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Abstract

Planning, reasoning, and sequential decision-making have played a pivotal role
in the development of Al systems. While Large Language Models (LLMs) have
demonstrated impressive capabilities, their evaluation for planning and Reasoning
about Action and Change (RAC) problems is performed using strict binary success
criteria, which limits information for further analysis and development. Given
the probabilistic and autoregressive nature of LL.Ms, this work proposes the use
of simple non-binary task-specific metrics for the evaluation of LLM responses
for planning and reasoning tasks that go beyond perfect matching with ground
truth, by utilizing set comparison methods, while still maintaining rigid and non-
malleable evaluation criteria. We demonstrate the utility and usefulness of this
type of metric in obtaining richer data fidelity and information about the quality,
precision, nature of LLMs’ responses, and their closeness to the ground truth
through evaluations on six different tasks across two domains. With two case study
examples, we additionally demonstrate the feasibility of comparative analysis of
different task-specific data distributions obtained through this metric.

1 Introduction

The ability to plan, perform sequential decision-making, and reason about action and change is
one of the fundamental tenets of human intelligence, and has been one of the cornerstones of Al.
Today, modern generative Al and Large Language Models (LLMs) are useful for a plethora of
applications, from question answering and document summarization to code generation [5]. Despite
their impressive capabilities, LLMs have shown significant limitations in planning, reasoning, and
decision-making, particularly in autonomous applications [9} 20, (8, [6]. Such limitations in LLMs’
performance are noted through task evaluations that utilize binary success criteria metrics that
involve comparison with ground truth answers obtained by automated solvers, planners, or validators.
However, there could exist useful information about the quality and precision of the models’ responses
for these task evaluations, which is not necessarily captured by standard binary metrics.

As LLMs are probabilistic models and generate tokens in an autoregressive manner, it is perhaps
not surprising that they struggle to perform accurately on Reasoning about Action, Change (RAC),
and planning problems. However, by considering intersection over union (IoU) metrics for task
evaluations, we find a more nuanced picture of these models’ task performance than is elicited by
standard binary success metrics. Specifically, our proposed metrics elicit more information about
LLMs’ task performance, related to precision and quality, that is missed when applying standard
binary success criteria as overviewed in Figure[3] Having information about how close a model is to
optimal or expected task performance can be extremely useful for failure analysis, causal analysis,
and to make decisions about how best to utilize the model in architectural frameworks such as
Auto-ToS[2], LLM-Modulo [8]], and other finetuning or prompting setups to enhance performance.
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In the next section, we review benchmarks and related works that evaluate LLMs on Planning and
RAC tasks, briefly detailing the tasks and metrics used. Then, we outline our evaluation domains,
proposed metrics, and tasks. Finally, we discuss the results, utility, and usefulness of our metrics for
RAC and Planning tasks through two examples.

2 Background & Related Works

2.1 Related Works

Recognizing the importance of benchmarking and evaluating the planning, decision-making, and
reasoning abilities of LLMs, various benchmarks have been proposed in the literature [[19} |6} [7} 9.
He et al.| propose the Textual Reasoning about Action and Change (TRAC) benchmark, with 4
Reasoning about Action and Change (RAC) tasks such as projection, action executability, plan
verification, and goal recognition, evaluated in the Planning Domain Definition Language (PDDL)
based Blocksworld planning domain [7]. They pre-train and evaluate transformer models such as
GPT-2 [14]] on TRAC, and find that they struggle to generalize to scaling of objects, action sequence
lengths, and composite tasks. The evaluations are conducted in a standard binary (true/false) manner
and the overall accuracies are computed. However, it is unclear if the task design maintains structural
validity (measurement reflecting the internal structure of the construct) [17].

Valmeekam et al.|developed PlanBench, a PDDL-based planning benchmark suite with 8 planning-
related tasks, such as plan generation, cost-optimal planning, plan verification, goal recognition,
replanning, plan reuse, reasoning about actions and effects, and plan generalization [19]. the
PlanBench work evaluates LLMs like GPT-4 [1]] and Instruct-GPT-3 [13] on their generated plans
across Blocksworld and Logistics domains, with a primary focus on variants of planning tasks and a
limited focus on RAC tasks. The evaluations are performed based on the standard binary plan success
criteria, as has been used in automated planning [16, 4]].

