
Under review for RLC 2025, to be published in RLJ
∣∣ Cover Page

Improving LLM-Generated Code Quality with GRPO
Anonymous authors

Paper under double-blind review

Keywords: LLMs, code generation, code quality

Summary
Automated coding is a key focus in developing modern LLMs. Typically, these approaches use

execution feedback as a reward signal, typically whether the generated code passes a number of tests.
However, this reward signal has no notion of code quality, and indeed, the quality of generated code
is a common complaint from experienced software engineers. We develop a comprehensive library
cisq_analyzer to quantify code quality, and use it as a reward in GRPO. We find GRPO increases
code quality according to this measure, which is confirmed by expert, blinded human annotators.

Contribution(s)
1. A comprehensive library, cisq_analyzer which captures notions of code-quality as defined by

CISQ, mapping issues back to CWE IDs, and giving scores suitable for use within an RL pipeline.
Context: None

2. Demonstrating that GRPO with a code-quality reward can indeed improve the quality of generated
code, as evaluated by expert human annotators.
Context: None

Improving LLM-Generated Code Quality with GRPO

Improving LLM-Generated Code Quality with GRPO

Anonymous authors
Paper under double-blind review

Abstract

Large Language Models (LLMs) are gaining widespread use for code generation. Recent train-1
ing procedures use execution feedback as a reward signal, typically focusing on the functional2
correctness of the code, using unit test pass rate as a reward signal. However, this reward signal3
fails to capture notions of maintainability, quality and safety of the code produced. We address4
this under-explored area and develop a comprehensive library to quantify various aspects of5
code quality, and use it as a reward in GRPO. We find GRPO increases code quality according6
to this measure, which is confirmed by expert, blinded human annotators.7

1 Introduction8

An increasing proportion of the world’s software is being generated by LLMs. However, if LLM code gen-9
eration is to continue gaining trust and adoption, understanding and improving the quality of LLM generated10
code is essential: it is quite possible for a “vibe-coded” software component to become unmaintainable by11
LLMs or expert software engineers, be open to critical security vulnerabilities, or waste vast amounts of12
energy by e.g. using a quadratic algorithm where a linear one is available.13

Recently, these LLM coding systems have been trained using execution feedback as a reward signal (e.g.14
Shojaee et al., 2023; Dou et al., 2024; Ye et al., 2025; Dai et al., 2025; Gehring et al., 2025; Yang et al.,15
2024; Sorokin et al., 2025; Le et al., 2022; Liu et al., 2024). An example of an execution feedback setting is16
to take a coding specification or question (e.g. “write a function that generates Fibonacci numbers”) paired17
with a number of tests. After the LLM generates code to solve the problem, we check whether that code18
passes the tests. If the code does pass the tests, then that is counted as a correct response and rewarded e.g. in19
a GRPO (Shao et al., 2024) pipeline. If the code does not pass one or more of the tests, then that is counted20
as an incorrect response and is penalized.21

However, these rewards lack any notion of software quality, including:22

• Maintainability: how easy is the software to keep working with and modify in the future23

• Security: how well protected the code is against vulnerabilities24

• Reliability: how effectively the software ensures availability, fault tolerance, and recoverability25

• Performance: how well the generated code uses resources26

In order to improve the usefulness and adoption of LLM generated code, we must look beyond merely re-27
warding functional correctness, but include incentives to produce code with good style and quality attributes,28
which make the code more readable, easier to work with and extend.29

1

Under review for RLC 2025, to be published in RLJ 2025

We thus sought to introduce a new family of rewards for e.g. GRPO that care about code-quality. That30
of course required us to programmatically quantify code-quality. Thankfully, quantifying code-quality is31
an area that has been well studied in the Computer Science literature (e.g. McCabe, 1976; Halstead, 1977;32
Chidamber & Kemerer, 1994; Fowler, 1999; Martin, 2008; Lanza & Marinescu, 2007), so there are many33
reasonable automated metrics which capture many of the four broad aspects listed above. As a concrete34
starting point, considered the list of automated source code quality measures1 from the Consortium for35
Information & Software Quality (CISQ) (CISQ, 2025). We developed a Python library, cisq_analyzer,36
which implements analyzers for many of the common code weaknesses identified in the CISQ standards,37
and in turn evaluate the quality of Python code. This includes the ability to map identified code flaws to their38
Common Weakness Enumeration (CWE) ID, and return scalar code quality scores suitable for use within an39
RL pipeline. Next, we investigated whether incorporating this reward in a GRPO pipeline would improve40
code-quality in practice, relative to a control GRPO pipeline with no code-quality reward. We found that41
it did, both as measured by our code-quality metric, and by human annotators who were presented with42
answers from each of the resulting models, and asked to pick the one with better code quality. Of course,43
these annotators were blinded in the sense that the were not told which model each answer came from.44
Importantly, we also found that the model trained with a code-quality reward both performed as well or even45
better than the baseline model (measured using correctness, i.e. whether the code passes the tests), while also46
producing code of a shorter length on average than the baseline model. This means that at deployment-time,47
this intervention yields improved code quality while incurring no additional generation costs.48

