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ABSTRACT

Large language models (LLMs) have demonstrated emergent in-context learning
(ICL) capabilities across a range of tasks, including zero-shot time-series fore-
casting. We show that text-trained foundation models can accurately extrapolate
spatiotemporal dynamics from discretized partial differential equation (PDE) so-
lutions without fine-tuning or natural language prompting. Predictive accuracy
improves with longer temporal contexts but degrades at finer spatial discretiza-
tions. In multi-step rollouts, where the model recursively predicts future spatial
states over multiple time steps, errors grow algebraically with the time horizon,
reminiscent of global error accumulation in classical finite-difference solvers. We
interpret these trends as in-context neural scaling laws, where prediction quality
varies predictably with both context length and output length. To better under-
stand how LLMs are able to internally process PDE solutions so as to accurately
roll them out, we analyze token-level output distributions and uncover a consis-
tent ICL progression: beginning with syntactic pattern imitation, transitioning
through an exploratory high-entropy phase, and culminating in confident, numer-
ically grounded predictions.

1 INTRODUCTION

Large language models (LLMs) exhibit an emergent ability known as in-context learning (ICL)
(Brown et al., 2020; |Dong et al., [2022}; [Zhao et al.| [2025)), in which the model is conditioned on a
sequence of examples and/or task instructions provided in the input and learns to generate appropri-
ate outputs for new instances—without any parameter updates or additional training on task-specific
data. In the zero-shot setting, LLMs are given only a task description and/or a serialized input and
are expected to generalize purely from the prompt.

While ICL was initially observed in linguistic tasks, it has since been demonstrated in domains in-
volving mathematical reasoning (Wei et al., | 2022ajb; |Akytirek et al., 2023 |Garg et al.,[2022)). Recent
work shows that LLLMs such as GPT-3 (Brown et al.,[2020) and Llama-2 (Touvron et al., 2023) can,
in the zero-shot setting, forecast time series (Gruver et al.l 2023 Jin et al., 2024)), infer governing
principles of dynamical systems (Liu et al.,2024), and perform regression and density estimation
(Requeima et al.| 2024 Liu et al.L[2025). From a theoretical perspective, in-context scaling laws have
been analyzed by modeling LLM inference as a finite-state Markov chain, yielding analytical results
for Markov-chain—generated inputs (Zekri et al., |2024)), and by developing theoretical explanations
of ICL scaling behavior when LLMs learn Hidden Markov Models (Dai et al., [2025)).

We demonstrate that pretrained LLMs, such as Llama-3 (Grattafiori et al., 2024), Phi-4 (Abdin
et al., 2024), and SmolLM3 (Hugging Face| |2025)), possess an additional zero-shot ICL capability:
the ability to continue the dynamics of partial differential equations (PDEs) directly from serialized
solution data (see Section EI) Our focus is on time-dependent PDEs, whose solutions often ex-
hibit multi-dimensional correlations, long-range dependencies, and stiff nonlinear dynamics (Evans)
2010; Haberman, [2013). We adopt the following setup: representing spatiotemporal data as de-
limited sequences of real numbers and feeding them directly into an LLM, without any fine-tuning
or natural-language prompting. The model generates token sequences autoregressively, effectively
learning to infer both spatial structure and temporal dynamics from in-context information alone
(see Figure[I). We emphasize that we do not propose to employ LLMs as a new kind of PDE solver.
Instead, we study their ICL behavior in continuing the spatiotemporal dynamics of PDEs, as a lens
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Figure 1: Zero-shot PDE extrapolation workflow with LLMs. A reference PDE solution to the
Allen—Cahn equation is discretized over space and time, quantized to 3-digit integers, and serialized
into a token sequence with spatial and temporal delimiters. Each value and delimiter is mapped to
a token. The LLM autoregressively generates future tokens from past context without fine-tuning or
natural language prompting. The generated tokens are parsed and reconstructed into floating-point
solutions. LLM-predicted rollouts and absolute errors are compared against a numerical solver.

to investigate the inductive biases and numerical priors that emerge from large-scale pretraining.
Anonymized code for reproducing all experiments is available in the supplementary material.

Main Contributions.

1) We demonstrate that pretrained LLMs exhibit robust zero-shot predictive capabilities on dis-
cretized PDE solutions with random initial conditions without fine-tuning or natural language
prompting.

2) We identify in-context scaling laws for PDE-based spatiotemporal continuation with respect to
temporal context length, spatial discretization, and rollout horizon, revealing behaviors analo-
gous to truncation errors in classical numerical analysis.

3) We analyze token-level predictive entropy and uncover a consistent three-stage progression in
ICL behavior during spatiotemporal PDE continuation.

2 BACKGROUND

Recent work at the intersection of LLMs and PDEs mainly follows two directions: (i) using LLMs
as assistants in scientific modeling pipelines, and (ii) leveraging LL.Ms as direct PDE solvers. We
briefly review representative examples from each line of research.

LLMs as Assistants in PDE Pipelines. Jiang et al.| (2025) evaluate LLMs on tasks such as imple-
menting numerical solvers and constructing scientific machine learning pipelines. [Li et al.| (2025)
introduce CodePDE, a framework that formulates PDE solving as code generation. [Soroco et al.
(2025) propose PDE-Controller, which enables LLMs to convert informal natural language instruc-
tions into formal specifications for PDE control. [Lorsung & Farimani| (2024) leverage LLMs to
integrate prior knowledge to improve PDE surrogate models. Zhou et al.| (2025) present Unisolver,
a neural PDE solver conditioned on symbolic PDE embeddings produced by LLM:s.

LLMs as PDE Solvers. The Universal Physics Solver (UPS) (Shen et al., 2024)) adapts pretrained
LLMs to learn unified neural solvers for time-dependent PDEs. ICON-LM (Yang et al.| 2025) fine-
tunes LLMs for in-context operator learning. These methods typically involve custom architectures
or task-specific training procedures tailored for PDE solving.
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In contrast to prior work that adapts or fine-tunes LLMs for PDE solving, we investigate a zero-
shot setting using pretrained LLMs, rather than proposing a new LLM architecture. We use this
setup to study the numerical reasoning and inductive biases that emerge during the pretraining of
LLMs, which are trained on textual data such as natural language and code (i.e., we do not consider
multimodal foundation models).

3 METHODOLOGY

We extend the tokenization framework introduced by |Gruver et al.| (2023)), which serializes one-
dimensional time series as comma-separated numeric strings (e.g., “153,412, ..., 807”) for use with
LLMs. Our approach, illustrated in Figure [I] generalizes this to time-dependent PDEs by convert-
ing discretized spatiotemporal solutions into structured 1D sequences. To encode both spatial and
temporal structure, we introduce a two-delimiter format that separates spatial points and time steps.
This representation preserves the underlying dynamics and enables interpretable analysis of how
LLMs extrapolate higher-dimensional behavior.

Grid Sampling. We begin with a PDE solution u(x, t) evaluated on a regular Cartesian spatiotem-
poral grid {u(z;, tj)}fixl’f;[zo, represented as a matrix U € RNx*(N1+1) "Each column U. ; corre-

sponds to the spatial state at time ¢;.

Quantization. We apply linear quantization to map the continuous range [tmin, Umax) to a fixed
integer se Z = {150,151,...,850} C Z, yielding a quantized matrix Q € ZNx*(Nt+1) Thijs
step introduces an underlying quantization error, computed as the difference between the original
floating-point values u(x;,t;) and their concomitant linearly reconstructed counterparts @(x;,t;),
obtained from quantized tokens (see Appendix for reconstruction details). We refer to this as
the quantization floor in subsequent experiment

Serialization. Each time slice Q. ; is serialized into a comma-separated string of 3-digit integers.
Temporal evolution is encoded as a sequence of these strings, delimited by semicolons:

“Ql,jaQZ,ja-”aQNx,j ; Ql,j+17---aQNx,j+1 g7

~U.,; RU. j+1

We adopt commas to delimit spatial entries, extending the CSV-style format of |Gruver et al.| (2023)
to our setting. To represent the additional temporal dimension in a 2D spatiotemporal matrix, we
introduce semicolons to mark time-step boundaries. This enhances parsability and aligns with famil-
iar conventions: semicolons denote row breaks in MATLAB arrays and signal the end of statements
in many programming languages (e.g., C, C++, Java). Linguistically, the semicolon also marks a
stronger pause than a comma, reinforcing its role as a clear separator between time steps.

