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Abstract

Mean-field variational inference (VI), despite its scalability, is limited by the
independence assumption, making it unsuitable for scenarios with correlated data
instances. Existing structured VI methods either focus on correlations among latent
dimensions which lack scalability for modeling instance-level correlations, or are
restricted to simple first-order dependencies, limiting their expressiveness. In this
paper, we propose High-order Tree-structured Variational Inference (HoT-VI)2,
that explicitly models k-order instance-level correlations among latent variables. By
expressing the global posterior through overlapping k-dimensional local marginals,
our method enables efficient parameterized sampling via a sequential procedure.
To ensure the validity of these marginals, we introduce a conditional correlation
parameterization method that guarantees positive definiteness of their correlation
matrices. We further extend our method with a tree-structured backbone to capture
more flexible dependency patterns. Extensive experiments on time-series and graph-
structured datasets demonstrate that modeling higher-order correlations leads to
significantly improved posterior approximations and better performance across
various downstream tasks.

1 Introduction

Variational inference (VI) is a widely used framework for approximating the posterior distribu-
tion in latent-variable models pθ(X,Z) = pθ(X|Z)p(Z), where X = [x1,x2, · · · ,xN ] and
Z = [z1, z2, · · · , zN ] are observed data and the corresponding latent variables, respectively.
VI seeks to approximate the intractable posterior p(Z|X) with a tractable surrogate distribu-
tion qϕ(Z|X) from a parametrized distribution family Qϕ, by maximizing the evidence lower
bound L(θ,ϕ) = EZ∼qϕ [log pθ(X,Z) − log qϕ(Z|X)]. In typical settings where data instances
are assumed to be independent, the joint distribution naturally factorizes across instances as
pθ(X,Z) =

∏
i pθ(xi, zi) where xi and zi denote the i-th data instance and latent variable. Under

these scenarios, we can reasonably use the mean-field posterior qϕ(Z|X) =
∏

i qϕ(zi|xi) for model
inference and training. However, many real-world datasets exhibit complex relationships among
instances, making the independence assumption across data instances untenable. For instance, in mul-
tivariate time series [59, 21], the latent states zi at a timestamp may depend on those preceding and
succeeding timestamps. Similarly in graph-structured data such as social networks [19] and citation
graphs [29], the latent representations zi and zj of connected nodes are typically correlated due to
underlying relational structure. In these scenarios, the mean-field posterior is clearly inadequate, as it
ignores crucial dependencies among data points.
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Many existing variational inference methods have attempted to incorporate structured dependencies
into posterior approximation [68, 3, 31], but most of these approaches focus on modeling correlations
among dimensions within a latent variable. Since the number of latent dimensions is typically small
(e.g., dozens to hundreds) compared to the size of datasets (e.g., thousands to millions), methods tar-
geting dimension-level correlations cannot be applied to capture instance-level correlations, especially
for large datasets. Some recent efforts have been devoted to explicitly model instance-level correla-
tions. For example, Correlated Variational Autoencoder (CVAE) [56] introduces a tree-structured
variational distribution that captures pairwise dependencies between neighboring latent variables.
Similarly, Tree-structured Variational Inference (TreeVI) [63] builds a correlation matrix derived
from a tree structure over instances, enabling efficient sampling and scalable inference. However,
the reliance on capturing pairwise interactions limits these methods to first-order correlations, and
precludes the representation of cyclic or higher-order dependency structure among latent variables.
Yet in many real-world domains such as financial time series [51], sensor networks [12], climate data
[40] and evolving graphs [24], correlations among data instances are not merely pairwise. These data
frequently exhibit high-order dependencies, where the relationship between two latent variables is
mediated by the joint influence of multiple others. In time series, for instance, the latent state at a
given time point may not only depend on nearby time steps, but also on patterns that occurred further
in the past [17]. In such cases, methods constrained to pairwise or tree-structured dependencies
are fundamentally limited in expressiveness, necessitating a more expressive variational inference
framework capable of capturing higher-order instance-level dependencies.

In this work, we introduce a novel variational inference framework that overcomes the limitations of
existing methods by incorporating higher-order dependency structures among latent variables. Rather
than restricting attention to first-order correlations, our approach is able to capture more expressive k-
order dependencies. We theoretically show that, by imposing a k-order dependency structure into the
global variational posterior, the high-dimensional global posterior can be expressed in terms of a set of
k-dimensional local marginal distributions. By leveraging these local marginals, a sequential sampling
method is developed to draw parameterized samples from the high-dimensional global variational
posterior, which are then substituted into the evidence lower bound for training. To ensure the validity
of this approach, conditional correlations are introduced to re-parameterize the correlation matrices
of local marginals. We prove that by using the conditional correlations to represent the correlation
matrices, the positive definiteness of correlation matrices are guaranteed, and so does the validity of
the developed VI approach. Later, we further show that the approach can be extended to support more
structured dependency patterns by generalizing to tree-structured backbones, enabling even richer
representations of latent correlations. Extensive experiments on time-series and graph-structured
datasets demonstrate that our proposed method outperforms competitive baselines by effectively
capturing higher-order correlations among latent variables, leading to improved performance in
downstream tasks.

2 Variational Inference with High-order Correlation

2.1 Variational Posterior with Instance-Level Correlation Structure

z1 ⋯zi zi+1 zi+2 zi+k⋯ zN⋯zi+k+1

Figure 1: N instances with k-order dependency structure.

To have the paper focus on its primary
objective of capturing instance-level cor-
relations, we assume dimension-level in-
dependence in the variational posterior
by restricting it to the factorized form
qϕ(Z|X) =

∏D
d=1

∏
qϕ([Z]d,1:N |X),

where [Z]d,1:N denotes the d-th row of
the latent-variable matrix Z ∈ RD×N ,
although the method can be easily ex-
tended to take the dimension-level correlation into account. To model instance-level correlations,
we set the d-th variational posterior qϕ([Z]d,1:N |X) to be a correlated Gaussian distribution as
qϕ([Z]d,1:N |X) = N ([Z]d,1:N ;µd,P

−1
d ), where µd ∈ RN and Pd ∈ RN×N denote the mean vec-

tor and precision matrix, respectively. By noting that dimensions are handled separately and similarly,
in the following, for the conciseness of presentation, we omit the subscript d and observed data X, and
simply denote the d-th dimensional variational posterior qϕ([Z]d,1:N |X) as q(z) = N (z;µ,P−1),
where z = [z1, z2, · · · , zN ]⊤, µ = [µ1, µ2, · · · , µN ]⊤ and P ∈ RN×N .
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Since the instance number N is often very large, which could be as large as tens of thousands or even
millions in many scenarios, if we simply set the precision matrix P as a general matrix, it would
be computationally intractable. To balance the computational cost and the capability of modeling
high-order correlation, we propose to impose a k-order connection structure into the precision matrix
P, as shown in Fig. 1, which is equivalent to set the (i, j)-th element of P to zero for any |i− j| > k,
that is, pij = 0 for any |i − j| > k. Note that we here assume the connection structure of latent
variables is built upon a chain, which is reasonable for the modeling of sequential data by itself. Later,
we will show that the chain backbone is not necessary and can be extended to the more general tree
topology to accommodate more diverse data.

Despite the k-order connection structure is imposed into P, if we simply substitute the variational
posterior q(z) = N (z;µ,P−1) into the lower bound, we will see that the N latent variables are
still coupled together, and we still have to handle them simultaneously. To overcome this issue,
we notice that the connection structure is comprised of N − k overlapping local sub-structures,
with each involving only k + 1 consecutive latent variables zi:i+k = [zi, zi+1, · · · , zi+k]

⊤ for
i = 1, 2, · · · , N − k. The k+1 consecutive variables zi:i+k follow the marginal distribution of q(z),
which can be expressed as

q(zi:i+k) = N (zi:i+k;µi:i+k, diag(σi:i+k)R
(i) diag(σi:i+k)), (1)

where [R(i)]st = γi+s−1,i+t−1 with [·]st denoting the (s, t)-th element of a matrix; γi+s−1,i+t−1 is
the correlation coefficient between latent variables zi+s−1 and zi+t−1 for any s, t ∈ {1, 2, · · · , k+1};
and σi:i+k = [σi, · · · , σi+k], with σj being the standard deviation of zj . Each of these local marginals
q(zi:i+k) represents a localized view of the global variational posterior q(z). Below, we show that
the global posterior q(z) can be expressed in terms of these local marginals q(zi:i+k).
Theorem 2.1. For any joint distribution q(z) = N (z;µ,P−1) with a precision matrix P that has a
k-order connection structure, it can be equivalently expressed as

q(z) =

N−k+1∏
i=1

q(zi:i+k−1)

N−k∏
i=1

q(zi:i+k)

q(zi:i+k−1)q(zi+1:i+k)
, (2)

where q(zi:i+k−1) and q(zi:i+k) are the marginals of q(z) over zi:i+k−1 and zi:i+k. Moreover, if the
(k + 1)-variate marginals q(zi:i+k) are valid distribution for all i = 1, 2, · · · , N − k, then q(z) will
also be a valid distribution.

