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ABSTRACT

In recent years, diffusion models have emerged as powerful tools for generatively
predicting high-dimensional observations across various scientific and engineering
domains, including fluid dynamics, weather forecasting, and physics. Typically,
researchers not only want the models to have faithful generation, but also want to
explain these high-dimensional generations with accompanying signals such as
measurements of force, currents, or pressure. However, such explainable gener-
ation capability is still lacking in existing diffusion models. Here we introduce
Explainable Denoising Diffusion Probabilistic Model (xDDPM), a simple variant
to the standard DDPM that enables the generation of samples in an explainable
manner, focusing solely on generating components that are pertinent to the given
signal. The key feature of xDDPM is that it trains the denoising network to exclu-
sively denoise these relevant parts while leaving non-relevant portions noisy. It
achieves this by incorporating an Information Bottleneck loss in its learning ob-
jective, which facilitates the discovery of relevant components within the samples.
Our experimental results, conducted on two cell dynamics datasets and one fluid
dynamics dataset, consistently demonstrate xDDPM’s capability for explainable
generation. For instance, when provided with force measurements on a jellyfish-
like robot, xDDPM accurately generates the relevant pressure fields surrounding
the robot while effectively disregarding distant fields.

1 INTRODUCTION

Generative models like diffusion models (Ho et al., 2020) are valuable for complex tasks in science
and engineering, learning from high-dimensional distributions to predict dynamics in fluid dynamics
(Cachay et al., 2023), weather forecasting (Price et al., 2023), molecular dynamics (Wu et al.,
2022), and more. However, interpreting the increasingly complex generated output (often 103 to
106 dimensions) is challenging. Researchers seek to understand the relationship between generated
components and accompanying low-dimensional signals, such as pressure measurements in fluid
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Figure 1: Architecture of our proposed xDDPM framework. Our method consists of three main
components. The first component involves the training process using the Information Bottleneck (IB)
mechanism, which is constrained by the objective function (described in the second component). The
third component illustrates the inference process.

dynamics or brain signals in behaviors. Building a diffusion generative model that faithfully learns
and explains high-dimensional distributions is crucial.

Explainable generation tasks pose significant challenges in linking relevant components of high-
dimensional generated samples to low-dimensional signals. Existing attribution methods, such as
Schulz et al. (2020); Selvaraju et al. (2017), are designed for classification tasks with prepared
datasets, making them unsuitable for dynamic generation tasks without available low-dimensional
signals at inference time. Additionally, the high dimensionality (up to 103 to 106) of the samples
further complicates the identification of relevant components. To the best of our knowledge, no
diffusion model research has addressed this crucial question.

We present xDDPM, an innovative approach to address the task of explainable generation. Unlike
previous methods, xDDPM trains the denoising network to selectively denoise the signal-relevant
parts of the sample, allowing the non-relevant parts to remain noisy. This explicit association
between generation and the given signal is achieved by incorporating an Information Bottleneck
(IB) module into the existing DDPM method (Ho et al., 2020). The IB module learns to identify the
relevant components for the signal, which are then used to modify the noise target during training.
Consequently, xDDPM’s denoising network can generate samples containing only the relevant signal
parts while keeping the non-relevant parts noisy during inference.

We make the following contributions: 1) Introducing xDDPM, a diffusion-based model for ex-
plainable generation. It incorporates an Information Bottleneck to modify the denoising target,
generating samples with only signal-relevant components. 2) Providing valuable datasets, includ-
ing cell dynamics and fluid dynamics, with over 45,000 videos and 1 million images. These
datasets facilitate research in explainable generation. 3) Conducting extensive experiments, out-
performing seven state-of-the-art baselines on the datasets. For implementation and results, visit
https://anonymous.4open.science/r/xDDPM. xDDPM enables interpretable scientific modeling and
sets a new performance standard.

2 RELATED WORK

Diffusion Probabilistic Models (DM). Ho et al. (2020); Kingma et al. (2021) are leading techniques
for density estimation and high-quality sample generation. They leverage image-like data using a
UNet neural backbone Ronneberger et al. (2015); Ho et al. (2020); Dhariwal & Nichol (2021). A
reweighted objective in training improves synthesis quality. Another approach for image generation
is GAN-based methods, such as infoGAN Creswell et al. (2018); Chen et al. (2016), which generates
realistic samples and maximizes mutual information between latent variables and output. However,
these methods lack explanations for generated samples. Denosing Diffusion Probabilistic Model
(DDPM) for AI for Science and Explanation for Artificial Intelligence are put into Appendix.
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Table 1: A comprehensive performance comparison of all methods on datasets of Wetting, Tension,
and Fluid. For cell Wetting and Tension datasets, we independently provide values of area or
circumference as signals, and the goal is to learn to generate the dynamics video where only the
pixels relevant to the signal are shown, and irrelevant pixels remain noisy. For the Fluid dataset, the
method needs to generate the fluid trajectory while identifying which components of the pressure
field are relevant to the force measurement on the boundary. We see that our xDDPM consistently
outperforms the baselines by a wide margin across all datasets.

Wetting Tension Fluid
Area Circumference Area Circumference Force

Method IoU Sensitivity-n IoU Sensitivity-n IoU Sensitivity-n IoU Sensitivity-n Correlation Sensitivity-n
Random 0.2389 0.0315 0.0717 0.1338 0.3297 0.0094 0.1744 0.0467 0.0003 0.2432
Gradient 0.2147 0.0181 0.0882 0.0153 0.5309 0.0015 0.2636 0.0044 0.0064 0.0051
Saliency 0.2811 0.0290 0.0892 0.1252 0.4896 0.0151 0.2414 0.0308 0.0327 0.1806

GuidedBP 0.1033 0.0734 0.0238 0.1065 0.0350 0.0368 0.1399 0.0111 0.0033 0.2021
GuidedCAM 0.0601 0.0199 0.0221 0.0980 0.0399 0.0081 0.0734 0.0085 0.0085 0.1974
SmoothGrad 0.1755 0.0049 0.0612 0.1677 0.4691 0.0211 0.3503 0.0451 0.0093 0.0229
GuidedGrad 0.0723 0.0290 0.0350 0.1017 0.1272 0.0114 0.0514 0.0392 0.0285 0.2182

xDDPM (ours) 0.4590 0.3114 0.1197 0.1713 0.6689 0.1638 0.3699 0.1312 0.3343 0.3881

3 METHOD

In this section, we detail our method of Explainable Denoising Diffusion Probabilistic Model
(xDDPM). We first introduce the problem setup in Section 3.1. In Section 3.3, we detail our xDDPM
method, including its learning objective, model architecture, and inference method.