Tokenizer Compatibility. We adopt tokenizer configurations (e.g., GPT-4 (Achiam et al.| [2023),
Llama-3) in which each 3-digit value (000-999) and each delimiter (, and ;) maps to a single to-
ken. This one-to-one mapping directly aligns token positions with grid values in discretized PDE
solutions, enabling efficient error computation and, importantly, direct estimation of predictive un-
certainty at each location from the model’s softmax outputs. In contrast, some models, such as
Gemma 3 (Team et al., [2025), tokenize numeric values at different granularities (e.g., each digit as
one token). Spatial value probabilities can still be recovered using hierarchical softmax methods in
such models (Gruver et al., 2023 [Liu et al., 2024), but at a higher computational cost. We there-
fore focus on LLMs with 3-digit tokenizers, while our serialization remains compatible with other
tokenization schemes.

LLM Inference. The serialized sequence is passed to LLMs without fine-tuning or any natural lan-
guage prompting. Tokens are generated autoregressively using the default generation configuration,
with each prediction conditioned on the preceding context. We consider two inference modes: one-
step prediction, where the model is set to generate a single future time slice consisting of 2Nx—1
tokens (NN value tokens and Nx —1 separator tokens); and multi-step rollouts, which repeat one-step
prediction recursively, appending a semicolon after each time slice to indicate temporal progression.
At each token position, we record both the model’s output token (for prediction) and its full softmax

'000-149 and 851-999 are reserved; outputs in these ranges flag explicit out-of-distribution events.
?Reducible by enlarging Z beyond its 3-digit representation, at the cost of more tokens per value.
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distribution (for uncertainty analysis). The generated sequence is parsed by splitting on semicolons
to segment time and commas to recover spatial locationgﬂ

4 EXPERIMENTS AND ANALYSIS

This section investigates the ability of state-of-the-art open-weight foundation LLLMs to continue
the spatiotemporal dynamics of PDEs. We focus our main analysis on the Allen—Cahn equation
(Allen & Cahnl [1979)), a nonlinear PDE modeling phase separation in multi-component metal alloy
systems. To assess generality, we additionally evaluate the Fisher—KPP equation (Fisher, |1937; Kol-
mogorov et al., [1937), another nonlinear PDE modeling population growth and diffusion, together
with two representative linear PDEs: the heat equation (a parabolic diffusion model) and the wave
equation (a hyperbolic wave propagation model) (Evans| [2010). Across these families, with random
initial conditions and varying boundary condition types, we observe qualitatively consistent ICL
behavior. Remarkably, LLM rollouts also approximately conserve total thermal energy in the heat
equation under Neumann boundaries, indicating that zero-shot ICL captures not only spatiotemporal
dynamics but also structural invariants of PDEs. Full results and discussion of these additional PDE
experiments are provided in Appendix[A.3]

PDE Setup. By coupling reaction and diffusion dynamics, the Allen—Cahn equation induces strong
interactions across space and time, making it a challenging yet physically interpretable testbed for
assessing whether LLMs capture genuinely spatiotemporal structure rather than merely extrapolat-
ing along a single dimension. The system is defined on the interval [—1, 1] with Dirichlet boundary
conditions u(—1,¢) = u(1,¢) = —1 and random initial conditions u(x, 0) = ug(x) (details of initial
condition generation in Appendix [A.T). Explicitly, the Allen—-Cahn PDE is:

Ou = €2 Oppu — flu), we[-1,1], 0<t<T.

Here, 0; and 0, denote the temporal and second-order spatial derivatives, respectively. Adopting
standard parameter choices (Raissi et al.|[2019}; Tang & Yang, 2016), we set the diffusion coefficient
to €2 = 0.001 and use a double-well potential f(u) = 2(u® — u) for the nonlinear reaction term.
The solution is evaluated on a uniform spatiotemporal grid {u(z;, tj)}ﬁv:ﬁ’_?io, where {z;}% are
Nx evenly spaced interior points and {¢; };V:TO are Nt + 1 evenly spaced time levels, with T = 0.5.

Numerical Benchmarks. To contextualize the predictive structure learned by LLMs, we compare
their outputs to two classical finite difference methods: the forward time, centered space (FTCS)
scheme, which is fully explicit, and an implicit-explicit (IMEX) scheme that treats diffusion im-
plicitly and the nonlinear reaction term explicitly (Smith, [1985). In contrast to developing new
PDE solvers, our focus is on analyzing how pretrained foundation LLMs extrapolate PDE-based
spatiotemporal dynamics in-context, without fine-tuning. Notably, their predictions can achieve
surprising accuracy relative to standard numerical benchmarks, generalizing across varied initial
conditions and discretizations. These results position PDEs as effective vehicles for examining the
inductive biases and generalization behaviors of LLMs.

Analysis Task Overview. We analyze how LLMs generalize in autoregressively continuing PDE
dynamics through two analytical lenses: (i) a truncation-error perspective, motivated by local and
global error analysis in numerical PDEs (LeVeque, 2007} Larsson & Thomeél |2003), examining how
prediction accuracy depends on discretization, rollout horizon, and model size; and (ii) a “systems-
level” perspective, investigating how LLMs internalize and extrapolate PDE structure during ICL
via entropy-based uncertainty measures. Section [d.I]analyzes one-step prediction, where accuracy
improves with longer temporal context but degrades with finer spatial discretization. Section4.2]an-
alyzes multi-step rollouts, showing algebraic error growth with rollout horizon, analogous to global
error accumulation in numerical solvers. Section [4.3] analyzes token-level uncertainty, revealing a
consistent three-stage ICL progression: syntax mimicry, high-entropy exploration, and confident
prediction. Prediction quality is evaluated using the Root Mean Square Error (RMSE), computed by

3Models rapidly internalize the delimiter structure. Even with minimal context (e.g., one time slice with
five spatial points), comma delimiters are consistently generated. Malformed outputs are exceedingly rare, and
parsing remains robust across multi-step rollouts. See Section@]fer quantitative results.
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Figure 2: In-context error scaling with temporal discretization (left) and spatial discretization
(right). The top axes show Nt and Nx, while the bottom axes show the equivalent LLM context
and output lengths Nrokens, respectively. RMSE decreases with longer context, converging in the
extended-context regime, toward the local truncation behavior of first-order-in-time solvers (FTCS,
IMEX). In contrast, errors grow with output length, following a capacity-dependent generalization
trend. Shaded regions show 95% confidence intervals over 50 random initial conditions. The gray
dotted line indicates the unavoidable quantization error floor defined in Section@

aggregating errors over all spatial grid points {x; } ﬁvle per time step {¢;} é‘V:Tf
| M 1/2
RMSE; = | > (i ty) — i, t5))?
X =1
RMSE measures overall predictive accuracy. Results using the Maximum Absolute Error, capturing
worst-case deviation, show qualitatively similar trends (Appendix[A.2)). To ensure that our error met-
rics capture physically meaningful discrepancies—rather than differences between raw 3-digit quan-
tized integer tokens—we compare each predicted solution @(z;, t;) against a floating-point reference
solution @(x;,t;). The reference (x;, ;) is computed on a highly refined finite-difference grid and
passed through the same quantization—reconstruction pipeline (see Section [3)) to ensure a consistent
evaluation basis. LLM predictions, generated as token sequences, are likewise reconstructed into
floating-point form before error evaluation. Since classical solvers operate on floating-point data,
we apply the same quantization—reconstruction process to their initial conditions, ensuring that both
LLM-based and classical methods operate on inputs of matched precision. Errors are then averaged
over multiple random initial conditions, with further details in Appendix[A.2]

Model Setup. Our primary results focus on base pretrained models from the Meta Llama-3 family:
Llama-3.1-8B, Llama-3.2-3B, and Llama-3.2-1B. We also evaluate their instruction-tuned coun-
terparts optimized for dialogue in Appendix which display qualitatively similar trends. For
broader comparison, we include Microsoft Phi-4 and Hugging Face SmolLLM3, which exhibit simi-
lar behaviors with differences mainly in error magnitude, in Appendix [A.5]

4.1 ONE-STEP PREDICTION

We evaluate one-step prediction error under the following setup: given a discretized PDE solu-

tion from the initial condition up to one step before the final time, {u(z;, tj)}f\;"l’]jyia !, the model
predicts the terminal step {u(x;, tn, ) } 2% across all spatial grid points. This prediction target is em-
ployed in order to isolate the effects of temporal and spatial discretization on accuracy. To ensure the
task remains non-trivial, we select discretizations where solutions vary significantly between time
steps, avoiding degenerate cases in which the model could succeed through trivial pattern repetition.

