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ABSTRACT

Data augmentation (DA) is a major part of modern computer vision used to encode
invariance and improve generalization. However, recent studies have shown that
the effects of DA can be highly class dependent: augmentation strategies that
improve average accuracy may significantly hurt the accuracies on a minority of
individual classes, e.g. by as much as 20% on ImageNet. In this work, we explain
this phenomenon from the perspective of interactions among class-conditional
distributions. We find that most affected classes are inherently ambiguous, co-
occur, or involve fine-grained distinctions. By using the higher-quality multi-label
ImageNet annotations, we show the negative effects of data augmentation on
per-class accuracy are significantly less severe.

1 INTRODUCTION

Data augmentation (DA) provides numerous benefits for training of deep neural networks including
promoting invariance, providing regularization, and improving in- and out-of-distribution general-
ization and robustness (Hernández-Garcı́a & König, 2018; Gontijo-Lopes et al., 2020; Balestriero
et al., 2022b; Geiping et al., 2022). However, Balestriero et al. (2022a) and Bouchacourt et al.
(2021) showed that strong DAs which are used by default in training of computer vision models may
disproportionately hurt accuracies on some classes, e.g. with up to 20% class-level degradation on
ImageNet compared to milder augmentation settings. Balestriero et al. (2022a) attempted to address
this problem by only applying DA to the classes on which accuracy is not negatively affected and
removing DA from the classes on which it leads to decreased performance. However, this strategy
did not improve the accuracy on the affected classes, and Balestriero et al. (2022a) hypothesized
that it is due to the model learning learning some general invariance from DAs being applied to the
majority of classes that is not beneficial to the minority. Thus, several crucial open questions related
to DA leading to class disparities remain unaddressed which we aim to understand: (1) why exactly
the class-level performance degradation happens, (2) what kind of predictions and mistakes models
make on those classes, and (3) why removing DA from those classes is not helpful for recovering
performance (Balestriero et al., 2022a). In this work, we provide an explanation of the class-level
performance degradation from the perspective of interactions between class-conditional distributions.
In particular, our contributions are the following:

• We refine the per-class analysis of data augmentations correcting for label noise using multi-
label annotations on ImageNet validation split (re-assessed labels from Beyer et al. (2020))
and systematically measure suboptimality of globally optimal data augmentation parameters
for each class in terms of original and multi-label accuracy. Our analysis indicates that
class-level performance degradation reported in Balestriero et al. (2022b) and Bouchacourt
et al. (2021) is overestimated.

• We show that data augmentation significantly hurts top-1 classification accuracy specifically
on ambiguous, co-occurring and fine-grained classes, which are often affected by label noise.
We characterize each case in terms of the extent to which class-level performance drop can
be attributed to label noise versus data augmentation.
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Figure 1: Evaluating class-level performance using multi-label annotations reveals that negative
effects of strong data augmentations are significantly muted. Left: Average (top left panel) and
individual class (remaining panels) validation top-1 accuracies of ResNet-50 on ImageNet computed
with original and ReaL labels (Beyer et al., 2020) as a function of Random Resized Crop data
augmentation scale lower bound s. We show the accuracy trends for the classes with the highest
∆aork : the difference between the highest accuracy on that class maxs a

or
k (s) and accuracy of the

model trained with s = 10% using original labels for evaluation. Right: Distribution of per-class
accuracy gaps ∆ak for original and ReaL labels. The distribution of ∆aork has a heavier tail compared
to the one computed with ReaL labels.