The theorem reveals that instead of parameterizing the posterior q(z) with pij in P, we can also
use the correlation coefficients Γ ≜ {γi+s−1,i+t−1|i = 1, · · · , N − k, |s − t| ≤ k, s ̸= t} to
parameterize the local marginals q(zi:i+k) and then use the local marginals to construct the global
posterior. From the distribution (2), we can see that the number of parameters in Γ is the same as the
number of non-zero pij in the precision matrix P. Thus, without introducing more parameters, the
distribution expressed with local marginals enables us to work on k-variate local marginals rather
than the N -variate global posterior, significantly reducing the computational demand.

With the availability of local marginals q(zi:i+k) for i = 1, 2, · · · , N − k, we can use them to draw
samples from the high-dimensional global posterior q(z). Specifically, according to the properties of
multivariate normal distribution, the conditional distribution of zi+k given zi:i+k−1 = z̃i:i+k−1 can
be expressed as q(zi+k|z̃i:i+k−1) = N (zi+k;λi+k, η

2
i+k), with the mean and variance equal to

λi+k = µi+k + [R(i)]k+1,1:k[R
(i)]−1

1:k,1:k(z̃i:i+k−1 − µi:i+k−1)⊘ σi:i+k−1,

η2i+k = σ2
i+k

(
1− [R(i)]k+1,1:k[R

(i)]−1
1:k,1:k[R

(i)]1:k,k+1

)
,

(3)

where ⊘ denotes element-wise division; [A]i:j,s:t means the submatrix of A with rows from i to
j and columns from s to t. Thus, given the samples from the i-th to the (i + k − 1)-th variable
z̃i:i+k−1 = [z̃i, · · · , z̃i+k−1]

⊤, the sample drawn from q(zi+k|z̃i:i+k−1) can be represented as

z̃i+k = λi+k(Γ
(i)) + ηi+k(Γ

(i)) · ϵi+k, ϵi+k ∼ N (0, 1), (4)

where we deliberately write λi+k and ηi+k as λi+k(Γ
(i)) and ηi+k(Γ

(i)) to emphasize the sample
z̃i+k is a function of correlation parameters Γ(i) = {γi+s−1,i+t−1|s, t = 1, · · · , k + 1, s ̸= t}.
With the newly obtained sample z̃i+k as well as the previous samples z̃i+1:i+k−1, we can further
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draw the next sample z̃i+k+1 from the conditional distribution q(zi+k+1|z̃i+1:i+k), which can be
easily derived from the local marginal q(zi+1:i+k+1). By repeating this process sequentially for
i = 1, 2, · · · , N − k, we can obtain the sample z̃ = [z̃1, z̃2, · · · , z̃N ]⊤ ∼ q(z).

It should be noted that the sample z̃ can be explicitly expressed in terms of coefficients Γ. Thus, we
can use the sample z̃ to estimate the expectation of the evidence lower bound (ELBO) L(θ,ϕ,X) =
Ez∼qϕ(z)[log pθ(X, z)] +H[qϕ(z)] and give rise to

L̃(θ,ϕ,X) = log pθ(X, z̃(Γ)) +H[qϕ(z)], (5)

where the entropy termH(·) can be expressed in terms of local marginals thanks to the decomposition
as depicted in Eq. (2). The exact expression for the ELBO is provided in Appendix C.

To boost inference efficiency, rather than training the coefficients Γ, it is common to parameterize
a neural network fϕ(·, ·) to output the coefficient values as γi+s−1,i+t−1 = fϕ(xi+s−1,xi+t−1),
where the output value of neural network is confined within the interval (−1, 1) to be consistent
with the range of correlation coefficients. By substituting γi+s−1,i+t−1 = fϕ(xi+s−1,xi+t−1) into
the lower bound (5), the neural network parameters ϕ can be optimized adequately. However, if
we directly parameterize γi+s−1,i+t−1 as fϕ(xi+s−1,xi+t−1), the resulting correlation matrix R(i)

could be non-positive definite, which violates the basic requirement of a Gaussian distribution,
causing the whole sampling process and ELBO estimation above invalid.

2.2 Re-parameterizing the Correlation Matrix R(i) with Positive Definite Guarantee

To ensure the positive definiteness of R(i), instead of using neural networks to directly parameterize
its elements γi+s−1,i+t−1, we propose a new way to parameterize them. Specifically, we notice that
for any valid multivariate Gaussian distribution q(zi:i+k), which is equivalent to have R(i) ≻ 0, we
can always decompose it as

q(zi:i+k) = q(zi, zi+k|zi+1:i+k−1)q(zi+1:i+k−1), (6)

where the conditional distribution

q(zi, zi+k|zi+1:i+k−1) = N
([

zi
zi+k

]
;

[
µc
i

µc
i+k

]
;

[
σc
i 0
0 σc

i+k

]
Rc

i,i+k

[
σc
i 0
0 σc

i+k

])
; (7)

µc
i = E[zi|zi+1:i+k−1] and µc

i+k = E[zi+k|zi+1:i+k−1] are the conditional means; σc
i = E[(zi −

µc
i )

2|zi+1:i+k−1]
1/2 and σc

i+k = E[(zi+k − µc
i+k)

2|zi+1:i+k−1]
1/2 are the conditional standard

deviations; and Rc
i,i+k =

[
1 γc

i,i+k|Ii,i+k

γc
i,i+k|Ii,i+k

1

]
is the conditional correlation matrix. Here,

γc
i,i+k|Ii,i+k

represents the conditional correlation parameter between zi and zi+k given zi+1:i+k−1

with index set Ii,i+k ≜ {i+ 1, · · · , i+ k − 1}, which can be specifically expressed as

γc
i,i+k|Ii,i+k

=
γi,i+k − [r

(i)
1 ]⊤[R

(i)
k−1]

−1r
(i)
k+1√

1− [r
(i)
1 ]⊤[R

(i)
k−1]

−1r
(i)
1

√
1− [r

(i)
k+1]

⊤[R
(i)
k−1]

−1r
(i)
k+1

, (8)

where r
(i)
1 = [R(i)]2:k,1, r(i)k+1 = [R(i)]2:k,k+1 and R

(i)
k−1 = [R(i)]2:k,2:k. For conciseness, we use

the notation γc
i,i+k in the following context to represent γc

i,i+k|Ii,i+k
without introducing ambiguity.

From (8), we can see that there exists a one-to-one mappingM : γc
i,i+k 7→ γi,i+k that maps the

conditional correlation parameter γc
i,i+k to the correlation parameter γi,i+k in R(i).

For a valid distribution q(zi:i+k), its conditional distribution q(zi, zi+k|zi+1:i+k−1) must be valid,
too. This suggests that the correlation matrix Rc

i,i+k is positive definite, which is equivalent to the
condition |γc

i,i+k| < 1. Therefore, for any valid distribution q(zi:i+k), its conditional correlation
is ensured to satisfy |γc

i,i+k| < 1. Below, we prove that the converse is also true, that is, if we
confine |γc

i,i+k| < 1 and set γi,i+k =M(γc
i,i+k), the correlation matrix R(i) constructed with it is

guaranteed to be positive definite under some condition.
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Theorem 2.2. By writing the correlation matrix R(i) as the following partitioned form

R(i) =


1 γi,i+1 · · · γi,i+k−1 γi,i+k

γi,i+1 1 · · · γi+1,i+k−1 γi+1,i+k

...
...

. . .
...

...
γi,i+k−1 γi+1,i+k−1 · · · 1 γi+k−1,i+k

γi,i+k γi+1,i+k · · · γi+k−1,i+k 1

 , (9)

if the upper-left and lower-right sub-matrices [R(i)]1:k,1:k and [R(i)]2:k+1,2:k+1 in the dotted frames
are both positive definite, |γc

i,i+k| < 1 and we set γi,i+k =M(γc
i,i+k), then R(i) is positive definite.

According to Theorem 2.2, if k × k sub-matrices [R(i)]1:k,1:k and [R(i)]2:k+1,2:k+1 of the (k +

1)× (k + 1) correlation matrix R(i) are both positive definite, and we let γi,i+k =M(γc
i,i+k) with

|γc
i,i+k| < 1, then the correlation matrix R(i) constructed in the form of (9) is guaranteed to be

positive definite. This gives rise to an iterative construction approach, starting from small sub-matrices
and expanding step by step. To illustrate this process, let us take the construction of 4× 4 correlation
matrix as an example, whose eventual form is

R(1) =


1 γ12 M(γc

13|2) M(γc
14|23)

γ12 1 γ23 M(γc
24|3)

M(γc
13|2) γ23 1 γ34

M(γc
14|23) M(γc

24|3) γ34 1

 . (10)

If γ12 < 1 and γ23 < 1, sub-matrices [R(1)]1:2,1:2 and [R(1)]2:3,2:3 are known to be positive definite.
Then, if we confine γc

13|2 < 1, according to Theorem 2.2, the sub-matrix [R(1)]1:3,1:3 is ensured to be
positive definite. Similarly, if γ23, γ34, γc

24|3 lie within (−1, 1), we can also ensure [R(1)]2:4,2:4 ≻ 0.
Then, combining with the condition γc

24|23 < 1, we can see from Theorem 2.2 that the correlation
matrix R(1) is guaranteed to be positive definite. Continued in this way recursively, positive definite
correlation matrices of arbitrary size can be constructed, as depicted in the following corollary.
Corollary 2.3. If all correlation parameters in Γ1 = {γi,i+1}N−1

i=1 and Γt = {γc
i,i+t}

N−t
i=1 for

t = 2, 3, · · · , k lie in the interval (−1, 1), then the (k + 1) × (k + 1) correlation matrix R(i)

constructed as above is guaranteed to be positive definite.