Appendix [A.7]provides empirical validation of this design choice.

Longer Context Length Improves Prediction Accuracy. We analyze how one-step prediction
accuracy varies with input context length, measured by the number of observed time steps Nt
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provided to the LLM during ICL. Fixing the spatial discretization at Nx = 14, we vary Nt from 2
to 40, spanning minimal to moderately informative temporal contexts. As Nt increases, the LLM
receives a longer input sequence, and RMSE decreases consistently (Figure 2] left). On a log-log
scale, the error curves exhibit approximate O(1/Nr) decay rate, closely resembling the convergence
behavior of first-order-in-time solvers such as FTCS and IMEX. This suggests that LLMs exhibit
inductive biases analogous to local truncation error in classical numerical methods.

Closer examination of Figure [2] (left) reveals three distinct stages as the temporal context increases.
The emergence and evolution of these stages—and their connection to prediction uncertainty—are
further analyzed in Section[d.3] In the limited-context stage (N7 = 2), LLMs exhibit substantially
higher errors compared to classical solvers. This behavior arises from surface-level pattern imitation
in the solution format, rather than learning the underlying dynamical structure (see Section4.3). In
the moderate-context stage (2 < Nt < 10), errors decay more rapidly than those of standard nu-
merical benchmarks such as FTCS and IMEX, suggesting that LLMs move beyond pattern imitation
and begin to internalize aspects of the governing PDE dynamics. Finally, in the extended-context
stage (N1 > 10), error decay closely matches that of classical first-order solvers, indicating that
LLMs are effectively leveraging the spatiotemporal structure in a numerically grounded way. In
this stage, Llama-3.1-8B consistently matches, or in some cases exceeds, the accuracy of classical
solvers. Overall, this reveals an empirical in-context scaling law: increasing the input context length
consistently improves prediction accuracy, reflecting the LLM’s increasing ability to internalize and
extrapolate latent PDE dynamics at fixed spatial discretization.

Longer Output Length Degrades Prediction Accuracy. We analyze how prediction accuracy
varies with the number of spatial discretization points Nx. Since LLMs predict the solution at all
spatial grid points for a given time step, increasing Nx directly results in a proportionally longer out-
put sequence. To isolate this effect, we vary Nx across 20 evenly spaced values from 2 to 40, while
fixing the temporal context at N7 = 50. As shown in Figure [2] (right), RMSE grows consistently
with N, following an approximate O(Nx) scaling law on a log-log scale. The error growth is
steepest for the smaller Llama-3.2-1B model, while the larger Llama-3.1-8B shows slower growth,
indicating improved robustness to output length within the Llama-3 family. This behavior stands
in sharp contrast to classical finite-difference solvers, where increasing spatial resolution typically
does not raise error under a stable scheme. For LLMs, however, outputs are generated as flat autore-
gressive token sequences: larger Nx leads to longer, more complex outputs that must be generated
without access to the underlying PDE, placing growing demands on the model’s ICL capacity.

These findings reveal a second empirical in-context scaling law: finer spatial discretization produces
longer outputs and degrades prediction accuracy under fixed input context. The effect scales strongly
with model size within the Llama-3 family. Smaller models face more pronounced performance
drops, indicating that limited ICL capacity constrains generalization at finer spatial discretizations.

4.2 MULTI-STEP ROLLOUTS

We examine LLMs’ capacity to continue PDE solutions over multiple time steps based solely on
in-context input. For a rollout of Nt time steps, we partition the serialized sequence into a context
segment of L%NTJ steps and a prediction segment with the remainder. For Nt = 25, this yields

16 context steps (including the initial condition), {u(z;, t;) 312 | which the LLM uses to autore-

i=1,j=0°
gressively generate 10 prediction steps, {u(z;, tj)}f\i Xl’iim, without access to intermediate ground

truth. This 2:1 context-to-prediction ratio strikes a balance between providing sufficient context and
posing a nontrivial extrapolation challenge. We assess model behavior via (i) representative rollouts
from single random initial conditions, and (ii) average error trends over random initial conditions to
quantify how prediction error accumulates over the prediction horizon.

Qualitative Multi-Step Rollouts. Figure [3] illustrates representative multi-step rollouts for the
Allen—Cahn and wave equations, showing that LLMs can sustain coherent, qualitatively accurate
predictions over a 10-step horizon. This is notable because the foundation models are not special-
ized PDE solvers and lack training-time exposure to the discretized PDE solutions; initial conditions
are randomly sampled at inference time. The Llama-3.1-8B model closely tracks the evolution, cap-
turing nonlinear reaction—diffusion dynamics and finite-speed wave propagation without collapsing
to trivial behavior or diverging. When prompted with sufficiently long input context, the model can
approximate and extrapolate PDE dynamics purely through autoregressive token-level inference. In
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1Reference Solution  Finite Difference Llama-3.1-8B Llama-3.2-1B Finite Diff. Error Llama-3.1-8B Error Llama-3.2-1B Error
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Figure 3: Multi-step prediction for randomly sampled initial conditions of two PDEs. The first
row shows the Allen—Cahn equation, and the second shows the wave equation (¢ = 0.3; see Ap-
pendix [AJ3)). In each case, to the left of the dashed line corresponds to the input context provided to
the LLM, and to the right corresponds to a 10-step autoregressive continuation from a single gener-
ation of each model. Classical finite difference solvers (FTCS for Allen—Cahn, leapfrog for wave)
solve the corresponding initial value problem using the final in-context time slice as the initial con-
dition, and advance the solution for 10 steps using the same spatial and temporal discretization as the
LLMs. The final three columns report pointwise absolute errors relative to the reference solution.
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contrast, Llama-3.2-1B shows larger deviations and fails to preserve spatiotemporal structure over
extended rollouts (see Appendix [A.9]for analysis of error patterns and capacity limits). Visualiza-
tions for Llama-3.2-3B, additional numerical benchmarks, and further random initial conditions are
provided in Appendix [A-8]

Quantitative Multi-Step Error Growth. To characterize error growth over the prediction hori-
zon, we repeat the multi-step rollout procedure for the Allen—Cahn equation across 20 randomly
sampled initial conditions. Averaging over initializations reveals a consistent algebraic increase in
RMSE with rollout length, as shown on a log-log scale in Figure ] This resembles global error ac-
cumulation in classical finite-difference solvers operating under stable discretizations, where local
truncation errors compound in a controlled manner over time. Crucially, none of the models exhibit
divergent or unstable behavior across the 10-step horizon; error growth remains bounded. These
findings underscore the capacity of LLMs to continue PDE dynamics via ICL across diverse ini-
tial conditions, sustaining coherent predictions over extended horizons—a fundamentally nontrivial
task given only in-context information, without prompting or access to governing equations. Similar
error-growth trends are observed for the wave equation and other PDEs, as detailed in Appendix[A3]

4.3 UNCERTAINTY EVOLUTION AND LEARNING STAGES IN IN-CONTEXT LEARNING

We now move beyond truncation-like error analysis to examine how LLMs internalize PDE dy-
namics through ICL. We focus on predictive uncertainty and generation behavior in the one-step
prediction task introduced in Section We vary context length via temporal discretization (/NT)
and output length via spatial discretization (Nx), and analyze how these factors shape the model’s
token-level uncertainty. Given input {u(x;, tj)}i]\i"l”lj\-[i()_ ', the model predicts {u(z;,tn.)} Y. To
quantify predictive uncertainty, we compute the Shannon entropy (Shannon, |1948)) of the model’s
softmax distribution at each spatial value token and average across space:

Nx
_ 1
H(Nr, Nx) = _J\TZ > p(y |, Nr) logp(y | i, Nr),
=1 yeVy
where V denotes the tokenizer’s vocabulary, and p(y | «;, N1) is the predicted probability of token
y at spatial location z;, given N prior time steps in the serialized input. See Appendix [A.2] for
implementation details.

