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ABSTRACT

In this study, we propose an intelligent system for portfolio management that ap-
plies robust reinforcement learning within a multi-agent framework. The pro-
posed system incorporates both competition and cooperation strategies to enhance
decision-making performance and adaptability. By formulating the portfolio man-
agement problem as a cooperative multi-agent environment, agents collaborate
and jointly strive to achieve a common goal. On the other hand, the inclusion
of competition strategies enables agents to dynamically compete for limited re-
sources and advantages in the market. Specifically, the proposed cooperative
strategies employ the absolute value of the reward, prioritizing accelerated model
convergence. Meanwhile, the competitive strategies utilize previous rewards to
guide action selection, aiming to seek gains and avoid losses. To assess the per-
formance of our model, we evaluate it on a set of real-world financial data. The
results obtained demonstrate that the proposed game strategies outperform tradi-
tional reinforcement learning approaches.

1 INTRODUCTION

Portfolio management has always been a challenging and dynamic field, demanding traders to make
informed decisions amidst rapidly changing market conditions. As the volume and complexity of
financial data continue to increase, there is a growing interest in utilizing machine learning tech-
niques to address this problem. Specifically, machine learning has emerged as a promising avenue
for developing automated investment strategies that can adapt to real-time market changes Choi
et al. (2009); Leippold et al. (2022). Therefore, the main objective of this study is to explore the
application of an intelligent system to enhance the robustness of portfolio optimization strategies.

Reinforcement Learning (RL) is a machine learning technique that empowers an agent to acquire
decision-making capabilities through interaction with its environment and receiving feedback in the
form of rewards or penalties. In the realm of quantitative trading, RL has brought about a revolution
by enabling traders to make well-informed decisions based on historical market data and adapt
their strategies in response to market dynamics (Wang et al., 2021). However, despite the evident
benefits of RL, there are potential drawbacks that require attention. For instance, RL-based trading
strategies can be highly sensitive to changes in the environment, where even minor variations can
result in a significant decrease in performance or, in some cases, catastrophic failure (Tessler et al.,
2019). To address this challenge, this paper focuses on developing a robust RL model for portfolio
management using competition and cooperation strategies within a multi-agent system, referred to
as CCRRL (Robust Reinforcement Learning via Multi-Agent System).

The main contributions of this work are based on the following features:

1) It introduces a robust reinforcement learning architecture based on multi-agent system, which
aims to mitigate the negative impact of variations in the market, ensuring the stability and adaptabil-
ity of the portfolio management system.

2) It incorporates both competition and cooperation strategies within the multi-agent system, leading
to collective enhancements in the performance of reinforcement learning algorithms.
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3) It performs extensive experimental evaluations and comparisons, where the experiments involve
diverse market scenarios and various investment strategies to ensure the validity and generalizability
of the findings.

2 RELATED WORKS

The integration of RL into portfolio optimization represents a significant breakthrough in the ad-
vancement of trading strategies (Zhang et al., 2020; Liu et al., 2022) . Recently, Wang et al. (2021)
introduced a deep RL framework to enhance portfolio selection strategies by applying the Tucker
decomposition technique to solve multimodal problems. However, the real world is filled with
uncertainties and disturbances that can cause RL agents to fail or underperform. This is where the
concept of Robust Reinforcement Learning (RoRL) becomes relevant. RoRL is a subfield of RL that
aims to enhance the stability, reliability, and generalization of RL algorithms in the face of various
disturbances and uncertainties (Pinto et al., 2017; Kamalaruban et al., 2020). The primary objec-
tive of RoRL is to empower RL agents to learn policies capable of adapting to unexpected changes
and recovering from failures in uncertain and dynamic environments. To achieve this objective, re-
searchers have proposed various methods for robust RL under uncertain and dynamic environments,
including model-based uncertainty estimation (Osband et al., 2018; Lütjens et al., 2019), RL with
auxiliary tasks (Hernandez-Leal et al., 2019; Lin et al., 2019), and transfer learning (Zhan & Taylor,
2015; Shi et al., 2021).