Therefore, to construct a correlation matrix R(i) with positive definite guarantee, we only need to pa-
rameterize first-order correlations Γ1 and higher-order conditional correlations Γt for t = 2, 3, · · · , k,
and ensure them to lie in the interval (−1, 1). For different orders of correlation coefficients, we can
use a specific neural network fϕt

(·, ·) to parameterize them as
γi,i+1 = fϕ1

(xi,xi+1), i = 1, 2, · · · , N − 1,

γc
i,i+t = fϕt

(xi,xi+t), i = 1, 2, · · · , N − t,
(11)

which represent the first-order correlations and t-order conditional correlations, respectively. Once the
positive definite correlation matrix R(i) has been constructed, we can then use the method described
in Section 2.1 to optimize the ELBO in (5) safely.

The exact cost of inference with our proposed k-order precision matrix P involves three parts: (i)
the cost of neural network evaluations for re-parameterizing correlation coefficients, (ii) the cost
of sampling from the variational posterior, and (iii) entropy calculation. In our method, to define
a posterior with k-order correlation over N latent variables, we need to specify exactly (N − 1)
first-order, (N − 2) second-order, and so on, up to (N − k) k-order correlations, yielding a total of
(N −1)+(N −2)+ · · ·+(N −k) = k(2N −k−1)/2 correlation coefficients. In our method, each
coefficient is parameterized by the output of a re-parameterization network fϕ(·, ·). Therefore, to re-
parameterize these coefficients, we need to run the network fϕ(·, ·) for O(kN) times. The sampling
and entropy calculations involve operations like inversion in (3) and determinant computation on
k × k sub-matrices, incurring a cost of O(k3) FLOPs. Considering that k is typically much smaller
than N and the complexity of evaluating neural networks, the cost of these operations is negligible
compared to the cost of neural network evaluations. Therefore, the total cost approximately amounts
to the cost of evaluating O(kN) times of the neural network fϕ per epoch, which is approximately
k times of the cost of mean-field amortized VI methods, with the order k controlling the trade-off
between expressiveness and computational cost.
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2.3 Extensions to Tree-structured Backbones

zi+k+2

z1 ⋯⋯zi zi+1 zi+2 zi+k

⋯⋯ zN-1

zi+k+1⋯

ℂ

sampling

zN

Figure 2: N instances with k-order dependency
structure based on a tree-structured backbone.

Although Theorem 2.1 is built on a chain-
structured backbone, our proposed high-order
correlations could be extended to more general
tree-structured backbones. If the first-order de-
pendency structure among latent variables is
characterized by a tree-structured backbone as
shown by the solid lines in Figure 2, then we
can also impose k-order dependencies over the
tree-structured backbone. In this case, every
k + 1 consecutive variables on the tree forms a
(k + 1)-vertex clique C ∈ Ck+1 with indices C = {i0, i1, · · · , ik} ⊆ {1, 2, · · · , N}. Based on the
tree-structured backbone, we can extend Theorem 2.1 to equivalently express the joint distribution of
latent variables using its local marginals over k-vertex cliques Ck and (k + 1)-vertex cliques Ck+1 as
follows

q(z) =
∏

C={i1,··· ,ik}∈Ck

q(zi1 , · · · , zik)
∏

C={i0,i1,··· ,ik}∈Ck+1

i0<i1<···<ik

q(zi0 , zi1 , · · · , zik−1
, zik)

q(zi0 , · · · , zik−1
)q(zi1 , · · · , zik)

, (12)

which is fully determined by local marginals q(zi0 , · · · , zik) over (k + 1)-vertex cliques C =
{i0, i1, · · · , ik} ∈ Ck+1. The validity of the local marginals can be similarly guaranteed by parame-
terizing the correlation matrices with first-order correlations and higher-order conditional correlations,
and further confining them within (−1, 1), as the following corollary shows.
Corollary 2.4. If the first-order correlations Γ1 and higher-order conditional correlations Γt for
t = 2, 3, · · · , k are built upon a tree-structured backbone, and all correlation parameters lie in the
interval (−1, 1), then we can use them to construct a (k + 1)× (k + 1) correlation matrix R(i) with
k-order dependency structure.

Given the marginal distribution and samples zi0 , · · · , zik−1
, we can draw sample zik from the condi-

tional distribution q(zik |zi0 , · · · , zik−1
). By recursively sampling from the conditional distribution

starting from the root node, samples from the joint distribution can be obtained.

3 Related Work

Bayesian inference provides a principled framework for uncertainty estimation, but exact inference is
often intractable. Variational inference addresses this by approximating the true posterior with a more
tractable distribution. This requires a trade-off between expressiveness and computational efficiency
[8]. A widely-used approach is mean-field variational inference (MFVI) [11], which assumes a fully
factorized posterior, treating all latent variables as independent. Despite its broad applicability across
domains such as image analysis [57] and biology [2], MFVI struggles to capture posterior correlations,
particularly in settings where latent variables are strongly dependent. To address these limitations,
structured variational inference (SVI) enriches variational distributions to capture dependencies
among latent variables while retaining tractability. Common SVI approaches achieve this through
deterministic or stochastic transformations, such as normalizing flows [10, 61] and implicit models
[54, 41]. Other techniques include modeling local-global dependencies [22, 60], using mixture
distributions [42, 34], copula-based augmentations [26, 53], non-conjugacy approximations [28, 49],
and hierarchical extensions [1, 39]. While these methods enhance expressiveness, they primarily focus
on intra-instance correlations, limiting their scalability to capturing correlations across instances.
Another related thread of work is neural relational inference [30, 14], which models the latent
interactions among entities or objects across data points using graph-based representations. While
effective in discovering relational structures, these methods focus on structure learning and do not
explicitly leverage inter-instance dependencies to enhance the variational approximation itself.

Higher-order dependencies have emerged as a crucial modeling component in complex systems
where first-order representations fall short [46]. These dependencies, which account for interactions
involving three or more entities, are prevalent in real-world sequential data such as multivariate
time series, clickstreams [65], citation flows [23], and transportation systems [65]. To capture these
higher-order interactions, several modeling paradigms have been developed, including hypergraphs
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[32, 9], simplicial complexes [13, 5], motif-based networks [7, 6], and higher-order Markov models
[52, 18]. However, these methods often suffer from scalability issues due to the exponential growth of
dependencies. Recent efforts have aimed to incorporate instance-level dependencies into variational
inference [43, 38, 56, 63]. For instance, DC-GMM [38] introduces a prior information matrix to
promote similar posteriors across instances for weakly supervised clustering. However, it still relies
on a mean-field approximation, which limits its ability to fully capture correlated posteriors. Other
methods, such as CVAE [56], attempt to address this limitation by constructing tree-structured
variational posteriors, effectively modeling pairwise dependencies among instances. But they remain
limited to first-order correlations and struggle to represent higher-order dependencies. The work of
TreeVI [63] is most similar to ours, but is inherently limited to modeling only first-order correlations.
This limitation of TreeVI arises from its reliance on an acyclic tree structure to construct its correlation
matrix. While this is sufficient for simple pairwise relationships, attempting to model higher-order
correlations inherently introduces loops into the underlying correlation structure. The construction
of TreeVI depends on the acyclic property of its backbone and is no longer valid when these loops
exist. Moreover, simply modeling higher-order correlation coefficients within the framework of
TreeVI does not guarantee the correlation matrix to be positive definite. So even though TreeVI can
capture instance-level correlations, it cannot be easily extended to model higher-order correlations.
In addition, SIDEC [58] takes a different approach by leveraging variational inference to learn latent
dynamics and employing high-order correlations for structural reconstruction. However, its focus is
on recovering interaction graphs rather than explicitly modeling high-order dependencies in the latent
posteriors themselves.

4 Experiments

Tasks & Datasets. We evaluate our method on three tasks: time series anomaly detection, time
series forecasting and constrained clustering, using a diverse set of benchmark datasets. For time
series anomaly detection, we experiment on three datasets: SMD, SMAP, and MSL. For time series
forecasting, we use five widely-used datasets: ETTh1, ETTm1, Electricity, Exchange, and Weather.
For constrained clustering, we conduct experiments on four standard datasets: MNIST, Fashion
MNIST, Reuters, and STL-10. Detailed descriptions for each dataset are provided in Appendix D.1.

Baselines & Implementation Details. For time series anomaly detection, we compare our method
with four state-of-the-art unsupervised approaches for time series anomaly detection based on VAE:
DAGMM [70], LSTM-VAE [45], OmniAnomaly [55], and SISVAE [37]. For time series forecasting,
we compare our method with the state-of-the-art end-to-end methods on time series modeling and
forecasting tasks, including VRAE [20], Informer [69], GRU-NVP [47], and DeepAR [50]. For
constrained clustering, we compare our approach against traditional algorithms such as PCKMeans
[4], SDEC [48], C-IDEC [67], and the state-of-the-art DC-GMM [38]; and also benchmark against
generative models such as VaDE [27], DGG [66], and TreeVI [63]. To evaluate the effectiveness of our
method, we conduct experiments with varying levels of k-order dependency structures, specifically
using k ∈ {1, 3, 5, 10}. Further implementation details are provided in Appendix D.3.