Emergent Learning Stages Revealed by Entropy Evolution. Figure [S]A shows the evolution of
mean spatial entropy, H, as a function of N7. A distinct rise-and-fall pattern reveals three emergent

4Since the multi-step rollouts analyzed in Sectionrecursively apply the one-step prediction process, we
defer a parallel analysis of uncertainty accumulation in that setting to Appendix @
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Figure 4: Multi-step rollout error trends. RMSE grows algebraically with prediction steps n (top
axis) and equivalent LLM output length Nrykens (bottom axis). Left: rollout from a single random
initial condition (as in Figure [3). Right: average over 20 random initial conditions. Error growth
rates are estimated via log—log fits and reported on the right. Shaded regions denote 95% confidence
intervals (left: across 20 repeated LLM runs; right: across 20 initial conditions).

stages of ICL: an initial syntax-dominated stage, a transitional exploratory stage, and a final stage
of consolidation and refinement:

1) Syntax-Only (limited context, e.g., N7 = 2; Figure Ep, first row): While mean spatial en-
tropy H exhibits some variation across model sizes, prediction error remains consistently high.
Separator tokens (e.g., commas) are predicted with near-perfect confidence (see Figure PPD). In
contrast, spatial value tokens act as generic placeholders, with little correspondence to underly-
ing PDE dynamics, yielding deterministic yet physically implausible predictions. This indicates
that syntax is acquired before any meaningful understanding of the PDE dynamics emerges.

2) Exploratory (moderate context, e.g.,2 < Nt < 10; FigureEp, second row): Entropy reaches its
peak across model sizes, indicating increased uncertainty and broader spatial token distributions.
Meanwhile, prediction accuracy improves rapidly, and outputs begin to align with true PDE
dynamics. This stage marks a transition from merely capturing surface-level syntax to beginning
to internalize spatiotemporal dynamics.

3) Consolidation (extended context, e.g., Nt > 10; Figure B[C, third row): As context length in-
creases further, H decreases, reflecting sharper and more confident spatial token distributions.
Prediction accuracy continues to improve, though with less profound gains compared to the ex-
ploratory stage. The model’s predictions increasingly reflect coherent and physically meaningful
PDE dynamics.

These stages reveal a consistent ICL progression: 1) syntax acquisition, 2) exploratory numerical
behavior, and 3) convergence to accurate predictions. This progression suggests that LLMs develop
structured internal representations of PDE dynamics purely through in-context exposure, without
explicit access to governing equations or language prompting.

Uncertainty Growth with Output Length. While the previous analysis focused on how input
context length affects ICL and predictive uncertainty, we now examine how spatial discretization
(IVx) affects prediction confidence. Fixing the temporal context at Ny = 50, we vary Nx and
compute the mean spatial entropy H. As shown in Figure , H increases steadily with larger
Nx, reflecting growing uncertainty for longer spatial outputs. This trend mirrors the error scaling in
Figure[2] where RMSE increases with Nx under fixed input context. Notably, the smaller Llama-3.2-
1B exhibits the steepest entropy growth, while the larger Llama-3.1-8B shows the slowest, indicating
greater robustness to output length. These findings reveal a close empirical link between model
uncertainty and prediction error: longer output sequences from finer spatial discretization lead to
both higher entropy and reduced predictive accuracy. Within the Llama-3 family, larger models
consistently maintain higher confidence and accuracy over extended output lengths. This suggests
that model size plays a critical role in enabling accurate extrapolation of learned PDE dynamics
across finer spatial discretizations—a capacity that smaller models fail to maintain.
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Figure 5: (A-B) Mean spatial entropy H vs. (A) temporal context length N at fixed Nx = 14 and
(B) output length Nx at fixed N1 = 50. Shaded regions: 95% confidence intervals over 50 random
initial conditions. (C) Token-level softmax distributions at three ICL stages: Nt = 2 (syntax-only),
5 (exploratory), and 20 (consolidation), extracted from Llama-3.1-8B for the same initial condition
as the multi-step rollout example. Top 8 tokens (by probability) are shown per spatial position; only
odd positions are displayed, with full results in Appendix (D) Softmax over separator tokens,
invariant across stages.

5 CONCLUSION

We show that text-trained LLMs can extrapolate PDE dynamics in-context in a zero-shot setting,
without any fine-tuning or natural language prompting. Their performance exhibits clear in-context
scaling laws: accuracy improves with longer temporal context, degrades with finer spatial discretiza-
tion, and error grows algebraically under multi-step rollouts. Entropy analysis further reveals a three-
phase progression—from syntax imitation, to exploratory uncertainty, to stabilized predictions—
highlighting emergent mechanisms underlying ICL. Together, these findings suggest that LLMs can
internalize nontrivial aspects of PDE dynamics purely from in-context data, demonstrating emergent
generalization capabilities in zero-shot inference.

Limitations and Future Work. Our study is restricted to time-dependent PDEs with real-valued
solutions on regular domains. Extending this framework to stationary PDEs (e.g., Poisson), PDEs
with complex-valued solutions (e.g., Schrodinger), higher-dimensional or irregular domains, and
partially observed or noisy dynamics could reveal complementary behaviors. Beyond these exten-
sions, a key challenge is to characterize the internal representations and compositional structures that
support generalization over spatiotemporal dynamics in autoregressive token space. While we focus
on demonstrating the surprising ICL abilities of text-trained LLMs for PDE dynamics continuation,
an important open problem is to identify PDE regimes where LLMs outperform classical solvers,

and to explore how symbolic priors or textual prompts (Xue & Salim|, 2024} Requeima et al., 2024)

could amplify these advantages.
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DISCLOSURE OF LLM USAGE

The authors used LLMs solely for improving the wording of the manuscript text and the presentation
of experiment code. No research ideas, analyses, or substantive content were generated by LLM:s.
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A APPENDIX

A.1 DETAILS ON EXPERIMENTAL SETUP AND INITIAL CONDITIONS
A.1.1 QUANTIZATION AND RECONSTRUCTION IMPLEMENTATION

This appendix provides the implementation details for the linear quantization and reconstruction
steps described in Section Let {u(z;,t;)} 1’1\2(1’_]]\20 denote the floating-point PDE solution evaluated

on a uniform spatiotemporal grid with Nx interior spatial points {xl}f\; * and Nt -+ 1 discrete time
steps {t; };V:TO. Define

Upmin = nlnjn u(z;,t5), Umax = H}SJL_X w(zs, t).

We quantize into the integer set Z = {150, 151,...,850}, resulting in a quantized matrix Q €
ZNxx(Np+1)_

Quantization. Each entry u(x;, t;) is mapped to

500, if Upax = Umin,

- 850 — 150
Qi j round<l50 + (w(xs,tj) — Umin)

), otherwise,
Umax — Umin

where round(-) denotes rounding to the nearest integer.

12
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Reconstruction. To recover an approximate floating-point value @(zx;,%;) from @Q; ;, we apply a
linear reconstruction map that approximates the original values:

Umin, if Umax = Umin,

(s 1) —
U(x“ J) Umnin + (Qi,j

— 150) H, otherwise.

Quantization Error Floor. We report two per-time-step error metrics for the reconstructed solution:

Nx

1/2
1 2
Q _ i 1) — s b Q _ (1) — s b
MaxAE; —1512)]\%(!11(1‘“@) u(w;, ty)], RMSE} = < . E_l(u(x“tj) u(w;, tj)) ) .