In the realm of RL with auxiliary tasks, the utilization of multi-agent game theory has garnered
significant attention for enhancing the robustness of RL algorithms. Kartal et al. (2019) proposed
a novel defense strategy based on time-varying channels, treating the process of countering mali-
cious interference as a multi-user intelligent game model. By considering the unknown interference
model and strategy, their work introduced a multi-user random post-decision state game algorithm
that employs deep reinforcement learning to intelligently fend off intelligent attackers. Addition-
ally, Jiang et al. (2022) addressed a crucial issue in the stock market: maximizing returns by selling
stocks at the opportune moment. The authors emphasized the influence of human emotions and
greed on investors’ selling decisions and stressed the importance of developing rational strategies
to generate investment returns. To tackle this challenge, they constructed a multi-agent model us-
ing deep reinforcement learning, which outperformed other machine learning models by adapting
better to complex market changes and facilitating superior selling decisions for investors. There-
fore, the central focus of this paper revolves around the development of a Robust Reinforcement
Learning via Multi-Agent System (CCRRL) model explicitly designed to fortify the robustness of
portfolio strategies. By drawing inspiration from the advancements in multi-agent game theory and
integrating robust reinforcement learning techniques, this study aims to enhance the stability and
adaptability of portfolio management strategies in the face of uncertainties and disturbances in fi-
nancial markets.

Cooperative reinforcement learning represents an extended approach to the traditional reinforcement
learning framework, specifically addressing collaboration problems in multi-agent systems (Shi,
2020). It involves the mutual cooperation and collaboration among multiple agents to achieve com-
mon goals. Lee et al. (2020) introduced a multi-agent reinforcement learning network for generating
investment strategies in stock markets, applying advanced deep learning methods. In their approach,
each agent operates independently and manages its own portfolio. The results indicate that the in-
clusion of more agents in the system further improves the Sharpe ratio by reducing risk through
a more diversified portfolio. For further details on cooperative reinforcement learning, interested
readers may refer to the following papers (Foerster et al., 2016; Liu et al., 2018; Lowe et al., 2017).
On the other hand, competitive reinforcement learning extends the classical framework of reinforce-
ment learning to scenarios where multiple agents compete against each other. Daskalakis et al.
(2020) have obtained global, non-asymptotic convergence guarantees for independent learning al-
gorithms in competitive reinforcement learning settings with two agents. Their work demonstrates
that if both players simultaneously employ policy gradient methods and their learning rates follow
a two-timescale rule, their policies will converge to a minimax equilibrium of the game. For fur-
ther insights into competitive reinforcement learning, interested readers may refer to the following
papers (Ye et al., 2020; Bai & Jin, 2020).
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3 METHODOLOGY

3.1 VARIABLES DESCRIPTION

The principal formulas employed in this article are delineated in Table 1. To cater to distinct ob-
jectives, we partition the variables into two distinct groups. The first group serves the purpose of
constructing a mathematical programming model for the portfolio optimization, while the second
group expounds upon the RL model utilized to solve the portfolio optimization problem.

Notations Descriptions
Mathematical Programming

xit The proportion of the total investment allocated to asset i at time step t.
rit The expected return of asset i at time step t.
σi The standard deviation (or volatility) of asset i.
tr The desired target return for the portfolio.
ρij The correlation coefficient between assets i and j.

Reinforcement Learning
st The current state at time step t.
actiont The action generated by an agent at time step t.
reward The previous reward of an agent.
µ The deterministic strategy function.
θµ The parameter of deterministic strategy function.
N The random noise.
actionadv The action of a competitive agent.
actioncop The action of a cooperative agent.
actionpre The previous action of an agent.
actionfin The output of the final action.
modify The modification function adjusting the reward.

Table 1: Descriptions of main considered variables.

3.2 MODELS DESCRIPTION

3.2.1 MATHEMATICAL PROGRAM FOR THE PO

A standard mathematical program for the dynamic portfolio optimization problem can be written as
follow.

(P) Maximize z =

n∑
i=1

ritxit (1)

s.c.
n∑

i=1

xit = 1,∀t = 1, . . . , T, (2)

n∑
i=1

ritxit ≥ tr, ∀t = 1, . . . , T, (3)

n∑
i=1

n∑
j=1

σiσjρijxitxjt ≤ σ2
max, (4)

xit ≥ 0,∀i = 1, . . . , n, ∀t = 1, . . . , T.

In this model, the decision variable xit represents the proportion of the total investment allocated
to asset i at date t, for all i = 1, 2, . . . , n. The objective function (Equation 1) is to maximize
the expected return of the portfolio z, which is the sum of the expected returns of the individual
assets weighted by their respective proportions. The budget constraint (Equation 2) ensures the
total allocation sums to 1, while the target return constraint (Inequality 3) ensures the portfolio’s
expected return is greater than or equal to the desired target return tr. Additionally, there is a risk
constraint (Inequality 4), often represented by the portfolio variance, that limits the overall risk of
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the portfolio. Inequality 4 ensures that the portfolio’s variance, calculated as the weighted sum of
the asset variances and covariances, is less than or equal to a specified maximum variance σ2

max. The
correlation coefficients ρij capture the relationship between the returns of different assets and are
used in calculating the portfolio variance. The solution to P provides the optimal allocation of funds
to each asset in the portfolio, considering the desired target return and the risk constraints. It allows
investors to construct diversified portfolios that balance risk and return, maximizing the expected
return while staying within acceptable risk limits.