4.1 Time Series Modeling

Table 2: F1-Score and Evidence Lower Bound comparisons.

Dataset SMAP MSL SMD

Metric F1 ELBO F1 ELBO F1 ELBO

DAGMM 0.7105 -115.2820 0.7007 -277.7380 0.7094 -155.9460
LSTM-VAE 0.7298 -116.9500 0.6780 -281.3220 0.7842 -146.0540

OmniAnomaly 0.8434 -98.9217 0.8849 -161.0002 0.8857 -72.0419
SISVAE 0.8299 -101.1878 0.8766 -182.6060 0.8775 -72.5832

HoT-VI
1-order 0.8411 -97.6057 0.8883 -165.5004 0.8901 -69.5278
3-order 0.8552 -95.2314 0.8940 -157.2134 0.9153 -67.4001

10-order 0.8636 -92.2948 0.9145 -134.0815 0.9284 -65.0345

Generative Time Series Modeling
aims to learn the underlying prob-
ability distribution of time series
data and generate new, synthetic
time series samples that exhibit
similar characteristics to the ob-
served data. However, the major-
ity of existing approaches often
ignore instance-level correlations
during posterior inference, thus
failing to comprehensively cap-
ture the temporal dynamics of time series. To address this limitation, our method incorporates
two key adaptations compared to the vanilla VAE. First, temporal dependencies are introduced by
integrating Gated Recurrent Units (GRUs) [15] in both the VAE encoder and decoder. Second, the
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Table 1: Multivariate time series forecasting results with horizon H ∈ {24, 48, 168, 336, 720}. Best
performance is highlighted in bold font and the second best results are underlined.

Method Informer GRU-NVP DeepAR VRAE HoT-VI (Ours)

1-order 3-order 10-order
MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
h1

24 0.577 0.549 3.540 0.733 1.166 0.836 0.743 0.762 0.664 0.570 0.543 0.505 0.363 0.376
48 0.685 0.625 2.549 0.622 1.154 0.827 0.826 0.801 0.705 0.597 0.578 0.528 0.392 0.392

168 0.931 0.752 3.831 0.774 1.083 0.778 1.070 0.938 0.848 0.681 0.721 0.615 0.510 0.464
336 1.128 0.873 6.877 1.008 1.043 0.766 1.199 1.016 0.990 0.755 0.883 0.702 0.616 0.525
720 1.215 0.896 5.377 1.060 1.075 0.795 1.426 1.164 1.129 0.821 1.021 0.781 0.763 0.630

E
T

T
m

1

24 0.453 0.444 0.605 0.437 1.360 0.871 0.687 0.646 0.488 0.455 0.409 0.417 0.253 0.298
48 0.494 0.503 2.787 0.701 1.334 0.866 0.817 0.724 0.648 0.544 0.535 0.488 0.330 0.345

168 0.678 0.614 4.212 0.824 1.170 0.838 0.853 0.794 0.686 0.573 0.578 0.521 0.368 0.373
336 1.056 0.786 5.062 1.019 1.249 0.846 1.091 0.975 0.771 0.628 0.641 0.567 0.434 0.415
720 1.192 0.926 5.799 1.075 1.075 0.770 1.165 0.996 0.886 0.692 0.737 0.626 0.528 0.474

E
le

ct
ri

ci
ty 24 0.312 0.387 3.514 1.844 0.211 0.330 0.279 0.396 0.326 0.400 0.256 0.346 0.134 0.238

48 0.392 0.431 3.318 1.786 0.332 0.398 0.317 0.410 0.347 0.415 0.277 0.363 0.152 0.255
168 0.515 0.509 3.482 1.833 1.065 0.811 0.366 0.475 0.373 0.433 0.303 0.382 0.174 0.273
336 0.759 0.625 3.921 1.941 1.040 0.795 0.402 0.515 0.388 0.445 0.319 0.395 0.194 0.293
720 0.969 0.788 4.232 2.020 1.048 0.804 0.450 0.556 0.415 0.463 0.348 0.416 0.230 0.323

E
xc

ha
ng

e 24 0.611 0.626 1.557 0.877 1.328 0.692 0.140 0.310 0.098 0.227 0.093 0.227 0.033 0.126
48 0.680 0.644 1.589 0.883 1.345 0.701 0.238 0.435 0.155 0.267 0.171 0.306 0.058 0.164

168 1.097 0.825 1.663 0.903 1.434 0.745 0.642 0.703 0.379 0.466 0.368 0.458 0.196 0.326
336 1.672 1.036 1.682 0.905 1.489 0.778 1.050 0.953 0.992 0.835 1.165 0.821 0.496 0.515
720 2.478 1.310 1.748 0.928 1.526 0.793 3.003 1.593 1.988 1.063 2.029 1.090 1.508 0.857

W
ea

th
er

24 0.162 0.235 1.222 0.909 0.205 0.250 0.227 0.315 0.206 0.294 0.186 0.281 0.129 0.179
48 0.348 0.400 2.319 1.287 0.229 0.267 0.449 0.495 0.325 0.385 0.291 0.361 0.186 0.230

168 0.444 0.463 2.174 1.165 0.344 0.343 0.563 0.648 0.466 0.506 0.429 0.486 0.294 0.313
336 0.578 0.523 2.119 1.221 0.568 0.527 0.781 0.841 0.767 0.645 0.625 0.575 0.550 0.430
720 1.059 0.741 2.621 1.303 0.571 0.533 1.125 1.058 0.998 0.727 0.808 0.653 0.772 0.510

Average 0.819 0.660 3.112 1.122 0.978 0.678 0.796 0.741 0.641 0.555 0.573 0.516 0.386 0.373

posterior is approximated using k-order dependency. The formal representations are as follows. Let
X = {xt}Nt=1 denote a time series comprising N observations, where each xt ∈ RC represents
observations across C channels at time step t. Given a window of T observations Xt−T+1:t, the
encoder is represented as: µ,σ = fϕ([et−T , ..., et]) ,where the hidden state of GRU encoder et is
updated by xt and et−1. Similarly, the decoder is represented as: Xt−T :t = fθ([dt−T+1, ...,dt]),
where dt is the hidden state of the GRU decoder and updated by zt and dt−1. We evaluate the
modeling capacity of our method through its performance on two downstream tasks.

Time Series Anomaly Detection The objective of this task is to determine whether an observation
xt is anomalous based on the preceding T observations. Our model can be directly applied to the
anomaly detection task by reconstructing data. Trained solely on normal data, the model is expected
to exhibit low reconstruction loss for normal data while high for anomalies. Consequently, anomalies
are identified by comparing the reconstruction loss against a threshold. The ELBO serves as a metric
to evaluate the modeling capacity for normal data, while the F1 score assesses anomaly detection
performance. As shown in Table 2, our method demonstrates superior ELBO and F1 scores compared
to other generative approaches that neglect instance-level correlations during posterior inference.
Notably, even with only first-order dependencies, our method achieves comparable performance to
OmniAnomaly, a complex model integrating VAE, flow, and State Space Models (SSM). Furthermore,
increasing the order of dependencies in our model leads to consistently higher ELBO and F1 scores
than all baselines. This indicates that modeling higher-order temporal relationships in time series
improves data modeling and anomaly detection performance. By modeling k-order dependency, our
model captures fine-grained local dynamics and coarser-grained long-term dependency, leading to a
more robust and comprehensive understanding of the complex temporal structure.

Time Series Forecasting This task aims to predict the subsequent H observations given L past
observations. Formally, this is a mapping f : Xt−L+1:t ∈ RL×C 7→ X̄t+1:t+H = Y ∈ RH×C , and
we omit the subscripts hereafter. Our approach is decomposed into two steps: first, learn an expressive
and predictable representation of the historical observations via generative modeling; second, perform
forecasting based on the representation. For generative modeling, we capture instance-level correla-
tions using k-order dependency that existing approaches often overlook. For forecasting, we integrate
a feed forward network fψ : Z 7→ Y into the original model. Formally, we aim to optimize the
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Table 3: Clustering performances (%) of our proposed method compared with baselines. Means and
standard deviations are computed across 10 runs with different random initializations.