2 RELATED WORK

Understanding data augmentation, invariance and regularization. Hernández-Garcı́a & König
(2018) analyzed the DA from the perspective of implicit regularization. Botev et al. (2022) propose
an explicit regularizer that encourages invariance and show that it leads to improved generalization.
Balestriero et al. (2022b) derive an explicit regularizer to simulate DA to quantify its benefits and
limitations and estimate the number of samples for learning invariance. Gontijo-Lopes et al. (2020)
and Geiping et al. (2022) study the mechanisms behind the effectiveness of DA, which include data
diversity, exchange rates between real and augmented data, additional stochasticity and distribution
shift. Bouchacourt et al. (2021) measure the learned invariances using DA. Lin et al. (2022) studied
how data augmentation induces implicit spectral regularization which improves generalization. For a
detailed review of DA techniques, see Xu et al. (2023).

Biases of data augmentations. While DA is commonly applied to improve generalization and
robustness, a number of prior works identified its potential negative effects. Hermann et al. (2020)
showed that decreasing minimum crop size in Random Resized Crops leads to increased texture bias.
Shah et al. (2022) showed that using standard DA amplifies model’s reliance on spurious features
compared to model trained without augmentations. Idrissi et al. (2022) provided a thorough analysis
on how the strength of DA for different transformations has a disparate effect on subgroups of data
corresponding to different factors of variation. Kapoor et al. (2022) suggested that DA can cause
models to misinterpret uncertainty. Izmailov et al. (2022) showed that DA can hurt the quality of
learned features on some classification tasks with spurious correlations. Balestriero et al. (2022a)
and Bouchacourt et al. (2021) showed that strong DA may disproportionately hurt accuracies on
some classes on ImageNet, and in this work we focus on understanding this class-level performance
degradation through the lens of interactions between classes.

Multi-label annotations on ImageNet. A number of prior works identified that ImageNet dataset
contains label noise such as ambiguous classes, multi-object images and mislabeled examples (Beyer
et al., 2020; Shankar et al., 2020; Vasudevan et al., 2022; Northcutt et al., 2021b; Stock & Cisse,
2018; Northcutt et al., 2021a). Tsipras et al. (2020) found that nearly 20% of ImageNet validation
set images contain objects from multiple classes. Hooker et al. (2019) ran a human study and
showed that examples most affected by pruning a neural network are often mislabeled, multi-object
or fine-grained. Yun et al. (2021) generate pixel-level multi-label annotations for ImageNet train split
using a large-scale computer vision model. Beyer et al. (2020) provide re-assessed (ReaL) multi-label
annotations for ImageNet validation split which aim to resolve label noise issues, and we use ReaL
labels in our analysis to refine the understanding of per-class effects of DA.
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3 EXPERIMENTAL SETUP

Since we aim to understand class-level accuracy degradation emerging with strong data augmentations
reported in Balestriero et al. (2022a), we closely follow their experimental setup to train models.

Training details. We trained a ResNet-50 on ImageNet for 88 epochs with SGD using a cyclic
learning rate schedule, batch size 256, and weight decay 10−4. For each hyper-parameter setting, we
train networks with 10 different random seeds.

Data augmentation. For our analysis, we used random horizontal flips and random resized crop
(RRC) DA when training our models which are the most commonly used transformations. In
particular, for an input image of size h × w the RRC transformation first samples the crop scale
s ∼ U [slow, sup] and the aspect ratio r ∼ U [rlow, rup], takes random a crop of size

√
shwr ×√

shw/r and resizes it back to the input size required for the model. In our experiments we use the
standard values for sup = 100%, rlow = 3/4, rup = 4/3, and we vary the lower bound on the crop
scale slow (for simplicity, we will further use s to denote the lower bound on crop scale) between
10% and 100% which controls the strength of DA (with s = 10% and s = 100% corresponding
to strongest and weakest DA strength respectively). Note that the default value in pytorch RRC
implementation is s = 8%.

ReaL labels. Beyer et al. (2020) used large-scale models to generate new label proposals for the
validation split of ImageNet which were then evaluated by human annotators. These Reassessed
Labels (ReaL) aim to correct the label noise present in the original labels including mislabeled
examples, multi-object images and ambiguous classes. Since there are possibly multiple ReaL labels
for each images, the prediction is considered correct if it falls in the set of the plausible labels.