Each metric quantifies the unavoidable error floor introduced by first mapping the floating-point
solution into the discrete integer set Z = {150, ..., 850}, and then reconstructing it back to floating-

point values via the linear approximation. We refer to these errors, {MaXAE?} and {RMSE?},
collectively as the quantization floor under the corresponding metric.

LLM Inference Setup. For LLM inference described in Section [3] we consider only the token
library V consisting of three-digit numbers (000-999) and the comma delimiter (,) that encodes
spatial position. All other tokens outside )V are masked, and sampling is renormalized over this
set. This guarantees that every output corresponds to either a valid grid value entry or a spatial
delimiter token, thereby preserving one-to-one alignment with the serialized PDE solution. For
multi-step rollouts, temporal delimiters (semicolon) are inserted deterministically to mark time-step
boundaries and appear in the LLM input context.

A.1.2 SPLINE-BASED RANDOM INITIAL CONDITION CONSTRUCTION

In Section E} we construct each random initial condition uy(x) by sampling independent values on
a fixed grid and then fitting a C? interpolant via cubic splines, yielding a function that is C? on
[-L, L]. This analytic procedure is computationally cheap and helps ensure that any variation in
LLM prediction error across different spatial discretizations arises purely from discretization, not
from changes in the underlying random sample (see Section 4.T)).

Coarse Grid and Sampling. Let the 1D domain be [— L, L], with Dirichlet boundary values
u(—L,0) = u(L,0) = upc.
Introduce a uniform grid of Nx interior points and two boundary points:

2L
Nx +1’

where ¢ = 0 and ¢ = Nx + 1 correspond to the boundaries. Draw interior values independently and
identically from a uniform distribution on [a, b],

u; ~ Ula,b], i=1,...,Nx,

.’EZ:—L‘FZA.’E, Az = i:()a]-v"'vNX"'_]-a

where a < b are the lower and upper bounds. Then assemble the fixed-value vector

fixed
u = I:u()v Uy, « -y UNy, uNX+1} = [UBC7 Uy, « -y UNx, uBC]~

Spline Interpolant. Use SciPy’s CubicSpline with default “not-a-knot” end conditions to fit
S(x) = Spline({aﬁi}f\g)ﬂ, uﬁxed),
which yields a twice continuously differentiable function. Define the continuous initial condition

uo(x) = S(x).

Resampling at a New Grid Resolution. To evaluate different spatial discretizations, choose a new
cardinality of interior points N3*" and set

2L
J;I‘]CW — _L +jA$nCW7 AxIICW _

= — i =0,1,..., NV + 1.
J N)I%ew-f—]., J ] 9 X +

13
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Then define
J € {0, N + 1},

1<j < NBev,

UuBc,

S(ame),

new

J

The set {u}*"} provides the discrete initial data at the finer (or coarser) grid. By holding S(x) fixed,
this approach isolates the effect of grid spacing on one-step prediction error.

Parameter Choices. All experiments in Section ] for the Allen—-Cahn PDE are conducted with
Nx =14,upc = —1,a = —0.5,b = 0.5.

A.2 EVALUATION METRICS AND REFERENCE SOLUTION SETUP

In this appendix, we detail the Monte Carlo procedure used to compute the evaluation metrics in
Section ] For completeness, we also report results using the Maximum Absolute Error (MaxAE),
which captures the worst-case deviation:
MaXAEj = 122§X "fL(.’E“ tj) - ’lAl,(CEl, tj)| .

As shown in Figure [6] MaxAE exhibits qualitatively similar trends to the RMSE reported in the
error analysis of Sectiond] Algorithm|I|summarizes the Monte Carlo procedure used for computing
evaluation metrics in the one-step prediction task. The same procedure extends naturally to the
multi-step setting, where the metrics are computed identically at each predicted time slice.

Number of Time Steps (Nr) Number of Spatial Grid Points (Nx)
5 10 20 5 10 20

2 30 40 2 30 40
10° 10°
107t 107!
w w
< <
x x
© ©
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1072 1073
56 140 280 560 840 1120 3 9 19 39 59 79
LLM Context Length (Ntokens) LLM Output Length (Nrokens)
Llama-3.1-8B Llama-3.2-3B === Llama-3.2-1B Numerical Solver (FTCS) == Numerical Solver (IMEX) * Quant Floor
(a) One-step prediction vs. input context/output length.
Prediction Steps (n) Prediction Steps (n)
1 2 3 4 5 6 7 8910 1 2 3 4 5 7 8 910
n _- n _.
_9}—" _?—(—" Error Slope
____________ (log-log fit)
O 107! ’./0’.’. T 10! Single IC
. - : T
% Y'/ © 8B 1.295
g e [} 3B 1.484
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(b) Multi-step rollouts vs. prediction steps.
Figure 6: Prediction accuracy of Llama-3 models evaluated using the MaxAE metric, under the

same experimental setup as in Sections[d.T|and 4.2}
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Algorithm 1 Metrics Calculation for Numerical Results

1: Fixed Quantities: Initial conditions {g.,}»_; and corresponding reference solutions
{@m (z,t)}M_, precomputed on a suitably highly refined finite-difference grid using appro-
priate schemes (FTCS for Allen—Cahn and Fisher—KPP; BTCS for heat; leapfrog for wave).

2: Monte Carlo Trials: For m = 1,2,...,M, run A € {LLM, Classical Solver} given
{Upm (s, tj)}f\ixl’ljyio_ ! and obtain prediction {2 (4, tnp )} V.

MaxAE? = | Inax. ’um (i, tNg) — U5 (24, N s (Maximum Absolute Error)
i<Nx
1 2 i
RMSE® = [ — Z (T (Tiy tNg) — Gy (Tiy g . (Root Mean Square Error)
M3

For A = LLM only, compute:

Nx

_ 1

HypM = == > > oy | 2i, N1)logp(y | i, Nv),  (Mean Entropy)
i=1 yeV

where V is the LLM’s token vocabulary and p,,, (y | z;, N7) is the softmax probability for token
y at location x; in trial m.

3: Error Metrics: Mean error and corresponding 95% confidence interval on the log scale (to
match error plots that span multiple orders of magnitude): For E € {MaxAE, RMSE},

1
A_ i > E, (Averaged Error Metric)
. M 1/2
oé = <M 1 Z (Eﬁl EA)2> , (Sample Standard Deviation)
m=1
of

logy0(CI3) = logy(E*) £ to.o75,0—1 - EA VAl n(10)’ (95% CI)

where 2. 975,271 is the 97.5th percentile of the Student’s t-distribution with A — 1 degrees of
freedom.

4: Uncertainty Metrics (LLM only): Mean entropy and corresponding 95% confidence interval
on the regular scale (to match uncertainty plots):

_ 1 _
FULEM M 7171 M (Averaged Entropy)
o 1/2
oM = < (HLEM _ fhiMy2 ) , (Sample Standard Deviation)
CTLLM _ fgLLM |y oy 95% CI
o= 0.975,M—1 " i (95% CI)
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A.3 RESULTS ON ADDITIONAL PDES
A.3.1 RESULTS ON FISHER—-KPP, HEAT, AND WAVE EQUATIONS

We extend the analysis from Section |4 to three additional PDEs: the Fisher—-KPP equation, the
heat equation, and the wave equation. All experiments (one-step prediction, multi-step rollout, and
entropy-based uncertainty quantification) are performed under the same setup as in Section E]E] with
homogeneous Dirichlet boundary conditions unless noted otherwise. For the wave equation, which
is second-order in time, we additionally impose zero initial velocity, i.e., d;u(x,0) = 0, so that the
dynamics are fully determined by the initial condition u(x,0). Explicitly, the governing equations
are:
Fisher—-KPP: O = D Oppu + ru(l — u),
Heat: Ou =k Oppu,
Wave: Apu = 2 ppu.