Dataset Metric VaDE SDEC C-IDEC DGG DC-GMM TreeVI HoT-VI (Ours)

3-order 5-order 10-order

MNIST ACC 89.0±5.0 86.2±0.1 96.3±0.2 95.8±0.1 96.5±0.2 97.4±0.3 98.1±0.4 98.3±0.4 98.5±0.3
NMI 82.8±3.0 84.2±0.1 91.8±1.0 91.2±0.2 91.4±0.3 93.1±0.6 93.8±0.4 94.2±0.3 94.6±0.3
ARI 80.9±5.0 80.1±0.1 92.1±0.4 91.4±0.3 92.5±0.5 93.7±0.7 94.9±0.6 95.2±0.5 95.6±0.5

fMNIST ACC 55.1±2.2 54.0±0.2 68.1±3.0 79.9±0.4 80.5±0.8 81.4±0.6 82.9±0.5 83.2±0.5 83.4±0.4
NMI 57.9±2.7 57.3±0.1 66.7±2.0 70.1±0.3 72.0±0.4 73.9±0.6 74.7±0.6 74.8±0.5 75.1±0.4
ARI 41.6±3.1 40.2±0.1 52.3±3.0 64.9±0.3 66.4±0.5 67.9±0.9 68.9±0.5 69.1±0.5 69.2±0.4

Reuters ACC 76.0±0.7 82.1±0.1 94.7±0.6 93.5±0.6 95.4±0.2 95.9±0.6 96.8±0.6 97.2±0.6 97.6±0.5
NMI 50.1±1.3 62.3±0.1 81.4±0.7 81.2±0.8 82.7±0.7 83.4±0.5 84.8±0.6 85.1±0.6 85.4±0.5
ARI 58.0±1.4 66.7±0.1 87.7±0.9 87.8±0.5 89.0±0.6 90.2±0.4 91.3±0.5 91.6±0.5 92.0±0.4

STL-10 ACC 77.3±0.5 79.2±0.1 81.6±3.8 89.9±0.3 89.5±0.5 90.4±0.9 91.8±0.7 92.2±0.6 92.4±0.4
NMI 70.6±0.4 78.6±0.1 77.3±1.7 80.9±0.5 80.2±0.7 81.3±0.8 82.4±0.7 82.8±0.6 83.1±0.5
ARI 62.7±0.4 71.0±0.1 71.8±3.4 79.0±0.4 78.4±0.9 79.5±0.7 80.9±0.7 81.3±0.5 81.5±0.5

joint model p(X,Y) = p(Y|X)p(X) =
∫
Z
p(Y|Z)p(Z|X)dZ

∫
Z
p(X|Z)p(Z)dZ by maximizing

the evidence lower bound: log p(X,Y) ≥ log
∫
Z
pψ(Y|Z)qϕ(Z|X)dZ+Eqϕ(Z|X) [log pθ(X|Z)]−

KL (qϕ(Z|X)∥p(Z)), where the first term measures prediction accuracy, typically estimated using
L1 or L2 loss, while the subsequent terms serve as regularization for representation learning. The
results presented in Table 1 show that our approach outperforms all baselines across all datasets and
metrics with only two second-best exceptions. Furthermore, the consistent prediction improvement
in our method with increasing dependency order underscores that time series forecasting can benefit
from better time series modeling.

4.2 Constrained Clustering

Constrained clustering is a task that incorporates instance-level constraints into the clustering process,
allowing users to enforce specific relationships between data points based on prior knowledge.
These constraints are expressed by a correlation graph G = (V, E ,A), where V denotes the set
of instances, and the edge set E = EM ∪ EC consists of must-link constraints EM , requiring two
instances to be in the same cluster, and cannot-link constraints EC , which require them to be in
different clusters. The adjacency matrix A ∈ RN×N encodes both the type and strength of each
constraint: [A]ij > 0 if (i, j) ∈ EM , [A]ij < 0 if (i, j) ∈ EC , and [A]ij = 0 if no constraint exists.
The magnitude |[A]|ij ∈ [0,∞) reflects the confidence in the constraint. Following the generative
modeling framework of previous work [38], constrained clustering can be formulated as a probabilistic
clustering problem with joint probability pθ(X,Z, c|A) = pθ(X|Z)p(Z|c)p(c|A), where the data
xi is generated from a normal distribution conditioned on zi; the latent embedding zi is drawn from a
cluster-dependent normal distribution p(zi|ci) = N (zi;µci , diag(σ

2
ci)); and the cluster assignments

c = {ci}Ni=1 follow a distribution conditioned on A, defined as p(c|A) = 1
Ω(π)

∏
i πcihi(c,A),

where hi(c,A) =
∏

j ̸=i exp([A]ijδcicj ) is a weighting function with δ representing the indicator
function, π are the cluster weights, and Ω(π) =

∑
c

∏
i πcihi(c,A) is a normalization constant.

To perform inference, we use a variational posterior of the form qϕ(Z, c|X) = qϕ(Z|X)q(c|Z),
where q(c|Z) =

∏
i q(ci|zi) is computed using Bayes’ rule. In standard approaches like DC-GMM

[38], the posterior qϕ(Z|X) is modeled as fully factorized, which ignores dependencies between
instances. We address this limitation by introducing a higher-order dependency structure over the
latent space. Specifically, we approximate qϕ(Z|X) using k-order correlations, where first-order
dependencies are guided by a tree structure learned from the correlation graph G. We follow the
work of [63] to learn the tree structure from data by optimizing a symmetric adjacency matrix. In
our experiments, we set k ∈ {3, 5, 10} and compare our model with baselines over 10 independent
runs, reporting average Accuracy (ACC), Normalized Mutual Information (NMI), and Adjusted Rand
Index (ARI) in Table 3. The results show that our approach outperforms existing methods across
all datasets and metrics, demonstrating the effectiveness of incorporating higher-order correlations
in constrained clustering. The averaged improvements of our method incorporating third-order
dependency structure are 1.93, 2.35 and 2.43 in ACC, NMI and ARI against DC-GMM and are 1.13,
1.00 and 1.18 against TreeVI, underscoring the significance of considering dependencies among latent
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Table 4: Additional experiments of HoT-VI with orders k exceeding 10, including time series
anomaly detection on SMAP dataset, time series forecasting on ETTh1 dataset with horizon 24, and
constrained clustering on MNIST dataset.

Methods Mean-field k = 1 k = 3 k = 10 k = 50 k = 100

Time Series Anomaly Detection

Runtime (s) 1.00 2.44 8.51 27.60 142.58 294.53
F1 0.7774 0.8411 0.8552 0.8636 0.8711 0.8755

ELBO -109.2182 -97.6057 -95.2314 -92.2948 -90.4291 -89.9577

Time Series Forecasting

Runtime (s) 4.80 11.45 36.94 126.44 675.75 1340.22
MSE 0.739 0.664 0.543 0.363 0.348 0.333
MAE 0.716 0.570 0.505 0.376 0.362 0.352

Constrained Clustering

Runtime (s) 0.25 0.59 1.84 6.22 29.53 60.59
ACC (%) 96.50 97.55 98.12 98.52 98.62 98.69
NMI (%) 91.37 93.44 93.80 94.55 94.63 94.85
ARI (%) 92.54 93.89 94.89 95.65 95.85 96.09

posteriors, particularly higher-order dependencies. Furthermore, the performance of our method
consistently improves with increasing dependency order, benefiting from the ability of higher-order
correlations to jointly link a larger set of data instances. This facilitates more effective propagation
of cluster assignment constraints compared to methods limited to pairwise dependencies, further
underscoring the importance of capturing high-order interactions in constrained clustering.

Performances At Higher Orders The choice of the order k is a trade-off between model expres-
siveness and computational cost. Generally, as k increases, the model’s performance consistently
improves, as demonstrated in our experimental results. However, as seen from Table 4, the perfor-
mance gains diminish as the order k (e.g. 50, 100) goes higher. However, the computational cost
always scales linearly with k. To balance the gains and cost, we set k to moderate values (up to 10)
in our main experiments. By setting k to a moderate value (e.g. 10), we can only model correlation
up to 10-th order, losing the ability to model higher-order correlations. But as observed from Table 4,
the gains become increasingly weak as the order goes higher.

5 Conclusion

In this work, we introduced a novel variational inference framework for modeling higher-order
correlations among latent variables, going beyond the limitations of mean-field and first-order
methods. By equivalently formulating the posterior as a composition of local marginals, our approach
enables expressive k-order dependency modeling. To ensure tractability, we proposed an iterative
procedure that guarantees positive definiteness of the resulting correlation matrix via conditional
correlation parameterizations. This formulation enables reparameterized sampling and allows efficient
optimization. We further generalized the model to support tree-structured backbone dependencies,
enabling flexible incorporation of more structured latent correlations. Empirical results across diverse
tasks, including time series modeling and constrained clustering, demonstrate the effectiveness of our
method in capturing complex dependency structures and improving downstream performance.

Limitations & Future Work The proposed method requires specifying a backbone structure
to construct higher-order correlations. This limitation is mitigated by generalizing to a learnable
tree-structured backbones. For future work, we will investigate the combination of instance-level and
dimension-level correlation structure, to further enhance the expressivity of posterior approximation.
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8. Experiments compute resources
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puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The computer resources needed to reproduce our experiments have been
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• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
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than the experiments reported in the paper (e.g., preliminary or failed experiments that
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9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
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follows the Code of Ethics.
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• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
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eration due to laws or regulations in their jurisdiction).

10. Broader impacts
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societal impacts of the work performed?

Answer: [NA]
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• If the authors answer NA or No, they should explain why their work has no societal
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to particular applications, let alone deployments. However, if there is a direct path to
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to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our experiments are conducted on standard and public datasets available
for everyone, and our proposed methods focus on basic theory with regards to variational
inference without safety risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Datasets used in our experiments are all public, and their related papers have
been cited in our paper.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
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• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: No new assets are introduced or released in our paper.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our work does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our work does not involve crowdsourcing nor research with human subjects.

Guidelines:
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core methodology, scientific rigorousness, and originality of our paper are
unrelated to LLM usage.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

21

https://neurips.cc/Conferences/2025/LLM


A Proofs

Followings are the details of proofs of the claim from the main text - Theorem 2.1, Theorem 2.2,
Corollary 2.3 and 2.4.