Another notable benchmark is ActionReasoningBench, which evaluates multiple LLMs on RAC tasks
such as state tracking, fluent tracking, action executability, and composite question combinations,
on 8 different classical planning competition domains [3]] like Blocksworld [[6]. The evaluation
is performed on binary and free-response answers of LLMs, for a few fixed sequence lengths of
actions. However, it is important to note here that the free response questions were evaluated using
a Llama-70B model in an LLM-as-a-judge framework in order to make the evaluation scalable,
potentially leading to inaccurate reporting of performance statistics [21]].

More recently, [Kokel et al.|proposed ACP Bench that consists of binary and multiple-choice questions
on 7 different atomic reasoning and planning tasks, such as reasoning about applicable actions, atom
reachability, action reachability, plan verification, progression, landmarks, and plan justification.
They perform comprehensive evaluations on various LLMs on multiple classical planning domains,
including the Alfworld household domain [18]] and a novel ’swap’ planning domain [9]]. Following
this work, |Kokel et al.| performs evaluations on the generative response version of this dataset, where
task-specific evaluations use binary success metrics with perfect matching criteria against stored
ground truth answers [[10], which may lead to low or unclear construct validity [[17]].

2.2 Domains

To demonstrate the utility of our proposed benchmarks, we utilize standard IPC planning domains [3|]
such as Blocksworld and Depots for our experiments to evaluate the planning and action reasoning
abilities of LLMs. For each of the 500 problems in the two domains, we create natural language
templates for the initial and goal states, and questions for each of the 6 tasks, resulting in approximately
6000 questions that we use to evaluate the Llama 8B and Llama 70B models. For each problem, all
the 6 task questions have the same object complexity, initial state, and goal state, only differing in the
question prompt. A common natural language context containing the domain description, initial state
description and goal state description (if necessary) is utilized for evaluating the LLMs, to ensure as
holistic an evaluation as possible.

Blocksworld: Blocksworld is a domain where blocks can be placed on top of each other or on the
table. There is one robotic arm that can move the blocks. The goal is to rearrange the blocks from an
initial configuration to a goal configuration. This can be challenging as there may be interactions
between subgoals. For our evaluation, we design a challenging dataset of 500 problems with 3-12
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Model’s Responses are correct on only 7/501 model’s responses. We can see that the model

problems. is close to correctness on around 200/501
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Figure 3: Comparison of IoU Metric vs Standard Binary Success metric. We get a lot more data
fidelity and information about precision and quality of responses from the IoU metric compared to
the binary success metric.

blocks, that have non-neutral initial states (A subset of blocks are in a stack, and the problems require
unstacking and re-stacking), with an average optimal plan length of 18.7 actions.

Depots: The Depots domain is a combination of the blocksworld and logistics domains. In this
domain, trucks can transport crates between places, the crates can be stacked onto pallets using
hoists, and crates can be loaded into and unloaded from trucks using hoists. This domain inherits
the challenges of subgoal interactions from Blocksworld, and reasoning about unreachable actions
and states from Logistics. In this domain, we maintain the same object complexity (18) across all
problems of the dataset, with an average optimal plan length 12 actions.

3 Tasks: Reasoning about Action, Change, and Planning

Drawing from the above benchmarks in Section[2] we select a set of key atomic tasks, such as action
applicability, state tracking, progression of effects, and optimal plan generation, along with a new
atomic task called State Comprehension (each task is detailed below). We focus on evaluating LLMs
on free-response answers to task questions, instead of multiple-choice and binary responses, in order
to obtain better construct validity and avoid construct confounds [15} [17].

Additionally, we formulate a simple non-binary task-specific metric for evaluation of RAC and
planning tasks: we compute the Intersection over Union (IoU) of LLM answers and ground truth
answers as shown in equation [I] resulting in task-specific metrics as shown in Table[T] Unlike binary
evaluation metrics that have a success/ failure criterion based on perfect matching with ground truth
answers, this metric allows us to obtain information about the quality of LLMs’ performance for each
task.