Our contributions are:49

1. A comprehensive library, cisq_analyzerwhich captures notions of code-quality as defined by CISQ,50
mapping issues back to CWE IDs, and giving scores suitable for use within an RL pipeline.51

2. Demonstrating that GRPO with a code-quality reward can indeed improve the quality of generated code,52
as evaluated by expert human annotators.53

2 Related Work54

There are a large number of papers using execution feedback to train LLMs to write code that passes tests55
(e.g. Shojaee et al., 2023; Dou et al., 2024; Ye et al., 2025; Dai et al., 2025; Gehring et al., 2025; Yang56
et al., 2024; Sorokin et al., 2025; Le et al., 2022; Liu et al., 2024). However, to our knowledge there is as57
of yet no work that combines this approach with reward terms to encourage improved code quality (our key58
contribution in this paper).59

At the same time, there is a classical literature in computer science on code quality, including how to under-60
stand, improve and quantify it (e.g. McCabe, 1976; Halstead, 1977; Chidamber & Kemerer, 1994; Fowler,61
1999; Martin, 2008; Lanza & Marinescu, 2007). However, to our knowledge there is as of yet no work62
that takes these metrics for code quality and uses them as a reward signal for training LLMs to produce63
higher-quality code.64

Our cisq_analyzer library for assessing code-quality is designed to follow CISQ (2025), and uses a65
number of pre-existing libraries (The Pylint Team; Lacchia et al., a; Seipp et al.; Python Code Quality66
Authority; PyUp.io; The Mypy Team), along with a considerable number of “analyzers” written from scratch67
(see Sec. 3.1 for details). Importantly, these libraries have not, to our knowledge, been integrated into a68
comprehensive framework which produces a single number suitable for use as a reward in RL.69

1https://www.it-cisq.org/cisq-files/pdf/cisq-weaknesses-in-ascqm.pdf

2

Improving LLM-Generated Code Quality with GRPO

0 100 200 300 400 500
Number of Issues

0.0

0.2

0.4

0.6

0.8

1.0
CI

SQ
 Q

ua
lit

y
Sc

or
e

Quality Score Degradation by Issue Count and Severity
Critical (weight=10.0)
High (weight=5.0)
Medium (weight=2.5)
Low (weight=1.0)
Info (weight=0.5)

0.000 0.025 0.050 0.075 0.100 0.125 0.150
CISQ Quality Score

100 Low severity issues

50 Low + 50 Medium

25 of each severity

50 High + 50 Critical

100 Critical issues

0.091

0.054

0.021

0.013

0.010

Score Impact of Mixed Severities (100 total issues)

Figure 1: Code quality score evolution over number of issues and issue severity level

3 Methods70

We use GRPO to improve the coding ability of various open-source LLMs. Such a pipeline involves making71
multiple choices, including the dataset and reward design, which we describe below.72

3.1 Measuring Code Quality in RL Pipelines73

We began by implementing a comprehensive library for evaluating the quality of Python code. We started74
with the CISQ Standards (CISQ, 2025). While comprehensive, these standards are in natural-language form,75
so not come with an official implementation. As such, we combined a number of existing libraries, such as76
Pylint (The Pylint Team), Radon (Lacchia et al., a), MyPy (The Mypy Team) and others that are able to detect77
code quality issues, while writing from-scratch a number of “analyzers” to detect issues that are missed by78
these general tools. We taxonomize the aspects of code quality that our analyzer picks up on in Table 1.79

We collect these different code quality heuristics into a single cisq_analyzer library. Given a path to80
a directory of code to analyze, the main analysis function runs all the analysers for all characteristic groups81
(maintainability, security, performance, reliability) in parallel on the code, accumulating any found issues.82
These findings usually include a mapping to the CISQ CWE ID for categorization, and also include an83
assessment of the issue’s severity into the set S = {info, low,medium, high, critical}.84

To obtain a numerical score which to train a model, we aggregate the findings as follows. First, we define85
the following weightings for each severity level, reflecting the relative importance to place on each type of86
issue identified:87

winfo = 0.5, wlow = 1.0, wmedium = 2.5, whigh = 5.0, wcritical = 10.0.

Then, we let Ns be the number of findings at severity level s and calculate the weighted sum across severity88
levels89

W =
∑
s∈S

ws Ns,

following which we obtain a score between 0 and 1 using the following formula that decays with the90
weighted finding count, which is visually illustrated in Figure 1:91

rquality =
1

1 +W
.