3.1 PROBLEM DEFINITION

Consider that we have high-dimensional data samples1 {x(n)}Nn=1 of the variable X ∈ RD. Accom-
panying each x(n) is the low-dimensional signal s(n) ∈ Rd for signal variable S. Here, instead of the
standard task of learning the distribution2 PX(x) for generating X , we are interested in learning a
distribution PW (w) for generating the explainable variable W , such that W is as faithful to X as pos-
sible while containing exclusively relevant features to S. Concretely, we want to learn a distribution
PW (w) for sampling W , where W = g(X,S) ∈ RD has the same dimension as X , such that the
relevant features of W w.r.t. S obey the same distribution as X and the non-S-relevant features obey
a Gaussian distribution. Note that during inference time, we do not have the accompanying signal S
for generating W . Thus, it is impossible to first generate X and then use attribution methods to find
which features of X are relevant to S and then produce W . Therefore, the model for generating W
must be learned at training time.

3.2 EXPLAINABLE DENOISING DIFFUSION PROBABLISTIC MODELS (XDDPM)

The DDPM method. To tackle the above task, we build upon the recent advances of Denoising
Diffusion Probablistic Models (DDPMs) Ho et al. (2020). DDPM is an elegant method to learn high-
dimensional distributions PX(x) given data samples {x(n)}Nn=1. Concretely, DDPM consists of a
forward process that adds t steps of Gaussian noise to the data sample3 x0 to obtain a noisy sample xt:
xt =

√
ᾱtx0 +

√
1− ᾱtϵ, where ϵ ∼ N (0, I) has the same dimension as x0 and ᾱt is a predefined

schedule. Since the summation of Gaussian is also a Gaussian, the t steps of adding Gaussian noise is
equivalent to adding a single Gaussian

√
1− ᾱtϵ. After T steps of forward process, xT approximates

a standard Gaussian distribution. In the reverse process, the DDPM learns a denoising model ϵθ(xt, t)
that aims to revert the forward process:

xt−1 =
1

√
αt

(
xt −

√
1− αt√
1− ᾱt

ϵθ(xt, t)

)
+ σtη, t = T, ...1.

Here αt, σt are pre-defined schedule and η ∼ N (0, I). To learn ϵθ(xt, t), DDPM use the denoising
objective

Lϵθ = ||ϵ− ϵθ(
√
ᾱtx0 +

√
1− ᾱtϵ, t)||22, ϵ ∼ N (0, I) (1)

1Here we use capital letters (e.g., X) to denote random variables and lowercase letters (e.g., x) to denote
their instances. The lowercase letters with superscript (e.g., x(n)) denote data samples.

2Sometimes, we may be interested in learning a condition distribution PX|C(x|c) for optional condition
variable C. For notation simplicity, we ignore such conditions and only add it as needed.

3Here the subscript t in xt denotes the denoising step.
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which aims to predict the added noise ϵ based on the noisy sample xt =
√
ᾱtx0 +

√
1− ᾱtϵ. For

more details about DDPM, see Appendix A.2.

3.3 EXPLAINABLE DENOISING DIFFUSION PROBABLISTIC MODELS (XDDPM)

The xDDPM method. Although the above DDPM can learn complicated distribution PX(x) given
data samples, it is insufficient to learn the distribution PW (w) for the explainable variable W since
there are no ground-truth data W to learn the distribution from. Our key insight is that the relevance
discovery of X to the signal S is essentially finding the minimal sufficient information contained
within X for predicting S, and the Information Bottleneck Tishby et al. (2000) provides the exact
principle and technique we need for extracting such minimal sufficient information. Specifically, we
consider a noisy representation XS of X where XS only contains the relevant features of X w.r.t. S.
To learn such a representation, we employ the following Information Bottleneck (IB) objective:

LIB = I(X;XS)− β · I(XS ;S) (2)

Here I(·; ·) denotes mutual information, and β is a hyperparameter. By minimizing the above IB
objective, it encourages XS to contain as much information as possible for predicting S, while
retaining as much little information as possible about X , thus encouraging XS to contain the minimal
sufficient information of X for predicting S.

We define XS as X multiplied with a continuous mask M ∈ [0, 1]D, where the mask values indicate
the per-feature relevance: XS = X ⊙M Here ⊙ denotes element-wise multiplication. To obtain
M , we use an encoder network pφ(M |X) with learnable parameters φ. Since the IB objective is
intractable, we employ the deep Variational Information Bottleneck (VIB) Alemi et al. (2016) to
minimize its upper bound:

LVIB = EXS∼pφ(XS |X)

[
log

pφ(XS |X)

qφ(XS)
− β log qφ(S|XS)

]
(3)

The first term provides an upper bound for I(X;XS) and the second term provides an upper bound
for −β · I(XS ;S) in Eq. 2. Here the encoder pφ(XS |X), the prior distribution qφ(XS), and the
decoder qφ(S|XS) are all parameterized by learnable neural networks. Minimizing the above LVIB
objective encourages finding an encoder pφ(M |X) for the mask M so that the XS = X ⊙ M
approximately extracts the minimal necessary information of X for S.

Given the above IB module, how can we encourage the DDPM to learn to generate the explainable
variable W relevant to S? Note that the objective Lϵθ in Eq. 10 encourages the denoising network ϵθ
to denoise all features of xt. Empowered with the mask M found by IB, our xDDPM method instead
only denoise the features deemed relevant by M . Concretely, we introduce the following modified
denoising objective:

Lϵθ,M = ||ϵ⊙M − ϵθ(
√
ᾱtx0 +

√
1− ᾱtϵ, t)||22, ϵ ∼ N (0, I) (4)

Here M ∼ qφ(M |X) is obtained by the VIB. For xDDPM, the above denoising objective and the
VIB objective are jointly optimized, constituting the full xDDPM objective:

LxDDPM = Lϵθ,M + λ · LVIB

= E
[
||ϵ⊙M − ϵθ(

√
ᾱtX +

√
1− ᾱtϵ, t)||22 + λ ·

(
log

pφ(XS |X)

qφ(XS)
− β log qφ(S|XS)

)]
(5)

Here the expectation is taken w.r.t. (X,S) ∼ p(X,S) (from data), XS ∼ pφ(XS |X), and ϵ ∼
N (0, I). During training, the VIB objective LVIB helps discover the mask M that indicates the
relevant features of X to S. For features that are found relevant, the corresponding mask elements in
M are near 1, so the xDDPM’s denoising objective Lϵθ,M reverts to the DDPM objective Lϵθ . On
the other hand, for the features that are deemed irrelevant to S, the corresponding mask elements
in M are approximately 0, and the corresponding features in the noise target ϵ⊙M are 0. In other
words, the Lϵθ,M trains ϵθ to predict zero noise on these irrelevant features.