3.2.2 SOLUTION METHOD

Within the framework of CCRRL proposed for portfolio optimization, a key component is the inte-
gration of the Deep Deterministic Policy Gradient (DDPG) algorithm Lillicrap et al. (2015). DDPG
is a promising RL technique that utilizes a Deep Neural Network (DNN) to learn an optimal pol-
icy for tasks involving continuous control. By combining the strengths of Q-learning and policy
gradients, DDPG effectively learns a policy that maps states to actions in a given environment. No-
tably, DDPG applies the power of the DNN to represent both the policy and the Q-value function,
enabling the handling of high-dimensional state and action spaces. The policy network maps the cur-
rent state to an action, while the Q-network estimates the expected cumulative reward for a specific
state-action pair.

However, factors such as network structure and random parameter initialization introduce unpre-
dictability in the output of the Actor network, even for the same input state. This inherent random-
ness can significantly impact the training process, leading to challenges in convergence, learning,
and overall instability. To address these instability issues, we propose the CCRRL model. Unlike
conventional DDPG algorithms, CCRRL incorporates principles from game theory and considers in-
teractions with other agents during the training phase. In this context, the actor network must account
for its interaction with other agents and continuously adapt its strategy to optimize reward attain-
ment. By incorporating competition and cooperation strategies into the training process, CCRRL
enhances stability and convergence capabilities. It enables the actor network to dynamically adjust
its actions based on the actions of other agents, resulting in more robust and effective learning. As
a result, CCRRL offers an improved approach to tackle the challenges posed by randomness and
instability in traditional DDPG algorithms.

3.3 OVERVIEW OF CCRRL

Figure 1: The main concept of CCRRL.
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Figure 1 illustrates the key concept of the proposed CCRRL, which aims to enable robust portfolio
selection strategies through RL. The framework consists of interconnected components that collab-
orate to generate investment actions. In CCRRL, the DDPG algorithm acts as the primary agent
responsible for generating actions based on the current state of the stock market. The DDPG model
takes stock data as input and produces both a reward signal and an initial action based on the market’s
current state. Once the DDPG model generates an action, it undergoes processing in the modify
function. The reward signal is modified, and the resulting value is multiplied by the initial action
to derive the adversary action actionadv . actionadv is then added to the original action, resulting
in the final action actionfin that is executed in the market. Then put these four final actions into
environment simulation in order to find which final action could generate the best reward. After each
simulation, the environment will be reset to the state before simulation. After generating actionfin,
it is returned to the DDPG model, which generates corresponding rewards and uses actionfin as
actionpre for the next training step. This process of action generation and execution continues in a
loop until the training is completed.

It is important to note that the concept of reward is fundamental in RL as it transforms tasks into
a series of feedback signals that facilitate effective communication between the agent and the envi-
ronment. In CCRRL, reward represents the value obtained by an agent through the selection of an
action, serving as a measure of that action’s contribution to the task objective. Typically, reward
is represented as a real value, and the main objective of CCRRL is to accomplish tasks by selecting
a series of continuous actions that maximize cumulative rewards. Therefore, we are developing a
multi-agent game mechanism centered around the concept of reward to enhance the robustness of
the reinforcement learning model.

4 MULTI-AGENT SYSTEM VIA COMPETITION AND COOPERATION
STRATEGIES

4.1 AGENT’S PREVIOUS ACTION

Recall that actiont is utilized by the DDPG algorithm to generate actions based on the current state
t of the system. The mathematical representation of actiont is provided in Equation 5.

actiont = µ(st | θµ) +N , (5)

Here, µ represents a deterministic strategy function that maps the current state st, while θµ denotes
the parameter vector governing the behaviour of this deterministic strategy function. Additionally,
N refers to the random noise incorporated into the function’s output to facilitate exploration and
diversification.

In the context of CCRRL, actionpre is employed to represent the action generated in the previous
step. Notably, actionpre plays a significant role in the generation of actionadv in the current step.
By applying the previous action, CCRRL incorporates temporal information and adapts its decision-
making process accordingly. This integration of temporal information enables CCRRL to make
more informed and contextually appropriate decisions.

