼ νT . (54)

yielding a new path law ν̃[0,T ] := LawP̃(U•). To compare reverse and forward probabilistic
representations, i.e., ν̃[0,T ] and ν[0,T ], we first pass from Stratonovich SDEs to Itô form:

dUt =


(
−∇HorΦt(Ut) + σ2

tVt(Ut)
)
dt+ σtHa(Ut)dW

(a)
t , (forward),(

−∇HorΦt(Ut)− σ2
t s

Hor(t,Ut) + σ2
tVt(Ut)

)
dt+ σtHa(Ut)dW̃

(a)
t , (reverse),(

−∇HorΦt(Ut)− σ2
t s

Hor
θ (t,Ut) + σ2

tVt(Ut)
)
dt+ σtHa(Ut)dŴ

(a)
t , (denoiser)

where the horizontal gradient is given by

Vt(Ut) := ∇O(M)
Ha

Ha(Ut). (55)

This covariant derivative on the frame-bundle (e.g.,∇O(M)) can be written in local coordinate with
the following form:

∇O(M)
Ha

Ha =
[
(∂xreia)e

r
a − eia∂xi(Γk

mje
j
a)
]
∂xi − (∂xiΓk

mj)e
i
ae

j
a∂ekm . (56)

Subsequently, a true score function of forward dynamics is given by

sHor(t,Ut) =

d∑
a=1

(
Ha log ρ

Hor
t (Ut)

)
·Ha(Ut), Et := e−1

t ◦ π∗∇HorΦ(Ut). (57)

For simplicity, let us denote b̃t := −σ2
t s

Hor(t,Ut) + σ2
tVt(Ut) and b̃θt := −σ2

t s
Hor
θ (t,Ut) +

σ2
tVt(Ut), respectively. Then, our aim is to derive the KL divergence between path-measures
ν̃• and ν̃θ• For this, let us consider the change of measure between the dynamics defined on the
orthonormal frame bundle O(M). The true reverse SDE is driven by the horizontal score function
sHor(t,Ut), while the learned reverse SDE is parameterized by sHor

θ (t,Uθ
t ). These induce drift

vector fields b̃t(Ut) and b̃θt (U
θ
t ) respectively. Since the two drifts are evaluated at different frame

points Ut,U
θ
t ∈ O(M), we align them via parallel transport. Specifically, we define the drift

discrepancy
∆t := Γ

O(M)

Uθ
t→Ut

(
b̃θt (U

θ
t )
)
− b̃t(Ut),

where ΓO(M)

Uθ
t→Ut

denotes the parallel transport operator on O(M) along a horizontal curve connecting

Uθ
t to Ut. This ensures that ∆t ∈ TUtO(M) is a well-defined comparison of vector fields at the
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same point. To preserve horizontal gauge-invariance, we apply the horizontal projection operator
PHor : TUt

O(M)→ HUt
and define the filtered discrepancy

∆̂t := PHor(∆t) = ∆t − ω(∆t)
♯ ·Ut,

where ω is the connection 1-form and ω(∆t)
♯ denotes the fundamental vertical lift in the sense of

Kobayashi-Nomizu. Let gH denote the pull-back of the Riemannian metric g on the base manifold
M to the horizontal bundle HO(M) via the canonical projection π : O(M)→M . Explicitly, for
any U ∈ O(M) and any horizontal vectors V,W ∈ HU ⊂ TUO(M), we define

gH(V,W ) := g[π(U)] (π∗V, π∗W ) , so that ∥V ∥2H := gH(V, V ).

Then, all terms in the Girsanov distribution can now be expressed using ∆̂t alone. Define the
horizontal Girsanov exponential by

ẐH
T = exp

−∫ T

0

gH

(
∆̂t,

∑d
a=1Ha(Ut) ◦ dW (a)

t

)
σt

− 1

4

∫ T

0

∥∆̂t∥2H
σ2
t

dt

 ,

where gH is the Sasaki metric restricted to the horizontal bundle and we assumed that the condition
E exp

(
1
2

∫ T

0
∥∆̂t∥2

H

2σ2
t
dt
)
<∞ holds. This distribution satisfies the Radon–Nikodym identity

ẐH
T (U•) =

dν̃θ[0,T ]

dν̃[0,T ]
(U•),

and therefore the horizontal Kullback-Leibler divergence is given by

KLHor

(
ν̃θ[0,T ]∥ν̃[0,T ]

)
= Eν̃[0,T ]

[
log ẐH

T

]
=

1

2

∫ T

0

Eν̃[0,T ]

[∥∥∥∆̂t

∥∥∥2
H

]
dt.

In this form, the KL divergence compares the true and learned reverse processes intrinsically within
the geometry of the frame bundle O(M), with all drift differences consistently aligned via parallel
transport and projected horizontally.

To explicitly connect the geometric Girsanov distribution to its Euclidean counterpart, we recall that
the horizontal Stratonovich SDE on O(M) admits a unique strong solution for each realization of
the latent path E• ∈ C([0, T ],Rd) due to the global Lipschitz continuity of HEt,εa . The horizontal
lifting operator Ψ : C([0, T ],Rd)→ C([0, T ],O(M)) then defines a measurable transformation that
preserves filtrations:

FE
t = σ(Es : 0 ≤ s ≤ t) → FU

t = σ(Us : 0 ≤ s ≤ t) = σ(Ψ(Es) : 0 ≤ s ≤ t).

Specifically, by the assumption that this mapping is measurable and almost surely injective for
the fixed deterministic initial frame U0 ∈ O(M), with a measurable left-inverse Ψ−1(U•) =(
e−1
t π∗U̇t

)
t∈[0,T ]

, we have FE
t = FU

t . We define the Euclidean path measures as push-forwards
through Ψ−1:

µ[0,T ] := P ◦Ψ−1, µ̃[0,T ] := P̃ ◦Ψ−1, µ̃θ
[0,T ] := P̃θ ◦Ψ−1.

Because the Girsanov distribution ẐH
T (U•) is FU

T -measurable and U• = Ψ(E•), it lifts through the
change of variables:

ẐH
T (U•) =

dν̃θ[0,T ]

dν̃[0,T ]
(U•) =

dµ̃θ
[0,T ]

dµ̃[0,T ]
(E•).

This identity shows that the horizontal Girsanov distribution on the frame bundle O(M) pulls back
to the standard Girsanov distribution on Rd, evaluated at the latent Euclidean path E•. In particular,
if the learned reverse path law ν̃θ[0,T ] is generated by lifting µ̃θ

[0,T ] through Ψ, we have

ẐH
T (Ψ(E•)) =

dµ̃θ
[0,T ]

dµ̃[0,T ]
(E•),
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thus justifying the interpretation of ZH
T as a pathwise distribution simultaneously defined on

C([0, T ],Rd) and C([0, T ],O(M)) via the lifting map Ψ. We now compute the horizontal KL
divergence in terms of the coefficient expansion of the parameterized score.

The true and learnable horizontal score functions sHor
θ (t, U) admit the basis expansion in terms of

the moving frame {HEt,εa}da=1 as

sHor(t, U) = HEt,1⊺s(U) = ∇ log ϱt ·HEt,εa(U) = −Σt∇ϕ(Et) ·HEt,εa(U), (58)

sHor
θ (t, U) = HEt,1⊺sθ (U) = saθ(t,Et)HEt,εa(U), (59)

where the Einstein summation convention is assumed over repeated indices. Then the drift discrepancy
between the learned and true reverse processes becomes

∆t := Γ
O(M)

Uθ
t→Ut

(
b̃θt (U

θ
t )
)
− b̃t(Ut) (60)

= −2σ2
t

(
Γ
O(M)

Uθ
t→Ut

(sHor)− sHor
θ

)
(t,Ut) (61)

= −2σ2
t

∑
a

(sa(t,Ut)− saθ(t,Ut))HEt,εa(Ut). (62)

Since the drift discrepancy ∆t := b̃t − b̃θt is defined as the difference between two horizontally lifted
vector fields, it naturally lies in the horizontal bundle HUt

⊂ TUt
O(M). Therefore, the application

of the horizontal projection operator PHor is algebraically trivial ∆̂t := PHor(∆t) = ∆t.

Nevertheless, we retain the notation explicitly to emphasize that only horizontal components are ever
relevant in the Girsanov distribution, and that our construction is intrinsically gauge-invariant by
design. Next, to evaluate the Radon–Nikodym distribution ZH

T , we first compute the squared norm of
the drift difference ∆t under the Sasaki metric gH . By Using linearity of gH and the orthonormality
above, we compute

∥∆̂t∥2H = gH(∆t,∆t)

= 4σ2
t

d∑
a,b=1

(sa(t,Ut)− saθ(t,Ut))
(
sb(t,Ut)− sbθ(t,Ut)

)
gH (HEt,εa , HEt,εb)

= 4σ2
t

d∑
a=1

|sa(t,Ut)− saθ(t,Ut)|2 .