Architecture design. Here we detail the neural network architecture for xDDPM. We use grid-based
data (e.g., image and videos) to illustrate the architectural design4. For the denoising network ϵθ, we

4Note that our method is fully general and can also deal with other types of input such as graph and sequence.
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use the standard choice of U-Net Ronneberger et al. (2015). For modeling the distribution pφ(XS |X),
we first use a U-Net that takes as input X and returns the estimation of mean µM,φ(X) and logit
ξM,φ(X) for the mask M as its feature maps. Then we use the reparameterization trick Kingma &
Welling (2013) to represent pφ(XS |X) with the Gaussian N (XS ;µXS ,φ(X), σ2

XS ,φ(X)), where the
mean and the variance are conditioned on X as follows:

µXS ,φ(X) = clamp[0,1](µM,φ(X))⊙X

σ2
XS ,φ(X) = softplus(ξM,φ(X)⊙X)

We employ clamp[0,1] to make sure that the mask mean stays between 0 and 1, and softplus(x) =
log(1 + ex) to ensure that the variance is non-negative. For the prior term qφ(XS) in LVIB (Eq. 3),
there are multiple options. The most general way is to use a mixture of full Gaussians where the
mixing weight and the Gaussian mean and covariance matrix are learnable. Instead, we find that
the simplest choice of letting qφ(XS) be a diagonal Gaussian N (XS ; 0, I) works quite well. For
qφ(S|XS), we assume that S obeys a diagonal Gaussian N (S;µS,φ(XS), I) where µS,φ(XS) can
be a U-Net encoder followed by a Multilayer Perceptron (MLP). Thus, log qφ(S|XS) reduces to a
standard MSE loss. Combined together, LVIB in Eq. 3 reduces to

LVIB = E(X,S)∼p(X,S)

[
1

2
β||µS,φ(XS)− S||22

+
1

2

(
1 +

D∑
j=1

(
log σ2

XS ,φ(X)− µ2
XS ,φ(X)− σ2

XS ,φ(X)
)
j

)]
(6)

Here in the second term, the j denotes the jth feature for the variable, and it sums over D dimensions
since XS ∈ RD. For detailed derivation, see Appendix A.8.

Remark on learning speed. Since xDDPM only needs to learn to denoise the relevant features
which contain much less information than the full variable, it is much more efficient to train than the
original DDPM. Empirically, we find that xDDPM typically converges around twice as fast as the
DDPM method. This demonstrates the added benefits of how xDDPM for improving learning speed.

4 EXPERIMENTS

In this section, we aim to answer the following questions: (1) How is the explanation ability of our
method xDDPM compared with other state-of-the-art methods (e.g., SmoothGrad and GuidedGrad-
CAM) on three datasets (wetting, tension and fluid) in terms of three different metrics (namely IoU,
Sensitivity-n and Correlation)? (2) How does each component of our method xDDPM affect its
explanation capability? (3) What is the efficiency of xDDPM compared with other baselines?

We provide results and experiment analysis in supplementary.

5 CONCLUSION

Existing diffusion models lack explainability for high-dimensional observations and accompanying
signals. To address this, we introduce xDDPM, an Explainable Denoising Diffusion Probabilistic
Model. By training the denoising network to focus on relevant components and leaving non-relevant
parts noisy, xDDPM achieves explainable generation. Incorporating the Information Bottleneck aids
in discovering the relevant components. Experimental results on cell dynamics and fluid dynamics
datasets consistently demonstrate xDDPM’s explainable generation ability. In Appendix A.12, we
also discuss broader impacts and limitations of our method. In summary, xDDPM holds significant
potential in bridging the gap between accurate generation and interpretability within diffusion models,
critical for modeling tasks across science and engineering.
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A APPENDIX

A.1 RELATED WORK

Denoising diffusion probabilistic models for Artificial Intelligence. Denoising diffusion proba-
bilistic models have demonstrated their capability to predict the dynamic evolution in various domains
such as fluid dynamics Cachay et al. (2023), weather forecasting Price et al. (2023), and molecular
dynamics Wu et al. (2022). They have also been effectively applied in inverse design tasks, enabling
the optimization of airfoils Wu et al. (2024) and proteins Watson et al. (2023). Additionally, diffusion
models have shown promise in solving complex inverse problems Holzschuh et al. (2023). These
are just a few examples of the diverse applications where diffusion models have been successfully
employed. In the realm of biology, researchers have utilized the DDPM to model diffusion processes
in biological networks Fu et al. (2023); Best & Hummer (2011); Gao et al. (2023); Xu et al. (2022),
enabling the analysis of protein-protein interactions and gene regulatory networks. In the field of
physics, the DDPM has been applied to study the diffusion of particles in complex systems, such
as the spread of heat in materials. Furthermore, in the domain of chemistry, the DDPM has been
employed to understand the diffusion of molecules and reactions in chemical systems. These studies
highlight the versatility and effectiveness of the DDPM in capturing and analyzing diffusion dynamics
across various scientific disciplines Xu et al. (2022). Ongoing research aims to further explore its
potential for solving complex problems in AI for Science.

Explanation for Artificial Intelligence. Explanation, also known as attribution discovery, is an
ever-evolving research field that has seen the development of various methods aimed at understanding
the significance and contribution of different input features. Gradient Baehrens et al. (2010) and
Saliency Simonyan & Zisserman (2014) compute the gradient of the target output neuron in rela-
tion to the input features. SmoothGrad Smilkov et al. (2017) enhances gradient-based attribution
maps by averaging gradients across multiple inputs, employing techniques such as brightness level
interpolations or considering a local neighborhood. Another approach, Guided Backpropagation
(GuidedBP) Springenberg et al. (2014), modifies the propagation rule. Grad-Cam Selvaraju et al.
(2017) utilizes the activations of the final convolutional layer to calculate relevance scores. They also
combine their method with GuidedBP, resulting in GuidedGrad-CAM Ribeiro et al. (2016). In a
manner similar to our work, MacDonald et al. (2019) adopts a rate-distortion perspective; however,
their focus is on minimizing the norm of the mask rather than emphasizing shared information. The
goal of Schulz et al. (2020) is to incorporate the information bottleneck as an explanatory component
to shed light on fixed and trained neural networks using standard stochastic gradient methods. These
attribution techniques like Schulz et al. (2020) necessitate that the task at hand involves classification
and their objective is to associate the decision made for a particular class with the significance of
pixels in a provided dataset. As far as we know, our research is the first to estimate the amount of
information utilized for attribution purposes in diffusion models applied to scientific modeling.

A.2 PRELIMINARY FOR THE DDPM METHOD

The Denoising Diffusion Probabilistic Model (DDPM) Ho et al. (2020) consists of two essential
processes: the forward process (or diffusion process) and the reverse process. Let’s focus on
describing the forward process first. The forward process in a diffusion model approximates the
posterior distribution q(x1:T |x0), which represents the sequence of latent variables x1:T given an
initial value x0. This approximation is achieved by iteratively applying a Markov chain that adds
Gaussian noise gradually over time. Specifically, the forward process is represented as follows:

q(xt|xt−1) = N (xt;µt(xt−1), βtI) (7)

Here, xt denotes the latent variable at time step t, and xt−1 is the variable at the previous time
step. The distribution q(xt|xt−1) is modeled as a Gaussian distribution with mean µt(xt−1) and
variance βtI, where βt is the variance parameter at time step t, and I represents the identity matrix.
The mean µt(xt−1) can depend on the previous latent variable xt−1 and is typically modeled
using neural networks or other parameterized functions. By sequentially applying the distribution
q(xt|xt−1) for each time step, starting from the initial value x0, we obtain an approximation of
the posterior distribution q(x1:T |x0) that captures the temporal evolution of the latent variables via
q(x1:T |x0) :=

∏T
t=1 q(xt|xt−1).