4.2 AGENT’S ACTION

Competition refers to the behavioural and strategic confrontation between two or more individuals,
organizations, or teams as they compete for limited resources or advantages. Conversely, cooper-
ation entails the behavioural and strategic collaboration of two or more individuals, organizations,
or teams, working collectively toward a shared objective. Based on the aforementioned concepts,
Strategies S1 and S2 can be categorized as competitive strategies, while Strategies S3 and S4 can
be classified as cooperative strategies. The rationale for this classification is as follows: Strategies
S3 and S4 adopt the absolute value of the reward and do not consider the potential profitability of
the current action. Their primary objective is to expedite the convergence of the model, making
them cooperative strategies. In contrast, Strategies S1 and S2 do not utilize the absolute value of the
reward when selecting actions. If the preceding reward is negative, the generated adversarial action
will have the opposite sign to the previous action. Conversely, if the preceding reward is positive,
the generated adversarial action will align with the same sign as the previous action, ultimately con-
verging towards the direction of the previous action value. This approach aims to optimize gains
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and mitigate losses, positioning them as competitive strategies. he main subjects of cooperation and
competition are four models trained with s1-s4. There is no data interaction between them. They just
select the best model from them in each round and provide actions to train ddpg in the simulation.
However, they share a environment, there is indirect data interaction.Since the four models do not
affect the environment at the same time, they can cope with the problem of unstable environment.

Opponents are virtualized using S1-S4, and its significance is to use the results of the previous step
to guide the action generation direction of this step.

4.2.1 COMPETITIVE AGENT’S ACTION

actionadv represents the action taken by the opponent in the current state. This opponent is gener-
ated by the CCRRL model based on the output of the previous step. By considering the opponent’s
action, CCRRL enhances its anti-interference ability and adaptability, enabling it to effectively han-
dle external disturbances. We present five adversary strategies that employ different approaches for
generating the opponent’s action.

In the first strategy, denoted as S1, actionadv is obtained by multiplying actionpre and reward,
resulting in the desired actionadv . The mathematical representation of actionadv is given by Equa-
tion 6:

(S1) actionadv = actionpre × reward (6)

where actionpre is the action generated in the previous step of CCRRL.

In the second strategy, denoted as S2, actionadv is obtained by multiplying actionpre and the
absolute value of reward that has been processed by the modify function, resulting in the desired
actionadv . The mathematical representation of actionadv is given by Equation 7:

(S2) actionadv = actionpre ×modify(reward) (7)

where actionpre is the action generated in the previous step of CCRRL, and modify represents the
adjustment of the range of values for the rewards.

4.3 COOPERATIVE AGENT’S ACTION

In the third strategy, denoted as S3, actionadv is generated by multiplying actionpre and the abso-
lute value of reward that has been processed by the modify function. The mathematical represen-
tation of actionadv is given by Equation 8:

(S3) actionadv = actionpre × |modify(reward)| (8)

where actionpre is the action generated in the previous step of CCRRL, and modify represents the
adjustment of the range of values for the rewards.

In the fourth strategy, denoted as S4, actionadv is generated by multiplying actionpre and the
absolute value of reward. The mathematical representation of actionadv is given by Equation 9:

(S4) actionadv = actionpre × |reward| (9)

where actionpre is the action generated in the previous step of CCRRL.

4.4 AGENT’S FINAL ACTION

The ultimate action produced by the CCRRL model in its current state is denoted as actionfin.
This action is determined by considering both the opponent’s action and the CCRRL’s previous
actions. Specifically, we combine actiont with actionadv to obtain actionfin as the final action for
the agent. This equation incorporates the adversarial action actionadv into the computation of the
agent’s ultimate action. The mathematical representation of actionadv is provided in Equation 10:

actionfin = actiont + actionadv (10)

where actiont is the action generated by an agent at time step t according to the state st, and
actionadv represents the action of an adversary agent.
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4.5 MODIFICATION FUNCTION

The concept of modify enables the adjustment of reward value ranges during the generation step
of actionadv . This adjustment facilitates fine-tuning of reward values, contributing to improved
decision-making and performance optimization. The modify function takes a reward value denoted
by reward, which is generated in the previous step, as input and performs the following operations:

• If the reward value is 0, it returns 0.

• If the absolute value of the reward is less than 1, the reward value is repeatedly multiplied
by 10 until its absolute value becomes greater than 1.