Metrics and notation. We are interested in evaluating the accuracy ak(s) on class k as a function of
the hyper-parameter of DA, e.g. RRC scale lower bound s. Balestriero et al. (2022a) and Bouchacourt
et al. (2021) reported that on some classes RRC can hurt the accuracy by more than 20%. Balestriero
et al. (2022a) compare the per-class accuracy of the models trained with the strongest DA with
s = 8% and the model trained with no DA (s = 100% which effectively just resizes input images
without cropping), while Bouchacourt et al. (2021) compared the models trained with RRC with
s = 8% and models trained with fixed size center crop. In our analysis, we want to measure how
suboptimal the choice of DA hyper-parameter s is for a particular class if we choose s using average
accuracy on validation data as opposed to validation accuracy on that class (the optimal s in terms
of the average accuracy is the strongest DA s = 10% which improves accuracy on the majority of
the classes). More formally, we evaluate ∆ak = ak(s

∗
k)− ak(s

∗), where s∗ is the optimal value of
s based on the average accuracy: s∗ = argmax

∑
k ak(s) (if we assume balanced classes), and s∗k

is the optimal s for class k: s∗k = argmaxs ak(s). We report ak(s) and ∆ak for both original and
ReaL labels.

4 PER-CLASS ACCURACY DEGRADATION UNDER STRONG DATA
AUGMENTATION IS OVERESTIMATED DUE TO LABEL NOISE

Previous studies reported that the performance of ImageNet models is effectively better if we evaluate
it using re-assessed multi-label annotations which address label noise issues in ImageNet (Beyer et al.,
2020; Shankar et al., 2020; Vasudevan et al., 2022). These works showed that recent performance
improvements on ImageNet might be saturating, but the effects of such label noise on per-class
performance has not been previously studied. In particular, it is unclear how label noise would
affect the results of Balestriero et al. (2022a) and Bouchacourt et al. (2021) on the effects of DA on
class-level performance.

We observe that for most classes with significant drops in accuracy on original labels, the class-
level ReaL multi-label accuracy is considerably less affected. First to compare the class-level
effects of DAs between original and ReaL labels in an aggregated way, we plot the distributions of
∆aork and ∆aReaL

k values on the right panel of Figure 1. Note that the distribution of the accuracy
gap scores computed with the original labels has a heavier tail. For ReaL labels, there are much fewer
classes which have a drop in accuracy over 4% when using the model with the strongest augmentation
(34 classes according to ReaL accuracy as opposed to 98 classes with the original labels), and there
are no classes with a drop in accuracy over 10%.

3



Workshop on the pitfalls of limited data and computation for Trustworthy ML, ICLR 2023

On the left panel of Figure 1, we show the average and individual class accuracies, both using original
and ReaL labels, against RRC crop scale lower bound s for classes with the highest ∆aor, i.e. the
classes with the highest drop in accuracy when choosing s = 10% (optimal for the average accuracy)
instead of optimal value s∗k = argmaxs ak(s) for each class. Both aork and aReaL

k are evaluated
on images from ImageNet validation splits that have the original label k. The larger selection of
classes with the highest ∆aor is shown in Appendix Figure 3. For many classes which are hurt by
using stronger DA, the ReaL accuracy is much less affected. For example, for the class “academic
gown” the original top-1 accuracy is decreased by 21% from 62% to 41% if we use the model
trained with RRC with s = 10% compared to the optimal for that class model with s = 90%, while
ReaL multi-label accuracy is not significantly affected with ∆aReaL = 1% and the model trained
with s = 10% is comparable to the optimal one. For most classes in Appendix Figure 3 (with a
few exceptions like “Siberian husky”, “tobacco shop”, “bighorn”) ∆aReaL is significantly lower
than ∆aor and overall in most cases aReaL(s) either improves as we increase DA strength or is not
significantly affected by the choice of s.