This quadratic form serves as the regularization term in the log-distribution and will directly determine
the scale of the Kullback–Leibler divergence. Since π∗Ha(Ut) = et(εa) ∈ Tπ(Ut)M , the third line
follows by the fact:

gH
(
Ha, Hb

)
= g
(
π∗Ha, π∗Hb

)
= g
(
et(εa), et(εb)

)
= ⟨εa, εb⟩Rd = δab,

where the last equality holds as et is an orthonormal frame. We then compute the stochastic inner
product appearing in the Girsanov exponential. The horizontal noise process in the lifted SDE is
expressed via the Stratonovich increment ◦dBt := σ2

t

∑d
b=1Hb(Ut) ◦ dW (b)

t , which is a linear
combination of orthonormal horizontal frame fields modulated by Euclidean Brownian noise. Taking
the inner product of ∆t with this increment using the Sasaki metric yields:

gH(∆̂t, ◦dBt) = −(2β)3/2
d∑

a=1

(sa(t,Ut)− saθ(t,Ut)) ◦ dW (a)
t .

This term reflects the interaction between the residual score and the random fluctuations of the process;
however, due to martingale properties, it will integrate out under expectation when computing the KL
divergence. Combining both the quadratic and stochastic terms, the Girsanov–Cameron–Martin–type
exponential distribution becomes

ZH
T =exp

(
− σt

∫ T

0

d∑
a=1

(sa(t,Ut)− saθ(t,Ut)) ◦ dW (a)
t

− 1

2

∫ T

0

σ2
t

d∑
a=1

|sa(t,Ut)− saθ(t,Ut)|2dt

)
.

(63)
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This expression encapsulates the full pathwise deviation between the learned and true horizontal
dynamics, measured along the noise directions defined by the frame bundle. Since the stochastic
integral has mean zero under the reference measure ν̃[0,T ] (as it represents a martingale term),
the expected log-distribution simplifies cleanly to the deterministic L2 error between the true and
parameterized scores:

KLHor(ν̃
θ
[0,T ]∥ν̃[0,T ]) =

1

2

∫ T

0

σ2
tEν̃[0,T ]

[
d∑

a=1

|saθ(t,Ut)− sa(t,Ut)|2
]
dt

This final form reveals the essential structure of score-matching in the geometric setting: the KL
divergence is minimized precisely when the learned score saθ(t, U) matches the true score sa(t, U)
in the L2 sense along each horizontal direction Het,εa . The weighting by σ2

t encodes the diffusion
strength at each time t, and the geometric structure of the orthonormal frame ensures that the entire
loss remains invariant to the choice of local coordinates. This result faithfully generalizes the
Euclidean score-matching loss to the orthonormal frame bundle of a Riemannian manifold.

Theorem D.8 (Uniform Generalization Bound for Worst-Case Horizontal KL). Assume the neural
score networks are parameterized as L-layer, width W feedforward ReLU networks with spectral
norm bounds sℓ, (2,1)-norm bounds bℓ, activation Lipschitz constants ρℓ. Assume the manifoldM
has sectional curvature |K(π)| ≤ κmax and diameter Diam(M); noise scales σtm are bounded
below by σmin. Let n be the number of samples per time, M the number of time steps, D the maximal
function class diameter. Then for any δ ∈ (0, 1), with probability at least 1− δ, the following holds:

sup
θ∈Θ

KLHor(ν̃
θ
[0,T ]∥ν̃[0,T ]) ≤

6CM(σmin, κmax,Diam(M), D) · CNN(L,W, sℓ, bℓ, ρℓ, D)

n1/4

+

√
C2

SubG(σtm , L
tot
tm (θ), λmax(Σtm)) log(1/δ)

4nM
, (64)

where Eq equation 89 provides full description of constants CM, CNN and CSubG.

Remark. The result states for the case where the neural network score models are drawn from the
classical family of L-layer, width-W feedforward ReLU networks with uniformly bounded spectral
norms and (2,1)-norms, for which explicit covering number bounds are available via classical
results Bartlett et al. (2017). However, the generalization argument and the overall structure of the
proof are not tied to these specific architectural assumptions. In particular, the identical analysis
applies for any hypothesis class F whose empirical covering numbers can be suitably bounded. The
key requirement is the ability to upper-bound the entropy number of the hypothesis class with respect
to the empirical L2 metric induced by the data distribution.

Proof. As a first step, we introduce the main function classes that play a central role in our analysis.
Let F denote the class of parameterized functions given by the neural score models at each time step,
measuring the (scaled) difference between the learned score and the reference (true) score:

F :=
{
fθ,m(E) =

√
σtm [sθ(tm, E)− s(tm, E)] : θ ∈ Θ, m = 1, . . . ,M

}
⊂ Rd, (65)

where θ indexes the neural network weights, sθ is the learned score network, and s is the true oracle
score. Next, we define the class G as the set of squared horizontal-norm evaluations, obtained by
applying the horizontal lift operator Hetm

to elements of F and taking the squared norm in the Sasaki
metric:

G :=
{
gθ,m(E) =

∥∥Hetm
[fθ,m(E)]

∥∥2
H

: fθ,m ∈ F
}
. (66)

To quantify the generalization properties of the learned model, we introduce the population and
empirical risks associated with these lifted functions:

RHor(θ) =
1

T

M∑
m=1

EEtm∼ρtm

[
gθ,m(Etm)2

]
, R̂Hor

n (θ) =
1

nM

M∑
m=1

n∑
i=1

[
gθ,m(E

(i)
tm)2

]
. (67)
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Our main focus is to control the worst-case deviation of the horizontal KL divergence, which, in the
context of lifted score matching, is bounded above by the maximal population risk over all networks
and time indices:

sup
θ∈Θ

KLHor

(
ν̃θ[0,T ]∥ν̃[0,T ]

)
≤ 1

2
sup

gθ,m∈G
RHor(θ). (68)

In what follows, we provide a non-asymptotic generalization bound for this quantity, making explicit
the dependence on both the network parameterization and the geometry of the underlying manifold.
To control the generalization gap, we invoke the symmetrization argument. For any θ, by introducing
an independent ghost sample (E

(i)′
tm ), we can write

E
∣∣∣R̂n(θ)−R(θ)

∣∣∣ = EE

∣∣∣∣∣ 1

nM

M∑
m=1

n∑
i=1

(
gθ(tm, E

(i)
tm)− EEtm

[gθ(tm, Etm)]
)∣∣∣∣∣ (69)

≤ 2EE,ε

∣∣∣∣∣ 1

nM

M∑
m=1

n∑
i=1

εmigθ(tm, E
(i)
tm)

∣∣∣∣∣ , (70)

where (εmi) are i.i.d. Rademacher random variables. Taking the supremum over θ and applying
linearity of expectation, we obtain

E sup
θ

∣∣∣R̂n(θ)−R(θ)
∣∣∣ ≤ 2EE,ε sup

θ

∣∣∣∣∣ 1

nM

M∑
m=1

n∑
i=1

εmigθ(tm, E
(i)
tm)

∣∣∣∣∣ . (71)

We define the empirical Rademacher complexity

Rn,M := Eε sup
θ

∣∣∣∣∣ 1

nM

M∑
m=1

n∑
i=1

εmigθ(tm, E
(i)
tm)

∣∣∣∣∣ , sup
θ

∣∣∣R̂n(θ)−R(θ)
∣∣∣ ≤ 2Rn,M , (72)

where the expectation is over both the data samples and the Rademacher variables. Let us assume
that sθ(tm, ·) : Rd → Rd is Ltm(θ)–Lipschitz such that ∥sθ(tm, x)− sθ(tm, y)∥ ≤ Ltm(θ)∥x− y∥.
Following by the fact that the density for the forward dynamics is truly a mean-zero Gaussian,
ρt = N (0,Σ), for the auxiliary function hθ,m(x) := sθ(tm, x)− s⋆(tm, x), we have

∥hθ,m(x)− hθ,m(y)∥ ≤ Ltm(θ)∥x− y∥+ ∥Σ−1
tm ∥∥x− y∥ =: Ltot

tm (θ)∥x− y∥. (73)

While the horizontal lift Hetm
: Rd → HorUtm

is an isometry under the Sasaki metric, we have
∥Hetm

[w]∥H = ∥w∥ for any w ∈ Rd. This shows that, for any x and y, we have∣∣gθ,m(x)− gθ,m(y)
∣∣ = √σtm∣∣∣∥Hetm

hθ,m(x)∥H − ∥Hetm
hθ,m(y)∥H

∣∣∣ ≤ √σtmLtot
tm (θ)∥x− y∥.