• If the absolute value of the reward is greater than 1, it remains unchanged.

Therefore, the modify function ensures that the reward value is adjusted in such a way that the
absolute value of the non-zero input is greater than or equal to 1, while returning zero for a zero
input. This adjustment process allows for a more effective scaling and normalization of reward
values within the CCRRL framework.

5 CCRRL FOR THE PORTFOLIO OPTIMIZATION

This section aims to describe the key steps of CCRRL for generating portfolio strategies. The
CCRRL model proposed in this study comprises four networks: the actor network µ(s|θµ), critic net-
work Q(s, action|θQ), target actor network µ′(s|θµ′), and target critic network Q′(s, action|θQ′).
The algorithmic steps for CCRRL are outlined in Algorithm 1, providing a detailed procedure for
the implementation and execution of CCRRL.

Algorithm 1 CCRRL for portfolio selection.
1: Initialize the actor network, critic network, target actor network, and target critic network with random

weights.
2: Set the replay buffer D to an empty memory.
3: Set the exploration noise process.
4: while The termination condition is not satisfied do
5: Initialize the portfolio with an initial allocation.
6: Reset the environment and obtain the initial state s0.
7: Set the total episode reward R to 0.
8: for each period in the episode do
9: Random select a strategy Sfixed from S1, S2, S3 and S4 (Section 4.2.1).

10: for each time step t in the period do
11: Select actiont using the current policy and exploration noise (Section 4.1).
12: Random generate adversary action actionadv using Sfixed.
13: Combine actiont with actionadv to produce actionfin (Section 4.4).
14: Execute actionfin and observe rewardt and the new state st+1.
15: Store the transition (st, actiont, rewardt, st+1) in the replay buffer D.
16: Sample a random transitions (si, actioni, rewardi, si+1) from the replay buffer D.
17: Update the critic network parameters by minimizing the loss function.
18: Update the actor network parameters using the sampled policy gradient.
19: Update the target networks.
20: Set st = st+1 and R = R+ rewardt.
21: end for
22: end for
23: end while
24: Return the portfolio strategy with the best total reward found thus far.

CCRRL commences by initializing the actor network, critic network, target actor network, and target
critic network with randomly assigned weights (step 1). At step 2, an empty memory, referred to
as the replay buffer D, is instantiated, serving as a repository for experience replay. At step 3, an
exploration noise process is established to facilitate exploration during the learning process.

The main loop (step 4- 23) stops until a specified termination condition is met. Within each iteration,
the portfolio is initialized with an initial allocation (step 5). The environment is reset, and the initial
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state s0 is obtained (step 6). A running tally of the total episode reward, denoted as R, is set to zero
(step 7).

For each time step t within the episode, the algorithm proceeds as follows. The current policy
µ(st|θµ), incorporating exploration noise N , is utilized to select an action actiont (step 11). At
step 12, an action actionadv is randomly generated among S1, S2, S3 and S4 (detailed in Sec-
tion 4.2.1). The actions actiont and actionadv are then combined to produce a final action actionfin

(step 13). At step 14, the chosen action actionfin is executed, resulting in the observation of a
reward rewardt and the subsequent state st+1. Then, the transition (st, actiont, rewardt, st+1)
is stored in the replay buffer D (step 15). At step 16, a random minibatch of transitions
(si, actioni, rewardi, si+1) is sampled from the replay buffer D.

At step 17, the critic network parameters are updated by minimizing the loss function:

L =
1

N

∑
i

(yi −Q(si, actioni|θQ))2,

where yi = rewardi + γQ′(si+1, µ
′(si+1|θµ′)|θQ′) and γ is the discount factor. At step 18, the

actor network parameters are updated using the sampled policy gradient:

∇θµJ ≈
1

N

∑
i

∇actionQ(s, action|θQ)|s=si,action=µ(si)∇θµµ(s|θµ)|si

At step 19, the target networks are also updated to enhance stability during training:

θµ′ ← τθµ + (1− τ)θµ′ , θQ′ ← τθQ + (1− τ)θQ′

Furthermore, the current state st is updated to st+1, and the episode reward R is incremented by
rewardt (step 20). Once the termination condition is met, the algorithm concludes by returning the
portfolio strategy yielding the highest total reward discovered thus far (step 24).