8
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To describe the reverse process, let’s consider a diffusion model with T time steps. Given an observed
data point xT at the final time step, the goal is to generate a sample from the initial distribution p(x0).
The reverse process in a diffusion model can be formulated as follows: (1) Initialization: Set xT as
the observed data point. (2) Iterative Sampling: Starting from t = T − 1 and moving backwards until
t = 0, sample xt from the distribution p(xt|xt+1), where p(xt|xt+1) represents the reverse diffusion
process.

The distribution p(xt|xt+1) in the reverse process is typically modeled as a Gaussian distribution,
similar to the forward process. However, the mean and variance parameters are adjusted to account
for the reverse direction. The specific form of p(xt|xt+1) is defined as follows:

pθ(x0:T ) := p(xT )

T∏
t=1

pθ(xt−1|xt) (8)

p(xt|xt+1) := N (xt;µθ(xt+1, t+ 1),
∑
θ

(xt+1, t+ 1))

By iteratively sampling from the reverse process, we can generate a sequence of latent variables
x0:T that follows the reverse diffusion process. This reverse sequence represents a sample from the
initial distribution p(x0). The reverse process is crucial for training the diffusion model. During
training, the model learns to approximate the reverse process by minimizing the discrepancy between
the generated samples and the observed data points. This training procedure ensures that the model
captures the underlying data distribution and can generate realistic samples.

The optimization objective of the diffusion model is conducted via the following negative log
likelihood:

E[− log pθ(x0)] ≤ Eq[− log
pθ(x0:T )

q(x1:T |x0)
]

= Eq[− log p(xT )−
∑
t≥1

log
pθ(xt−1|xt)

q(xt|xt−1)
] =: L (9)

A.3 METHOD

The DDPM method. To tackle the above task, we build upon the recent advances of Denoising
Diffusion Probablistic Models (DDPMs) Ho et al. (2020). DDPM is an elegant method to learn high-
dimensional distributions PX(x) given data samples {x(n)}Nn=1. Concretely, DDPM consists of a
forward process that adds t steps of Gaussian noise to the data sample5 x0 to obtain a noisy sample xt:
xt =

√
ᾱtx0 +

√
1− ᾱtϵ, where ϵ ∼ N (0, I) has the same dimension as x0 and ᾱt is a predefined

schedule. Since the summation of Gaussian is also a Gaussian, the t steps of adding Gaussian noise is
equivalent to adding a single Gaussian

√
1− ᾱtϵ. After T steps of forward process, xT approximates

a standard Gaussian distribution. In the reverse process, the DDPM learns a denoising model ϵθ(xt, t)
that aims to revert the forward process:

xt−1 =
1

√
αt

(
xt −

√
1− αt√
1− ᾱt

ϵθ(xt, t)

)
+ σtη, t = T, ...1.

Here αt, σt are pre-defined schedule and η ∼ N (0, I). To learn ϵθ(xt, t), DDPM use the denoising
objective

Lϵθ = ||ϵ− ϵθ(
√
ᾱtx0 +

√
1− ᾱtϵ, t)||22, ϵ ∼ N (0, I) (10)

which aims to predict the added noise ϵ based on the noisy sample xt =
√
ᾱtx0 +

√
1− ᾱtϵ. For

more details about DDPM, see Appendix A.2.

xDDPM method. At inference time, xDDPM generates the explainable variable W using the same
procedure as DDPM:

xt−1 =
1

√
αt

(
xt −

√
1− αt√
1− ᾱt

ϵθ(xt, t)

)
+ σtη, t = T, ...1. (11)

5Here the subscript t in xt denotes the denoising step.
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Algorithm 1 xDDPM training
1: repeat
2: x0 ∼ p(x0)
3: ϵ ∼ N (0, I)
4: Take gradient descent step of LxDDPM w.r.t. θ and φ:

∇(θ,φ)[||ϵ⊙M − ϵθ(
√
ᾱtx0 +

√
1− ᾱtϵ, t)||22 + λLVIB]

5: until converged

starting with xT ∼ N (0, I), and we have W := x0 as the last sample. We see that at inference, the
irrelevant features are not denoised and remain Gaussian because the ϵθ is trained to predict 0 for
these features. In this way, we can generate the explainable variable W in inference time where only
the relevant features of S are denoised.

Taken together, the modified denoising objective Lϵθ,M (Eq. 4) and the IB module for discovering
the relevant features (Eq. 3) constitute the key innovation of xDDPM. We provide the algorithm for
training as Alg. 1.

Architecture design. Here we detail the neural network architecture for xDDPM. We use grid-based
data (e.g., image and videos) to illustrate the architectural design6. For the denoising network ϵθ, we
use the standard choice of U-Net Ronneberger et al. (2015). For modeling the distribution pφ(XS |X),
we first use a U-Net that takes as input X and returns the estimation of mean µM,φ(X) and logit
ξM,φ(X) for the mask M as its feature maps. Then we use the reparameterization trick Kingma &
Welling (2013) to represent pφ(XS |X) with the Gaussian N (XS ;µXS ,φ(X), σ2

XS ,φ(X)), where the
mean and the variance are conditioned on X as follows:

µXS ,φ(X) = clamp[0,1](µM,φ(X))⊙X

σ2
XS ,φ(X) = softplus(ξM,φ(X)⊙X)

We employ clamp[0,1] to make sure that the mask mean stays between 0 and 1, and softplus(x) =
log(1 + ex) to ensure that the variance is non-negative. For the prior term qφ(XS) in LVIB (Eq. 3),
there are multiple options. The most general way is to use a mixture of full Gaussians where the
mixing weight and the Gaussian mean and covariance matrix are learnable. Instead, we find that
the simplest choice of letting qφ(XS) be a diagonal Gaussian N (XS ; 0, I) works quite well. For
qφ(S|XS), we assume that S obeys a diagonal Gaussian N (S;µS,φ(XS), I) where µS,φ(XS) can
be a U-Net encoder followed by a Multilayer Perceptron (MLP). Thus, log qφ(S|XS) reduces to a
standard MSE loss. Combined together, LVIB in Eq. 3 reduces to

LVIB = E(X,S)∼p(X,S)

[
1

2
β||µS,φ(XS)− S||22

+
1

2

(
1 +

D∑
j=1

(
log σ2

XS ,φ(X)− µ2
XS ,φ(X)− σ2

XS ,φ(X)
)
j

)]
(12)

Here in the second term, the j denotes the jth feature for the variable, and it sums over D dimensions
since XS ∈ RD. For detailed derivation, see Appendix A.8.