The inequality shows that gθ,m is √σtmLtot
tm (θ)-Lipschitz with respect to the Euclidean norm. Next,

consider the Gaussian isoperimetric inequality for a Lipschitz function f : Rd → R and a Gaussian
vector Zt ∼ N (0,Σt) defined as follows:

P
(
|f(ZT )− Ef(ZT )| ≥ r

)
≤ 2 exp

(
−r2

2L2
f∥Σ

1/2
t ∥2

)
, t > 0.

Applying this with f = gθ,m and ∥Σ1/2
tm ∥ =

√
λmax(Σtm) gives

P
(
|gθ,m − Egθ,m| ≥ r

)
≤ 2 exp

(
−r2

2σtm
(
Ltot
tm (θ)

)2
λmax(Σtm)

)
.

The right-hand side is the tail of a centered sub-Gaussian variable (Vershynin (2018), Proposi-
tion. 2.6.3). Since each gθ,m(E) is sub-Gaussian in its input by the Hanson–Wright inequality and
the Gaussian structure of E, the function class G is uniformly sub-Gaussian. By Bousquet’s version
of Talagrand’s concentration inequality (Vershynin, 2018, Theorem. 4.8.1), we have

P

[
sup
θ

∣∣∣R̂n(θ)−R(θ)
∣∣∣ > Rn,M + c

√
σtm

(
Ltot
tm (θ)

)2
λmax(Σtm) ·

√
log(1/δ)

nM

]
≤ δ, (74)
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where Rn,M is the empirical Rademacher complexity, σ is the (sub-)Gaussian parameter, and c > 0
is some absolute constant. Next, we want to estimate the geometric impact of manifolds to function
class G. Let U = (x, e) ∈ O(M) with e = (e1, . . . , ed) an orthonormal frame at x ∈ M. For the
Euclidean vector w = (w1, . . . , wd) ∈ Rd, recall that the horizontal lift is defined as

He[w] =
(
ejw

j ,−Γk
ij(x)eke

i
ℓw

ℓ
)
∈ TxM⊕ so(TxM),

where Γk
ij are the Christoffel symbols and eiℓ the chart components of eℓ. For a tangent pair (X,A)

with X ∈ TxM and A ∈ so(TxM) the Sasaki metric is defined as∥∥(X,A)∥∥2
H

:= gx(X,X) +

d∑
a=1

gx
(
Aea, Aea

)
. (75)

Because (e1, . . . , ed) is orthonormal frame, we know that gx(ea, eb) = δab. With vector field
X = ejv

j and component of Riemannian metric gpq = g(∂xp , ∂xq ), the following can be represented:

gx(X,X) = gpqe
p
je

q
ℓw

jwℓ.

From above result and the definition of A, we have Av : TxM → TxM, Av(ea) = −Γk
ijeke

i
aw

j .
This gives the full local expression of second term in Eq equation 75

d∑
a=1

gx
(
Awea, Awea

)
= gpqΓ

p
ijΓ

q
mne

i
ae

m
a w

jwn = gpqΓ
p
ijΓ

q
mne

i
je

m
ℓ w

jwℓ, (76)

where we used eiae
m
a = δim and re-labeled indices. Combining results, the squared norm of horizontal

lift under the Sasaki metric can be rewritten in local coordinate:

∥He[w]∥2H = gpqe
p
je

q
ℓw

jwℓ + gpqΓ
p
ijΓ

q
mne

i
je

m
ℓ w

jwℓ. (77)

Because {ea} is orthonormal, we have gpqe
p
je

q
ℓ = δjℓ, so the first term is ∥v∥2g = ∥ew∥2g . For the ease

of computational complexity, we fix a reference point x0 ∈ M and introduce normal coordinates
(x1, . . . , xd) centered at x0. At this point the metric and its first derivatives take the canonical values
gij(x0) = δij , ∂kgij(x0) = 0, and Γk

ij(x0) = 0. Then, one has the Taylor expansions for x with
geodesic distance r = d(x, x0) ≤ R (Riemann normal coordinate formula) as follows:

Γk
ij(x) = −

1

3

(
Rk

ijl +Rk
jil

)
xl +O(|x|2), gij(x) = δij −

1

3
Rikjlx

kxl +O(|x|3), (78)

where Rk
ijl(x0) denotes the Riemann curvature tensor evaluated at fixed point x0. Assume that

we have the upper-bounded sectional curvatures ≤ κmax on some geodesic ball BR(x0) ⊂ M.
Equivalently, this shows that |Rabcd(x0)| ≤ κmax. Inserting this constraints into the first expansion
gives the uniform bound

∣∣Γk
ij(x)

∣∣ ≤ 2
3κmaxr for all r ≤ R. Then the direct computation follows:

gpq(x)Γ
p
ij(x)Γ

q
mn(x)e

i
je

m
ℓ w

jwℓ

= gpq

[
−1

3
(Rp

ijl +Rp
jil)x

l

] [
−1

3
(Rq

mnr +Rq
nmr)x

r

]
eije

m
ℓ w

jwℓ

=
1

9
gpq(R

p
ijl +Rp

jil)(R
q
mnr +Rq

nmr)x
lxreije

m
ℓ w

jwℓ

≤ (2κmax)
2

9
gpqr

2eije
m
ℓ w

jwℓ =
4κ2max

9
r2∥v∥2g, v = ew.

(79)

Combining results, we have

∥He[w]∥2H ≤
(
1 +

4κ2max

9
r2
)
∥v∥2g, v = ew. (80)

This geometric inequality

gθ,m(θ) = ∥Hetm
[fθ,m(E) · σ−1/2

tm ]∥2H ≤
(
1 +

4κ2max

9
r2
)∥∥∥etm · (fθ,m(E) · σ−1/2

tm

)∥∥∥2
g

≤
(
1 +

4κ2max

9
Diam2(M)

)∥∥∥etm · (fθ,m(E) · σ−1/2
tm

)∥∥∥2
g

(81)
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where we used the fact that the radius of geodesic ball BR(x0) is always less than Diam(M) in last
inequality.

G ⊂
(
1 +

4κ2max

9
r2
)
·

{
∥etmf∥2g
σtm

: f ∈ F

}
. (82)

Let dPnM
denote the empirical L2-metric on F induced by the sample {E(i)

tm}m,i over the joint sample,
i.e.,

dPnM
(f, f̃) :=

(
1

nM

M∑
m=1

n∑
i=1

∥f(tm, E(i)
tm)− f̃(tm, E(i)

tm)∥2
)1/2

, (83)

Now, we define another function class, which has members of scaled representations of f ∈ F:

H :=

{
h(f)(E) =

∥etmf(E)∥2g
σtm

: f ∈ F

}
.

Naturally, this function class is equipped with a embedded L2-metric d′ defined as

d′PnM
(h, h̃) :=

(
1

nM

M∑
m=1

n∑
i=1

∣∣∣h(tm, E(i)
tm)− h̃(tm, E(i)

tm)
∣∣∣2)1/2

, h :=
∥etmf∥2g
σtm

. (84)

As the map f 7→ ∥f∥2 is 2C̄f -Lipschitz on the ball ∥f∥ ≤ C̄f , and the scaling by σtm preserves the
Lipschitz property up to 1/σmin, where σmin = infm σtm > 0. Therefore,∣∣∣∣∣∥etmf∥2gσtm

−
∥etm f̃(E)∥2g

σtm

∣∣∣∣∣ ≤ 2C̄f

σmin
∥f(E)− f̃(E)∥, C̄f = sup

f∈F,E
∥f(E)∥.

The inequality comes from the fact that any orthonormal frames are isometry. Consequently, the
covering number for H can be bounded as

N
(
H, d′PnM

, η
)
≤ N

(
F , dPnM

,
ησmin

2C̄f

)
.

Finally, applying the geometrically scaling terms, we obtain

N
(
G, d′PnM

, η
)
≤ N

(
H, d′PnM

, η

(
1 +

4κ2max

9
Diam2(M)

)−1
)

≤ N

(
F, dPnM

, ησmin

(
C̄f +

8Rκ2max

9
Diam2(M)

)−1
)
,

Recall that standard Dudley’s chaining inequality directly gives

Rn,M ≤
12√
nM

∫ diam(G)

0

√
logN

(
G, d′PnM

, η
)
dη

≤ 12√
nM

∫ diam(G)

0

√
logN

(
G, dPnM

, η′(η)
)
dη

(85)

where η′(η) := ησmin/(2C̄f + (8/9)C̄fκ
2
maxDiam2(M)).