3

Under review for RLC 2025, to be published in RLJ 2025

Table 1: Taxonomy of Code Quality Issues Detected by CISQ Analyzer

Category Example Issues Analyzer

Maintainability

Code Complexity Excessive cyclomatic complexity Radon (Lacchia et al., a)
Functions with high complexity scores Xenon (Lacchia et al., b)
Classes with overly complex methods

Dead Code Unused functions, methods, and variables Vulture (Seipp et al.)
Unused class definitions and imports

Code Structure Excessive function arguments Pylint (The Pylint Team)
Too many instance attributes
Large files (>1000 LOC)
Excessive branches/returns

Style & Documentation Missing docstrings Pylint
Poor naming conventions

Security
Code Injection Shell injection (os.system) Bandit (Python Code Quality Authority)

Unsafe subprocess calls
Command injection risks

Unsafe Data Handling Insecure deserialization (pickle, YAML) Bandit
Insecure XML parsing

Cryptography Weak hash algorithms (MD5, SHA1) Bandit
Insecure random generation
Hard-coded secrets

Dependencies Known vulnerable packages custom

Performance

String Operations String concatenation in loops (+, +=) custom

Resource Utilization Resource-intensive loop operations custom
Growing data structures in loops
Network/file I/O in loops

Data Structures Excessive class attributes custom
Deeply nested structures
Large dictionaries

Reliability

Exception Handling Bare/empty except clauses custom
Overly broad exception catching
Missing resource cleanup

Concurrency Lock ordering issues custom
Missing lock releases

Infinite Loops Missing exit conditions custom
Unchanging loop counters
While True without breaks

Type Safety Type inconsistencies Mypy (The Mypy Team)
Missing annotations
Incorrect argument/return types

4

Improving LLM-Generated Code Quality with GRPO

q Behaviour
Policy

Rollouts

o1

o2

· · ·
oG

Correctness Score

Code Quality Score

Format Score

Rewards

r1

r2

· · ·
rG

Normalize

Advantages

A1

A2

· · ·

AG

Figure 2: GRPO advantage calculation. In our experiments, we ablate the code quality score to quantify the
benefit of including it.

3.2 Policy Optimization Algorithm92

For completeness, we describe the Group Relative Policy Optimization (Shao et al., 2024) algorithm we93
use to train the model, and modifications from subsequent papers. The core idea behind GRPO is to sam-94
ple multiple candidate outputs for a given query, and use their relative rewards to estimate advantages for95
policy updates. For each query sampled from the dataset q ∼ P (Q), GRPO samples a group G of outputs96
o1, . . . , oG using a behaviour policy πθold , corresponding to a previous iteration of the policy model, and97
updated periodically. The policy πθ is updated by maximizing the following objective:98

JGRPO(θ) = Eq∼P (Q),{oi}G
i=1∼πθold (O|q) (1)

1

G

G∑
i=1

1

|oi|

|oi|∑
t=1

min

([
ci,t(θ)Âi,t, clip

(
ci,t(θ), 1− ϵlow, 1 + ϵhigh

)
Âi,t

]
− βDKL [πθ∥πref]

)
,

where99

ci,t(θ) =
πθ(oi,t|q, oi,<t)

πθold(oi,t|q, oi,<t)
, DKL [πθ|πref] =

πref(oi,t|q, oi,<t)

πθ(oi,t|q, oi,<t)
− log

πref(oi,t|q, oi,<t)

πθ(oi,t|q, oi<t)
− 1,

with clipping hyperparameters set to ϵlow = 0.2, ϵhigh = 0.28 following (Yu et al., 2025), KL penalty100
strength coefficient β = 0.001 controlling stability and exploration (Schulman et al., 2017), and Âi,t being101
the group-relative advantage replicated for each token in the trajectory oi102

Âi,t =
ri − mean({r1, r2, . . . , rG})

std({r1, r2, . . . , rG})
.

We illustrate this in Figure 2.103

3.3 Reward Design for Coding Tasks104

Our rewards for each rollout ri combines three components: a very simple format reward ri,format (which en-105
sures the code can be parsed correctly), a code correctness reward ri,correct (which ensures the code functions106
correctly) as well as our code quality reward signal ri,quality. Each of these range from 0 to 1.107

5

Under review for RLC 2025, to be published in RLJ 2025

50 100 150 200 250 300
Training Step

0.76

0.78

0.80

0.82

0.84

0.86

0.88

Co
de

 Q
ua

lit
y

Sc
or

e
Validation Code Quality, Qwen 2.5 3B Instruct

With Quality Reward
Without Quality Reward

50 100 150 200 250 300
Training Step

0.40

0.45

0.50

0.55

0.60

0.65

0.70

Co
de

 C
or

re
ct

ne
ss

 S
co

re

Validation Code Correctness, Qwen 2.5 3B Instruct
With Quality Reward
Without Quality Reward

Figure 3: Code quality score evolution over number of issues and issue severity level