For the Fisher—KPP equation, we adopt commonly used parameter values with diffusion coefficient
D = 0.002 and reaction rate » = 1 (Hasnain & Saqib, [2017}; Needham et al., [2025). In the rep-
resentative results (Figures [JHI0), we present results with thermal diffusivity & = 0.01 and wave
speed ¢ = 0.2. In Figure 11} we further confirm that the qualitative scaling trends persist across
a range of k£ and c values. For each PDE, we additionally include representative numerical bench-
marks to contextualize LLM predictions: FTCS and IMEX for the Fisher—KPP equation, FTCS and
BTCS (backward time, centered space) for the heat equation, and leapfrog and Crank—Nicolson for
the wave equation (LeVeque, 2007). Beyond Dirichlet boundaries, we also study the heat equation
under homogeneous Neumann boundary conditions, where total thermal energy conservation is the
key structural property. Notably, LLM rollouts preserve this conservation law, suggesting that ICL
can capture deeper invariants of PDE dynamics. Full details are provided in Appendix

As shown in Figures[7] 8] 0] and [I0] the qualitative trends closely mirror those observed for the
Allen—Cahn equation presented in Section[d In the one-step prediction setting, accuracy improves
systematically with longer temporal context while degrading at finer spatial discretizations. In the
multi-step rollout setting, errors accumulate algebraically with the rollout horizon, resembling the
global error growth of classical numerical solvers. Entropy-based analysis reveals a consistent three-
stage progression in ICL behavior, and prediction uncertainty increases with longer spatial outputs.

Overall, these results demonstrate that the emergent in-context scaling laws and uncertainty dynam-
ics observed for the Allen—Cahn equation persist across PDE families with markedly different phys-
ical behaviors: nonlinear growth—diffusion, heat diffusion, and wave propagation. The persistence
of these patterns underscores the robustness and generality of LLM ICL on continuing spatiotem-
poral PDE dynamics, suggesting that foundation models possess inductive biases that allow them to
internalize and extrapolate PDE dynamics.

A.3.2 CONSERVATION PROPERTIES IN THE HEAT EQUATION WITH NEUMANN BOUNDARIES

Motivation. Beyond continuing spatiotemporal trajectories, an important question is whether LLMs
internalize deeper invariants of PDE dynamics. The heat equation with homogeneous Neumann
boundary conditions and no internal source term offers a natural test case: it models an insulated rod,
where no heat can flow across the boundaries. In this setting, the total thermal energy is conserved
for all time (Haberman, [2013). Remarkably, we find that LLM rollouts respect this conservation law
more faithfully than coarse-grid finite difference solvers under the same setup, suggesting that ICL
captures structural properties of the dynamics rather than performing naive extrapolation.

Conservation Law. The governing PDE is:
Opu(x,t) = k Opgu(z,t), Ozu(—L,t) = Oyu(L,t) = 0.

Define the total thermal energy:

L
B(t) = / w(z, ) dz.

—L

>For the Fisher—-KPP equation, we set a = 0.2,b = 0.8 (instead of @ = —0.5,b = 0.5), following
Appendix so that the initial condition u(x, 0) lies within [0, 1], consistent with interpreting u(x,t) as a
population density.
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Figure 7: One-step prediction error for the Fisher—KPP, heat, and wave equations as a function of
input context length, under the experimental setup of Section@
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Figure 8: One-step prediction error for the Fisher—KPP, heat, and wave equations as a function of
output length, under the experimental setup of Section@
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Figure 9: Multi-step prediction error for the Fisher—KPP, heat, and wave equations as a function of
prediction steps, under the experimental setup of Section
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Figure 10: Uncertainty analysis of the Fisher—KPP, heat, and wave equations, under the experimental
setup of Section[4.3]
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(a) Heat equation: scaling across thermal diffusivities k; prediction accuracy is largely insensitive to k. Example
of the reference rollout at different k for one randomly sampled initial condition.
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(b) Wave equation: scaling across wave speeds c; larger c consistently degrades accuracy. Example of the
reference rollout at different c for one randomly sampled initial condition.

Figure 11: One-step prediction error for the Llama-3.2-3B model across varying PDE parameters,
under the experimental setup of Section 4.1}
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Figure 12: Relative energy deviation AE over prediction steps for LLM rollouts compared against
classical finite difference solvers (FTCS, BTCS) under homogeneous Neumann boundary condi-
tions for the heat equation. Shaded regions denote 95% confidence intervals over 20 random initial
conditions. The grid-induced reference is computed by evaluating the total thermal energy with a
high-resolution solver and then restricting it to the same coarse spatial grid used in the experimen-
tal setup; this represents the minimal deviation expected from discretization alone. Llama-3.1-8B
predictions remain close to this reference and exhibit substantially lower conservation error than
coarse-grid finite difference solvers across the rollout horizon.

Differentiating and using the PDE gives
dE L L
— = Owudx = k Opsudr = k [8zu]£ .
dt L
—L -L

The Neumann conditions enforce O,u(—L,t) = dyu(L,t) = 0, so the boundary term vanishes and
hence IE

Z =0 = E@®)=EQ).

Thus, the total thermal energy is exactly conserved in the continuous dynamics.

Relative Energy Deviation. To evaluate conservation in rollouts, we approximate E(¢) using the

trapezoidal rule on the spatial grid {xi}ﬁixoﬂ. The grid follows the uniform setup in the main

section:
2L

Nx +1’
In our setup, since both the LLM and the finite-difference benchmarks evolve only interior values]

{a(z;, tj)}f\ixl the boundary values are reconstructed by a second-order accurate approximation
consistent with homogeneous Neumann conditions:

$1:—L+ZA.’£, Az = i:()a]-v"wNX"'_l,

~ o Au(zy,ty)—a(xa,ty) ~ ~ 40(T Ny b)) — (T Ny —1,85)
irorty) ~ PTGy St et

With trapezoidal weights wy = wyy,4+1 = % and w; = Az for 1 < i < Nx, the discrete energy at
step t; is
Nx—+1
Ej = Z w; ﬁ(:vl, tj).
i=0
As areference, E(0) is computed via high-resolution trapezoidal quadrature of the initial condition.
The stepwise relative deviation is then:

Ap.  |B —E©)

j E(0)| x 100%.

8This convention is standard in finite-difference schemes, where boundary values are imposed rather than
evolved. In our setup, this makes the task more challenging for the LLM: for example, in Dirichlet problems,
boundary values are not given explicitly but must be inferred from the interior evolution.
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Here AE; = 0 corresponds to exact conservation, while nonzero values measure violations at pre-
diction step t;. This metric parallels RMSE; and MaxAE;, enabling direct comparison between
accuracy and conservation fidelity.

Figure [I2]reports results under the same setup as the Neumann-boundary heat equation experiments
shown in Figure 0] The only modification is that initial conditions are drawn from a = 0,b = 1
(instead of a = —0.5,b = 0.5), following Appendix so that the conserved energy E(0) is
bounded away from zero. This ensures numerical stability when evaluating relative deviations. We
also verified that one-step, multi-step, and uncertainty-evolution analyses under Neumann bound-
aries with a = 0,b = 1 show consistent qualitative behavior with the results in Appendix
(which use a = —0.5,b = 0.5); to avoid redundancy, we do not reproduce these plots here, but the
full results are available in the accompanying GitHub repository. Under this setup, LLM rollouts
maintain thermal energy close to its conserved value across time, and notably more faithfully than
coarse finite difference solvers operating at the same resolution.

This conservation behavior reflects more than numerical accuracy. When continuing spatiotempo-
ral PDE trajectories, the model is not merely extrapolating forward in time or interpolating across
space in isolation; rather, it is simultaneously inferring both spatial structure and temporal evolution
from in-context information. The fact that thermal energy remains close to its conserved value un-
der Neumann boundaries indicates that ICL can internalize and propagate governing conservation
principles, rather than relying on surface-level pattern imitation or naive extrapolation.