Task Metri LLM Answers N Ground Truth Answers M
ask Metric =
LLM Answers U Ground Truth Answers

The tasks are detailed as follows (with extended descriptions available in Appendix [B):

Action Applicability: One of the fundamental atomic RAC tasks is the ability to reason about
applicable actions at a given state. We evaluate the generative free responses of LLMs by asking the
LLM to list the applicable actions in a given state, provided the common context, as mentioned in
section [2.2] using the IoU evaluation metric shown in equation[I]and table[T]

State Comprehension: This task is on simply understanding the given state, such as all the objects,
predicates associated with their properties, and the environment properties. Thus, this requires the
LLM to provide all the predicates associated with a given state, given the common context[2.2}
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Table 1: IoU Task Evaluation Metrics Summary. (GT: Ground Truth)
Task Resulting Evaluated Formula

# Correct LLM Answered Actions

Action Apphcablhty #LLM Answered ActionsU# GT Applicable Actions

# Correct LLM Answered Predicates
Total LLM Answered PredicatesUGT Predicates

State Comprehension

# Correct LLM Answered Effects
Total LLM Answered EffectsUGT Effects

Progression (Positive/ Negative)

: # Correct LLM Answered Predicates
State TraCklng Total LLM Answered PredicatesUGT Predicates
. . _ # Overlapping Unique Actions
Optlma] Plan Generation 1 All Unique LLM ActionsUUnique Actions from GT Plan

Progression: This task evaluates the LLMs’ ability to understand the effects of an action on the state.
We design two separate atomic tasks asking the LLM for the positive and negative effects of a single
action, respectively, given the common context.

State Tracking: State tracking is the ability to track entire states across multiple time steps after
executing a sequence of actions. We design an atomic version of this task by asking LLLMs to provide
the complete set of predicates that represent the final state after performing a sequence of two actions.

Optimal Plan Generation: Plan generation is a classical planning task where the task is to provide a
valid sequence of actions that can be executed consecutively from a given state to reach the goal state.
If actions have costs, then an optimal plan is one that has the minimum cost. We prompt the LLMs to
provide optimal plans given the domain, state, and goal context. Evaluation is performed using the
well-known Action Distance metric [12]], as shown in Table [T and detailed in Section [B-3]

4 Results and Discussion

In this work, we perform evaluations with 6 tasks (considering progression effects as two tasks) across
two domains of 500 problems each, on two instruction-tuned pretrained LLMs, using informative
task-specific IoU metrics. In Figure [2] we can see that the data distribution obtained through the
IoU metric provides us with information on the precision, quality, and nature of models’ responses
that are entirely missed by binary success metrics, as shown in Figure[T] The right-skewness of the
distribution demonstrates that the model is much closer to being correct than the 0 values for 494
samples imply. This information is extremely beneficial for compute-intensive and cost-incurring
decisions such as finetuning procedures, and the design of future experiments to understand and
improve specific atomic reasoning constructs such as action applicability.

In figure [} we compare the IoU metric performance graphs of action applicability and state compre-
hension tasks of Llama 8B model from the Depots domain. From the stark contrast in the skewness
of the distributions, it is pretty clear that the quality and precision of the model’s responses for state
comprehension are much better than its ability for reasoning about applicable actions. Also, the
spread of the distribution for the Action applicability task, according to figure [/} indicates that the
model’s responses are less precise and more fuzzy compared to those of State comprehension in the
Depots domain. Thus, the IoU metric can potentially provide discriminant validity [[17], where the
evaluation helps differentiate between constructs that should be distinct. These distributions can be
compared with those of State Tracking over 2 actions, shown in Figure|11] which has a slightly lesser
height, but a more chaotic spread, which can provide information about the model’s reasoning ability
with reference to the domain-specific state properties.

Thus, the IoU metric is beneficial in reasoning and planning tasks, to obtain information on the
precision, quality, nature of models’ responses, and their closeness to ground truth. We have
demonstrated the utility of the metric through evaluations and comparative examples across two
domains. A more in-depth correlational analysis across tasks and domain-specific investigations that
are beyond the scope of this project is left for future work.
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A Task Evaluation Comparison Example

Histogram of Action Applicability for Liama 88 model on Depots domain Histogram of State Description for Llama 88 model on Depots domain
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Figure 4: Llama 8B Performance with IoU Figure 5: Llama 8B Performance with IoU
metric on Action Applicability in Depots do- metric on State Comprehension/ Description
main; Task in Depots domain

Figure 6: Comparison of IoU Metric evaluation of Action Applicability and State Comprehension
tasks. It is evident from the left-skewed distribution of Figure[4and the right-skewed distribution of
Figure 5] that Llama 8B model’s responses and performance is more precise and of higher quality for
state comprehension than for reasoning about applicable actions.