The rewards for each rollout are linearly combined, with a slight emphasis on the code quality over the other108
components:109

ri =
2

10
ri,format +

3

10
ri,correct +

5

10
ri,quality. (2)

Format Reward Recent work has raised concerns that much of the performance improvement in RL on110
LLMs for coding can be explained by the LLM learning to generate code in the context of the specific111
prompts and tool format used, without much change to the code generation properties of the model itself112
(Shao et al., 2025; Chandak et al., 2025). To avoid this conflation and focus on the code quality, we simply113
prompt the model to output the solution in a Python markdown code block. We reward the model for one114
well formatted code block, and penalise multiple or incomplete code blocks.115

Correctness Reward. The continuous correctness reward measures the held-out unit test pass rate, mea-116
suring whether the final code is functional and correct. A score of 0.0 indicates no tests passed, and 1.0117
indicates all tests passed.118

Code Quality Reward. This is the average score produced by cisq_analyzer. This ranges from 0 to 1,119
and does not rely on any ‘labels’ (i.e. unit test suite).120

3.4 Synthetic Dataset Generation121

Standard benchmarks like MBPP (Austin et al., 2021), HumanEval (Chen et al., 2021), and APPS122
(Hendrycks et al., 2021) proved to be of limited utility for our analysis, as we found that the problems123
lacked the complexity required to meaningfully differentiate between solutions using established code qual-124
ity metrics. The types of problems in these datasets are relatively self-contained and algorithmic in nature,125
and do not provide sufficient problem variation to demonstrate a number of code quality issues like cre-126
dential handling, error handling, safe use of subprocesses and so on. Thus, we designed a synthetic data127
generation pipeline, which allowed us to generate multiple unique code-editing problems which were likely128
to highlight code quality issues in the models, while also being able to vary the theme, complexity and token129
length of the problems through prompting and filtering.130

The synthetic data generation process is as follows: we first choose a problem category and a subcategory131
from lists spanning e.g. algorithm optimisation, data structures, programming paradigms, error handling and132

6

Improving LLM-Generated Code Quality with GRPO

Table 2: Reward components measured on the final iteration on the held-out validation problems.

Model Validation Quality Validation Correctness Total Reward

Qwen 2.5 3B-Instruct 0.766 0.567 0.603
+ quality reward training 0.878(+0.112) 0.690(+0.123) 0.785(+0.182)

Llama 3.2 3B 0.859 0.601 0.627
+ quality reward training 0.894(+0.035) 0.609(+0.008) 0.760(+0.133)

OLMo 2 0425 1B Instruct 0.791 0.305 0.410
+ quality reward training 0.864(+0.073) 0.217(−0.088) 0.631(+0.221)

so forth. We then give Gemini 2.5 Pro (03-25) the category and subcategory, and prompt it to generate a133
problem statement. Before proceeding, we assess the conceptual novelty of the problem given the list of134
previously generated problems, and reject ones which are merely variations on previous problems, ensuring135
diversity. We then generate some starter code (e.g. a suboptimal solution), an ideal solution, and set of test136
cases. We finally iterate on the tests to ensure they are correct and pass with the reference solution.137

See Appendix A for more detail about the dataset problems.138

4 Results139

0 20 40 60 80 100
Preference Rate (%)

With Quality Reward
78.6%

Control
21.4%

95% CI

Human Preference: Intervention vs Control (N=159, p=0.001)

Figure 4: Human preferences of Qwen 2.5 3B output
with and without the quality reward signal.

We applied GRPO on Llama 3.2 3B Instruct (Team,140
2024), Qwen2.5 3B Instruct (Qwen et al., 2025)141
and Olmo 2 1B Instruct (OLMo et al., 2025) with142
a dataset of 200 Python coding problems generated143
from our synthetic data generation pipeline, and our144
set of reward signals. We report the main findings145
in Table 2.146

First, we found that models trained with and with-147
out the quality reward component performed sim-148
ilarly in terms of code correctness on the held-out149
set of validation coding problems, with slight im-150
provements even observed in the Qwen and Llama151
models. When considering the quality reward com-152
ponent, as we might expect, the models trained with the cisq_analyzer-based quality reward component153
had higher code quality scores when evaluated on the held-out validation set.154

To check for reward hacking, we presented human evaluators with pairs of solutions to validation problems155
generated from the models trained with and without the quality reward. These solutions were anonymized,156
presented in a random order, and the annotators were simply told to “Choose which code snippet you think157
is of higher quality by clicking on it.”158

The human evaluators preferred the output from the model trained with the code quality component in 78.6%159
of 159 comparisons (95% CI: 71.6%-84.3%, p < 0.001, binomial test). The effect size was large (Cohen’s160

7

Under review for RLC 2025, to be published in RLJ 2025

h = 0.609). The position randomization was also effective (p = 0.812), with no significant position bias161
observed (p = 0.096).162

