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Abstract

Planning, reasoning, and sequential decision-making have played a pivotal role1

in the development of AI systems. While Large Language Models (LLMs) have2

demonstrated impressive capabilities, their evaluation for planning and Reasoning3

about Action and Change (RAC) problems is performed using strict binary success4

criteria, which limits information for further analysis and development. Given5

the probabilistic and autoregressive nature of LLMs, this work proposes the use6

of simple non-binary task-specific metrics for the evaluation of LLM responses7

for planning and reasoning tasks that go beyond perfect matching with ground8

truth, by utilizing set comparison methods, while still maintaining rigid and non-9

malleable evaluation criteria. We demonstrate the utility and usefulness of this10

type of metric in obtaining richer data fidelity and information about the quality,11

precision, nature of LLMs’ responses, and their closeness to the ground truth12

through evaluations on six different tasks across two domains. With two case study13

examples, we additionally demonstrate the feasibility of comparative analysis of14

different task-specific data distributions obtained through this metric.15

1 Introduction16

The ability to plan, perform sequential decision-making, and reason about action and change is17

one of the fundamental tenets of human intelligence, and has been one of the cornerstones of AI.18

Today, modern generative AI and Large Language Models (LLMs) are useful for a plethora of19

applications, from question answering and document summarization to code generation [5]. Despite20

their impressive capabilities, LLMs have shown significant limitations in planning, reasoning, and21

decision-making, particularly in autonomous applications [9, 20, 8, 6]. Such limitations in LLMs’22

performance are noted through task evaluations that utilize binary success criteria metrics that23

involve comparison with ground truth answers obtained by automated solvers, planners, or validators.24

However, there could exist useful information about the quality and precision of the models’ responses25

for these task evaluations, which is not necessarily captured by standard binary metrics.26

As LLMs are probabilistic models and generate tokens in an autoregressive manner, it is perhaps27

not surprising that they struggle to perform accurately on Reasoning about Action, Change (RAC),28

and planning problems. However, by considering intersection over union (IoU) metrics for task29

evaluations, we find a more nuanced picture of these models’ task performance than is elicited by30

standard binary success metrics. Specifically, our proposed metrics elicit more information about31

LLMs’ task performance, related to precision and quality, that is missed when applying standard32

binary success criteria as overviewed in Figure 3. Having information about how close a model is to33

optimal or expected task performance can be extremely useful for failure analysis, causal analysis,34

and to make decisions about how best to utilize the model in architectural frameworks such as35

Auto-ToS[2], LLM-Modulo [8], and other finetuning or prompting setups to enhance performance.36
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In the next section, we review benchmarks and related works that evaluate LLMs on Planning and37

RAC tasks, briefly detailing the tasks and metrics used. Then, we outline our evaluation domains,38

proposed metrics, and tasks. Finally, we discuss the results, utility, and usefulness of our metrics for39

RAC and Planning tasks through two examples.40

2 Background & Related Works41

2.1 Related Works42

Recognizing the importance of benchmarking and evaluating the planning, decision-making, and43

reasoning abilities of LLMs, various benchmarks have been proposed in the literature [19, 6, 7, 9].44

He et al. propose the Textual Reasoning about Action and Change (TRAC) benchmark, with 445

Reasoning about Action and Change (RAC) tasks such as projection, action executability, plan46

verification, and goal recognition, evaluated in the Planning Domain Definition Language (PDDL)47

based Blocksworld planning domain [7]. They pre-train and evaluate transformer models such as48

GPT-2 [14] on TRAC, and find that they struggle to generalize to scaling of objects, action sequence49

lengths, and composite tasks. The evaluations are conducted in a standard binary (true/false) manner50

and the overall accuracies are computed. However, it is unclear if the task design maintains structural51

validity (measurement reflecting the internal structure of the construct) [17].52

Valmeekam et al. developed PlanBench, a PDDL-based planning benchmark suite with 8 planning-53

related tasks, such as plan generation, cost-optimal planning, plan verification, goal recognition,54

replanning, plan reuse, reasoning about actions and effects, and plan generalization [19]. the55