In order to obtain feasible entropy numbers, we construct the score network class F as follows. For
each time index m, we consider a score model sθ(tm, ·) : Rd → Rd, implemented as a feed-forward
RELU neural network of depth L and hidden width at most W at each layer. Specifically, the network
takes the form

x 7→ Fθ(x) :=WLσ(WL−1σ(· · ·σ(W1x) · · · )),
where each weight matrix Wℓ has shape wℓ+1 × wℓ with w0 = d, wL = d, and wℓ ≤ W for all
1 ≤ ℓ ≤ L. The activation function σ(u) = max{0, u} is applied coordinate-wise. To control the
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function class complexity, we impose a path-norm constraint following Bartlett et al. (2017). The
scaled path norm of the parameter collection θ is defined as

∥θ∥path :=

 ∑
jL···j0

L∏
ℓ=1

|Wℓ[jℓ, jℓ−1]|2
1/2

,

and we assume this is uniformly bounded above by B for all θ under consideration. The function
class F itself is defined by embedding the neural network output into the target score difference,
normalized by the time-dependent noise scale:

fθ,m(E) :=
√
σtm [sθ(tm, E)− s(tm, E)] =

√
σtm [Fθ(E)− Σ−1

tmE],

where s⋆(tm, E) is a reference score (for example, the Gaussian score function Σ−1
tmE). For each

time index m, we define the associated function class Fm as

Fm :=
{
fθ,m(E) =

√
σtm

[
Fθ(E)− Σ−1

tmE
]∣∣θ ∈ Θ, ∥θ∥path ≤ B

}
,

The global function class F over the time grid {t1, . . . , tM} is defined as the product class

F :=

M∏
m=1

Fm = {(f1, . . . , fM )|fm ∈ Fm} ,

so that each element of F consists of M -tuples of functions, one for each time index m. If all models
share a common parameterization θ ∈ Θ across time, one can equivalently write

F := {(fθ,1, . . . , fθ,M )|θ ∈ Θ, ∥θ∥path ≤ B} ,

where fθ,m(E) is defined as above for each m. By using the result of Bartlett et al. (2017), it directly
gives

logN (Fm, dPn
, η) ≤ D̄ ln(2W 2)

η′(η)2

(
L∏

ℓ=1

s2ℓρ
2
ℓ

)(
L∑

ℓ=1

(
bℓ
sℓ

)2/3
)3

=
CNN

η′(η)2
, (86)

where D̄ is the uniform bound on the data norm, W is the maximum width of the hidden layers, L is
the network depth, sℓ is the spectral norm bound of the ℓ-th layer, ρℓ is the Lipschitz constant of the
activation at the ℓ-th layer, bℓ is the (2,1)-norm bound for the ℓ-th layer, D is the diameter of Fm, and
η0 is the minimal covering scale. Now, we improve the Dudley entropy number with

12√
nM

∫ diam(G)

0

√
logN

(
G, dPnM

, η′(η)
)
dη ≤ 12√

n

∫ diam(G)

0

max
m

√
logN

(
G, dPm

, η′(η)
)
dη

(87)

The Dudley entropy integral for a function class Fm with respect to the empirical L2 metric dPm can
be computed as

Rn,M ≤
∫ D

0

√
CNN

(η′(η))2
dη =

√
CNN ·

2C̄f + (8/9)C̄fκ
2
maxDiam2(M)

σmin
· log D

η0
(88)

where D = diam(Fm) and η0 is the minimal covering scale (typically, η0 = 1/n). Expanding CNN

with explicit network parameters, we have

Rn,M ≤
12

n1/4

D̄2 ln(2W 2)

(
L∏

ℓ=1

s2ℓρ
2
ℓ

)(
L∑

ℓ=1

(
bℓ
sℓ

)2/3
)3
1/2

·
2C̄f + 8

9 C̄fκ
2
maxDiam2(M)

σmin
· log D

η0
.
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Collecting all the results together, we obtain the following high-probability uniform generalization
bound. For all δ ∈ (0, 1), with probability at least 1− δ, the following holds:

sup
θ∈Θ

∣∣∣R̂n(θ)−R(θ)
∣∣∣

≤ 12

n1/4

D̄2 ln(2W 2)

(
L∏

ℓ=1

s2ℓρ
2
ℓ

)(
L∑

ℓ=1

(
bℓ
sℓ

)2/3
)3
1/2

2C̄f + 8
9 C̄fκ

2
maxDiam2(M)

σmin
log

D

η0

+ c

√
σtm

(
Ltot
tm (θ)

)2
λmax(Σtm)

√
log(1/δ)

nM
.

Consequently, the upper bound for the worst-case horizontal KL divergence takes the following
explicit form:

sup
θ∈Θ

KLHor(ν̃
θ
[0,T ]|ν̃[0,T ]) ≤

1

2

{
12CNNCM

n1/4
+

√
C2

SubG log(1/δ)

nM
.

}
with probability at least 1−δ. Here, the three main terms CNN, CM, CSubG reflect the contribution of
network expressivity, manifold geometry, and stochastic noise, respectively. Their precise definitions
are as follows:

CNN(L,W ) :=

D̄2 ln(2W 2)

(
L∏

ℓ=1

s2ℓρ
2
ℓ

)(
L∑

ℓ=1

(
bℓ
sℓ

)2/3
)3
1/2

, (89)

CM(σ, κ,Diam(M)) :=
2C̄f + 8

9 C̄fκ
2
maxDiam2(M)

σmin
log

D

η0
, (90)

CSubG(σt,Σ) := c

√
σtm

(
Ltot
tm (θ)

)2
λmax(Σtm). (91)
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E IMPLEMENTATION DETAILS

In this section, we provide comprehensive details on the implementation of our proposed horizontal
diffusion model. We first specify the choice of hyperparameters used throughout the experiments.
Subsequently, we formally define the construction of synthetic benchmark datasets, encompassing
a suite of analytically parameterized surfaces that serve as controlled environments for evaluating
geometric generative modeling. Finally, we describe the real-world datasets, including celestial
surfaces and protein structures, modeled via spherical harmonics parameterizations and sourced from
publicly available scientific repositories. All implementation specifics, including the design of neural
architectures, training protocols, and evaluation metrics, are reported to ensure reproducibility and
facilitate future extensions of our approach.

E.1 HYPERPARAMETERS

Recall that the proposed (reverse) horizontal diffusion model for the Ornstein-Uhlenbeck (OU) bridge
process on the orthonormal frame bundle is given by

dUs = −
∑
a

(
2γsϵ

a + σ2
sv

a
s

)
Ha(Us)ds+ sHor(s, Us)ds+

∑
a

σsHa(Us) ◦ dW a
s ,

It depends on several time-dependent hyperparameters that critically determine both the geometry-
adaptivity and empirical behavior of the model. Here, we detail the practical design and rationale for
each hyperparameter as implemented in our framework.

Damping Coefficient γs. The role of this coefficient is to govern the mean-reverting drift of the
latent Euclidean process, corresponding to the dissipative force in the OU process. We use a constant
value, γs ≡ γ, for all s, as this ensures numerical stability and avoids extreme drift behaviors.

Diffusion Scale Σs, σs. The diffusion parameter σs scales noise intensity of both forward and
reverse OU process in the latent space. It is designed as σ2

s = γΣs so that we have γI = σ2
sΣ

−1
s .

The other paramter is exponentially controlled by using the formula Σs = Σ0 exp(−γs), with σs
computed at each time step.

Bridge Intensity λs. The role of this coefficient is to control the strength of the attraction term
vs, driving the process toward the data manifold during reverse diffusion. In this paper, several
scheduling options are considered as listed in following: (1) Exponential decay: λs = λmaxe

−αs, (2)
Polynomial decay: λs = λmax(1− s/T )k, (3) Sigmoid decay: λs = λmax/(1 + eα(s−T/2)). In the
experiement on sphere and torus, we used polynomial decay intensity function, and used exponential
decay for other setups.

E.2 SYNTHETIC DATASET

Enner Surface. This first model space is a complete, orientable minimal surface in R3. It is most
conveniently introduced through the polynomial immersion defined as follows:

f(u, v) =
(
u− u3

3 + uv2, v − v3

3 + vu2, u2 − v2
)
, (u, v) ∈ R2.

In order to induce gradient fields, we apply differentiation X with respect to its parameters and yields
the followings:

∂uf =
(
1− u2 + v2, 2uv, 2u

)
, ∂vf =

(
2uv, 1− v2 + u2,−2v

)
.

Taking inner products produces the first fundamental form

g11 = g22 = (1 + r2)2, g12 = 0, r2 = u2 + v2.