6 EMPIRICAL ANALYSIS

The CCRRL model proposed in this research was developed using Python 3.8, utilizing the state-of-
the-art FIN-RL library introduced by Liu et al. Liu et al. (2022). Our experiments were conducted
on a system with an Intel i7-7700 CPU, running the Microsoft Windows 10 operating system. The
system was equipped with 16 GBytes of RAM and a Nvidia GTX 1050 Ti GPU. To ensure the
reliability and statistical significance of our results, we performed 100 random independent trials
for each game strategy. This extensive experimentation allows for a robust evaluation of the perfor-
mance of the CCRRL model and the comparison of different strategies. In addition, we compared
the performance of the CCRRL model with state-of-the-art methods, including A2C (Advantage
Actor-Critic) Mnih et al. (2016), PPO (Proximal Policy Optimization) Schulman et al. (2017), and
the traditional DDPG (Deep Deterministic Policy Gradient) Lillicrap et al. (2015). This compari-
son enables us to assess the effectiveness and superiority of the proposed CCRRL approach against
existing state-of-the-art techniques.

6.1 DATA DESCRIPTION

In this research, we focused on the ChiNext market, which is characterized by strict regulations,
high supervision, elevated risk levels, and relatively lower entry thresholds for listed companies. To
conduct our analysis, we obtained daily stock trading data for all the stocks listed on the ChiNext
market from the reputable China Stock Market and Accounting Research (CSMAR) database. We
performed thorough data cleaning procedures to ensure the quality and reliability of the dataset. The
resulting data sample consists of 240 ChiNext stocks traded from January 1, 2018, to December
31, 2020, covering a span of 730 trading days. To provide a comprehensive understanding of the
technical indicators used in the RRL-MAS model, we refer readers to Table 3 in the Appendix,
which presents a detailed overview of the indicators incorporated in our study.
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6.2 PERFORMANCE OF CCRRL

In order to assess the robustness of the CCRRL model, we have employed a comprehensive set
of risk measurement indicators. These indicators play a crucial role in evaluating the performance
and reliability of portfolio strategies provided by CCRRL under different scenarios. For a detailed
explanation of each indicator, please refer to Table 4 in the Appendix. To further analyze the ef-
fectiveness of the CCRRL model, we conducted a series of experiments using two types of data:
linear and non-linear structured data. Linear structured data pertains to information solely focusing
on the stock trading technical indicators. On the other hand, non-linear structured data incorporates
investor attention as an influential factor in the analysis. This distinction enables us to understand
the advantages of models when dealing with different types of data.

Figure 2 illustrates the comparison of daily cumulative returns among the A2C, PPO, DDPG and
CCRRL (Algorithm 24) for a single run. From Figure 2, we can observe that the curves of A2C and
PPO predominantly remain below both DDPG and CCRRL. This observation indicates that CCRRL
consistently exhibit superior performance in terms of daily cumulative returns. Moreover, Table 5
displays the detailed results provided by the proposed game strategies (see Appendix). While the
detailed results provided by CCRRL with different period size are shown in Table 6. We can remark
that, when the period size is equal to 15, the results provide by CCRRL are most stable.

A2C PPO DDPG CCRRL (Step=15)
Indicators Mean Std Mean Std Mean Std Mean Std
Annual Return 0.193 0.245 0.082 0.128 0.247 0.066 0.265 0.086
Cumulative Return 0.229 0.292 0.096 0.150 0.289 0.078 0.311 0.103
Annual Volatility 0.377 0.070 0.323 0.014 0.308 0.010 0.311 0.017
Sharpe Ratio 0.590 0.511 0.392 0.363 0.869 0.174 0.907 0.215
Calmar Ratio 0.772 0.960 0.434 0.663 1.246 0.372 1.341 0.479
Stability 0.455 0.283 0.398 0.245 0.736 0.062 0.739 0.070
Max Drawdown -0.284 0.082 -0.239 0.044 -0.201 0.016 -0.201 0.024
Omega Ratio 1.114 0.102 1.071 0.066 1.158 0.033 1.166 0.042
Sortino Ratio 0.827 0.727 0.527 0.493 1.187 0.245 1.236 0.303
Tail Ratio 0.996 0.165 0.883 0.071 0.942 0.065 0.946 0.061
Value at Risk -0.047 0.008 -0.040 0.002 -0.038 0.001 -0.038 0.002
Alpha -0.235 0.233 -0.340 0.113 -0.269 0.074 -0.246 0.088
Beta 0.933 0.066 0.927 0.037 0.956 0.036 0.956 0.042

Table 2: Comparative study among the A2C, PPO, DDPG and CCRRL.