PlanBench work evaluates LLMs like GPT-4 [1] and Instruct-GPT-3 [13] on their generated plans56

across Blocksworld and Logistics domains, with a primary focus on variants of planning tasks and a57

limited focus on RAC tasks. The evaluations are performed based on the standard binary plan success58

criteria, as has been used in automated planning [16, 4].59

Another notable benchmark is ActionReasoningBench, which evaluates multiple LLMs on RAC tasks60

such as state tracking, fluent tracking, action executability, and composite question combinations,61

on 8 different classical planning competition domains [3] like Blocksworld [6]. The evaluation62

is performed on binary and free-response answers of LLMs, for a few fixed sequence lengths of63

actions. However, it is important to note here that the free response questions were evaluated using64

a Llama-70B model in an LLM-as-a-judge framework in order to make the evaluation scalable,65

potentially leading to inaccurate reporting of performance statistics [21].66

More recently, Kokel et al. proposed ACP Bench that consists of binary and multiple-choice questions67

on 7 different atomic reasoning and planning tasks, such as reasoning about applicable actions, atom68

reachability, action reachability, plan verification, progression, landmarks, and plan justification.69

They perform comprehensive evaluations on various LLMs on multiple classical planning domains,70

including the Alfworld household domain [18] and a novel ’swap’ planning domain [9]. Following71

this work, Kokel et al. performs evaluations on the generative response version of this dataset, where72

task-specific evaluations use binary success metrics with perfect matching criteria against stored73

ground truth answers [10], which may lead to low or unclear construct validity [17].74

2.2 Domains75

To demonstrate the utility of our proposed benchmarks, we utilize standard IPC planning domains [3]76

such as Blocksworld and Depots for our experiments to evaluate the planning and action reasoning77

abilities of LLMs. For each of the 500 problems in the two domains, we create natural language78

templates for the initial and goal states, and questions for each of the 6 tasks, resulting in approximately79

6000 questions that we use to evaluate the Llama 8B and Llama 70B models. For each problem, all80

the 6 task questions have the same object complexity, initial state, and goal state, only differing in the81

question prompt. A common natural language context containing the domain description, initial state82

description and goal state description (if necessary) is utilized for evaluating the LLMs, to ensure as83

holistic an evaluation as possible.84

Blocksworld: Blocksworld is a domain where blocks can be placed on top of each other or on the85

table. There is one robotic arm that can move the blocks. The goal is to rearrange the blocks from an86

initial configuration to a goal configuration. This can be challenging as there may be interactions87

between subgoals. For our evaluation, we design a challenging dataset of 500 problems with 3-1288
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Figure 1: Llama 70B Performance with Stan-
dard binary success metric on Action Appli-
cability in Blocksworld; Accuracy = 0.014%;
Model’s Responses are correct on only 7/501
problems.

Figure 2: Llama 70B Performance with
IoU metric on Action Applicability Task in
Blocksworld; This right-skewed distribution
provides information on the precision of the
model’s responses. We can see that the model
is close to correctness on around 200/501
problems.

Figure 3: Comparison of IoU Metric vs Standard Binary Success metric. We get a lot more data
fidelity and information about precision and quality of responses from the IoU metric compared to
the binary success metric.

blocks, that have non-neutral initial states (A subset of blocks are in a stack, and the problems require89

unstacking and re-stacking), with an average optimal plan length of 18.7 actions.90

Depots: The Depots domain is a combination of the blocksworld and logistics domains. In this91

domain, trucks can transport crates between places, the crates can be stacked onto pallets using92

hoists, and crates can be loaded into and unloaded from trucks using hoists. This domain inherits93

the challenges of subgoal interactions from Blocksworld, and reasoning about unreachable actions94

and states from Logistics. In this domain, we maintain the same object complexity (18) across all95

problems of the dataset, with an average optimal plan length 12 actions.96

3 Tasks: Reasoning about Action, Change, and Planning97

Drawing from the above benchmarks in Section 2, we select a set of key atomic tasks, such as action98

applicability, state tracking, progression of effects, and optimal plan generation, along with a new99

atomic task called State Comprehension (each task is detailed below). We focus on evaluating LLMs100

on free-response answers to task questions, instead of multiple-choice and binary responses, in order101

to obtain better construct validity and avoid construct confounds [15, 17].102

Additionally, we formulate a simple non-binary task-specific metric for evaluation of RAC and103

planning tasks: we compute the Intersection over Union (IoU) of LLM answers and ground truth104

answers as shown in equation 1, resulting in task-specific metrics as shown in Table 1. Unlike binary105

evaluation metrics that have a success/ failure criterion based on perfect matching with ground truth106

answers, this metric allows us to obtain information about the quality of LLMs’ performance for each107

task.108

Task Metric =
LLM Answers ∩ Ground Truth Answers
LLM Answers ∪ Ground Truth Answers