In other means, the induced metric g = (1 + r2)2(du2 + dv2) is conformal to the Euclidean metric
and we have det g = (1 + r2)4. Taking derivatives on both component of Riemannian metric, we
have

∂ug11 = 4u(1 + r2), ∂vg11 = 4v(1 + r2), ∂ug22 = 4u(1 + r2), ∂vg22 = 4v(1 + r2).
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Substituting these results into the Levi–Civita formula

Γi
jk =

1

2
giℓ
(
∂jgkℓ + ∂kgjℓ − ∂ℓgjk

)
gives the non–zero components of Christoffel symbols:

Γu
uu = Γv

uv = Γu
uv =

2u

1 + r2
,

Γv
vv = Γu

uv = Γv
vu =

2v

1 + r2
,

Γu
vv = − 2u

1 + r2
, Γv

uu = − 2v

1 + r2
.

Catenoid Surface. This second model space is another complete, orientable minimal surface embed-
ded in R3. A convenient immersion of the catenoid can be explicitly given by the parameterization

f(u, v) = (cosh v cosu, , cosh v sinu, , v), for (u, v) ∈ [0, 2π)× R. (92)

To analyze gradient fields and geometric properties, we compute the partial derivatives
of the immersion f with respect to the local parameters u and v, obtaining ∂uf =
(− cosh v sinu, , cosh v cosu, , 0) and ∂vf = (sinh v cosu, , sinh v sinu, , 1). Taking the inner prod-
ucts of these tangent vectors yields the components of the induced metric tensor, known as the
first fundamental form. Explicitly, we have g11 = ⟨∂uf, ∂uf⟩ = cosh2 v, g22 = ⟨∂vf, ∂vf⟩ =
cosh2 v + sinh2 v = cosh2 v, and g12 = ⟨∂uf, ∂vf⟩ = 0. Hence, the metric tensor is conformally
equivalent to the Euclidean metric, and is concisely expressed as g = cosh2 v, (du2 + dv2), with
determinant det(g) = cosh4 v.

The Christoffel symbols associated with the Levi-Civita connection can be computed from the metric
derivatives. Since the metric depends solely on v, we have ∂ugij = 0 for all (i, j). The non-zero
metric derivatives are ∂vg11 = ∂vg22 = 2 cosh v·2 sinh v = sinh(2v). Using the Levi-Civita formula,
Γi
jk = 1

2g
iℓ(∂jgkℓ + ∂kgjℓ − ∂ℓgjk), and the inverse metric components g11 = g22 = cosh−2 v, we

find the non-zero Christoffel symbols explicitly as follows: Γu
uv = Γu

vu = tanh v, Γv
uu = − tanh v,

and Γv
vv = tanh v. These Christoffel symbols reflect how tangent vectors are parallel transported

across the curved geometry of the catenoid surface.

Torus. This space represents a classical example of a compact, orientable surface with genus one,
smoothly embedded in R3. While the flat torus has been extensively studied in various contexts,
generative modeling of the embedded, curved (non-flat) torus remains unexplored. In this study,
we focus on this embedded torus as our primary model space, employing the following standard
parameterization:

f(u, v) = ((R+ r cos v) cosu, , (R+ r cos v) sinu, , r sin v) , with (u, v) ∈ [0, 2π)2, (93)

where the constants R > r > 0 represent the major (central) and minor (tube) radii, respectively.
To examine the geometry of this surface, we first compute the tangent vectors derived from the
parameterization. The partial derivatives of the embedding are thus explicitly given by

∂uf = (−(R+ r cos v) sinu, (R+ r cos v) cosu, 0) , (94)
∂vf = (−r sin v cosu,−r sin v sinu, r cos v) . (95)

Next, we determine the induced metric, or the first fundamental form, by taking inner products
of these tangent vectors. The resulting metric tensor components become g11 = ⟨∂uf, ∂uf⟩ =
(R + r cos v)2, g22 = ⟨∂vf, ∂vf⟩ = r2, and g12 = ⟨∂uf, ∂vf⟩ = 0, yielding a diagonal metric
tensor. Hence, the metric can be succinctly expressed as g = (R + r cos v)2du2 + r2dv2, with
determinant given by det(g) = r2(R + r cos v)2. To analyze curvature properties and parallel
transport, we compute the derivatives of the metric tensor. Noting the metric’s dependence solely
on the parameter v, we find ∂ugij = 0 for all (i, j). Non-zero derivatives are explicitly computed as
∂vg11 = −2r(R+ r cos v) sin v and ∂vg22 = 0.

Using the inverse metric tensor components, g11 = (R + r cos v)−2 and g22 = r−2, we apply
the Levi-Civita connection formula, Γi

jk = 1
2g

iℓ(∂jgkℓ + ∂kgjℓ − ∂ℓgjk), to derive the non-zero
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Christoffel symbols explicitly as follows:

Γu_uv = Γu_vu = − r sin v

R+ r cos v
, (96)

Γv_uu =
(R+ r cos v) sin v

r
, (97)

Γv_vv = 0. (98)

These Christoffel symbols characterize how vector fields evolve when parallel transported along
curves on the torus surface.

Dupin Cyclide. The Dupin Cyclide is a classical example of a toroidal surface distinguished by its
constant principal curvatures, and can be represented as a surface of revolution in R3. As with the
standard torus, the Dupin torus provides a canonical model for studying nontrivial extrinsic geometry
in generative modeling on curved surfaces. A standard parametrization is defined as follows:

f(u, v) = ((a+ b cos v) cosu, (a+ b cos v) sinu, b sin v) , (u, v) ∈ [0, 2π)2,

where a > b > 0 represent the major and minor radii, respectively. This surface is a particular case
of a Dupin cyclide. The tangent vectors are:

∂uf = (−(a+ b cos v) sinu, (a+ b cos v) cosu, 0) ,

∂vf = (−b sin v cosu,−b sin v sinu, b cos v) .

The first fundamental form has components:

g11 = ⟨∂uf, ∂uf⟩ = (a+ b cos v)2, g22 = ⟨∂vf, ∂vf⟩ = b2, g12 = ⟨∂uf, ∂vf⟩ = 0.

Thus, the induced Riemannian metric is diagonal and can be presented as follows:

g = (a+ b cos v)2du2 + b2dv2, det g = (a+ b cos v)2b2.

The derivatives of the metric components are:

∂vg11 = −2b(a+ b cos v) sin v, ∂vg22 = 0, ∂ugij = 0.

The inverse metric is:
g11 = (a+ b cos v)−2, g22 = b−2.

Applying the Levi-Civita connection formula, the nonzero Christoffel symbols are:

Γu
uv = Γu

vu = − b sin v

a+ b cos v
,

Γv
uu =

(a+ b cos v) sin v

b
,

Γv
vv = 0.

Gaussian Mixture Model on Embedded Manifolds. Let M = Φ(U) ⊂ R3 be a smooth two-
dimensional embedded manifold parametrized by Φ : U ⊂ R2 → R3, with local coordinates
(u, v). A Gaussian mixture distribution defined on the intrinsic parameter domain U has the form
pU (u, v) =

∑K
k=1 αkN ((u, v);µk,Σk), with αk ≥ 0,

∑K
k=1 αk = 1, and Σk ≻ 0, which induces

a density on the manifold given by pM(x) = pU (u, v)/
√

det g(u, v)|x=Φ(u,v), where g(u, v) =

JΦ(u, v)
⊤JΦ(u, v) is the induced metric from the Jacobian JΦ of the parametrization. Sampling from

this manifold density involves drawing (u, v) ∼ pU in parameter space and mapping to the manifold
via x = Φ(u, v). Likelihood evaluation and inference tasks similarly involve pulling back points on
the manifold to the parameter space coordinates (u, v) = Φ−1(x). As an illustrative example, con-
sider the catenoid parametrization f(u, v) = (cosh v cosu, cosh v sinu, v) with (u, v) ∈ [0, 2π)×R.
Its tangent vectors fu = (− cosh v sinu, cosh v cosu, 0) and fv = (sinh v cosu, sinh v sinu, 1)
yield metric coefficients E = cosh2 v, F = 0, and G = cosh2 v, giving det g(u, v) = cosh4 v.
Thus, the induced density on the catenoid is explicitly pM(x) = pU (u, v)/ cosh

2 v|x=f(u,v), clearly
demonstrating how geometric distortion due to embedding is corrected by the induced metric.
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E.3 GEOMETRIC PROJECTION FOR EVALUATION OF EXISTING METHODS

Existing geometric generative methods cannot be directly applied to complex parametric surfaces such
as Dupin cyclides or Enneper surfaces due to the lack of closed-form geodesics and tractable intrinsic
geometric operators. To overcome this analytic intractability, we introduce three practically useful
bijections aligning these non-canonical parametric surfaces with well-studied canonical manifolds
(e.g., Sn,Tn), which can readily support existing modeling techniques.