Finally here is a short example of the difference in code produced in Figure 5. See Appendix B for some163
more examples. Despite this being a short problem, we can see the version from the model trained with164
the quality reward signal does not include the unused math import, includes type hints on the function,165
signature, and checks for an early return condition which simplifies the sum and index error handling later.166

Without Quality Reward

import math

def solution(data):
n = len(data)
fib_indices_to_sum = set()
a, b = 0, 1
while a < n:

fib_indices_to_sum.add(a)
a, b = b, a + b

current_sum = 0
for index in fib_indices_to_sum:

try:
current_sum += data[index]

except IndexError:
continue

return current_sum

With Quality Reward

def solution(data: list[int]) -> int:
if not data:

return 0

n = len(data)
a, b = 0, 1
fib_indices = set()

while a < n:
fib_indices.add(a)
a, b = b, a + b

current_sum = sum(
data[i] for i in fib_indices

)

return current_sum

Figure 5: Example code from models trained with and without the quality score.

The cisq_analyzer library is relatively CPU inexpensive, and executes all the analyzers in parallel to167
return the quality reward score in well under 1s per rollout.168

5 Conclusions169

In this work, we addressed the prevalent challenge of suboptimal code quality in Large Language Models170
(LLMs), which often stems from training methodologies that prioritize execution feedback over quality con-171
siderations. We introduced cisq_analyzer, a novel, comprehensive library grounded in CISQ standards,172
designed to quantify multiple facets of code quality—including maintainability, security, reliability, and per-173
formance—and translate them into a reward signal suitable for Reinforcement Learning (RL) pipelines. By174
incorporating this quality metric into a GRPO framework alongside rewards for correctness, and utilizing a175
purpose-built synthetic dataset reflecting real-world code-editing scenarios, we successfully trained LLMs176
to generate higher-quality code. Our findings indicate a significant improvement in code quality, as mea-177
sured by our automated metrics and, importantly, validated by blinded expert human annotators without any178
degradation in the functional correctness of the generated code compared to baseline models.179

References180

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan, Ellen181
Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language models. arXiv182

8

Improving LLM-Generated Code Quality with GRPO

preprint arXiv:2108.07732, 2021.183

Nikhil Chandak, Shashwat Goel, and Ameya Prabhu. Incorrect Baseline Evaluations Call into Ques-184
tion Recent LLM-RL Claims, May 2025. URL https://safe-lip-9a8.notion.site/185
Incorrect-Baseline-Evaluations-Call-into-Question-Recent-LLM-RL-Claims-2012f1fbf0ee8094ab8ded1953c15a37.186

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared Kaplan,187
Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri, Gretchen Carr,188
Michael J. Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, Nickolas189
Tezak, Sławek Stasiewicz, Ben Chess, Mohammad Bavarian, Kanishk Gandhi, Felipe Petroski Such,190
Jakub Pachocki, Sam A. Clune, John Schulman, Lukasz Kaiser, Ilya Sutskever, and Wojciech Zaremba.191
Evaluating large language models trained on code, 2021.192

Shyam R. Chidamber and Chris F. Kemerer. A metrics suite for object oriented design. IEEE Transactions193
on Software Engineering, 20(6):476–493, 1994.194

CISQ. Iso5055, 2025. URL https://www.it-cisq.org/standards/.195

Ning Dai, Zheng Wu, Renjie Zheng, Ziyun Wei, Wenlei Shi, Xing Jin, Guanlin Liu, Chen Dun, Liang196
Huang, and Lin Yan. Process supervision-guided policy optimization for code generation. arXiv preprint197
arXiv:2410.17621, 2025. Accepted to ICLR 2025.198

Shihan Dou, Yan Liu, Haoxiang Jia, Limao Xiong, Enyu Zhou, Wei Shen, Junjie Shan, Caishuang Huang,199
Xiao Wang, Xiaoran Fan, Zhiheng Xi, Yuhao Zhou, Tao Ji, Rui Zheng, Qi Zhang, Xuanjing Huang, and200
Tao Gui. StepCoder: Improve Code Generation with Reinforcement Learning from Compiler Feedback.201
arXiv preprint arXiv:2402.01391, 2024.202

Martin Fowler. Refactoring: Improving the Design of Existing Code. Addison-Wesley Professional, 1999.203

Jonas Gehring, Kunhao Zheng, Jade Copet, Vegard Mella, Taco Cohen, and Gabriel Synnaeve. RLEF:204
Grounding Code LLMs in Execution Feedback with Reinforcement Learning. In International Confer-205
ence on Learning Representations (ICLR), 2025. URL https://openreview.net/forum?id=206
zPPy79qKWe. arXiv preprint arXiv:2410.02089.207

Maurice H. Halstead. Elements of Software Science. Elsevier North-Holland, 1977.208