Remark on learning speed. Since xDDPM only needs to learn to denoise the relevant features
which contain much less information than the full variable, it is much more efficient to train than the
original DDPM. Empirically, we find that xDDPM typically converges around twice as fast as the
DDPM method. This demonstrates the added benefits of how xDDPM for improving learning speed.

A.4 EXPERIMENTS

Datasets. Our datasets include two cell dynamics datasets and a fluid dynamics dataset. Detailed in-
formation about these datasets, including specific statistics, can be found in Table 3 in Appendix A.10.
The wetting dataset explores morphological changes of a system (such as cells) under various scenar-
ios involving grid and domain configurations, tension, adhesion, and other physical parameters. It

6Note that our method is fully general and can also deal with other types of input such as graph and sequence.
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Figure 2: The Sensitivity-n values of all methods were evaluated on two datasets, specifically tension
and wetting. The range of masked pixels varied from 10% to 90%. The definition of Sensitivity-n
can be found in Eq. 14. It was observed that the Sensitivity-n values did not significantly differentiate
between the baseline methods. However, our proposed method xDDPM outperformed the others for
most masking percentages, demonstrating that our method can discover relevant pixels that are highly
correlated to the prediction of the signal.

is generated through simulations with systematically modified key parameters to observe wetting
behavior. In contrast, the tension dataset examines how the shape of a system evolves under specific
grid and domain conditions, achieved by adjusting parameters like tension parameters. As an example,
in Figure 3 (b), each trajectory X consists of cell states across 20 time steps. We see that the cell
shape gradually becomes more rounded as time progresses within each trajectory due to the surface
tension. In addition, we have accompanying signal S of cell areas or circumferences. Our focus
extends beyond learning a probabilistic model for generating cell trajectory videos. We are equally
interested in identifying the which video pixels corresponds to the signal of area or circumferences.
For the Fluid dataset, please refer to Appendix A.9 for a detailed explanation. As exemplified in
Figure ?? (b), our interest lies not only in predicting the pressure field conditioned on the boundary
but also in discerning which components of the pressure field contribute to the force measurements
acting on the boundary.

Evaluation Metrics. Building upon previous research Schulz et al. (2020); Ancona et al. (2017);
Ahmadzadeh et al. (2021), we have adopted Intersection over Union (IoU) and Sensitivity-n as the
evaluation metrics for all the methods in our study. These metrics are widely used in the field and
provide valuable insights into the performance of the approaches. The definition of IoU is shown as
follows:

IoU =
Area of Overlap

Area of Union
(13)

IoU is a value between 0 and 1, where a higher value indicates a better overlap between the predicted
and ground truth regions. The rationale behind utilizing IoU is to calculate the intersection over
union between the generated images and the ground-truth cases, considering the corresponding signal
variances such as cell areas or circumferences.

The Sensitivity-n metric, introduced by Ancona et al. (2017), evaluates attribution methods by
randomly masking network inputs and quantifying the correlation between the masked attribution and
the corresponding decrease in classifier score. For regression task, Sensitivity-n computes the Pearson
correlation coefficient between the attribution values and the associated deviation in prediction when
masking a set Mn of n randomly selected pixel indices:

Sensitivity-n = corr

(∑
i∈Mn

Ri(x),
(
S(x)− S(x[xMn=0])

)2)
(14)

Here, Ri represents the relevance of the indexed pixel i, S(x) denotes the prediction from the
decode network with clean inputs x, and S(x[xMn=0]) represents the prediction value from the
decode network after randomly setting the masked pixels to 0. Intuitively, by masking random
pixels, the prediction S(x[xMn=0]) will deviate from the prediction S(x) that is obtained without
masking the pixels. Sensitivity-n quantifies how the reduction of the prediction performance

(
S(x)−

S(x[xMn=0])
)2

is correlated with the total relevance
∑

i∈Mn
Ri(x) a method assigns to the masked

pixels. A good attribution method should assign high relevance values to the pixels such that when
those pixels are masked, the prediction performance drop significantly, producing a high Sensitivity-n
value.

Baselines. We performed comprehensive experiments, comparing our method xDDPM with several
state-of-the-art baselines on three distinct datasets. These baselines include Random Schulz et al.
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(a) xDDPM (ours) (b) Ground Truth (c) Gradient
Figure 3: We present visualization results comparing our proposed method, xDDPM, with the best
baseline, Gradient, on the Tension dataset, specifically in terms of cells’ area. The middle section
represents the ground-truth case, while the left and right parts exhibit the generated results of 20
time steps using xDDPM and Gradient, respectively. The mixed colors indicate the irrelevant portion
to the signal variable (cells’ area), while the more smooth, uniform color represents relevant parts.
Methods that generate cells more similar to the ground truth exhibit higher explanatory abilities. In
this regard, xDDPM demonstrates superior explanatory ability as the generated images at each time
step closely resemble those of the ground truth.

(2020), Gradient Baehrens et al. (2010), Saliency Simonyan & Zisserman (2014), GuidedBP Sprin-
genberg et al. (2014), GuidedCAM Selvaraju et al. (2017), SmoothGrad Smilkov et al. (2017), and
GuidedGrad Ribeiro et al. (2016). To help reproduce the experiment results of all methods, we also
provide detailed implementations of all baselines in Appendix A.10.

A.5 OVERALL EXPLANATION ABILITY COMPARISON

We evaluate all methods using three metrics: IoU, Sensitivity-n (50% pixel masking), and Correlation
(Table 1). Visual results of state-of-the-art baselines and our proposed xDDPM are presented in
Figures 3 and ??. Additional experiments involve masking pixels in generated samples to assess ex-
planation capability (Figure 2). Sensitivity-n average values are provided in Table 4 (Appendix A.10).
From these results, we make the following observations.

Results. Based on the results presented in Table 1, we observed that our method consistently
outperforms all other approaches across all metrics on the three datasets. This can be attributed to
several key factors. Firstly, our method xDDPM employs the Information Bottleneck mechanism
to guide the discovery of relevant features related to the signal variable. By emphasizing the
generation of relevant parts in the samples, our method xDDPM effectively improves the relevance
of the generated samples to the cell areas, circumferences, and pressures of the fluid dataset. This
is achieved by maximizing the mutual information between the diffused samples and the signal
variable. In comparison, the baselines generate samples without such emphasis. Secondly, our
proposed mask mechanism, applied to the Gaussian noise, plays a crucial role in generating samples
that closely resemble the ground truth samples. Furthermore, we observe that Gradient, Saliency,
and SmoothGrad outperform the other methods on all three datasets. These baselines leverage
gradient-based techniques to capture the relevant parts related to the signal variable successfully.

In Figure 2, we present the Sensitivity-n values obtained by all methods on images from the wetting
and tension datasets. We see that our method, xDDPM, gives a much higher Sensitivity-n values than
the other baselines in most conditions (masking percentage). This shows that our method has the
strongest ability to identify relevant pixels that are highly correlated to the prediction of the signal.