Table 2 presents a comparative study among the A2C, PPO, DDPG and CCRRL. These strategies
are evaluated based on various financial performance indicators, and the table provides both the
mean and standard deviation (Std) values for each indicator. The experimental findings indicate that
CCRRL appears to outperform the other strategies in terms of key performance indicators, including
annual return, Sharpe ratio, Calmar ratio, Omega ratio.

7 CONCLUSION

This study presents an intelligent portfolio optimization model based on reinforcement learning
techniques. By conceptualizing the portfolio optimization problem as a multi-agent game, we in-
troduce multiple autonomous agents that actively engage in competition and cooperation within a
realistic market environment. Applying a deep reinforcement learning framework, these agents are
trained to continually learn and adapt their investment strategies over time. To empirically evaluate
the efficacy of our proposed approach, we conduct extensive experiments using real historical stock
trading data. The results substantiate the superiority of our competitive and cooperative strategies
robust reinforcement learning framework over traditional reinforcement learning approaches.
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A APPENDIX

Figure 2: Comparative study among the A2C, PPO, DDPG and CCRRL.
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Indicators Explanation
Close The closing price of the day’s trading.
Open The opening price of the day’s trading.
Hight The highest point that a stock can reach during a day’s trading.
Low The lowest point that a stock can reach during a day’s trading.
Volume The total amount of trading activity in a given financial market.
Turnover The total number of shares traded during a certain period of time.
Boll ub The upper band of the Bollinger Bands indicator.
Boll lb The lower band of the Bollinger Bands indicator.
SMA 30 The simple moving average of a stock’s closing price over the past 30 days.
SMA 60 The simple moving average of a stock’s closing price over the past 60 days.
MACD Moving Average Convergence Divergence, which shows the relationship between

two exponential moving averages and is used to identify potential trend changes.
RSI 30 The Relative Strength Index (RSI) within 30 time periods, where RSI measures the

magnitude of recent price changes to evaluate overbought or oversold conditions in
the price of a stock or other asset.

CCI 30 The product channel index over a period of 30 time periods, where CCI (Commod-
ity Channel Index) is an indicator that examines the relationship between a fluctu-
ating asset’s price, moving average, and the normal deviations from that average.

DX 30 The directional movement index over a period of 30 time periods, which measures
the strength and direction of a trend by comparing the current price to a previous
price and displays positive or negative directional movement.

Table 3: Description of the used stock technical indicators.

Indicators Explanation
Annual Return It is the average rate of return an investment generates each year over a

specified period of time.
Cumulative Return It refers to the total amount of return earned or lost on an investment over a

certain period of time.
Annual Volatility It is a measure of the amount of variation or fluctuation in the returns of an

investment over a one-year period.
Sharpe Ratio It is used to measure the relationship between yield and risk-free interest

rate.
Calmar Ratio The formula for the Calmar ratio is “excess return / max drawdown”, which

directly measures the relationship between return and max drawdown.
Stability It examines the historical volatility in stock prices and evaluates the consis-

tency of income generated to ascertain its stability.
Max Drawdown It describes the worst-case scenario that a strategy can have, which is the

extent to which net worth of a product begins to fall from its highest point
to its lowest point over a period of time.

Omega Ratio It is a risk-adjusted performance measure used to evaluate an investment’s
return in relation to the risk of negative returns.

Sortino Ratio It is a risk-adjusted performance measure used to evaluate the return of an
investment relative to its downside risk.

Tail Ratio It is a financial risk metric used to evaluate an investment’s potential risk
and reward by comparing the size of its left tail to that of its right tail.

Value at Risk It is a statistical measure used to estimate the potential loss on an invest-
ment.

Alpha It refers to the risk associated with the specific investments within a portfo-
lio that cannot be attributed to general market movements.

Beta It represents the portion of investment risk that is attributable to overall
market movements.