Dan Hendrycks, Steven Basart, Saurav Kadavath, Mantas Mazeika, Akul Arora, Ethan Guo, Collin Burns,209
Samir Puranik, Horace He, Dawn Song, and Jacob Steinhardt. Measuring coding challenge competence210
with APPS. arXiv preprint arXiv:2105.09938, 2021.211

Michele Lacchia et al. Radon: Code metrics in python, a. URL https://github.com/rubik/212
radon.213

Michele Lacchia et al. Xenon: Python code complexity, b.214

Michele Lanza and Radu Marinescu. Object-Oriented Metrics in Practice: Using Software Metrics to Char-215
acterize, Evaluate, and Improve the Design of Object-Oriented Systems. Springer Science & Business216
Media, 2007.217

Hung Le, Yue Wang, Akhilesh Deepak Gotmare, Silvio Savarese, and Steven C.H. Hoi. CodeRL: Mas-218
tering Code Generation through Pretrained Models and Deep Reinforcement Learning. arXiv preprint219
arXiv:2207.01780, 2022.220

9

https://safe-lip-9a8.notion.site/Incorrect-Baseline-Evaluations-Call-into-Question-Recent-LLM-RL-Claims-2012f1fbf0ee8094ab8ded1953c15a37
https://safe-lip-9a8.notion.site/Incorrect-Baseline-Evaluations-Call-into-Question-Recent-LLM-RL-Claims-2012f1fbf0ee8094ab8ded1953c15a37
https://safe-lip-9a8.notion.site/Incorrect-Baseline-Evaluations-Call-into-Question-Recent-LLM-RL-Claims-2012f1fbf0ee8094ab8ded1953c15a37
https://www.it-cisq.org/standards/
https://openreview.net/forum?id=zPPy79qKWe
https://openreview.net/forum?id=zPPy79qKWe
https://openreview.net/forum?id=zPPy79qKWe
https://github.com/rubik/radon
https://github.com/rubik/radon
https://github.com/rubik/radon

Under review for RLC 2025, to be published in RLJ 2025

Jiate Liu, Yiqin Zhu, Kaiwen Xiao, Qiang Fu, Xiao Han, Yang Wei, and Deheng Ye. RLTF: Reinforcement221
Learning from Unit Test Feedback. Transactions on Machine Learning Research (TMLR), 2024. URL222
https://openreview.net/forum?id=hjYmsV6nXZ.223

Robert C. Martin. Clean Code: A Handbook of Agile Software Craftsmanship. Prentice Hall, 2008.224

Thomas J. McCabe. A complexity measure. IEEE Transactions on Software Engineering, SE-2(4):308–320,225
1976.226

Team OLMo, Pete Walsh, Luca Soldaini, Dirk Groeneveld, Kyle Lo, Shane Arora, Akshita Bhagia, Yul-227
ing Gu, Shengyi Huang, Matt Jordan, Nathan Lambert, Dustin Schwenk, Oyvind Tafjord, Taira An-228
derson, David Atkinson, Faeze Brahman, Christopher Clark, Pradeep Dasigi, Nouha Dziri, Michal229
Guerquin, Hamish Ivison, Pang Wei Koh, Jiacheng Liu, Saumya Malik, William Merrill, Lester James V.230
Miranda, Jacob Morrison, Tyler Murray, Crystal Nam, Valentina Pyatkin, Aman Rangapur, Michael231
Schmitz, Sam Skjonsberg, David Wadden, Christopher Wilhelm, Michael Wilson, Luke Zettlemoyer,232
Ali Farhadi, Noah A. Smith, and Hannaneh Hajishirzi. 2 OLMo 2 Furious, January 2025. URL233
http://arxiv.org/abs/2501.00656.234

Python Code Quality Authority. Bandit: A tool designed to find common security issues in python code.235
URL https://github.com/PyCQA/bandit.236

PyUp.io. Safety: Check your python dependencies for known security vulnerabilities. URL https:237
//github.com/pyupio/safety.238

Qwen, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,239
Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin240
Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin Yang, Le Yu,241
Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tianyi Tang, Tingyu242
Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan, Yuqiong Liu,243
Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 Technical Report, January 2025. URL http:244
//arxiv.org/abs/2412.15115.245

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal Policy Opti-246
mization Algorithms. arXiv:1707.06347 [cs], August 2017. URL http://arxiv.org/abs/1707.247
06347.248

Jendrik Seipp et al. Vulture: Find dead python code. URL https://github.com/jendrikseipp/249
vulture.250

Rulin Shao, Shuyue Stella Li, Rui Xin, Scott Geng, Yiping Wang, Sewoong Oh, Si-251
mon Shaolei Du, Nathan Lambert, Sewon Min, Ranjay Krishna, Yulia Tsvetkov, Han-252
naneh Hajishirzi, Pang Wei Koh, and Luke Zettlemoyer. Spurious rewards: Re-253
thinking training signals in rlvr. https://rethink-rlvr.notion.site/254
Spurious-Rewards-Rethinking-Training-Signals-in-RLVR-1f4df34dac1880948858f95aeb88872f,255
2025. Notion Blog.256