Visualization comparison. Figures 3 and ?? display generated samples from the best baseline,
Gradient, and our proposed method. In Figure 3, mixed colors denote non-relevant parts to the signal
(cell areas, circumference, and pressures) as identified by the methods. We see that: (1) Both our
method and Gradient can generate samples with relevant parts to cell areas, but our method achieves
even higher relevance and explanation ability. (2) In Figure ??, our method correctly discovers the
relevant parts of pressure field (the front of the jellyfish) that contribute to the force on the boundary,
while the best baseline fails to generate relevant parts. This demonstrates the effectiveness and general
applicability of our method.
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Figure 4: Ablation study of xDDPM on the wetting and tension datasets. We considered four
variants for our method, which are as follows: (1) "-M which removes the continuous mask used for
Gaussian noise; (2) "-I1 (representing I(XS ;S))" which eliminates the mutual information between
the representations of data samples and the signal variable; (3) "-I2 (representing I(X;XS))" which
removes the mutual information between the data samples and their corresponding representations;
(4) "-LVIB" which excludes the Information Bottleneck mechanism that guides our method xDDPM.
We notice that each component of xDDPM contributes the final performance.
Table 2: Training time (in hours) is reported for each method on three datasets. Our proposed method,
xDDPM, demonstrates faster training times compared to most methods, except for Random, which
achieves the best performance in terms of IoU.

Methods Tension Wetting Fluid
Time (h) IoU Time (h) IoU Time (h) Correlation

Random 2.16 0.2398 2.13 0.3297 2.21 0.0003
Gradient 4.83 0.2147 5.33 0.5309 5.33 0.0064
Saliency 5.18 0.2811 4.83 0.4896 5.33 0.0327

GuidedBP 5.33 0.1033 5.33 0.30350 5.25 0.0033
GuidedCAM 5.16 0.0601 5.16 0.0399 6.25 0.0085
SmoothGrad 11.08 0.1755 10.33 0.4691 12.16 0.0093
GuidedGrad 8.55 0.0723 8.67 0.1272 9.15 0.0285

xDDPM (ours) 2.35 0.4590 2.27 0.6689 8.19 0.3343

A.6 ABLATION STUDY

We conducted experiments to assess the impact of each component in our method, presented in
Figure 4. The four variants considered are: (1) "-M" (eliminates the continuous mask for Gaussian
noise), (2) "-I1 (rep. I(XS ;S)" (removes mutual information between data sample representations
and the signal variable), (3) "-I2 (rep. I(X;XS)" (eliminates mutual information between data
samples and their representations), and (4) "-LVIB" (excludes the Information Bottleneck mechanism
guiding our method). By comparing these variants with the original xDDPM, we evaluate the
significance of each component in improving performance. From the analysis in Figure 4, we
observe that all the components of our method are essential to its performance, further validating the
effectiveness of our approach. Additionally, we note that the Information Bottleneck (IB) mechanism
(-LVIB) demonstrates the most substantial impact on the effectiveness of our method.

A.7 EFFICIENCY COMPARISON

In this section, we examine the training time required for all methods and present the results in
Table 2. To ensure fairness, all methods are implemented in Python 3.9, PyTorch 2.1 (GPU version).
The experiments are conducted on a server equipped with 48 cores and 8 Nvidia GeForce H800
GPUs. Our observations reveal that our method, xDDPM, achieves competitive model efficiency
compared to the baselines across the three datasets with outstanding performance. This validates that
our method xDDPM is well-suited for application on large-scale datasets, while maintaining a stable
explanatory ability. Among the baselines, SmoothGrad stands out as the slowest due to its approach
of enhancing gradient-based attribution maps by averaging gradients across multiple inputs, albeit
with competitive performance.
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A.8 DERIVATION OF EMPIRICAL VIB

In this section, we provide the deduction progress for the following formula:

LVIB = E(X,S)∼p(X,S)

[
1

2

(
1 +

D∑
j=1

(
log σ2

XS ,φ(X)− µ2
XS ,φ(X)− σ2

XS ,φ(X)
)
j

)
+

1

2
β||µS,φ(XS)− S||22

]
(15)

Assuming that the prior qφ(XS) and the posterior approximation pφ(XS |X) are both Gaussian
distributions, we proceed with the following notation. Let D represent the dimensionality of XS .
Through reparameterization trick, the variational mean and standard deviation evaluated on X are
µXS ,φ(X) and σ2

XS,φ
(X), respectively. Consequently, we have the following relationship:

∫
qφ(XS) log p(XS)dXS =

∫
N (XS ;µXS ,φ(X), σ2

XS,φ
(X)) logN (XS ;0, I)dXS (16)

= −D

2
log(2π)− 1

2

D∑
j=1

(µ2
XS ,φ(X) + σ2

XS,φ
(X))j (17)

And:∫
qφ(XS) log qφ(XS)dXS =

∫
N (XS ;µXS ,φ(X), σ2

XS,φ
(X)) logN (XS ;µXS ,φ(X), σ2

XS,φ
(X))dXS

(18)

= −D

2
log(2π)− 1

2

D∑
j=1

(1 + log σ2
XS,φ

(X))j (19)

Therefore, we can have the following deduction result:

−DKL(qφ(XS)||pφ(XS)) =

∫
qφ(XS)(log pφ(XS)− qφ(XS))dXS (20)

=
1

2

(
1 +

D∑
j=1

(
log σ2

XS ,φ(X)− µ2
XS ,φ(X)− σ2

XS ,φ(X)
)
j

)
(21)

Thus, β log qφ(S|XS) = β log(N (S;µS,φ(XS), I) is deduced to a standard MSE loss, Thus, we can

obtain the loss LVIB = E(X,S)∼p(X,S)

[
1
2

(
1+
∑D

j=1

(
log σ2

XS ,φ(X)−µ2
XS ,φ(X)−σ2

XS ,φ(X)
)
j

)
+

1
2β||µS,φ(XS)− S||22

]
.

A.9 FLUID DATA GENERATION

We employ the Lily-Pad simulator Weymouth (2015) for generating both the training and testing
datasets. The resolution of the 2D flow field is configured to be 128 × 128. It’s noteworthy that
in the context of Lily-Pad, the flow field is assumed to extend infinitely. The head of the jellyfish
remains fixed at the coordinates (25.6, 64). The representation of its two wings takes the form of
identical ellipses, characterized by a fixed ratio of 0.15 between the shorter and longer axes. At every
instant, symmetry is maintained across the central horizontal line defined by y = 64. To delineate the
wing boundaries, we meticulously sample a total of M = 20 points along each wing. The pivotal
parameter governing the jellyfish’s control in this 2D experiment is the opening angle of the wings.
This angle is defined as the deviation between the longer axis of the upper wing and the horizontal
line. It serves as the crucial control signal, denoted as w.