However, there are still some classes for which it is beneficial to use the crop scale higher than
s = 10% for the optimal ReaL accuracy, and in Appendix Figure 4 we show per-class accuracy trends
against s for the classes with the highest ∆aReaL. Some of them (especially classes from the “animal”
categories) may still be affected by the remaining label noise (Vasudevan et al., 2022; Van Horn et al.,
2015; Shankar et al., 2020; Luccioni & Rolnick, 2022; Beyer et al., 2020), while for other classes it is
in fact suboptimal for their recall to use the strongest DA. It remains puzzling (1) why strong DA hurt
some classes in terms of ReaL accuracy, and (2) what leads to the high discrepancy between original
and ReaL accuracy trends on most classes with the highest ∆aor since correcting for the label noise
could have just shifted the class-level trends higher, equally improving the accuracy for all DA levels.
We study these questions from the perspective of interactions among class-conditional distributions
induced by DAs.

5 THE FRAMEWORK OF CLASS-CONDITIONAL DISTRIBUTIONS INDUCED BY
DATA AUGMENTATIONS FOR REASONING ABOUT CLASS-SPECIFIC EFFECTS

To aid our understanding of the class-specific effects of data augmentations, it can be helpful to
reason about them in terms of how they affect class-conditional distributions of the training data.
In particular, this perspective can help us categorize the effects of data augmentations (see Section
6). We are interested in understanding how a particular parametrized class of transformations Tα(·)
changes the data distribution for each class Xk ∼ pk(x), e.g. in our case Tα(·) represents the family
of RRC parametrized by the lower bound on the crop scale s. We denote the train data distribution
by p(x) = 1/K

∑
i pi(x) and the augmented class distributions by Tα(pk)(·). We assume that the

support of pk is a subset of the support of Tα(pk) (i.e. the original images are included in the set of
all their possible RRC augmentations). Typically, prior works discussed potential harmful effects
of DA in cases when it is not label preserving, i.e. P [f∗(Xα

k ) = k] ≪ 1 where Xα
k ∼ Tα(pk) and

f∗(·) is a true labeling function. However, it may not necessarily be problematic if the some samples
from Tα(pk) are out-of-distribution for class k if they are in general out-of-distribution for Tα(p).
At the same time, if supports of Tα(pk) and Tα(pl) for two classes k and l overlap, especially in
high-density regions, the model might be optimized to predict different labels k and l on similar inputs
corresponding to features from both classes k and l which will lead to performance degradation. Some
class distributions pk and pl are intrinsically almost coinciding or highly overlapping in ImageNet
dataset, while others have distinct supports, but in all cases the parameters of the transformation class
α will control the overlap of the induced class distributions, and thus the biases of the model when
making predictions on such classes.

6 DATA AUGMENTATION MOST SIGNIFICANTLY AFFECTS CLASSIFICATION OF
AMBIGUOUS, CO-OCCURRING AND FINE-GRAINED CATEGORIES

In this section, we aim to understand the reasons behind per-class accuracy degradation when using
stronger data augmentation and the high discrepancy between class-level accuracy trends using
original and ReaL labels analyzing the most common mistakes the models make on these classes and
how they evolve as we vary the data augmentation strength. We consider the classes most affected by
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Figure 2: Types of class pair confusions affected by data augmentations with varied semantic
similarity and data distribution overlap. Each panel shows the frequency of the most commonly
predicted labels for a given class against the Random Resized Crop’s scale hyper-parameter. We
categorize types of class confusions into (a) ambiguous, (b) co-occurring, (c) fine-grained and (d)
semantically unrelated, depending on inherent class overlap and similarity. In each of these categories
data augmentation either controls the model’s prediction preference among the plausible labels or
biases model towards mistakes due to the overlap of the data augmentation induced class distributions
as in the panel (d).

strong DA (see Appendix Figures 3 and 4) which do not belong to the “animal” subtree category in the
WordNet hierarchy (Fellbaum, 1998) since fine-grained animal classes were reported to have higher
label noise in previous studies (Van Horn et al., 2015; Shankar et al., 2020; Luccioni & Rolnick, 2022;
Beyer et al., 2020). We focus on 50 classes with the highest ∆aor (corresponding to ∆aor > 5.8%),
and 50 classes with the highest ∆aReaL (corresponding to ∆aReaL > 3.8%).