Table 4: Indicators used to evaluate portfolio strategies.
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S1 S2 S3 S4
Indicators Min Max Mean Std Min Max Mean Std Min Max Mean Std Min Max Mean Std
Annual Return 0.079 0.518 0.275 0.084 0.018 0.446 0.254 0.087 0.057 0.411 0.250 0.076 0.033 0.441 0.233 0.074
Cumulative Return 0.091 0.616 0.323 0.100 0.021 0.529 0.298 0.104 0.066 0.487 0.293 0.091 0.038 0.522 0.273 0.088
Annual Volatility 0.283 0.351 0.310 0.012 0.285 0.356 0.308 0.011 0.284 0.330 0.307 0.010 0.282 0.340 0.308 0.010
Sharpe Ratio 0.398 1.497 0.934 0.206 0.213 1.352 0.885 0.229 0.336 1.282 0.878 0.205 0.259 1.354 0.834 0.198
Calmar Ratio 0.355 2.563 1.400 0.439 0.075 2.406 1.287 0.483 0.235 2.274 1.280 0.451 0.127 2.304 1.186 0.421
Stability 0.540 0.871 0.753 0.062 0.201 0.858 0.733 0.089 0.435 0.848 0.736 0.074 0.336 0.847 0.721 0.077
Max Drawdown -0.252 -0.152 -0.198 0.018 -0.278 -0.159 -0.201 0.020 -0.252 -0.149 -0.200 0.019 -0.260 -0.161 -0.200 0.019
Omega Ratio 1.070 1.283 1.170 0.040 1.037 1.251 1.161 0.044 1.058 1.242 1.159 0.039 1.045 1.252 1.151 0.038
Sortino Ratio 0.535 2.078 1.278 0.289 0.283 1.883 1.213 0.322 0.458 1.777 1.201 0.286 0.342 1.863 1.139 0.277
Tail Ratio 0.826 1.068 0.935 0.055 0.808 1.083 0.940 0.061 0.808 1.125 0.937 0.062 0.770 1.107 0.945 0.066
Value at Risk -0.043 -0.035 -0.038 0.001 -0.044 -0.035 -0.038 0.001 -0.041 -0.035 -0.038 0.001 -0.042 -0.035 -0.038 0.001
Alpha -0.447 -0.007 -0.243 0.081 -0.446 -0.029 -0.253 0.085 -0.438 -0.056 -0.264 0.087 -0.461 -0.067 -0.282 0.078
Beta 0.860 1.053 0.966 0.041 0.860 1.039 0.961 0.039 0.869 1.047 0.951 0.038 0.881 1.061 0.949 0.035

Table 5: Comparative study between Robust Strategies: S1, S2, S3 and S4.

Step=1 Step=5 Step=10 Step=15
Indicators Min Max Mean Std Min Max Mean Std Min Max Mean Std Min Max Mean Std
Annual Return 0.078 0.417 0.251 0.071 0.087 0.390 0.257 0.064 0.101 0.651 0.258 0.097 0.107 0.477 0.265 0.086
Cumulative Return 0.091 0.493 0.295 0.085 0.101 0.461 0.301 0.077 0.117 0.781 0.303 0.116 0.124 0.567 0.311 0.103
Annual Volatility 0.283 0.333 0.305 0.010 0.277 0.376 0.309 0.014 0.275 0.367 0.309 0.016 0.281 0.383 0.311 0.017
Sharpe Ratio 0.405 1.323 0.887 0.192 0.426 1.256 0.896 0.169 0.457 1.638 0.892 0.240 0.496 1.460 0.907 0.215
Calmar Ratio 0.327 2.378 1.297 0.406 0.386 2.225 1.330 0.383 0.450 3.382 1.306 0.531 0.524 2.463 1.341 0.479
Stability 0.449 0.855 0.738 0.074 0.552 0.852 0.747 0.050 0.508 0.870 0.736 0.077 0.458 0.852 0.739 0.070
Max Drawdown -0.240 -0.165 -0.196 0.016 -0.320 -0.155 -0.197 0.021 -0.310 -0.160 -0.201 0.021 -0.327 -0.162 -0.201 0.024
Omega Ratio 1.071 1.246 1.161 0.036 1.073 1.235 1.163 0.032 1.083 1.328 1.163 0.047 1.087 1.274 1.166 0.042
Sortino Ratio 0.545 1.835 1.212 0.270 0.582 1.733 1.224 0.235 0.596 2.244 1.215 0.336 0.668 2.014 1.236 0.303
Tail Ratio 0.821 1.111 0.952 0.053 0.824 1.082 0.944 0.057 0.809 1.099 0.946 0.059 0.797 1.186 0.946 0.061
Value at Risk -0.041 -0.034 -0.037 0.001 -0.046 -0.034 -0.038 0.002 -0.045 -0.033 -0.038 0.002 -0.047 -0.035 -0.038 0.002
Alpha -0.406 -0.019 -0.254 0.069 -0.427 -0.052 -0.257 0.069 -0.431 0.047 -0.248 0.087 -0.439 -0.026 -0.246 0.088
Beta 0.854 1.025 0.950 0.036 0.859 1.059 0.959 0.037 0.847 1.049 0.950 0.043 0.859 1.120 0.956 0.042

Table 6: Performance of CCRRL with different parameter settings.
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