Each trajectory originates with the widest possible opening angle and proceeds along a periodic
cosine curve with a period of T ′ = 200. Trajectories are distinguished by variations in their
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initial angle, angle amplitude, and phase ratio, denoted as τ – which represents the ratio between
the closing duration and the entire pitching duration. For each trajectory, the initial angle w0 is
generated through a two-step process. Initially, a random mean angle w(m) is sampled within the
range of [20◦, 40◦]. Subsequently, a random angle amplitude w(a) is sampled within the interval
[10◦,min(w(m), 60◦−w(m))]. The resultant initial angle w0 is then computed as w0 = w(m)+w(a),
constrained within the range of [10◦, 60◦]. Meanwhile, the phase ratio τ is randomly chosen from
the range of [0.2, 0.8]. The opening angle wt at step t follows a specific pattern: it decreases from
w(m) +w(a) to w(m) −w(a) as t advances from 0 to τT ′, and then it increases from w(m) −w(a) to
w(m) + w(a) as t progresses from τT ′ to T ′. Beyond this point, wt exhibits periodic variations for
t > T ′. This configuration aligns with previous studies on the propulsive performance of jellyfish
Kang et al. (2023). Each trajectory is simulated for a total of 600 simulation steps, equivalent to 3
periods. To conserve space, only the segment of the trajectory spanning from T ′ = 200 to 3T ′ = 600
steps is saved, with a step size of 10. This decision is made as the simulation from t = 0 to T ′ = 200
is primarily intended for initializing the flow field. Consequently, each trajectory is stored as a
sequence comprising T̃ = (600− 200)/10 = 40 discrete steps.

In addition to tracking the positions of the wing boundary points and the opening angles w, we
incorporate an image-like representation of the wing boundaries. This alternative representation
contains valuable spatial information that can be more efficiently assimilated alongside the PDE states
(fluid field) through convolutional neural networks. For each trajectory, this image-like boundary
representation aligns seamlessly with the shape of the PDE states. At each time step, the boundaries
of the two wings are combined and transformed into a tensor of dimensions [3, 64, 64]. Within each
grid cell of this tensor, three distinct features are included: a binary mask indicating whether the cell
resides within a boundary (marked as 1) or within the fluid (denoted as 0), and a relative position
(∆x,∆y) representing the distance from the cell center to the nearest point on the boundary. This
representation enhances the compatibility between boundary information and PDE states. For every
trajectory, we retain data on PDE states, opening angles, boundary points, boundary masks, offsets,
and force data. These components are specified as follows:

• PDE states u: These have a shape of [T̃ , 3, 64, 64], representing the fluid field states for each
time step, including velocity in the x and y directions and pressure. To conserve space, we
downsample the resolution from 128× 128 to 64× 64.

– velocity: [T̃ , 2, 64, 64].

– pressure: [T̃ , 1, 64, 64].

• opening angels w: they have a shape of [T̃ ]. For each step, we save the opening angle in
radians.

• boundary points: shape [T̃ , 2,M, 2]. With a shape of [T̃ , 2,M, 2], we record the boundary
points for both the upper and lower wings. Each wing comprises M = 20 points, and
each point has 2 coordinates. To ensure compatibility with the downsampling of states,
the coordinates in the x and y directions are scaled down to half (64/128) of their original
values.

• boundary mask and offsets b: They have a shape of [T̃ , 3, 64, 64]. For each time step, this
includes a mask indicating the merged wings along with the half coordinates of boundary
points and offsets in both the x and y directions. The resolution is 64× 64, matching that of
the PDE states.

– mask: [T̃ , 1, 64, 64].

– offsets: [T̃ , 2, 64, 64].

• force: it has a shape of [T̃ , 2]. For each step, the simulator outputs the horizontal and vertical
force from fluid to the jellyfish. The horizontal force is regarded as a thrust to jellyfish if
positive and a drag otherwise.

We generated a total of n = 45, 000 trajectories, each distinguished by varying parameters such as
w(a), w(m), and τ . Each trajectory occupies approximately 2MB of storage space, contributing to an
overall dataset size of around 100GB. To create training samples, we employed sliding time windows
that encompassed T = 20 consecutive time steps of both states and boundaries. This configuration
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corresponds to T
′
= 200 original simulation steps, constituting a complete wing movement period.

Consequently, each trajectory could generate up to 20 individual samples, resulting in a grand total of
6 million training samples. In each training sample, the opening angle remained consistent between
the initial and final time steps due to the periodic nature of the motion. This consistency served as the
control condition for our experiments. For test trajectories, we carefully selected the opening angle of
the jellyfish at the initial time and used the initial states as the control conditions for both the initial
and final time and state configurations.

A.10 DETAILS OF BASELINES’ IMPLEMENTATIONS

To help reproduce the experiment results of all methods, we also provide detailed implementations of
all baselines in Appendix A.10. With the assistance of the mask M obtained through the regression
function µS,φ, the methods of our baselines focus on denoising only the features that are considered
relevant according to the mask M.

Lϵθ,M = ||ϵ⊙M − ϵθ(
√
ᾱtx0 +

√
1− ᾱtϵ, t)||22, ϵ ∼ N (0, I) (22)

LReg = E(X,S)∼p(X,S)

[
||µS,φ(XS)− S||22

]
Combined together

Lbaseline = Lϵθ,M +
1

2
LReg (23)

We employed seven distinct methods for obtaining masks:

• Random: Random involves utilizing random numbers as masks.

• Gradient: The gradient of xt is employed as the input to the model, and the gradient of xt is
obtained through backpropagation, with the model adopting the architecture of Unet Uφ.

M =
∂Uφ(xt)

∂xt
(24)

• Guided Backpropagation: Guided Backpropagation is a technique used in interpretability
of neural networks. It enhances the visualization of feature importance by guiding the
backpropagation process through the positive gradient values and setting negative gradient
values to zero. The formulation for Guided Backpropagation is as follows:

∂Uφ(xt)

∂xt
> 0 ⇒ M+(xt) =

∂Uφ(xt)

∂xt
(25)

For negative gradients:
∂Uφ(xt)

∂xt
< 0 ⇒ M−(xt) = 0 (26)

• SmoothGrad is a technique used to reduce noise in the interpretation of deep neural network
predictions by averaging gradients over multiple perturbed instances of the input. The
formulation for SmoothGrad is as follows:

M =
1

N

N∑
j=1

∂Uφ(Perturb(xt))

∂xi,t
(27)

Perturb(x) is a function that introduces random noise or perturbation to the input x.

• GuidedCAM: Guided Class Activation Mapping (GuidedCAM) is a technique used for
visualizing and interpreting the decisions of a convolutional neural network (CNN). It is
often applied to understand the importance of different regions in an input image for a
particular class prediction. The formulation for GuidedCAM is as follows:

M = ReLU(
∂Uφ(xt)

∂xt
⊙ Uφ(xt)) (28)
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Table 3: Data Statistics
Datasets Tension Wetting Fluid

Types Images Videos Images Videos Images Videos
Number 50,000 2,500 50,000 2,500 900,000 45,000

Table 4: The Sensitivity-n values of all methods were assessed on two datasets, specifically tension
and wetting. The range of masked pixels varied from 10% to 90%. The definition of Sensitivity-n
can be found in Equation 10. It was observed that the Sensitivity-n values did not exhibit significant
differentiation among the baseline methods, as depicted in Figure 2. We have averaged the results
shown in Figure 2 in this table. However, our proposed method xDDPM consistently outperformed
the others for most masking percentages. This demonstrates that our method can effectively identify
relevant pixels that have a strong correlation with the signal’s prediction.