Our goal here is not to achieve isometry, but rather to establish a continuous, invertible mapping
that enables transferring densities, trajectories, or fields between distinct geometric spaces. In all
cases detailed below, parameters controlling scale and seam placement can be chosen for numerical
convenience without affecting bijectivity. Through these geometric correspondences, standard
baseline methods can first model data on canonical manifolds such as spheres or tori, after which
results are projected back onto the original, more complex surfaces. By subsequently assessing the
generated results in their native parametric spaces, we ensure that comparisons between methods
remain geometrically meaningful, enabling fair evaluation while circumventing the complexities
inherent to modeling directly on the original surfaces. We first enumerate basic notations, mappings
that will be used in various conversion rules.

Kelvin inversion on R3. For a given point x = (x1, x2, x3)
⊤ ∈ R3, center c ∈ R3, and radius

R > 0, the Kelvin inversion Ic,R is defined as

Ic,R(x) = c+
R2

∥x− c∥2
(x− c).

This mapping is a global involution on R3 \ {c}, satisfying I−1
c,R = Ic,R.

Standard torus parameterization. Consider a standard torus in R3 with major radius R0 > 0
and minor radius 0 < r < R0. The torus can be explicitly parameterized by angles (Θ,Φ) ∈
[0, 2π)× [0, 2π) as follows:

T (Θ,Φ) =
(
(R0 + r cosΦ) cosΘ, (R0 + r cosΦ) sinΘ, r sinΦ

)
.

Conversely, given a point (x, y, z)⊤ on this torus, its associated angular coordinates (Θ,Φ) can be
uniquely recovered through the inverse relations:

Θ = atan2(y, x), Φ = atan2
(
z,
√
x2 + y2 −R0

)
.

Stereographic projection and its inverse. Let N = (0, 0, 1)⊤ be the north pole of the unit sphere
S2 ⊂ R3. The stereographic projection from S2 \ {N} onto the complex plane C is given by

s : S2 \ {N} → C, s(y) =
y1 + iy2
1− y3

, for y = (y1, y2, y3) ∈ S2 \ {N}.

Its inverse mapping is explicitly defined as

s−1 : C→ S2 \ {N}, s−1(z) =
1

1 + |z|2
(
2 Re z, 2 Im z, |z|2 − 1

)
, z ∈ C.

This stereographic projection naturally extends to a bijection between the Riemann sphere C ∪ {∞}
and the sphere S2 by identifying the north pole N with the point at infinity:

s(N) =∞, s−1(∞) = N.

Conversion between Catenoid and Sphere. Given new notations and functions described above, let
us consider the standard parametrization of the catenoid as described in Eq. 92. Then, we introduce
an exponential compactification given by the mapping

ψ(u, v) = αev+iu ∈ C ∪ {∞}, with scale factor α > 0.

Leveraging this compactification, we construct the following explicit bijection from the cylindrical
domain [0, 2π)× R onto the sphere S2: Φcat→S2(u, v) = s−1

(
ψ(u, v)

)
, where s : S2 → C ∪ {∞}
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denotes the stereographic projection. In particular, under this mapping, the cylindrical coordinates
map naturally to spherical coordinates. Moreover, this transformation admits an explicit inverse: For
any point y ∈ S2, one first computes its stereographic projection z = s(y), after which the original
catenoid coordinates are recovered as

u = arg(z), v = log(|z|/α).

Consequently, any sampling procedures, density functions, or vector fields defined originally in the
(u, v)-parametrization of the catenoid can be straightforwardly pulled forward onto S2 via Φcat→S2 ,
and similarly pushed back onto the catenoid by means of the analytic inverse mapping presented above.
This construction thus facilitates geometric transfer between these distinct spaces, enabling standard
methods developed for canonical spherical geometries to be effectively adapted and evaluated within
the analytically more complex catenoid setting.

Conversion between Enneper Surface and Torus. The classical Enneper surface admits a polyno-
mial parameterization, which is known to possess intricate self-intersecting geometry, and hence is
generally not globally injective. For practical applicability, it is beneficial to restrict our attention to a
suitable, simply connected subdomain

DR = {(u, v) ∈ R2 : u2 + v2 < R2},

with the radius parameter R > 0 chosen sufficiently small to moderate, ensuring that the restriction
Xenn|DR

is injective over the support of interest. Such a selection of domain radius is essential to
avoid self-intersections and ensure well-posedness of the ensuing geometric transformations. Next,
we introduce polar coordinates within the domain DR, defined explicitly by r =

√
u2 + v2 and θ =

atan2(v, u), providing a natural angular and radial parametrization of the Enneper surface domain.
To facilitate the mapping onto the torus, we define a strictly increasing bijection η : [0,∞)→ [0, 1)
through

η(r) =
2

π
arctan(βr), with a scaling parameter β > 0,

which possesses the explicit inverse given by r = 1
β tan

(
π
2 η
)
. This bijection is chosen specifically to

achieve a smooth radial rescaling, mapping the infinite radial extent of the Enneper surface onto a
finite interval suitable for embedding into the toroidal geometry. Furthermore, angles are mapped
onto the standard toroidal coordinates by assigning Θ = θ mod 2π, thus ensuring periodic continuity
in the angular direction, and Φ = 2π η(r) = 4 arctan(βr), thereby embedding the radial direction
smoothly onto the torus. Consequently, we define the explicit embedding from the Enneper surface
domain to the torus as

Φenn→T 2(u, v) = T (Θ,Φ),

where T denotes the standard torus parametrization introduced previously. By construction, this
mapping is continuous, smoothly varying, and injective when restricted to the chosen domain
DR, thereby establishing a well-defined bijection onto its toroidal image. Explicit recovery of the
original coordinates from the toroidal embedding is straightforward: the inverse map explicitly yields
r = 1

β tan(Φ/4), directly recovers the angular coordinate via θ = Θ, and subsequently produces the
original planar coordinates by (u, v) = (r cos θ, r sin θ). If required, the inverse chart of the original
polynomial parametrization Xenn can then be applied, completing the full cycle of the geometric
transformation between the Enneper surface and the torus.

Conversion between Dupin Cyclide and Torus via Inversion. A Dupin cyclide can be analytically
represented as an inversion of a standard geometric surface such as a torus, cone, or cylinder, and
thus admits a global angle-preserving bijection onto these simpler shapes through Kelvin inversion
in R3 \ {c}. Given torus parameters (R0, r) along with an inversion defined by a center c ∈ R3

and radius R > 0, a Dupin cyclide can be explicitly obtained via the composition C(Θ,Φ) =
Ic,R

(
T (Θ,Φ)

)
, where T (Θ,Φ) is the standard parameterization of the torus. Conversely, given an

arbitrary Dupin cyclide C, there exist suitable parameters (c,R) that render the image Y = Ic,R(C)
into a standard torus configuration. Thus, the explicit transformation Φdup→T 2(x) defined by
(Θ,Φ) =

(
atan2(Y2, Y1), atan2(Y3,

√
Y 2
1 + Y 2

2 − R0)
)
, with Y = Ic,R(x), provides a global

bijection from the Dupin cyclide (excluding only the inversion center c) onto the standard torus,
subject to identification along the torus seam. Its inverse is explicitly given by x = Ic,R

(
T (Θ,Φ)

)
,

allowing full recovery of cyclide coordinates from toroidal parameters.
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E.4 REAL-WORLD DATASET

Lunar Spherical Harmonic Dataset (LRO/LOLA SHADR). To precisely describe the lunar
surface geometry, we employ the spherical harmonic coefficient dataset released by NASA’s Lunar
Reconnaissance Orbiter (LRO) mission, specifically the Lunar Orbiter Laser Altimeter (LOLA)
Spherical Harmonic Data Record (SHADR) Smith et al. (2010); Neumann et al. (2020). This
dataset (e.g., lro_ltm05_2050_sha.tab) represents the Moon’s reference surface as a truncated
expansion in real spherical harmonics:

r(θ, φ) = r0(θ, φ) +

Lmax∑
l=1

l∑
m=0

[Cl,m cos(mφ) + Sl,m sin(mφ)]Pl,m(cos θ), (99)

where r0 is a reference radius, Pl,m are the associated Legendre polynomials, and (Cl,m, Sl,m)
are the tabulated spherical harmonic coefficients up to degree and order Lmax = 2050. This high-
resolution model enables a faithful reconstruction of the lunar topography, capturing both global
structure and fine-scale features. The dataset is distributed via NASA’s Planetary Data System
(PDS) and constitutes the standard scientific basis for lunar surface analysis and generative modeling.
Empirically, we found that retaining only the leading 50 harmonic coefficients suffices to capture
the essential topographic features for generative modeling. Accordingly, our experiments utilize
coefficients up to degree Lmax = 50. To train the diffusion model, we sample 210 points from the
spherical harmonic parameterization of the lunar surface and employ these as data instances x0 ∼ ρM0
to define the score matching loss.