We analyze the set of predictions generated by 10 independently trained models for each RRC crop
scale parameter s value on all validation images from a particular class according to the original labels
(there are 50 images for each class in ImageNet validation). For each class, among all generated
predictions, we identify 5 most common ones (filtering out those which occur in less than 4% cases
for any crop scale level) and track the frequency of these predictions against RRC crop scale. We
additionally perform the same analysis on some of the frequently confused classes (which may not be
among the classes most hurt by strong DA).

In general, we observe that in many cases DA strength controls the model’s preference in predicting
one or another plausible ReaL label or among semantically similar classes. We roughly outline the
most common types of confusions on the classes which are significantly affected by DAs which differ
in the extent to which the accuracy degradation can be attributed to label noise versus the presence
of DA, and characterize how DA effectively changes the data distribution of these classes which
affects performance. These categories are closely related to common mistake types on ImageNet
identified by Beyer et al. (2020) and Vasudevan et al. (2022), but we focus on class-level interactions
as opposed to instance-level mistakes and particularly connect them to the impact of DAs. We use the
following criteria to identify a confusion category for a pair of classes:

(1) Semantic similarity which we can measure by (a) WordNet class similarity, in particular,
we use Wu-Palmer score (between 0 and 1) which relies on the categories’ most specific
common ancestor in the WordNet tree, and (b) similarity of the class name embeddings1.

(2) ReaL labels co-occurence between classes i and j: we consider intersection over
union IoUij =

∑
L I[i ∈ L]× I[j ∈ L]/

∑
L I[i ∈ L or j ∈ L] as well as one-sided over-

lap Cij =
∑

L I[i ∈ L]× I[j ∈ L]/
∑

L I[i ∈ L] where the summation is over ReaL label

1We use NLTK library for WordNet and spaCy library for embeddings similarity.
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sets L for all examples. Assuming that train and test are coming from similar distributions,
we can treat this as an approximate measure of class overlap or distance between distribu-
tions pi and pj . We expect that for classes with high overlap in ReaL labels, the majority of
confusions made by model f : X → Y of class i for j will be resolved by ReaL labels, and
measure it by: Rij =

∑
(x,L): x∈Xi

I[f(x) = j]× I[j ∈ L]/
∑

(x,L): x∈Xi
I[f(x) = j].

Using these metrics, depending on a higher or lower semantic similarity and higher or lower ReaL
labels overlap, we categorize confused class pairs as ambiguous, co-occurring, fine-grained or
semantically unrelated. The following subsections discuss each category in detail, and the examples
are shown in Figure 2 and Appendix Figure 5.

6.1 CLASSES WHERE THE NEGATIVE EFFECTS OF DATA AUGMENTATION ARE RESOLVED
AFTER REMOVING LABEL NOISE

Intrinsically ambiguous or semantically (close to) identical classes. Prior works e.g. Beyer et al.
(2020); Shankar et al. (2020); Vasudevan et al. (2022); Tsipras et al. (2020) identified that some pairs
of ImageNet classes are practically indistinguishable, e.g. “sunglasses” and “sunglass”, “monitor”
and “screen”, “maillot” and “maillot, tank suit”. These pairs of classes would generally have higher
semantic similarity and higher overlap in ReaL labels (in particular, high IoU for equivalent classes
and high one-sided overlap for subcategories). We observe that in many cases the accuracy on one
class within the ambiguous pair degrades with stronger augmentations, while the accuracy on another
one improves. The supports of distributions of these class pairs pi and pj highly overlap or even
coincide, but with varying α depending on how the supports of Tα(pi) and Tα(pj) overlap the model
would be biased towards predicting on of the classes. In Figure 2(a) we show how the frequencies of
most commonly predicted labels change on an ambiguous pair of classes “sunglass” and “sunglasses”
as we vary the crop scale parameter (these classes overlap with Cij = 91.1% and 99% of confusions
are corrected by ReaL labels). We note that for images from both classes the frequency of “sunglasses”
label increases with stronger DAs while “sunglass” predictions have the opposite trend.