A.4 RESULTS FOR INSTRUCTION-TUNED LLAMA-3 VARIANTS

We replicate the full experimental setup from Section |4|using instruction-tuned variants of Llama-3
models: Llama-3.1-8B-Instruct, Llama-3.2-3B-Instruct, and Llama-3.2-1B-Instruct. These models
are instruction-tuned for assistant-like chat, whereas the pretrained base models are designed to
support a broader range of natural language generation tasks (Grattafiori et al., 2024). All evaluations
(one-step prediction, multi-step rollout, and entropy-based uncertainty quantification) are conducted
using the same setup as described in Section ]

As shown in Figure[I3] the qualitative trends closely mirror those of the base models. In particular, in
one-step prediction settings, accuracy improves with longer input context and degrades with increas-
ing output length. In multi-step prediction settings, predictions exhibit algebraic error accumulation.
Similarly, Figure[I4]shows that prediction uncertainty undergoes stage-wise transitions as input con-
text increases and grows with output length. Notably, under the same accuracy evaluation setup, the
smaller instruction-tuned models, Llama-3.2-3B-Instruct and Llama-3.2-1B-Instruct, show reduced
prediction accuracy compared to their pretrained base counterparts. This observation is consistent
with prior findings from (Gruver et al.| (2023)), which suggest that alignment procedures such as in-
struction tuning and Reinforcement Learning with Human Feedback (RLHF) can adversely affect
time-series forecasting performance in Llama-2 models. In contrast, we do not observe such a neg-
ative impact on the 8B instruction-tuned variant, indicating that newer, larger models may be more
robust to the effects of alignment in the context of continuing the spatiotemporal dynamics of PDEs.

A.5 RESULTS FOR OTHER MODEL FAMILIES

We replicate the full experimental setup from Section [4| using models outside the Llama family:
Phi-4-14B and SmolLM-3-3B, with Llama-3.2-3B (the representative model analyzed in the main
text) included for comparison. Figures[I5]and [I6]summarize the results.

As shown in Figure the overall qualitative trends remain consistent with those reported in the
main text. One-step prediction accuracy improves with longer input context and degrades with in-
creasing output length, while multi-step rollouts exhibit algebraic error accumulation. For models
with similar parameter counts—e.g., Llama-3.2-3B and SmolLM-3-3B—the exact quantitative pre-
diction errors differ slightly. This reinforces the observation from the main text that the “model size
effect” we report arises primarily when comparing models within the same family; models from
different families with similar parameter sizes can exhibit slightly different prediction errors, likely
reflecting differences in architecture, training data, and other design choices.

Similarly, Figure [I6] shows that the prediction uncertainty trends are consistent with those observed
for Llama-3 models. Specifically, spatial entropy progresses through three distinct learning stages as
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(c) Multi-step rollouts vs. prediction steps.

Figure 13: Prediction accuracy of instruction-tuned Llama-3 models, using the same experimental
setup described in Sections [f.T|and [4.2]
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Figure 14: Uncertainty analysis of instruction-tuned Llama-3 models, using the same experimental
setup described in Section and Figure |5l Top: Mean spatial entropy H as a function of con-
text length Nt (left) and output length Nx (right). Bottom: Token-level softmax distributions at
the syntax-only stage for Llama-3.1-8B-Instruct. The overall entropy behavior remains consistent
with the pretrained base model, with one notable difference: at very short contexts (Nt = 2), the
instruction-tuned 8B variant exhibits higher average spatial entropy, reflecting greater uncertainty
under minimal context. However, separator tokens (e.g., commas) are still predicted with near-
perfect confidence, and this increased uncertainty arises from spatial value tokens more frequently
acting as generic placeholders rather than producing deterministically incorrect outputs, as observed
in the base model.

input context increases, grows with output length, and separator tokens (e.g., commas) are predicted
with near-perfect confidence across all settings. The main deviation is that Phi-4-14B consistently
exhibits higher mean spatial entropy than the two 3B models. This difference is largely attributable
to the inference temperature: Llama-3[| and SmolLM-Zﬂ use T = 0.6, the default generation tem-
perature specified in their configuration files, while Phi—4E| defaults to 7' = 1.0, as its configuration
omits a temperature setting. Lower temperatures (7' < 1) scale the logits to increase their relative
magnitude, yielding sharper (lower-entropy) output distributions. In contrast, higher temperatures
(T' > 1) reduce these relative differences, producing flatter (higher-entropy) distributions. The
temperature-scaled softmax function (Goodfellow et all 2016) is defined as:

exp(z;/T)
> exp(z/T)’

softmax(z;T); =

where z; denotes the i-th logit prior to normalization.

"nttps://huggingface.co/meta-1llama/Llama-3.2-3B/tree/main
$https://huggingface.co/HuggingFaceTB/SmolLM3-3B/tree/main
’https://huggingface.co/microsoft/phi-4/tree/main
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(c) Multi-step rollouts vs. prediction steps.

Figure 15: Prediction accuracy of Phi-4-14B and SmolLM-3-3B models (with Llama-3.2-3B for
reference), using the same experimental setup described in Sections 4. T|and .2
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Figure 16: Uncertainty analysis of Phi-4-14B and SmolLM-3-3B models, with Llama-3.2-3B in-
cluded for reference, using the same experimental setup described in Section[d.3|and Figure[5} Top:
Mean spatial entropy H as a function of context length Nt (left) and output length Nx (right).
Bottom: Token-level softmax distributions at the syntax-only stage for Phi-4-14B. The overall en-
tropy behavior remains consistent with the Llama-3 models, with one notable difference: Phi-4-14B
exhibits higher average spatial entropy than the two 3B models shown here, in nearly all cases,
due to its higher default inference temperature (see Appendix [A.3] for discussion). A pronounced
peak in average spatial entropy also appears at very short contexts (Nt = 2), similar to Llama-3.1-
8B-Instruct, where increased uncertainty arises from spatial value tokens more frequently acting as
generic placeholders rather than producing deterministically incorrect outputs.
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Table 1: Architectural details of evaluated Llama-3 models

Parameter Llama-3.1-8B Llama-3.2-3B Llama-3.2-1B
Hidden size 4096 3072 2048
Hidden layers 32 28 16
Head dimension 128 128 64
Attention heads 32 24 32
Intermediate size 14336 8192 8192
Tie word embeddings false true true
RoPE scaling factor 8.0 32.0 32.0
Transformers version 4.43.0.dev0 4.45.0.dev0 4.45.0.dev0
Shared configurations

Architecture LlamaForCausalLM
Attention bias false

Attention dropout 0.0

BOS token ID 128000

EOS token ID 128001

Activation function SiLU

Initializer range 0.02

Max position embeddings 131072

MLP bias false

Model type llama

Key-value heads 8

Pretraining tp 1

RMS norm ¢ 1075

ROPE scaling low frequency factor 1.0

RoPE scaling high frequency factor 4.0

RoPE scaling original max position embeddings 8192

ROPE scaling type Ilama3

ROPE theta 500000.0

Torch dtype bfloat16

Use cache true

Vocabulary size 128256

A.6 ARCHITECTURAL DETAILS AND S1ZE COMPARISON OF LLAMA-3 MODELS

Table [T] summarizes the architectural configurations of the three Llama-3 models evaluated in our
main experiments. All values are sourced directly from Meta’s official generation_config
files, released on Hugging Face Differences in parameters such as hidden size, number of lay-
ers, and attention configurations account for the varying model sizes, which in turn influence the
emergence of ICL behaviors observed in zero-shot solutions of PDEs.

A.7 VALIDATION OF NON-TRIVIAL TEMPORAL EVOLUTION

To empirically validate that our prediction tasks (Section[3)) are non-trivial, we analyze the temporal
differences Q; j+1 — @i ; across the spatial grid under the finest discretization setting (Nx = 40,
Nt = 50). As shown in Figure the discretized solution exhibits meaningful variation between
adjacent time steps across the spatial domain, confirming that the system evolves in a non-trivial
manner over time. Coarser discretizations (e.g., Nx = 14, Ny = 25), as used in the multi-step
rollout task, naturally introduce larger changes between time steps due to increased temporal spacing
compared to the finest setting shown here. These observations support the discretization design
choices used in the main experiments, which preserve clear spatiotemporal variation and ensure that
model performance reflects an understanding of the underlying PDE dynamics rather than relying
on trivial extrapolation strategies.