A.1 Proof of Theorem 2.1

Lemma A.1. Suppose that zA and zB are conditionally independent given zC where A,B,C ⊆
{i, i+ 1, · · · , i+ k} are mutually exclusive, then in terms of probabilities,

q(zA, zB , zC) =
q(zA, zC)q(zB , zC)

q(zC)
. (13)

Proof. According to the definition of conditional independence,

q(zA, zB |zC) = q(zA|zC)q(zB |zC) =
q(zA, zC)q(zB , zC)

q(zC)2
. (14)

Multiplying both sides by q(zC), we can obtain

q(zA, zB , zC) =
q(zA, zC)q(zB , zC)

q(zC)
. (15)

Theorem A.2. For any joint distribution q(z) = N (z;µ,P−1) with a precision matrix P that has a
k-order connection structure, it can be equivalently expressed as

q(z) =

N−k+1∏
i=1

q(zi:i+k−1)

N−k∏
i=1

q(zi:i+k)

q(zi:i+k−1)q(zi+1:i+k)
, (16)

where q(zi:i+k−1) and q(zi:i+k) are the marginals of q(z) over zi:i+k−1 and zi:i+k. Moreover, if the
(k + 1)-variate marginals q(zi:i+k) are valid distribution for all i = 1, 2, · · · , N − k, then q(z) will
also be a valid distribution.

Proof. To prove the theorem, we turn to prove that for any t− s ≥ k and s ∈ {1, · · · , N − t}, the
(marginal) distribution of zs:t is given by

q(zs:t) =

t−k+1∏
i=s

q(zi:i+k−1)

t−k∏
i=s

q(zi:i+k)

q(zi:i+k−1)q(zi+1:i+k)
. (17)

The result is trivial for t− s = k, where the right-hand side becomes

q(zs:s+k−1)q(zs+1:s+k)
q(zs:s+k)

q(zs:s+k−1)q(zs+1:s+k)
= q(zs:s+k) = q(zs:t). (18)

To start the induction proof, we first prove it for t− s = k + 1, which is

q(zs:s+k+1) = q(zs:s+k−1)q(zs+1:s+k)q(zs+2:s+k+1)

× q(zs:s+k)

q(zs:s+k−1)q(zs+1:s+k)

q(zs+1:s+k+1)

q(zs+1:s+k)q(zs+2:s+k+1)

=
q(zs:s+k)q(zs+1:s+k+1)

q(zs+1:s+k)
.

(19)

By letting A = {s}, B = {s + k + 1} and C = {s + 1, · · · , s + k}, then the equation above is a
direct conclusion of Lemma A.1, where we use the condition that zs and zs+k+1 are conditionally
independent given zB = zs+1:s+k implied by the k-order dependency structure. We proceed by

22



induction and go from t− s ≤ l to t− s = l + 1. The induction hypothesis gives us

q(zs:t) =

t−k+1∏
i=s

q(zi:i+k−1)

t−k∏
i=s

q(zi:i+k)

q(zi:i+k−1)q(zi+1:i+k)
, (20)

for any k ≤ t− s ≤ l, and we want to show that for t− s = l + 1,

q(zs:s+l+1) =

s+l−k+2∏
i=s

q(zi:i+k−1)

s+l−k+1∏
i=s

q(zi:i+k)

q(zi:i+k−1)q(zi+1:i+k)
. (21)

Letting A = {s}, B = {s+ l+1} and C = {s+1, · · · , s+ l} and then applying Lemma A.1 gives
us

q(zs:s+l+1) =
q(zs:s+l)q(zs+1:s+l+1)

q(zs+1:s+l)
, (22)

where we can use the induction hypothesis to obtain

q(zs:s+l) =

s+l−k+1∏
i=s

q(zi:i+k−1)

s+l−k∏
i=s

q(zi:i+k)

q(zi:i+k−1)q(zi+1:i+k)
,

q(zs+1:s+l+1) =

s+l−k+2∏
i=s+1

q(zi:i+k−1)

s+l−k+1∏
i=s+1

q(zi:i+k)

q(zi:i+k−1)q(zi+1:i+k)
,

q(zs+1:s+l) =

s+l−k+1∏
i=s+1

q(zi:i+k−1)

s+l−k∏
i=s+1

q(zi:i+k)

q(zi:i+k−1)q(zi+1:i+k)
.

(23)

Leveraging them to simplify the right-hand side of Eq. (22), we can obtain

RHS = q(zs:s+k−1)×
q(zs:s+k)

q(zs:s+k−1)q(zs+1:s+k)

×
s+l−k+2∏
i=s+1

q(zi:i+k−1)

s+l−k+1∏
i=s+1

q(zi:i+k)

q(zi:i+k−1)q(zi+1:i+k)

=

s+l−k+2∏
i=s

q(zi:i+k−1)

s+l−k+1∏
i=s

q(zi:i+k)

q(zi:i+k−1)q(zi+1:i+k)
,

(24)

which completes the induction. Notably, the conclusion is not restricted to chain-structured backbones,
but also applies to tree-structured backbones. The corresponding k-variate and (k + 1)-variate local
marginals are defined over k-vertex and (k + 1)-vertex cliques, respectively, and the conclusion is
built up by the Hammersley-Clifford Theorem.

A.2 Proof of Theorem 2.2

Lemma A.3. Let a, b, c be distinct integers in {1, 2, · · · , k} and let L be a subset of
{1, 2, · · · , k}\{a, b, c}. For a correlation matrix R ∈ R(k+1)×(k+1), we denote D(L) as the deter-
minant of the sub-matrix R[L] ≜ [R]L×L, then

1− γ2
ab|cL =

D({a, b, c) ∪ L)D({c} ∪ L)

D({a, c} ∪ L)D({b, c} ∪ L)
. (25)

Proof. If a, b, c are indices not in L, then define

R[a, b, c|L] ≜

 1 γab|L γac|L
γab|L 1 γbc|L
γac|L γbc|L 1

 , (26)
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and define R[a, b|L], R[a, c|L], R[b, c|L] as principal 2× 2 sub-matrices of R[a, b, c|L]. Since that

γab|cL =
γab|L − γbc|Lγbc|L√
1− γ2

ac|L

√
1− γ2

bc|L

, (27)

then

1− γ2
ab|cL =

(1− γ2
ac|L)(1− γ2

bc|L)− (γab|L − γac|Lγbc|L)
2

(1− γ2
ac|L)(1− γ2

bc|L)

=
1− γ2

ac|L − γ2
bc|L − γ2

ab|L + 2γac|Lγbc|Lγab|L

(1− γ2
ac|L)(1− γ2

bc|L)

=
detR[abc|L]

detR[ac|L] detR[bc|L]
.

(28)

If L = ∅, then the above becomes

detR[abc]

detR[ac] detR[bc]
=

D({a, b, c})D({c})
D({a, c})D({b, c})

(29)

since by definition D({c}) = 1. Otherwise for L ̸= ∅, let (zi, zj , zk, zL) be a mean zero
normal random vector with correlation matrix R[{a, b, c} ∪ L] and unit variances. Let Vabc =

diag(Var[za|zL],Var[zb|zL],Var[zc|zL]) so that V 1/2
abc R[abc|L]V 1/2

abc is the covariance matrix of
(za, zb, zc)|zL. Since the determinant of a positive definite matrix can be decomposed as the mul-
tiplication of determinant of its principal sub-matrix and determinant of the corresponding Schur
complement, then

det(V
1/2
abc R[abc|L]V 1/2

abc ) =
detR[{a, b, c} ∪ L]

detR[L]
=

D({a, b, c} ∪ L)

D(L)
, (30)

so that

detR[abc|L] = D({a, b, c} ∪ L)

D(L)Var[za|zL] Var[zb|zL] Var[zc|zL]
. (31)

Similarly,

detR[ac|L] detR[bc|L] = D({a, c} ∪ L)D({b, c} ∪ L)

D2(L)Var[za|zL] Var[zb|zL] Var[zc|zL]2
. (32)

Hence,
detR[abc|L]

detR[ac|L] detR[bc|L]
=

D({a, b, c} ∪ L)D(L)Var[zc|zL]
D({a, c} ∪ L)D({b, c} ∪ L)

. (33)

By another application of the determinant decomposition, D(L)Var[zc|zL] = D({c} ∪ L), which
completes the proof.

Lemma A.4. For a correlation matrix R ∈ R(k+1)×(k+1) with conditional correlations γij|Iij
as

defined by Eq. (8) with |i− j| ≤ k, its determinant is given by

detR =

k∏
i=1

(1− γ2
i,i+1)

k∏
t=2

k+1−t∏
j=1

(1− γ2
j,j+t|Ij,j+t

) (34)

Proof. The result is known for k = 1. To start the induction proof, we first prove it for k = 2. As a
special case of conditional correlation as defined by Eq. (8),

γ13|2 =
γ13 − γ12γ23√
1− γ2

12

√
1− γ2

23

, (35)

so that

1− γ2
13|2 =

1− γ2
12 − γ2

23 − γ2
13 + 2γ12γ23γ13

(1− γ2
12)(1− γ2

23)
=

det(R)

(1− γ2
12)(1− γ2

23)
. (36)
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Hence det(R) = (1− γ2
12)(1− γ2

23)(1− γ2
13|2). We proceed by induction and go from k to k + 1.