Models trained on ImageNet often achieve a better-than-random-guess accuracy when classifying
between these classes due to overfitting to marginal statistical differences and idiosyncrasies of
their labeling pipeline. While DA strength controls model’s bias towards predicting one or another
plausible label, the models are not effectively making mistakes when confusing such classes.

6.2 CLASSES WHERE DATA AUGMENTATION MAY AMPLIFY OR CAUSE PROBLEMATIC
MISCLASSIFICATION

For the categories described below, the classes become more ambiguous or overlapping in particular
when strong DA is applied during training.

Co-occurring or overlapping classes. There is a number of classes on ImageNet which correspond to
semantically different objects which often appear together, e.g. “academic gown” and “mortarboard”,
“Windsor tie” and “suit”, “assault rifle” and “military uniform”. These pairs of classes have rather high
overlap in ReaL labels (depending on the spurious correlation strength) and their semantic similarity
can vary (but it would be lower than for ambiguous classes). The class distributions of co-occurring
classes inherently overlap, however, stronger DAs may increase this overlap in class distribution
supports, for example, with RRC we may augment the sample such that only the spuriously co-
occurring object is left on the image, but the model would still be optimized to predict the original
label. It was previously shown that RRC can increase model’s reliance on spurious correlations
(Hermann et al., 2020; Shah et al., 2022) which can lead to real mistakes. In Figure 2(b) we show
how DA strength impacts model’s bias towards predicting “academic gown” or “mortarboard” class
(for which Cij = 72% and 96% confusions resolved by ReaL labels).

Fine-grained categories. There is a number of semantically related class pairs like “tobacco shop”
and “barbershop”, “frying pan” and “wok”, “violin” and “cello”, where objects appear in related
contexts, share some visually similar features and generally represent fine-grained categories of a
similar object type. These classes have high semantic similarity and are not significantly overlapping
(sometimes they are affected by mislabeling but generally not multi-object). The class distributions
for such categories are close to each other or slightly overlapping, but strong DA pulls them closer,
and T (pi) and T (pk) would be more overlapping due to e.g. RRC resulting in the crops of the
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visually similar features or shared contexts in the augmented images from different categories. In
Figure 2(c) we show how model’s most common predictions change depending on RRC crop scale
for fine-grained classes “frying pan” and “wok” (for which Cij = 10%, only 12% of confusions were
corrected by ReaL labels, while their WordNet distance is 0.92).

Semantically unrelated. In the rare but most problematic cases, the stronger DA will result in
confusion of semantically unrelated classes (while they could possibly share some low-level features,
they are semantically dissimilar and their distributions pi and pj and ReaL labels do not overlap,
and they get confused with one another specifically because of strong DA), for example, categories
like “muzzle” and “sandal”, “bath towel” and “pillow”. Figure 2(d) shows how confusions between
unrelated classes “bath towel” and “pillow” emerge with stronger DA.

In Appendix we show a larger selection of example pairs from each category. Among the confusions
on the classes most significantly hurt in original accuracy approximately 55% are co-occurring, 35%
are fine-grained and 10% are ambiguous classes, while on the classes most affected in their ReaL
accuracy around a half of the confusions correspond to fine-grained with another half corresponding to
co-occurring classes. The confusion of semantically unrelated categories is rare, while it is potentially
most concerning since it corresponds to more severe mistakes.