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan257
Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical reasoning in open language258
models. arXiv preprint arXiv:2402.03300, 2024.259

10

https://openreview.net/forum?id=hjYmsV6nXZ
http://arxiv.org/abs/2501.00656
https://github.com/PyCQA/bandit
https://github.com/pyupio/safety
https://github.com/pyupio/safety
https://github.com/pyupio/safety
http://arxiv.org/abs/2412.15115
http://arxiv.org/abs/2412.15115
http://arxiv.org/abs/2412.15115
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
https://github.com/jendrikseipp/vulture
https://github.com/jendrikseipp/vulture
https://github.com/jendrikseipp/vulture
https://rethink-rlvr.notion.site/Spurious-Rewards-Rethinking-Training-Signals-in-RLVR-1f4df34dac1880948858f95aeb88872f
https://rethink-rlvr.notion.site/Spurious-Rewards-Rethinking-Training-Signals-in-RLVR-1f4df34dac1880948858f95aeb88872f
https://rethink-rlvr.notion.site/Spurious-Rewards-Rethinking-Training-Signals-in-RLVR-1f4df34dac1880948858f95aeb88872f

Improving LLM-Generated Code Quality with GRPO

Parshin Shojaee, Aneesh Jain, Sindhu Tipirneni, and Chandan K Reddy. Execution-based code generation260
using deep reinforcement learning. Transactions on Machine Learning Research (TMLR), 2023.261

Nikita Sorokin, Ivan Sedykh, and Valentin Malykh. Iterative self-training for code generation via reinforced262
re-ranking. arXiv preprint arXiv:2504.09643, 2025. Published at ECIR 2025.263

Llama 3 Team. The Llama 3 Herd of Models, November 2024. URL http://arxiv.org/abs/2407.264
21783.265

The Mypy Team. Mypy: Optional static typing for python. URL https://github.com/python/266
mypy.267

The Pylint Team. Pylint: code analysis for python. Webpage. URL https://pylint.org/.268

Chengran Yang, Hong Jin Kang, Jieke Shi, and David Lo. ACECode: A Reinforcement Learning269
Framework for Aligning Code Efficiency and Correctness in Code Language Models. arXiv preprint270
arXiv:2412.17264, 1(1):20, December 2024.271

Yufan Ye, Ting Zhang, Wenbin Jiang, and Hua Huang. PRLCoder: Leveraging Process-Supervised Rein-272
forcement Learning to Enhance Code Generation. arXiv preprint arXiv:2502.01715, 2025.273

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian Fan,274
Gaohong Liu, Lingjun Liu, Xin Liu, Haibin Lin, Zhiqi Lin, Bole Ma, Guangming Sheng, Yuxuan Tong,275
Chi Zhang, Mofan Zhang, Wang Zhang, Hang Zhu, Jinhua Zhu, Jiaze Chen, Jiangjie Chen, Chengyi276
Wang, Hongli Yu, Yuxuan Song, Xiangpeng Wei, Hao Zhou, Jingjing Liu, Wei-Ying Ma, Ya-Qin Zhang,277
Lin Yan, Mu Qiao, Yonghui Wu, and Mingxuan Wang. DAPO: An Open-Source LLM Reinforcement278
Learning System at Scale, May 2025. URL http://arxiv.org/abs/2503.14476.279

A Synthetic Code Problem Examples280

Our dataset generation is structured across the following problem categories: ’algorithm selection’, ’array281
manipulation’, ’custom structures’, ’data structure choice’, ’decomposition’, ’edge cases’, ’exception han-282
dling’, ’extract function’, ’function composition’, ’graph algorithms’, ’hash table usage’, ’immutability’,283
’logical errors’, ’loop efficiency’, ’map filter reduce’, ’memoization’, ’null handling’, ’off by one’, ’pure284
functions’, ’recursion patterns’, ’redundant work’, ’remove duplication’, ’simplify conditionals’, ’tree oper-285
ations’, ’variable renaming’286

Each problem in the dataset contains a problem id, estimated difficulty level, a natural language problem287
statement, an initial (sub-optimal) code solution, an ideal solution and unit test cases.288

Here is an example from the ’redundant work’ category in the training dataset. The problem statement is:289

You are given a list of tasks, where each task has an ID, a category, and an290
initial priority. You are also given a list of operations. Each operation is291
of the form ‘(’UPDATE_PRIORITY’, category_name, new_priority)‘, indicating that292
all tasks belonging to ‘category_name‘ should have their priority changed to293
‘new_priority‘. If multiple operations target the same category, the latest294
operation in the list for that category determines its final priority. Your295
objective is to calculate the total sum of the final priorities of all tasks296