B Extended Task Descriptions

B.1 Action Applicability

One of the fundamental atomic RAC tasks is the ability to reason about applicable actions at a given state.
Previous works have shown that LLM:s fall short of this ability and tend to provide invalid or hallucinated actions
[22,[9,[6]]. For actions to be valid in a given state, specific preconditions required by those actions must hold. We
evaluate the generative free responses of LLMs by asking the LLM to list the applicable actions in a given state,
provided the common context, as mentioned in section 2.2} using the IoU evaluation metric shown in equation[T]
and table[l

B.2 State Comprehension

A fundamental requirement of reasoning about actions, change, and planning is to simply understand the given
state, such as all the objects, predicates associated with their properties, and the environment properties. It is
impossible to accurately perform any higher-level reasoning task, such as state tracking, action applicability, or
planning, without fully comprehending the properties of the current state. We ask the LLM to provide the list
of predicates that represent the current state, giving the domain and state description, and available predicate
information as context. Note that the task still involves some basic inferences about state properties from the
generic domain description.
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B.3 Progression

This task evaluates the LLMs’ ability to understand the effects of an action on the state. Keeping track of effects
and changes through multiple states and action sequences is an important aspect of sequential decision-making
and planning. LLMs have been shown to struggle with tracking changes across sequences of actions and states
[6L19,120]. Also, prior works have found that LLMs’ performance differs with positive and negative predicates
[6]. We design two atomic tasks for tracking the positive and negative effects of a single action, given the domain
description, current state description, and the available predicates (that can be used to represent effects on states).

Positive Effects Positive effects are those that are not true in the current state and become true in the
following state after the action is performed. These are also called add effects. Identifying positive effects is
important as emerging effects can be preconditions to future actions along a plan.

Negative Effects Negative effects are those that are true in the current state and become false in the following
state after the action is performed. These are also called delete effects. Identifying negative effects is extremely
important to avoid dead loops, inconsistent states, and ruling out invalid actions.

B.4 State Tracking

State tracking is the ability to track entire states across multiple time steps after executing a sequence of actions.
State tracking is a fundamental ability required for planning, as it involves generating valid successor states and
actions at every visited state. Similar to|/Handa et al.[s ActionReasoningBench, we design an atomic version of
this task by asking LLMs to provide the complete set of predicates that represent the final state after performing
an action or sequence of actions.

B.5 Optimal Plan Generation

Plan generation is a classical planning task where the task is to provide a valid sequence of actions that can be
executed consecutively from a given initial state to reach the goal state. If actions have costs, then an optimal
plan is one that has the minimum cost. Unlike the other RAC tasks, the expected answer here is an ordered and
optimal set of actions. This inherently implies a stricter evaluation criterion and, hence, is also more complex, as
it requires coming up with optimal, goal-reaching actions, in addition to generating valid plans.

Evaluation Unlike for previous tasks, there are already various proposed metrics in the planning literature to
measure plan quality, such as Action Distance, Causal-Link Distance, and State Sequence Distance [12 [11]].
These metrics have been used to measure the quality of plans compared to an optimal plan. As LLMs are
probabilistic models and fare poorly at generating valid plans [8], utilizing such metrics can shed some light on
their performance at generating plans that would not be available with perfect accuracy measures. Hence, we
utilize the action distance metric for our evaluation. However, it is important to note that action distance is a set
comparison metric between unique action sets and does not account for the ordering of actions.

C Tasks Performance Graphs for IoU metric on Depots Domain
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Figure 7: Llama 8B Performance on Action Applicability in Depots Domain
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Figure 8: Llama 8B Performance on State Comprehension in Depots Domain



Histogram of Progression Positive for Llama 8B model on Depots domain
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Figure 9: Llama 8B Performance on Identifying Positive Effects of Action progression in Depots
Domain

Histogram of Progression Negative for Llama 8B model on Depots domain
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Figure 10: Llama 8B Performance on identifying Negative Effects of Action Progression in Depots
Domain



Histogram of State Tracking 2 for Llama 8B model on Depots domain
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Figure 11: Llama 8B Performance on State tracking with 2 Actions in Depots Domain

Histogram of Optimal Plan Action Distance for Llama 8B model on Depots domain
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Figure 12: Llama 8B Optimal Plan Responses’ Action Distance Histogram
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