Asteroid Spherical Harmonic Dataset (NEAR/Eros). In second real-world dataset, we reconstruct
and analyze the shape of asteroid 433 Eros by utilizing the spherical harmonic coefficient dataset
acquired by the NEAR Shoemaker mission Miller et al. (2002). The dataset provides a tabulated set
of real spherical harmonic coefficients (Cl,m) up to a specified maximum degree Lmax, as determined
from laser altimeter and optical data. The surface is parameterized in the form:

r(θ, φ) = r0(θ, φ) +

Lmax∑
l=0

l∑
m=−l

Cl,mYl,m(θ, φ), (100)

where Yl,m denotes the (complex or real-valued) spherical harmonics. Each row in the dataset
specifies (l,m,Cl,m), which are filtered by thresholding or truncation in downstream processing.
This high-resolution expansion enables both scientific study and generative modeling of the asteroid’s
three-dimensional surface geometry. The dataset is publicly available as part of the NEAR A
Shoemaker mission archive distributed by NASA’s Planetary Data System (PDS) NASA PDS Small
Bodies Node (2001). To maintain consistency with our lunar surface experiments, we adopt an
analogous experimental setup for the Eros dataset. Specifically, we retain the leading 50 spherical
harmonic coefficients to parameterize the asteroid’s surface and uniformly sample 210 points for use
in training the diffusion model via the score matching loss.

Shape Analysis of Human Anatomy Surfaces. To demonstrate the applicability of our framework
to biomedical shape analysis, we consider publicly available anatomical datasets distributed with the
SPHARM-PDM software (Styner et al., 2006; Shen et al., 2009). Specifically, we adopt (i) the Hip-
pocampi dataset, which consists of left and right hippocampus surface models from multiple subjects
divided into two clinical groups, and (ii) the Knee dataset, which provides volumetric MRI data of
the knee joint along with preprocessed surface reconstructions. Both datasets are parameterized onto
the sphere using spherical harmonics, enabling direct comparison of 3D morphologies across sub-
jects. These anatomical surfaces serve as standard benchmarks in neuroimaging and musculoskeletal
research, providing a controlled experimental setting for validating geometric learning algorithms.

Quantum Tomography. To prepare the quantum dataset, we leverage the publicly available
QDataSet Perrier et al. (2022), which provides experimentally realistic quantum-control simula-
tions. Unlike classical shape datasets such as the Hippocampi and Knee surfaces that are prepro-
cessed with spherical harmonics, the raw QDataSet does not directly provide Bloch vectors but
rather 18-dimensional expectation values of an informationally complete operator set. To obtain
usable qubit states on the manifold CP1, we perform a linear inversion tomography step: given
measurement operators {Vk}18k=1 and observed expectations Ek = Tr(ρVk), we solve an overde-
termined least-squares system to estimate the Bloch vector r = (rx, ry, rz) while enforcing the
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Block #Linear Layers Input → Output Dim Notes

Input concat – [E ∈ Rd, ∆x ∈ Rd, vec(e−1) ∈ Rd2 ] Time embedding τ(t) ∈ RT injected via FiLM

Encoder stage s 1 + 3R Cs−1 → Cs in-projection (1) + R ResBlocks (fc1+fc2+FiLM)
Bottleneck 2× 3 CL → CL two ResBlocks, each with (fc1+fc2+FiLM)
Decoder stage s 1 + 3R (Cs+1 ⊕ Cs+1) → Cs merge-projection (1) + R ResBlocks
Score head 1 C1 → d LN + Act + Linear
Bridge head 1 C1 → d LN + Act + Linear

Per-ResBlock 3 C → C fc1, fc2, and FiLM(T → 2C)

Table 5: Layer composition of ScoreUNet. Each encoder stage projects the features to a higher channel
dimension, the bottleneck applies two residual transformations, and the decoder fuses skip connections back to
lower channels. Both heads output d-dimensional vectors for the score and bridge predictions.

physical constraint |r| ≤ 1. The reconstructed Bloch vectors are then mapped to density matrices
ρ = 1

2 (I + rxσx + ryσy + rzσz), yielding a dataset supported on CP1 ∼= S2.

E.5 NEURAL NETWORK ARCHITECTURE

Our framework employs a UNet-style multilayer perceptron designed for structured vector inputs.
The input feature is the concatenation of the latent state E ∈ Rd, the displacement ∆x ∈ Rd, and the
flattened inverse frame matrix vec(e−1) ∈ Rd2

, while the time variable t is encoded by a sinusoidal
embedding τ(t) ∈ RT and injected throughout the network via FiLM conditioning Perez et al. (2018).
The encoder consists of successive stages, each performing a linear in-projection followed by R
FiLM-modulated residual blocks, thereby projecting features to higher channel dimensions and
storing intermediate outputs as skip connections.

At the bottleneck, two residual transformations refine the representation with layer normalization,
activation, and FiLM-modulated affine conditioning. The decoder mirrors the encoder by concate-
nating the current hidden representation with the corresponding skip features, applying a merge
projection, and passing the result through R residual blocks, progressively reducing the channel
dimension back to the base width. Finally, two parallel output heads map the decoded representation
to task-specific predictions: the score head outputs d-dimensional vectors corresponding to the
learned score function s(t, E), and the bridge head outputs d-dimensional vectors modeling the
bridge function v(t,∆x, e−1). This architecture preserves the UNet property of combining hierarchi-
cal feature extraction with precise skip connections, while FiLM conditioning ensures that temporal
information influences all layers of the computation.

xlii



2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2026

Figure 4: Robustness to Dimensionality on High-Dimensional Spheres. Performance of different methods as
the dimension of the sphere increases. Unlike Riemannian SGM and Pull NF, our HDM maintains stable and
accurate density estimation even in high-dimensional settings by leveraging Euclidean-based modeling.

Figure 5: Robustness Analysis on High-Dimensional Spheres. Each panel illustrates sensitivity analysis by
systematically varying a single parameter (γ, Σ0, λmax, α) through multiplicative perturbations around the
baseline (vertical blue line at 1×), while keeping all other parameters constant. The performance metrics are
reported as the sliced Wasserstein-2 distance and the max-sliced Wasserstein-2 distance between the target and
generated samples.

E.6 ABLATION STUDY

Sensitivity Analysis on Toy Example. We systematically investigate how increasing the intrinsic
dimension of the sphere Sn affects density estimation performance. Unlike prior methods such as
Riemannian SGM and Pull NF, HDM leverages the efficiency of Euclidean neural networks for
modeling, resulting in substantially more robust and stable reconstruction as dimensionality grows.
In particular, experiments on spheres with increasing dimension demonstrate that, while existing
methods exhibit significant performance degradation, HDM maintains consistently high accuracy by
capitalizing on the advantage of Euclidean-based modeling.

Sensitivity Analysis on Hyperparameters. We perform a comprehensive sensitivity analysis on
key hyperparameters to evaluate their impact on model performance in Figure 5. Specifically, we
systematically vary each of the parameters (γ,Σ0, λmax, α) introduced in Sec E.1 individually, while
holding the remaining parameters fixed at their baseline values. Empirically, the analysis demonstrates
that smaller values of γ, Σ0, and α lead to improved alignment between the generated and target
distributions, whereas larger values of λmax enhance performance within the tested range. The
experimental setup for this analysis is standardized across all evaluations, using total integration
time T = 1, N = 600 integration steps, 4096 particles, an exponential schedule for the diffusion
parameter λs, 50 random projections, and Wasserstein exponent p = 2.

E.7 ADDITIONAL EXPERIMENTAL RESULTS

Enner Surface. In this experiment, we consider the target distribution on the Enneper surface to be
a mixture of three Gaussian components, each localized around different regions of the parameter
space. Our horizontal diffusion model successfully recovers this multimodal structure: as the reverse
process evolves (from right to left in Figure 6), the generated samples concentrate into three distinct
clusters that match the modes of the target distribution. This demonstrates the ability of our method
to accurately capture and reconstruct complex, multimodal densities defined on nontrivial manifolds.
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Figure 6: Visualization of Reverse process on the Enneper surface. The reverse process sampled from
proposed method evolves from right to left, showing the density transformation as the system proceeds backward
in time.

E.8 ALGORITHM

This section presents the core algorithms for sampling and simulating horizontal diffusions on
the frame bundle. We introduce methods for stationary distribution sampling, orthonormal frame
construction, horizontal lift evaluation, and reverse-time diffusion simulation.