(1)

The tasks are detailed as follows (with extended descriptions available in Appendix B):109

Action Applicability: One of the fundamental atomic RAC tasks is the ability to reason about110

applicable actions at a given state. We evaluate the generative free responses of LLMs by asking the111

LLM to list the applicable actions in a given state, provided the common context, as mentioned in112

section 2.2, using the IoU evaluation metric shown in equation 1 and table 1.113

State Comprehension: This task is on simply understanding the given state, such as all the objects,114

predicates associated with their properties, and the environment properties. Thus, this requires the115

LLM to provide all the predicates associated with a given state, given the common context 2.2.116
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Table 1: IoU Task Evaluation Metrics Summary. (GT: Ground Truth)
Task Resulting Evaluated Formula

Action Applicability # Correct LLM Answered Actions
# LLM Answered Actions∪# GT Applicable Actions

State Comprehension # Correct LLM Answered Predicates
Total LLM Answered Predicates∪GT Predicates

Progression (Positive/ Negative) # Correct LLM Answered Effects
Total LLM Answered Effects∪GT Effects

State Tracking # Correct LLM Answered Predicates
Total LLM Answered Predicates∪GT Predicates

Optimal Plan Generation 1− # Overlapping Unique Actions
All Unique LLM Actions∪Unique Actions from GT Plan

Progression: This task evaluates the LLMs’ ability to understand the effects of an action on the state.117

We design two separate atomic tasks asking the LLM for the positive and negative effects of a single118

action, respectively, given the common context.119

State Tracking: State tracking is the ability to track entire states across multiple time steps after120

executing a sequence of actions. We design an atomic version of this task by asking LLMs to provide121

the complete set of predicates that represent the final state after performing a sequence of two actions.122

Optimal Plan Generation: Plan generation is a classical planning task where the task is to provide a123

valid sequence of actions that can be executed consecutively from a given state to reach the goal state.124

If actions have costs, then an optimal plan is one that has the minimum cost. We prompt the LLMs to125

provide optimal plans given the domain, state, and goal context. Evaluation is performed using the126

well-known Action Distance metric [12], as shown in Table 1 and detailed in Section B.5.127

4 Results and Discussion128

In this work, we perform evaluations with 6 tasks (considering progression effects as two tasks) across129

two domains of 500 problems each, on two instruction-tuned pretrained LLMs, using informative130

task-specific IoU metrics. In Figure 2, we can see that the data distribution obtained through the131

IoU metric provides us with information on the precision, quality, and nature of models’ responses132

that are entirely missed by binary success metrics, as shown in Figure 1. The right-skewness of the133

distribution demonstrates that the model is much closer to being correct than the 0 values for 494134

samples imply. This information is extremely beneficial for compute-intensive and cost-incurring135

decisions such as finetuning procedures, and the design of future experiments to understand and136

improve specific atomic reasoning constructs such as action applicability.137

In figure 6, we compare the IoU metric performance graphs of action applicability and state compre-138

hension tasks of Llama 8B model from the Depots domain. From the stark contrast in the skewness139

of the distributions, it is pretty clear that the quality and precision of the model’s responses for state140

comprehension are much better than its ability for reasoning about applicable actions. Also, the141

spread of the distribution for the Action applicability task, according to figure 7, indicates that the142

model’s responses are less precise and more fuzzy compared to those of State comprehension in the143

Depots domain. Thus, the IoU metric can potentially provide discriminant validity [17], where the144

evaluation helps differentiate between constructs that should be distinct. These distributions can be145

compared with those of State Tracking over 2 actions, shown in Figure 11, which has a slightly lesser146

height, but a more chaotic spread, which can provide information about the model’s reasoning ability147

with reference to the domain-specific state properties.148

Thus, the IoU metric is beneficial in reasoning and planning tasks, to obtain information on the149

precision, quality, nature of models’ responses, and their closeness to ground truth. We have150

demonstrated the utility of the metric through evaluations and comparative examples across two151

domains. A more in-depth correlational analysis across tasks and domain-specific investigations that152

are beyond the scope of this project is left for future work.153
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A Task Evaluation Comparison Example218

Figure 4: Llama 8B Performance with IoU
metric on Action Applicability in Depots do-
main;

Figure 5: Llama 8B Performance with IoU
metric on State Comprehension/ Description
Task in Depots domain

Figure 6: Comparison of IoU Metric evaluation of Action Applicability and State Comprehension
tasks. It is evident from the left-skewed distribution of Figure 4 and the right-skewed distribution of
Figure 5 that Llama 8B model’s responses and performance is more precise and of higher quality for
state comprehension than for reasoning about applicable actions.