7 EFFECTS OF DATA AUGMENTATION ON PER-CLASS PRECISION AND RECALL

As discussed in Sections 5 and 6, if class-conditional distributions induced by data augmentation
Tα(·) start having overlapping support, we might observe a degradation in class-level performance.
In the specific case when f∗(xα

k ) = l for some augmented samples xα
k ∼ Tα(pk) from class k, the

model will be optimized to predict the label k effectively on the examples from class l, which will
result in reduced precision for class k and reduced accuracy (or recall) on class l. For example, when
the model is trained to classify between the images from classes “cars” and “wheels”, strong RRC
will sometimes produce augmented car images that are zoomed in on the wheel (effectively coming
from the “wheel” data distribution). However, the model has to predict the “car” label on said images
which would result in the model sometimes predicting “car” for images from the “wheel” during
evaluation (and, thus, reduced accuracy for “wheels” and reduced precision for “cars”). In other cases
xα
k will not belong to any of the training classes, but if augmented samples xα

k and xα
l from different

classes k ̸= l will be focus on visually similar features, the model will start confusing these classes,
and might be biased towards predicting one or another depending on their statistical differences in
train data.

Since non-label-preserving augmentations result in model being optimized to predict the label k on an
input that is not coming from the distribution pk, it is also important to measure class-level precision
as a function of data augmentation strength, and study the classes whose precision decreases as the
model is trained with stronger DAs. In Appendix Figure 6, we plot per-class precision (computed
with original and ReaL labels) against RRC crop scale lower bound s for classes with the highest drop
in accuracy between model with s = 10% and the model with optimal value s∗ in terms of precision
computed with ReaL labels on that class. Interestingly, some of these classes are confused with
classes that are most hurt in recall (see Appendix Figure 4), e.g. “barbershop” and “tobacco shop”,
or “honeycomb” and “apiary”. We hypothesize that taking into account the classes most affected in
precision is important for removing the class-level negative effects introduced by data augmentations.

8 DISCUSSION

In this work, we provide insights into the class-level accuracy degradation on ImageNet when applying
stronger augmentations from the perspective of interactions among class-conditional distributions.
We observe that the most significantly affected classes are inherently ambiguous, co-occur, or involve
fine-grained distinctions. These categories often suffer from label noise and thus the overall negative
effect is significantly muted when evaluating performance with cleaner multi-label annotations.
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Figure 3: Individual class validation top-1 accuracies of ResNet-50 on ImageNet computed with
original and ReaL labels as a function of Random Resized Crop data augmentation scale lower
bound s. We show the accuracy trends for the classes with the highest ∆aork : the difference between
the highest accuracy on that class maxs a

or
k (s) and accuracy of the model trained with s = 10%

using original labels for evaluation. We report the mean and standard deviation over 10 independent
runs of the network.
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Figure 4: Individual class validation top-1 accuracies of ResNet-50 on ImageNet computed with
original and ReaL labels as a function of Random Resized Crop data augmentation scale lower
bound s. We show the accuracy trends for the classes with the highest ∆aReaL

k : the difference
between the highest accuracy on that class maxs a

ReaL
k (s) and accuracy of the model trained with

s = 10% using ReaL labels for evaluation (i.e. similar to Figure 3 but choosing classes based on
highest ∆aReaL instead of ∆aor). We report the mean and standard deviation over 10 independent
runs of the network.
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Figure 5: Each panel shows the frequency of the most commonly predicted labels for a given class
against the Random Resized Crop’s scale hyper-parameter. We categorize types of class confusions
into ambiguous, co-occurring, fine-grained and semantically unrelated, depending on inherent class
overlap and similarity. In each of these categories data augmentation either controls the model’s
prediction preference among the plausible labels or biases model towards mistakes due to the overlap
of the data augmentation induced class distributions.
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Figure 6: Individual per-class precision for classes most affected in terms of their precision evaluated
with ReaL labels.
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