Sampling Stationary Distribution on O(M). we first outline Algorithm 1, which samples in-
dependent points (x, e) ∈ O(M) from the stationary distribution given by the product measure
dVolg ⊗ dHaarO(d). The algorithm first draws a base point x according to the Riemannian volume
measure, followed by generating an orthonormal frame e at x via QR factorization of a Gaussian
matrix. Thus, it ensures Haar-distributed randomness in each fiber. As the base and fiber components
are sampled independently, this procedure yields unbiased samples from the stationary law of the
horizontal diffusion on the frame bundle.

Algorithm 1 SAMPLING STATIONARY MEASURE dρHor
∞ = dVolg ⊗ dHaarO(d)

Require: Riemannian manifold (M, g). REJECTIONVOLUMESAMPLE() that returns x ∼ dVolg;
Ensure: (x, e) ∈ O(M) sampled from the product measure.

Sampling the base point
1: x← REJECTIONVOLUMESAMPLE()

Sampling the orthonormal frame at x
2: Z ← randn(d, d) ▷ entries i.i.d. N (0, 1)
3: (Q,R)← QR(Z) ▷ column-orthonormal Q
4: Q← Qdiag

(
sign(diag(R))

)
▷ enforce Q ∈ O(d) (Haar)

5: e← FRAMEFROMMATRIX(x,Q) ▷ convert Q to orthonormal frame in TxM
Return

6: return (x, e)

Given a point x ∈M and a Haar-random orthogonal matrix Q ∈ O(d), Algorithm 2 constructs an
orthonormal frame in TxM by first orthonormalising the local coordinate basis via a metric-aware
Gram–Schmidt process, and subsequently applying the columns of Q as coefficients to form the
final frame. This yields an isometric linear map e : Rd → TxM, whose orientation is distributed
according to the Haar measure on the fibre over x.

Algorithm 2 FRAMEFROMMATRIX(x,Q)

Require: Point x ∈M, Haar matrix Q ∈ O(d)
Ensure: Orthonormal frame e =

(
e1, . . . , ed

)
at x

1:
{
bi =

∂
∂xi

∣∣
x

}d
i=1
← LOCALBASIS(x) ▷ chart differentials

2:
{
êi
}d
i=1
← GRAMSCHMIDT({bi}, gx) ▷ produces g-orthonormal vectors

3: for a = 1 to d do

4: ea =

d∑
i=1

êiQia ▷ Embed Haar matrix

5: end for
6: return e = (e1, . . . , ed) ▷ linear map e : Rd → TxM
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In Algorithm 3, a simple rejection sampling scheme is used to generate points in local coordinates
y ∈ B with respect to the intrinsic Riemannian volume. Proposals are drawn uniformly from the
coordinate patch, and accepted with probability proportional to the volume density VolDens(y),
normalized by an upper bound M . This procedure yields samples exactly distributed according to the
manifold’s volume element, serving as an accessible alternative to more complex MCMC methods
when no explicit inverse map is available.

Algorithm 3 REJECTIONVOLUMESAMPLE()

Require: Local Coordinate domain B ⊂ M, Determinant oracle VolDens(y) ≡
√
det gij(y)

for y ∈ B, Constant M ≥ sup
y∈B

VolDens(y)

Ensure: Local coordinate vector y ∈ B distributed according to the intrinsic volume measure
VolDens(y)dy

1: repeat
2: y ← Unif(B) ▷ draw uniformly in coordinate region
3: p← VolDens(y)/M ▷ 0 < p ≤ 1
4: u← Unif(0, 1)
5: until u < p ▷ accept with probability p
6: return y⋆ ← y

Sampling Reverse Horizontal Diffusion Us. Algorithm 4 computes the horizontal lift matrix H at
a given frame bundle state U = (x, e), where x ∈M and e ∈ O(d). The resulting H ∈ R(d+d2)×d

encodes the horizontal distribution associated with the Levi-Civita connection at x. Each column
Ha concatenates the base-point direction e·a and the frame evolution −Γ(e·a)e, where Γ denotes
the Christoffel symbol tensor at x. The upper d rows of Ha yield the directional derivative along
e·a in TxM, while the lower d2 rows encode the corresponding infinitesimal frame rotation induced
by parallel transport. This construction provides a local trivialization of the horizontal distribution,
ensuring compatibility with the manifold’s Riemannian geometry and connection.

Algorithm 4 HORIZONTALLIFT(U=(x, e))

Require: State U = (x, e) with base point x ∈M and frame matrix e = [eia] ∈ O(d)
Ensure: Horizontal lift matrix H =

[
H1 | · · · | Hd

]
such that Ha =

(
e·a,−Γ(e·a)e

)
1: Γ← CHRISTOFFEL(x) ▷ Γl

jk tensor of size d× d× d
2: H ← 0(d+d2)×d

3: for a = 1 to d do
// base–point component

4: for i = 1 to d do
5: Hi,a ← eia ▷ (Ha)

x = e·a
6: end for

// vertical (frame) component
7: for l = 1 to d do
8: for m = 1 to d do
9: s← 0

10: for j = 1 to d do
11: for k = 1 to d do
12: s← s+ Γl

jkejaekm
13: end for
14: end for
15: r ← d+ (l − 1)d+m ▷ row index for (l,m) pair
16: Hr,a ← −s
17: end for
18: end for
19: end for
20: return H
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With the definition of horizontal lift of Euclidean latent vectors, Algorithm 5 describes a discretized
scheme for sampling from the reverse-time dynamics of the horizontal diffusion process on the frame
bundle O(M). The procedure reconstructs approximate samples from the initial data distribution
ρHor
0 by integrating the reverse Stratonovich SDE backward from a given terminal state.

Given a terminal state (UT , ET ), the algorithm first precomputes the reverse-time grid and associated
scalar schedules, including stepwise values for the bridge parameter λ, the drift γ, and the noise
strength σ2. Initialization is performed by setting the latent and geometric states to the prescribed
terminal values.

Algorithm 5 REVERSEHORIZONTALDIFFUSION(UT , ET ;T,N)

Require: Terminal state UT = (xT , eT ) ∈ O(M), Terminal latent ET ∈ Rd, Time horizon T > 0,
Number of steps N with step size ∆s = T/N .

Ensure: Approximate sample U0 from the data distribution ρHor
0

Pre–compute time grids and scalar schedules
1: for i← 0 to N do
2: si ← i∆s, λi ← λ(si), γi ← γ(si), σ2

i ← σ2(si) = γiΣ(si)
3: end for

Initialize reverse variables
4: U ← UT , E ← ET

5: for i← N − 1 down to 0 do
6: s← si, ∆s← si+1 − si ▷ reverse time increment

//geometry: bridge vector in frame coordinates
7: x← INITIALPOINT(U), e← INITIALFRAME(U)
8: v ← v(t, θ)

//scores and Stratonovich drift
9: brev ← −λiv + γiE + σ2

i sθ(E, s)

10: ξ ← σi
√
∆s ∗ randn(d) ▷ ξ ∼ N (0, σ2

i∆sId)
11: dE ← brev∆s+ ξ
12: E ← E + dE

//horizontal Stratonovich update of the frame path
13: H ← HORIZONTALLIFT(U) ▷ H ∈ R(d+d2)×d

14: U ← U +HdE ▷ Stratonovich step dU = H(U) ◦ dE
15: if i ≡ 0 (mod P ) then ▷ every P steps re–orthonormalise
16: e← ORTHONORMALIZEMETRIC(e) ▷ eT g(x)e = I
17: U ←

(
x, e
)

18: end if
19: end for
20: return U0 ← U

The main loop then iteratively integrates the reverse SDE from time T to 0 in N discrete steps.
At each iteration, the current frame and base point are extracted, and the neural networks infer
the bridge vector v = v(t, θ), quantifying displacement relative to the anchor. The reverse drift
combines three contributions: a deterministic pull towards x0, a restoring force in the latent, and a
score-driven correction based on the model’s learned score SCORE(E, s). Stochastic increments ξ
simulate Gaussian noise compatible with the instantaneous covariance.

The latent vector E is updated via an Euler–Maruyama step, and the corresponding geometric state U
is propagated horizontally in the frame bundle according to the Stratonovich rule dU = H(U) ◦ dE.
To ensure numerical stability, we prform periodic re-orthonormalization of the frame using the
manifold metric.

Upon completion, the algorithm returns the initial geometric state U0, representing a sample drawn
approximately from the reverse-time law of the horizontal diffusion process. This scheme thereby
enables efficient simulation-based generation of samples from complex data distributions defined
over the manifold and its frame bundle.
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