The induction hypothesis gives us

detR[{1, · · · , k}] = D({1, · · · , k}) =
k−1∏
i=1

(1− γ2
i,i+1)

k−1∏
t=2

k−t∏
i=1

(1− γ2
i,i+t|Ii,i+t

), (37)

and we want to show that detR for size k × k is
k∏

i=1

(1− γ2
i,i+1)

k∏
t=2

k+1−t∏
i=1

(1− γi,i+t|Ii,i+t
) = D({1, · · · , k})(1− γ2

k,k+1)

(1− γ2
k−1,k+1|k) · · · (1− γ1,k+1|I1,k+1

).

(38)

By Lemma A.3, this is:

D({1, · · · , k})D({k, k + 1}) D(k − 1, k, k + 1})D({k})
D({k − 1, k})D({k, k + 1})

× D({k − 2, k − 1, k, k + 1})D({k − 1, k})
D({k − 2, k − 1, k})D({k − 1, k, k + 1})

× · · · × detRD({2, · · · , k})
D({1, · · · , k})D({k, k + 1})

= D({1, · · · , k})D({k, k + 1})
k∏

t=2

D(k + 1− t, · · · , k + 1)D({k − t+ 2, · · · , k})
D({k + 1− t, · · · , k})D({k − t+ 2, · · · , k + 1})

= D({1, · · · , k})D({k, k + 1}) D({k})
D({1, · · · , k})

D({1, · · · , k + 1})
D({k, k + 1})

= detR×D({k}) = detR.

(39)

Theorem A.5. By writing the correlation matrix R(i) as the following partitioned form

R(i) =


1 γi,i+1 · · · γi,i+k−1 γi,i+k

γi,i+1 1 · · · γi+1,i+k−1 γi+1,i+k

...
...

. . .
...

...
γi,i+k−1 γi+1,i+k−1 · · · 1 γi+k−1,i+k

γi,i+k γi+1,i+k · · · γi+k−1,i+k 1

 , (40)

if the upper-left sub-matrix [R(i)]1:k,1:k and the lower-right sub-matrix [R(i)]2:k+1,2:k+1 in the dotted
frames are both positive definite, also if |γc

i,i+k| < 1 and we set γi,i+k =M(γc
i,i+k), then R(i) will

be positive definite.

Proof. Without loss of generality, we use the indices {1, 2, · · · , k+1} to replace the original indices
{i, i+ 1, · · · , i+ k} of the correlation R(i) ∈ R(k+1)×(k+1), giving the correlation matrix

R =


1 γ12 · · · γ1k γ1,k+1

γ12 1 · · · γ2k γ2,k+1

...
...

. . .
...

...
γ1k γ2k · · · 1 γk,k+1

γ1,k+1 γ2,k+1 · · · γk,k+1 1

 (41)

To prove that R is positive definite, we only need to show that detR > 0, given the sub-matrix
[R]1:k,1:k is positive definite. Since that both the sub-matrices [R]1:k,1:k and [R]2:k+1,2:k+1 are
positive definite, then the corresponding marginal distributions q(z1:k) and q(z2:k+1) must be valid,
so we can define conditional correlations γij|Iij

for any |i − j| < k, satisfying that |γij|Iij
| < 1.

Combing the provided (k + 1)-th order conditional γi,i+k|Ii,i+k
, we can leverage Lemma A.4 to

25



compute the determinant of the correlation matrix R as follows

detR =

k∏
i=1

(1− γ2
i,i+1)

k∏
t=2

k+1−t∏
j=1

(1− γ2
j,j+t|Ij,j+t

), (42)

which is guaranteed to be positive, given that γi,i+k|Ii,i+k
also lies in (−1, 1). Therefore, detR > 0

and then R is positive definite.

A.3 Proof of Corollary 2.3 and 2.4

Corollary A.6. If all correlation coefficients in Γ1 = {γi,i+1}N−1
i=1 and Γt = {γc

i,i+t}
N−t
i=1 for

t = 2, 3, · · · , k lie in the interval (−1, 1), then we can use them to construct a (k + 1) × (k + 1)
correlation matrix R(i) with k-order dependency.

Proof. The result is known for k = 1, since the determinant detR(i) = 1− γ2
i,i+1 > 0. To start the

induction proof, we first prove it for k = 2, which is to show that

R(i) =

[
1 γi,i+1 γi,i+2

γi,i+1 1 γi+1,i+2

γi,i+2 γi+1,i+2 1

]
(43)

is positive definite with γi,i+2 = M(γc
i,i+2) and |γi,i+2| < 1. In this case, the 2 × 2 upper-left

submatrix [R(i)]1:2,1:2 of R(i) is positive definite, since its determinant

det

∣∣∣∣ 1 γi,i+1

γi,i+1 1

∣∣∣∣ = 1− γ2
i,i+1 > 0, (44)

for |γi,i+1| < 1. And similarly, the lower-right submatrix [R(i)]2:3,2:3 is also positive definite.
Leveraging the conclusion of Theorem 2.2 and the condition that γi,i+2 =M(γc

i,i+2) with |γc
i,i+2| <

1, we can guarantee R(i) to be positive definite. We proceed by induction and go from k − 1 to k,
where we want to show that the correlation matrix

R(i) =


1 γi,i+1 · · · γi,i+k−1 γi,i+k

γi,i+1 1 · · · γi+1,i+k−1 γi+1,i+k

...
...

. . .
...

...
γi,i+k−1 γi+1,i+k−1 · · · 1 γi+k−1,i+k

γi,i+k γi+1,i+k · · · γi+k−1,i+k 1

 , (45)

is positive definite. The induction hypothesis gives us the upper-left submatrix [R(i)]1:k,1:k and lower-
right submatrix [R(i)]2:k+1,2:k+1 are both positive definite, by ensuring that correlation coefficients Γ1

and Γt for t ∈ {2, · · · , k−1} lie in the interval (−1, 1). By further ensuring that γi,i+k =M(γc
i,i+k)

with |γc
i,i+k| < 1, then we can leverage Theorem 2.2 to guarantee the positive definiteness of R(i),

which completes the proof.

Corollary A.7. If the first-order correlations Γ1 and higher-order conditional correlations Γt for
t = 2, 3, · · · , k are built upon a tree-structured backbone, and all correlation parameters lie in the
interval (−1, 1), then we can use them to construct a (k + 1)× (k + 1) correlation matrix R(i) with
k-order dependency structure.

Proof. This corollary of the tree-structured backbone can be similarly proved as above by induction.
Notice that every (k + 1)-vertex clique C ∈ Ck+1 can be decomposed into two k-vertex cliques C1

and C2 such that C = C1 ∪ C2 and |C1 ∩ C2| = k − 1. So the correlation matrix with respect to C
can be partitioned as two submatrices corresponding to C1 and C2, respectively. By ensuring their
positive definiteness and letting the k-order conditional correlation lie in the interval (−1, 1), we can
similarly guarantee the correlation matrix of C to be positive definite. Therefore, we can perform
induction by starting from k = 2, and sequentially expand the correlation matrix by introducing
higher-order conditional correlations and ensuring them to lie in the interval (−1, 1). As the induction

26



completes, we can use these correlation coefficients to construct a (k + 1) × (k + 1) correlation
matrix R(i).

B Procedure of Constructing the Correlation Matrix

Algorithm 1 Algorithm of constructing the correlation matrix R

Input: Conditional parameters Γ1 = {γi,i+1}N−1
i=1 ,Γ2 = {γc

i,i+2}
N−2
i=1 , · · · ,ΓK = {γc

i,i+K}
N−K
i=1

Output: Full correlation matrix R of size N ×N

1: function CORRELATION_MATRIX_CONSTRUCTION()
2: R← IN ▷ Identity matrix
3: k ← 1 ▷ Starting from the first-order
4: for i← 1 to N do
5: R[i, i+ 1]← γi,i+1

6: R[i+ 1, i]← γi,i+1

7: end for
8: for k ← 2 to K do ▷ Loop through higher orders
9: for i← 1 to N − k do

10: γi,i+k ← inverse_conditional(γc
i,i+k,R[i : i+ k, i : i+ k]) ▷ Inverting Eq. (8)

11: R[i, i+ k]← γi,i+k

12: R[i+ k, i]← γi,i+k

13: end for
14: end for
15: return R
16: end function

C Evidence Lower Bound

The evidence lower bound of our proposed method is given by

L(θ,ϕ,x) = log pθ(x, z̃) +H[qϕ(z)], (46)

where z̃ denotes the re-parameterized latent variables. The first term above can be directly computed
by

log pθ(x, z̃) =
N∑
i=1

log pθ(xi|z̃i) + log p(z̃i), (47)

where z̃i is the reparameterization for latent variable zi, i = 1, · · · , N . And the entropy of the
posterior

qϕ(z) =

N−k+1∏
i=1

qϕ(zi:i+k−1)

N−k∏
i=1

qϕ(zi:i+k)

qϕ(zi:i+k−1)q(zi+1:i+k)
(48)

with k-order dependency structure can be factorized as entropy terms with respect to k-variate and
(k + 1)-variate local marginals

H[qϕ(z)] =
N−k+1∑

i=1

H[qϕ(zi:i+k−1)] +

N−k∑
i=1

H[qϕ(zi:i+k)]−H[qϕ(zi:i+k−1)]−H[q(zi+1:i+k)]

=

N−k∑
i=1

H[qϕ(zi:i+k)]−
N−k∑
i=2

H[qϕ(zi:i+k−1)],

(49)
where the entropy of each normally distributed local marginal can be directly computed by its mean
and covariance.