11

http://arxiv.org/abs/2407.21783
http://arxiv.org/abs/2407.21783
http://arxiv.org/abs/2407.21783
https://github.com/python/mypy
https://github.com/python/mypy
https://github.com/python/mypy
https://pylint.org/
http://arxiv.org/abs/2503.14476

Under review for RLC 2025, to be published in RLJ 2025

after considering all operations. To optimize, first determine the definitive297
priority for each category affected by operations. Then, sum the priorities of298
all tasks, using the determined category priority if available, or the task’s299
original priority otherwise. This avoids redundantly processing updates for300
tasks.301

Here is the initial code that the LLM must improve302

Initial Code: algorithm_optimization_redundant_work_3c471b95

import hashlib

def solution(tasks, operations):
log_file = open("operation_audit.log", "a")

updated_priorities_list = []

for op_type, category_name, new_priority in operations:
if op_type == 'UPDATE_PRIORITY':

hashed_category_name = hashlib.md5(
category_name.encode('utf-8')

).hexdigest()

log_file.write((
f"Processing UPDATE_PRIORITY for {category_name}"
f" (hashed: {hashed_category_name})\n"

))

found = False
for i in range(len(updated_priorities_list)):

if updated_priorities_list[i][0] == hashed_category_name:
updated_priorities_list[i] = (hashed_category_name,

new_priority)↪→

found = True
break

if not found:
updated_priorities_list.append((hashed_category_name, new_priority))

total_priority_sum = 0
for task in tasks:

category = task['category']
hashed_category = hashlib.md5(category.encode('utf-8')).hexdigest()

priority_to_add = task['priority']

for stored_hashed_category, stored_priority in updated_priorities_list:
if stored_hashed_category == hashed_category:

priority_to_add = stored_priority
break

total_priority_sum += priority_to_add

return total_priority_sum

303

12

Improving LLM-Generated Code Quality with GRPO

B More Code Examples304

Here are some more side-by-side code examples from Qwen 2.5 3B trained with and without the quality305
reward component. Note that these may not be functionally identical, with some potentially containing306
bugs.307

Without Quality Reward

import numbers

def solution(price_catalog, shopping_list):
total_cost = 0.0
for item in shopping_list:
item_found_in_catalog = False
if item in price_catalog:

item_found_in_catalog = True
price = price_catalog[item]
total_cost += price

return total_cost

With Quality Reward

def solution(price_catalog, shopping_list):
total_cost = 0.0

for item in shopping_list:
if item in price_catalog:

total_cost += price_catalog[item]

return total_cost

13

Under review for RLC 2025, to be published in RLJ 2025

Without Quality Reward

import hashlib

def solution(data, threshold):
if not data:

return "Quicksort"

data.sort()

inversion_log = ""
inversions1 = 0
for i in range(len(data) // 2):

for j in range(i + 1, len(data)):
if data[i] > data[j]:

inversions1 += 1
inversion_log += f"Inversion: ({data[i]} > {data[j]}) at indices

({i}, {j}); "↪→

inversions2 = 0
for i in range(len(data) // 2, len(data)):

for j in range(i + 1, len(data)):
if data[i] > data[j]:

inversions2 += 1
inversion_log += f"Inversion: ({data[i]} > {data[j]}) at indices

({i}, {j}); "↪→

inversions = inversions1 + inversions2

if inversions <= threshold:
return "Insertion Sort"

else:
return "Quicksort"

With Quality Reward

import hashlib

def solution(data, threshold):
n = len(data)

hasher = hashlib.md5()
hasher.update(str(data).encode('utf-8'))
data_hash = hasher.hexdigest()

total_inversions = 0
for i in range(n // 2):

for j in range(i + 1, n):
if data[i] > data[j]:

total_inversions += 1

for i in range(n // 2, n):
for j in range(i + 1, n):

if data[i] > data[j]:
total_inversions += 1

if total_inversions <= threshold:
return "Insertion Sort"

else:
return "Quicksort" 14

Improving LLM-Generated Code Quality with GRPO

Without Quality Reward

def solution(numbers):
if not numbers:

return 1

result = 1
for num in numbers:

if num == 0:
return 0

elif isinstance(num, int) and abs(num) <= 1000000:
result *= num

elif num == 0:
return 0

if abs(result) > 1000_000:
return "Overflow"

return result

With Quality Reward

import math
from typing import List

def solution(numbers: List[int]) -> int:
MAX_PRODUCT = 1_000_000

if numbers is None or type(numbers) != list:
return 1

Handle empty list
if not numbers:

return 1

result = 1
for num in numbers:

if not isinstance(num, int):
continue

if num == 0:
return 0

result *= num

Check for overflow after each multiplication
if abs(result) > MAX_PRODUCT:

return "Overflow"

return result

15