Datasets Wetting Tension Jellyfish
- Area Circumference Area Circumference Pressure

Method Sensitivity-n Sensitivity-n Sensitivity-n Sensitivity-n Sensitivity-n
Random 0.0423 0.1326 0.0541 0.0450 0.1992
Gradient 0.0200 0.0269 0.0024 0.0154 0.0107
Saliency 0.0315 0.0927 0.0189 0.0286 0.1653

GuidedBP 0.0627 0.1224 0.0343 0.0158 0.1783
GuidedCAM 0.0203 0.1375 0.0230 0.0081 0.1804
SmoothGrad 0.0279 0.1003 0.0204 0.0436 0.0132

GuidedGrad-CAM 0.0687 0.1057 0.0172 0.0482 0.1953
xDDPM (ours) 0.2857 0.1568 0.1201 0.0610 0.3181

• Guided Grad-CAM (Guided Gradient-weighted Class Activation Mapping) combines the
concepts of Guided Backpropagation and Grad-CAM to highlight important regions in an
input image for a specific class prediction. The formulation for GuidedGradCAM is as
follows:

M = ReLU(
∂Uφ(xt)

∂xt
⊙ Uφ(xt))⊙ReLU(

∂Uθ(xt)

∂xt
⊙ Uθ(xt)) (29)

• Saliency is an attribution method used to understand the importance of input features for a
given model prediction. The formulation for Integrated Gradients is as follows:

M = (xt − x
′

t)⊙
∫ 1

α=0

∂Uφ(Interpolate(x
′
, x, α)

∂xt
dα (30)

Interpolate(x
′
, x, α) is a function that linearly interpolates between the baseline x

′

t and
the actual input xt at a given scale α. The baseline x

′

t is the mean of xt

Considering all of the aforementioned baselines, we have constrained the range of M to be clamped
within the interval [0.7, 1.0]. This adjustment aids the baselines in achieving improved performance
across all datasets.

A.11 TRAINING DETAILS AND PARAMETER SETTINGS OF XDDPM

To ensure fairness and consistency in our experiments, we made several design choices regarding
the configuration of our model. The hidden dimension of the U-Net neural network was set to 64,
providing an appropriate level of complexity for the task at hand. To balance the contribution of the
Information Bottleneck loss (LVIB), we assigned a weight λ of 0.1 in Eq. 5. Additionally, we set the
value of β to 1 for all datasets, promoting a suitable trade-off between reconstruction accuracy and
information preservation. For the Gaussian diffusion process, we performed 1000 diffusion steps
to allow for comprehensive information exchange. The channel size multiplier of the U-Net neural
networks was set to [1, 2, 4, 8], ensuring effective feature extraction across various scales. The number
of channels for the two cell dynamics datasets and the fluid dataset was set to 20 and 42, respectively,
accommodating the unique characteristics of each dataset. Three datasets were standardized to an
image size of 32× 32 pixels. To facilitate convergence, we adopted a learning rate of 8× 10−5.

A.12 BROADER IMPACTS AND LIMITATIONS

Our approach, xDDPM, expands the implementation of explanatory capabilities in denoising diffusion
probabilistic models within the AI for science domain. This advancement enables efficient utilization
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Figure 5: We present visualizations comparing our proposed method, xDDPM, with all baselines, on
the Fluid dataset. The central subfigure represents the actual boundary of a jelly-like robot, which
serves as a condition for generating the fluid pressure fields, denoted as X. The other subfigures depict
the generated pressure field X by our xDDPM and other baselines. The blended colors indicate the
irrelevant parts of the pressure fields to the force measurement signal S, as identified by the methods,
while the smoother colors represent the relevant parts. We observe that our xDDPM accurately
identifies that the enclosing region of the pressure fields is most relevant to the force measurement on
the boundary. Furthermore, the generated pressure field exhibits consistent angles with respect to
the given boundary. In contrast, the other baselines fail to generate a consistent pressure field and
struggle to identify the relevant pixels associated with the signal.
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Figure 6: We showcase visualization results that compare our proposed method, xDDPM, with all
baselines on the Tension dataset, specifically focusing on cells’ area. The central portion represents
the ground truth scenario, while the other figures display the generated results of 20 time steps
using xDDPM and all baselines, respectively. The mixed colors indicate the irrelevant portion to
the signal variable (cells’ area), while the smoother and more uniform color represents the relevant
parts. Methods that generate cells more similar to the ground truth demonstrate higher explanatory
capabilities. In this regard, xDDPM exhibits superior explanatory ability as the generated images at
each time step closely resemble those of the ground truth.
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Figure 7: We present visualizations that compare the performance of our proposed method, xDDPM,
with various baselines on the Wetting dataset. Specifically, we focus on the analysis of cells’
circumference. The central portion of the visualizations represents the ground truth scenario, while
the remaining figures depict the generated results from xDDPM and the baselines at different time
steps. The use of mixed colors in the visualizations helps distinguish the irrelevant portions of the
signal variable (cells’ circumference), while the smoother and more uniform colors highlight the
relevant parts. Methods that generate cell structures closely resembling the ground truth demonstrate
higher explanatory capabilities. In this context, our xDDPM exhibits superior explanatory ability as
the generated images at each time step closely resemble those of the ground truth.
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on extensive biological and physical datasets, offering significant implications across diverse scientific
and engineering fields. In the realm of biology, diffusion models aid in the modeling of protein
structures and drug interactions. Additionally, in materials science, diffusion models contribute to
the customization of material microstructures and properties. In the physical sciences, these models
are employed to simulate the trajectories of moving objects. We believe that, endowed with the
explanation generation capability of xDDPM, we can help gain more insight into the modeling of
such systems.

Our approach combines the strengths of diffusion models and introduces the capability of generating
samples with enhanced relevance to signals such as cell areas, cell circumferences, and forces of
solid boundaries. However, there are currently certain limitations that need to be addressed. Firstly,
our method xDDPM is currently exclusively applied to regression tasks and has not been adapted
for classification tasks. It is an exciting future work to adapt it to the classification task, thus
improving its generality. Additionally, there is room for improvement in terms of the scalability of
our method, particularly when it comes to handling high-resolution samples (e.g., images or videos
with 1024× 1024 resolution). We intend to address these limitations in our future endeavors.

In conclusion, our approach makes the first step to imbue diffusion models with explanatory capabili-
ties. Through the integration of the Information Bottleneck (IB) mechanism, our model, xDDPM,
empowers the generation of samples that showcase heightened relevance to signal variances. We are
confident that xDDPM will play a pivotal role in enhancing modeling techniques for a wide array of
scientific applications.
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