27



D Experimental Details

D.1 Datasets

The datasets used in the time series anomaly detection task are the followings:

• SMAP (Soil Moisture Active Passive): NASA’s Soil Moisture Active Passive mission
[25] aims to measure global soil moisture and freeze/thaw states to enhance understanding
of Earth’s water, energy, and carbon cycles. The SMAP dataset comprises multivariate
time series telemetry data collected from the SMAP satellite, including a training and a
testing subsets. It includes expert-labeled anomalies in testing subsets, making it suitable
for benchmarking time series anomaly detection algorithms.

• MSL (Mars Science Laboratory): Originates from NASA’s Mars Science Laboratory
mission [25], featuring the Curiosity rover, explores Mars’ surface to assess its habitability.
The MSL dataset contains multivariate time series telemetry data from the Curiosity rover,
with expert annotations identifying anomalous events in the testing subsets.

• SMD (Server Machine Dataset): Collected by researchers from a large Internet company
[55]. SMD comprises a 5-week-long collection of multivariate time series data from 28
server machines, each monitored by 38 sensors capturing metrics like CPU usage, memory,
and network throughput. The dataset includes labeled anomalies, facilitating supervised
learning approaches. Due to the high degree of similarity in temporal characteristics across
servers, we conducted experiments solely on machine 1-1 for simplicity.

The datasets used in the time series forecasting task are the followings:

• ETT (Electricity Transformer Temperature): This dataset includes the target variable
“oil temperature” along with six power load features [69]. It is recorded at two different
frequencies: hourly (i.e., ETTh1 and ETTh2) and every 15 minutes (i.e., ETTm1 and
ETTm2), spanning a period of two years.

• Electricity: Sourced from the UCI Machine Learning Repository3 and preprocessed follow-
ing [33], this dataset contains hourly electricity consumption (in kWh) for 321 clients from
2012 to 2014.

• Exchange: This dataset comprises daily exchange rates for eight countries, collected from
1990 to 2016 [44].

• Weather4: Includes 21 meteorological indicators (e.g., temperature, humidity), recorded
every 10 minutes throughout the year 2020.

The datasets utilized in the constrained clustering task are as follows:

• MNIST: A widely used benchmark dataset containing 70,000 grayscale images of handwrit-
ten digits. Each image is represented as a 784-dimensional vector by flattening the original
28×28 pixel grid [35].

• Fashion MNIST: A collection of Zalando’s fashion article images [62], this dataset includes
a training set of 60,000 images and a test set of 10,000 images.

• Reuters: Contains 810,000 English news articles [36]. Following the preprocessing method
of DEC [64], we select four root categories—corporate/industrial, government/social, mar-
kets, and economics—and exclude documents with multiple labels. The resulting dataset
contains 685,071 articles, each represented using tf-idf features over the top 2,000 words. A
random subset of 10,000 documents is used for experiments.

• STL-10: Composed of 96×96 color images across 10 object classes, with 13,000 labeled
samples [16]. For feature extraction, we apply a ResNet-50 model as done in VaDE [27].

3https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams
4https://www.bgc-jena.mpg.de/wetter
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Table 5: Detailed information of datasets used in time series anomaly detection and forecasting tasks.

Tasks Dataset Dim Size (Train, Validation, Test) Domain

Forecasting ETTm1 7 (34465, 11521, 11521) Electricity
ETTh1 7 (8545, 2881, 2881) Electricity

Electricity 321 (18317, 2633, 5261) Electricity
Weather 21 (36792, 5271, 10540) Weather

Exchange 8 (5120, 665, 1422) Exchange rate

Anomaly Detection SMD 38 (566724, 141681, 708420) Server Machine
MSL 55 (44653, 11664, 73729) Spacecraft

SMAP 25 (108146, 27037, 427617) Spacecraft

D.2 Further Experiments

We also run our model under univariate forecasting settings, where only a single feature is considered
in each dataset. The experimental results in Table 6 shows that our method outperforms other
fundamental time series modeling techniques. The superior capability of our method in capturing
temporal dependencies is more pronounced in this setting, as all models are restricted to fully
exploiting temporal correlations without leveraging inter-channel information.

Table 6: Univariate time series forecasting comparisons. Best performance is highlighted in bold font
and the second best results are underlined.

Method VRAE Informer Autoformer TCN Ours

1-order 3-order 10-order
MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
h1

24 0.059 0.215 0.098 0.247 0.057 0.189 0.104 0.254 0.054 0.178 0.038 0.149 0.032 0.127
48 0.097 0.279 0.158 0.319 0.070 0.207 0.206 0.366 0.087 0.229 0.061 0.187 0.052 0.163

168 0.191 0.402 0.183 0.346 0.108 0.260 0.462 0.586 0.161 0.316 0.131 0.278 0.088 0.212
336 0.187 0.400 0.222 0.387 0.119 0.281 0.422 0.564 0.170 0.333 0.149 0.303 0.105 0.240
720 0.244 0.471 0.269 0.435 0.109 0.264 0.438 0.578 0.221 0.392 0.172 0.336 0.139 0.285

E
T

T
m

1

24 0.021 0.122 0.030 0.137 0.022 0.115 0.027 0.127 0.018 0.101 0.015 0.091 0.012 0.075
48 0.039 0.172 0.069 0.203 0.032 0.138 0.040 0.154 0.041 0.154 0.027 0.123 0.022 0.105

168 0.060 0.217 0.194 0.372 0.045 0.168 0.097 0.246 0.052 0.173 0.043 0.158 0.034 0.129
336 0.143 0.344 0.401 0.554 0.071 0.207 0.305 0.455 0.131 0.276 0.091 0.229 0.073 0.192
720 0.211 0.428 0.512 0.644 0.102 0.254 0.445 0.576 0.134 0.287 0.135 0.282 0.099 0.227

E
le

ct
ri

ci
ty

24 0.370 0.459 0.251 0.275 0.290 0.411 0.243 0.367 0.252 0.278 0.247 0.285 0.166 0.249
48 0.459 0.519 0.346 0.339 0.310 0.408 0.283 0.397 0.301 0.309 0.298 0.318 0.202 0.277

168 0.547 0.575 0.544 0.424 0.435 0.490 0.357 0.449 0.413 0.384 0.408 0.386 0.270 0.323
336 0.682 0.660 0.713 0.512 0.646 0.606 0.355 0.446 0.551 0.468 0.537 0.468 0.339 0.369
720 0.889 0.790 1.182 0.806 0.609 0.587 0.387 0.477 0.862 0.650 0.812 0.628 0.454 0.448

Average 0.280 0.404 0.345 0.400 0.202 0.306 0.278 0.403 0.230 0.302 0.211 0.281 0.139 0.228

D.3 Implementation Details

Time Series Anomaly Detection We set the input sequence length to 100 and use GRU and dense
layers with 500 hidden units each. The latent dimension is fixed at 3. Models are trained with a
batch size of 50 for up to 20 epochs using early stopping. Optimization is performed using the Adam
optimizer with an initial learning rate of 10−3. L2 regularization with a coefficient of 10−4 is applied
to all layers. During training, 30% of the data is reserved for validation.

Time Series Forecasting We adopt a single-layer fully connected network as the feedforward
predictor. The latent representation dimension is set to 128. The model is trained using the Adam
optimizer with an initial learning rate of 10−3, decayed by a factor of 0.95 after each epoch. Early
stopping is applied within 10 epochs to prevent overfitting.

Constrained Clustering. To ensure a fair comparison with baseline methods, we adopt the same
encoder-decoder feed-forward architecture: four fully connected layers with sizes 500, 500, 2000,
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Table 7: Hyperparameters setting of constrained clustering task.

MNIST fMNIST Reuters STL-10

Batch size 256 256 256 256
Epochs 1000 500 500 500
Learning rate 0.001 0.001 0.001 0.001
Decay 0.9 0.9 0.9 0.9
Epochs decay 20 20 20 20

and D units, respectively, where D = 10 unless otherwise specified. For all VAE-based baselines and
our proposed methods built on VAE backbones, we apply 10 epochs of pretraining. For DEC-based
baselines, we follow their standard training procedure, including 50 epochs of layer-wise pretraining
and 100 epochs of fine-tuning. Each dataset is split into training and test sets; model training is
conducted on the training split, while all reported results are evaluated on the test split. Pairwise
constraints are randomly generated within the training set: a must-link is assigned if two sampled
instances share the same label, and a cannot-link otherwise. To ensure consistent training conditions
across methods, we uniformly set the absolute constraint strength |[A]ij | = 104 and sample 6000
such constraints for all datasets. Following DC-GMM, we use the same set of hyperparameters across
all four datasets, detailed in Table 7. All models are trained with an initial learning rate of 0.001,
which decays by a factor of 0.9 every 20 epochs.

D.4 Resource Usage

Experiments were conducted on an internal computing cluster. Each experiment configuration used
one NVIDIA GPU (either a 2080TI or 3090TI), 16 CPUs and a total of 24GB of memory.
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