Yhttps://huggingface.co/meta-1llama
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Figure 17: Temporal differences Q; j+1 — Q4,5 at each spatial grid point for the finest discretization
setting (Nx = 40, Nt = 50) used in the experimental setups of SectionEL where Q € ZNxx(Nr+1)
is the quantized representation of the PDE solution used as input to the LLM (see Section [3). The
heatmap shows that, even at this resolution, the discretized solution exhibits meaningful changes be-
tween adjacent time steps, indicating that the prediction task requires modeling nontrivial temporal
evolution. Since coarser discretizations correspond to larger time steps, they naturally induce greater
local variation, further supporting the non-trivial nature of the prediction task across discretizations.
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Figure 18: Multi-step prediction and error visualization for the Allen—Cahn equation with a different
randomly sampled initial condition, using the same experimental setup as in Section@

A.8 ADDITIONAL MULTI-STEP ROLLOUT VISUALIZATIONS

Figure [I8] presents the multi-step prediction error trend for the Allen—-Cahn equation with a
different initial condition, sampled with np.random.seed (42) following the procedure in
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Figure 19: Detailed visualizations corresponding to the main-text example in Figure 3] with addi-
tional numerical benchmarks and results from the Llama-3.2-3B model.

Appendix [A.T] The main text (Figure [3) uses np.random.seed (1) for Allen—Cahn and
np.random. seed (42) for wave. Changing the seed alters the sampled interior values, yielding
distinct spatiotemporal trajectories. The results here corroborate those in Section 4.2} indicating that
the observed model behaviors generalize across initial conditions.

Figure [T9] provides the detailed visualizations corresponding to the main-text example in Figure [3]
It shows representative multi-step rollouts for the Allen—Cahn and wave equations with one addi-
tional numerical benchmark each: IMEX for Allen—Cahn and Crank—Nicolson for the wave equa-
tion. This figure also includes results for the Llama-3.2-3B model, which were omitted from the
main text due to space constraints. The extended visualizations further illustrate that the smallest
model (Llama-3.2-1B) struggles to sustain coherent PDE dynamics over extended horizons, while
numerical benchmarks confirm consistency with classical solvers.

A.9 ERROR PATTERNS AND CAPACITY LIMITATIONS IN THE LLAMA-3.2-1B MODEL

In this appendix, we analyze systematic errors exhibited by the smallest model, Llama-3.2-1B, dur-
ing multi-step PDE rollouts. Figure [20] shows predictions averaged over 20 LLM repeats for the
randomly sampled initial condition in the main text alongside bias analyses of the resulting errors.
The 1B model produces structured errors that grow over the 10-step prediction horizon and consis-
tently concentrate at specific spatial locations, in contrast to the low-magnitude errors from the 3B
and 8B models, which remain more evenly distributed across the spatial domain. These persistent
error patterns from the 1B model, averaged over 20 repeats from the same initial condition, suggest a
systematic prediction bias likely attributable to the model’s inductive biases or capacity limitations,
rather than to stochasticity introduced during LLLM sampling at inference time.

The bottom panels of Figure [20]investigate the origin of this systematic prediction bias by analyz-
ing how the prediction errors relate to properties of the discretized PDE solution—specifically, its
magnitude and local variation in space and time. The left panel shows errors grouped by the recon-
structed floating-point values of the 1B model’s outputs. The lack of any discernible trend suggests
that the bias is not driven by output magnitude or tokenization artifacts such as a preference for

30



Under review as a conference paper at ICLR 2026

Reference Solution FTCS IMEX Llama-3.1-8B Llama-3.2-3B Llama-3.2-1B

] s | — 0.5

.
]

Space

- -

Time
01251 200 300 400 500 600 700 800 10
0.100
8 o
i
&
0.075 o
o O 6 <
o
; s
* 0.050 E
43
o
0.025 . . . e ° . °
- ] ; s
A %o 2% ; \ : kg p 05.. S 2
000 W SR NS sy F s oAl 7 & R X K A N\
-0.75 -050 -025 000 025 050 -4 -2 0 2 4 6 8 -12 -0.8 -0.4 0.0 0.4
1B Model Predicted Values Spatial Derivative Temporal Derivative

Figure 20: Multi-step rollouts and error analysis for the Llama-3.2-1B model. Top: Predictions
averaged over 20 LLM repeats for the randomly sampled initial conditions used in the main text.
Bottom: Bias analysis. Left: Absolute error vs. reconstructed prediction value shows no correlation,
indicating that errors are not biased toward particular magnitudes or integer-like values (e.g., 200,
300, 400), suggesting tokenization procedures are unlikely to be the source. Center and right: Errors
vs. spatial and temporal derivatives. In this rollout, larger errors cluster in regions of low variation,
though this trend does not persist across other initial conditions.

special integer-like values (e.g., 200, 300, 400). The center and right panels display errors grouped
by spatial and temporal derivatives, respectively, both approximated using finite-difference stencils
(central differences for interior points and forward/backward differences at boundaries). In this spe-
cific rollout, higher errors tend to occur in regions with lower local variation, hinting at a potential
trend. However, this behavior is not consistent across different initial conditions.

These findings help rule out tokenization effects as well as simple correlations with solution mag-
nitude or local variation as the primary sources of bias, but do not conclusively identify its origin.
Whether the bias arises from limited model capacity, inductive priors, or specific dynamical regimes
that are inherently more difficult for smaller models to internalize remains an open question for
future investigation.

A.10 ACCUMULATION OF PREDICTIVE UNCERTAINTY IN MULTI-STEP ROLLOUTS

In this appendix, we extend the entropy-based uncertainty analysis described in Section [4.3] for
one-step predictions to the multi-step rollout setup introduced in Section where the LLM au-
toregressively generates future time steps by appending its own outputs as additional inputs at each
step. Since no natural language prompting is used, the model does not distinguish between ground-
truth context and its own generated predictions, allowing us to directly analyze its ICL capacity to
roll out PDE dynamics purely from serialized numerical input.

Under fixed spatial and temporal discretization, all models exhibit a consistent decrease in mean spa-
tial entropy H with increasing prediction horizon (Figure , reflecting progressively more deter-
ministic outputs. Notably, the smaller model (Llama-3.2-1B) maintains substantially higher entropy
throughout the rollout compared to larger models (Llama-3.1-8B and Llama-3.2-3B), indicating that
the model size influences the confidence level of multi-step predictions. However, this trend toward
increased confidence does not correspond to improved predictive accuracy: as shown in Figure 4]
errors grow algebraically over time. This illustrates that prediction uncertainty may decrease due to
internal belief reinforcement within the LLM, even as predictive accuracy degrades.
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Figure 21: Mean spatial entropy H as a function of prediction step n, using the multi-step rollout
setup from Section and the uncertainty metric defined in Section Shaded regions denote
95% confidence intervals across 50 randomly sampled initial conditions, with one LLM rollout for
each initial condition.

A.11 TOKEN-LEVEL DISTRIBUTION VISUALIZATIONS ACROSS LEARNING STAGES

To complement the stage-wise analysis in Section Figure visualizes token-level soft-
max distributions from Llama-3.1-8B across all three ICL stages—syntax-only, exploratory, and
consolidation—for a representative initial condition (same as in the main text). The syntax-only
stage is shown in the bottom panel of Figure 3} this appendix provides a more comprehensive view
by including the later stages as well. Together, these illustrate how the model’s predictive uncertainty
evolves with increasing context length: initially focused on reproducing surface-level syntax, then
entering a phase of high uncertainty as it explores plausible continuations, and ultimately converging
to confident predictions that align with the underlying spatiotemporal PDE dynamics.
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Figure 22: Representative token distributions across ICL stages, extracted from the Llama-3.1-8B
model’s softmax outputs on a randomly sampled initial condition (same as in the multi-step rollout
example). For clarity, only the top 8 candidate tokens (by probability) are shown per spatial position.
(a) Syntax-only stage: separator tokens (e.g., commas) are predicted with near-perfect confidence,
while spatial values are either deterministic but incorrect or act as generic placeholders. (b) Ex-
ploratory stage: spatial value distributions broaden, reflecting increased uncertainty and competing
hypotheses with partial alignment to ground truth. (c) Consolidation stage: uncertainty decreases,
and distributions sharpen around the true target values.
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