B Extended Task Descriptions219

B.1 Action Applicability220

One of the fundamental atomic RAC tasks is the ability to reason about applicable actions at a given state.221

Previous works have shown that LLMs fall short of this ability and tend to provide invalid or hallucinated actions222

[22, 9, 6]. For actions to be valid in a given state, specific preconditions required by those actions must hold. We223

evaluate the generative free responses of LLMs by asking the LLM to list the applicable actions in a given state,224

provided the common context, as mentioned in section 2.2, using the IoU evaluation metric shown in equation 1225

and table 1.226

B.2 State Comprehension227

A fundamental requirement of reasoning about actions, change, and planning is to simply understand the given228

state, such as all the objects, predicates associated with their properties, and the environment properties. It is229

impossible to accurately perform any higher-level reasoning task, such as state tracking, action applicability, or230

planning, without fully comprehending the properties of the current state. We ask the LLM to provide the list231

of predicates that represent the current state, giving the domain and state description, and available predicate232

information as context. Note that the task still involves some basic inferences about state properties from the233

generic domain description.234
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B.3 Progression235

This task evaluates the LLMs’ ability to understand the effects of an action on the state. Keeping track of effects236

and changes through multiple states and action sequences is an important aspect of sequential decision-making237

and planning. LLMs have been shown to struggle with tracking changes across sequences of actions and states238

[6, 9, 20]. Also, prior works have found that LLMs’ performance differs with positive and negative predicates239

[6]. We design two atomic tasks for tracking the positive and negative effects of a single action, given the domain240

description, current state description, and the available predicates (that can be used to represent effects on states).241

Positive Effects Positive effects are those that are not true in the current state and become true in the242

following state after the action is performed. These are also called add effects. Identifying positive effects is243

important as emerging effects can be preconditions to future actions along a plan.244

Negative Effects Negative effects are those that are true in the current state and become false in the following245

state after the action is performed. These are also called delete effects. Identifying negative effects is extremely246

important to avoid dead loops, inconsistent states, and ruling out invalid actions.247

B.4 State Tracking248

State tracking is the ability to track entire states across multiple time steps after executing a sequence of actions.249

State tracking is a fundamental ability required for planning, as it involves generating valid successor states and250

actions at every visited state. Similar to Handa et al.’s ActionReasoningBench, we design an atomic version of251

this task by asking LLMs to provide the complete set of predicates that represent the final state after performing252

an action or sequence of actions.253

B.5 Optimal Plan Generation254

Plan generation is a classical planning task where the task is to provide a valid sequence of actions that can be255

executed consecutively from a given initial state to reach the goal state. If actions have costs, then an optimal256

plan is one that has the minimum cost. Unlike the other RAC tasks, the expected answer here is an ordered and257

optimal set of actions. This inherently implies a stricter evaluation criterion and, hence, is also more complex, as258

it requires coming up with optimal, goal-reaching actions, in addition to generating valid plans.259

Evaluation Unlike for previous tasks, there are already various proposed metrics in the planning literature to260

measure plan quality, such as Action Distance, Causal-Link Distance, and State Sequence Distance [12, 11].261

These metrics have been used to measure the quality of plans compared to an optimal plan. As LLMs are262

probabilistic models and fare poorly at generating valid plans [8], utilizing such metrics can shed some light on263

their performance at generating plans that would not be available with perfect accuracy measures. Hence, we264

utilize the action distance metric for our evaluation. However, it is important to note that action distance is a set265

comparison metric between unique action sets and does not account for the ordering of actions.266

C Tasks Performance Graphs for IoU metric on Depots Domain267
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Figure 7: Llama 8B Performance on Action Applicability in Depots Domain

Figure 8: Llama 8B Performance on State Comprehension in Depots Domain
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Figure 9: Llama 8B Performance on Identifying Positive Effects of Action progression in Depots
Domain

Figure 10: Llama 8B Performance on identifying Negative Effects of Action Progression in Depots
Domain
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Figure 11: Llama 8B Performance on State tracking with 2 Actions in Depots Domain

Figure 12: Llama 8B Optimal Plan Responses’ Action Distance Histogram
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